The snapshot package

American Mathematical Society
Michael Downes

Version 1.14, 2002/03/05

1 Introduction

The snapshot package helps the owner of a IHTEX document obtain a list of
the external dependencies of the document, in a form that can be embedded
at the top of the document. To put it another way, it provides a snapshot of
the current processing context of the document, insofar as it can be determined
from inside TEX.

If a document contains such a dependency list, then it becomes possible to
arrange that the document be processed always with the same versions of ev-
erything, in order to ensure the same output. This could be useful for someone
wanting to keep a IXTEX document on hand and consistently reproduce an iden-
tical DVI file from it, on the fly; or for someone wanting to shield a document
during the final stages of its production cycle from unexpected side effects of
routine upgrades to the TEX system.

Normal usage of the snapshot package involves the following steps:

1. Add a \RequirePackage statement at the top of the document:

\RequirePackage{snapshot}
\documentclass{article}

2. Run ETEX on the document. This will produce a dependency list in a file
\jobname .dep.

3. Insert the .dep file at the top of the document, before \documentclass.
The following example shows what you would end up with for a document
that used the article documentclass and the graphicx package:

\RequirePackage{snapshot}[1999/11/03]

\RequireVersions{
x{application}{TeX} {1990/03/25 v3.x}
*{format} {LaTeX2e} {1999/06/01 v2.e}
*{package}{snapshot} {1999/11/03 v1.03}
*{class} {article} {1999/01/07 v1.4a}

*{file} {sizel10.clo} {1999/01/07 vi.4a}
*{package}{graphicx} {1999/02/16 v1.0f}
x{package}{keyval} {1999/03/16 v1.13}

2 THE SNAPSHOT PACKAGE

*{package}{graphics} {1999/02/16 v1.01}
x{package}{trig} {1999/03/16 v1.09}
*x{file} {graphics.cfg}{0000/00/00 v0.0}
x{file} {dvips.def} {1999/02/16 v3.0i}
}
\documentclass{article}
\usepackage{graphicx}

The package option log will cause the dependency list to appear in the B TEX
log file instead of in a separate .dep file:

\RequirePackage [log] {snapshot}

Making the necessary arrangements to ensure that future ITEX runs of the
document actually call in the specified versions is a separate problem. The
snapshot package only provides a way to generate the dependency list. How-
ever, the \RequireVersions statement does record the given information in a
form that can be accessed from within BTEX. (It is for this purpose that it is
not simply a comment.) In principle a package could be set up so that a later
version would automatically attempt to emulate an earlier version if an earlier
version was specified—much as ITEX currently switches to 2.09 compatibility
mode if it sees \documentstyle instead of \documentclass.

For maximum reliability font checksums should also be reported in the de-
pendency list, but standard TEX 3.x does not provide direct access to font check-
sums for macro programmers. This information could be added by a separate
script that scans the DVI file.

When a graphics file is read in by a IXTEX document using the standard
\includegraphics command, it gets a dummy version number string of

Graphics file (type foo)

where foo is typically eps. This is with the current version of the graphics
package (at the time of this writing: 1999/02/16 v1.0l). What this means
in practice is that all graphics files will have their snapshot date and version
number recorded as

Graphics v0.0

and will always compare equal (the string “Graphics” will be used in place
of a date, but since comparison is done with \ifx it doesn’t make any real
difference).

It would be possible, for .eps files at least, to read the CreationDate com-
ment that is normally included in the file header and use that as the basis of
comparison. Recording the bounding box numbers instead of a dummy ver-
sion number would also be a possibly useful stratagem. But I have left these
possibilities untouched for the time being [mjd,2001-05-14].

The \RequireVersions command scans its argument for file names and asso-
ciated version number information. The syntax of a version line for a particular

file is

\RequireVersic

2. WARNING AND ERROR OPTIONS 3

*{ file type H file name }{ version info }

In other words, the * character in this context is like a command that takes three
arguments. The extension part of the file name should be omitted in the second
argument, except when the file type is file (following the conventions of BTEX’s
\ProvidesPackage and \ProvidesFile commands). The most commonly used
file types are as follows.

class A ETEX documentclass file.
package A KTEX package file.

tfm A TEX font metric file. In this case the “version number” is the checksum,
and unless you are using an extended version of TEX this information is not
accessible from inside I¥TEX, so it must be filled in by an outside process.
By default, font metric files are not listed in the dependency list since the
checksum info is not available. There is a package option tfm to turn on
the logging of metric files. (Not yet implemented [mjd,1999/09/23])

format This is almost always LaTeX2e. Other possibilities would be elatex or
lambda. The information comes from \fmtname.

application This is usually TeX with version number 3.x. From inside KTEX
there is no reliable way to get the exact version number (one could check
to see if version 2.x is in use, but this is unlikely to be relevant, nowadays,
so I have not bothered).

file None of the above: some other file of miscellaneous type, e.g., .clo, .cfg,
.tex, or .def.

The \RequireVersions command can be given an optional “ident” argu-
ment, similar to the argument of a \1label command. This is not used internally
but it could be used to assign a label to particular groups of files in case that
helps with external processing.

2 Warning and error options

If the snapshot package is invoked with the error option and also the document
contains a \RequireVersions statement, then each subsequent \ProvidesFile,
\ProvidesPackage, and \ProvidesClass statement will compare date and
version number information with the corresponding information from the
\RequireVersions statement and give an error message if a mismatch is de-
tected. With the warning option you get warnings instead of errors. By default
both the date and the version number are compared; this behavior can be mod-
ified, however, by giving additional options:

date compare only dates,
version compare only version numbers,
major-version use only the major version number when comparing.
Note: A file that doesn’t have any sort of \ProvidesFile or \ProvidesPackage
statement in it will show up in the dependency list, with a dummy date and

version number of 0000/00/00 v0.0, but there is no way, of course, to give any
meaningful warning or error message about version mismatches for such a file.

\RequireVersions

4 THE SNAPSHOT PACKAGE

3 Implementation

Standard declaration of package name and date.

\NeedsTeXFormat{LaTeX2e}[1994/12/01]
\ProvidesPackage{snapshot}[2002/03/05 v1.14]

\let\@xp\expandafter \let\@nx\noexpand

Calling the snapshot package in a document causes IXTEX to list the file
names and versions in the TEX log or in a .dep file, so that the information
may be easily copied into the document file. The list so generated is nothing
more than a slight adaptation of the output from ETEX’s \1istfiles command;
it puts essentially the same information into a slightly more structured form so
that it will be easier to use.

For the standard mechanisms that are already built into BTEX (e.g., the
handling of the second optional argument of \LoadClass), the de facto “version
number” is the date given in the optional argument of a \ProvidesClass or
similar command. Even though most \ProvidesWhatever commands also give
something that follows the usual form of version numbers—a string of the form
v2.3—this is only a convention, not used internally by IXTEX, and the identifica-
tion string of a random loaded file is not guaranteed to include it. The snapshot
package copies both pieces of information if available; if the second piece is not
present, a dummy number 0.0 is supplied. Similarly, files that don’t include
any \ProvidesWhatever statement will get a dummy date of 0000/00/00; TEX
system administrators who want to ensure maximal accuracy of the snapshot
information should therefore make it a practice to use \ProvidesFile in .cfg
files and other local files that might have an impact on the output fidelity of
their documents.

Optional argument of \RequireVersions allows assigning a name to a partic-
ular collection of files. This might be useful for setting a TEX inputs path.

\newcommand{\RequireVersions}[2] [1{%
\let\snap@check\snap@compare@versions
\let\snap@selfcheck\snap@selfcheck@a
\@ifnextchar *\snap@store@version\snap@storeQ@error#2*{end}{}{}%

}

\@onlypreamble\RequireVersions

\def\snap@store@error#1{’
\PackageError{snapshot}{Expected ’*’ here, not ’#1’}\@ehc
}

\@onlypreamble\snap@store@error

\def\snap@store@version #1#2#3#4{J,
\@xp\snap@store@b\csname snapx@#2\endcsname{#2}{#3}{#41}7,
}

\@onlypreamble\snap@store@version

\def\@fmtextension{fmt}
\def\@tfmextension{tfm}
\edef\snapx@package{.\@pkgextension}

3. IMPLEMENTATION 5

\edef\snapx@class{.\Q@clsextension}
\edef\snapx@format{.\@fmtextension}
\edef\snapx@tfm{.\@tfmextension}
\long\def\snapx@application{}
\let\snap@file=\Q@empty
\let\snapx@end\@@end

For a package named foo.sty, this function defines \rqv@foo.sty to hold
the date and version information.

\def\snap@store@b#1#2#3#4{%
\ifx#1\snapx@end
\@xp\@gobblefour
\else
\ifx#1\relax \let#1\@empty\fi
\def\Qtempa##1 ##2 ##3\Onil{##1 ##2}Y%

\ifx#1\snapx@application
\else
\xdef\rqve@list{\rqve@list
\ifx\Q@empty\rqv@list\else, \fi
#3#1Y,
Yh
\fi
\@xp\xdef\csname rqve#3#1\endcsname{\@tempa#4 v?.7 7 \relax\@nill}/,
\ifx#1\snapx@format \snap@check{#3.fmt}/
\else \snap@selfcheck{#3.sty}/
\fi
\fi
\@ifnextchar *\snap@store@version\snap@store@error
}
\@onlypreamble\snap@store@b

Default setup is geared to write the dependency list to a .dep file. The
option log means write it to the TEX log instead.

\def\snap@urite{\immediate\write\snap@out}
\let\snap@out\sixt@@n % fallback, probably never used

\DeclareOption{dep}{%
\def\snap@urite{\immediate\write\snap@out},
}

\DeclareOption{log}{%
\let\snap@urite\typeout
}

The purpose of the ‘test’ option is to support a separate testing procedure
that resolves file names. If the \RequireVersions data is extracted to a separate
file, and

\RequirePackage [test]{snapshot}

6 THE SNAPSHOT PACKAGE

is added at the top, then the file can be run as a small separate I2TEX job whose
sole purpose is to produce in the log file a nice list of fully resolved file names.
A limited, but system-independent variant of the kpsewhich idea.

\let\snap@fake@b\relax
\DeclareOption{test}{%

\def\snap@fake@b{\endinput \futurelet\@let@token\snap@ignoline}%
}

For each font used by a document, we would like to list the . tfm file name and
checksum. If TEX provided a \fontchecksum primitive similar to \fontname
that could be used to get the checksum of any font, it would just about be
feasible to do this entirely from within IXTEX. As a partial solution we could at
least generate the list of font file names, to make it easier for an external utility
to add the checksums.

In practice, extracting font names and checksums from the .dvi file will
probably work well enough, leaving no work to be done by the snapshot package
in this area. But theoretically speaking the output of a document could be
affected by font metric files that are loaded during I¥TEX processing but that
do not show up in the .dvi file.

\DeclareOption{tfm}{%
\typeout{Option ’tfm’ not implemented yet [1999/09/2311}J
}

Warnings and errors.

\def\snap@mismatch@warning#1#2#3{\PackageWarningNoLine{#1}{#2}}
\def\snap@mismatch{\snap@mismatch@warning}

\DeclareOption{error}{/

\def\snap@mismatch{\PackageError}j,

\ifx\snap@select\@empty \let\snap@select\snap@select@all \fi
}

\DeclareOption{warning}{%
\def\snap@mismatch{\snap@mismatch@warningl}y,
\ifx\snap@select\@empty \let\snap@select\snap@select@all \fi

}

Because the exact form of the version number is not mandated by LaTeX,
just take the first two “words” delimited by spaces. And take a little extra care
to properly handle multiple spaces between the words.

\def\snap@select@all#1#2 #3#4 #5\Cnil{#1#2 #3#4}
\let\snap@select\@empty

\DeclareOption{date}{%
\def\snap@select#1#2 #3\@nil{#1#2}%
}

\def\snap@select@version#1{J,

\ifodd O0#11 \@xp\snap@sva\@xp#1\else\@xp\snap@select@version\fi
}
\def\snap@sva#l.#2 #3\@nil{#1.#2}

3.

IMPLEMENTATION 7

\def\snap@select@major#1{}

\ifodd O#11 \@xp\snap@svm\@xp#1\else\@xp\snap@select@major\fi
}
\def\snap@svm#1.#2\@nil{#1}

\DeclareOption{version}{%
\def\snap@select#1#2 #3{\snap@select@version #3}}
}

\DeclareOption{major-version}{%
\def\snap@select#1#2 #3{\snap@select@major #3}J
}

\ProcessOptions\par

We need the following patch to make up for the fact that \@pkgextension

and \@clsextension are marked in the BTEX kernel as “only preamble”.

\edef\snap@restore@extensions{%
\def\@nx\@pkgextension{\@pkgextensionl}y,
\def\@nx\@clsextension{\@clsextension}/,

}

Pad filename strings out to 843 length so that the list will look pretty.

\def\snap@pad#1#2#3#4#5#6#7#8#9{\snapCpadQa{#1#2#3#4#5#6#T#8#9}}
\def\snap@padQa#1#2#3#4#5\0nil{\snapOpad@b#1#2#3#4\space\C@nil}
\def\snap@pad@b#1\space#2\@nil#3{\def#3{#2}}

First stage: discard leading spaces before the first and second nonspace

strings in the argument. Take the first nonspace string as the date. Since we
only do equal/not-equal testing on dates, it does not seem essential to test if it
is really a valid date string or not (yyyy/mm/dd).

\def\snap@trim@version#1#2 #3{#1#2 \snap@trim@b #3}

Second stage: Scan for a version number. In order to handle some idiosyncratic
cases, such as url.sty version 1.4, we can’t simply take the second nonspace
string as the version number but need to look for a leading digit.

\def\snap@trim@b#1{\ifodd O#11 v#1\@xp\snap@trim@c\fi \snap@trim@b}

Arg 1 here is \snap@trim@b, which we just need to discard.

\def\snap@trim@c#1#2 #3\@nil{#2}
\let\rqv@list=\Qempty

If \fmtname.fmt is not already in the file list, add it.

\edef\@tempc#1\fmtname{#1\fmtname}\@tempc
\def\Qtempa#1l,\fmtname.fmt , #2#3\@nil{#2}
\edef\@tempb{\@nx\@tempa,\@filelist, \fmtname.fmt,}
\if ?\@tempb?\@nil
\edef\@filelist{\fmtname.fmt,\@filelist}}
\def\@tempc{LaTeX2e}%
\@xp\edef\csname ver@\fmtname.fmt\endcsname{’,
\fmtversion\space
v\ifx\@tempc\fmtname 2.e\else 7.7\fi

8 THE SNAPSHOT PACKAGE

Yh
\fi
\listfiles
\def\@dofilelist{%
\snap@restore@extensions
\ifx\rqv@list\@empty
\else \rqv@compare@lists
\fi
\ifx\snap@urite\typeout
\else
\newwrite\snap@out
\immediate\openout\snap@out=\jobname.dep \relax
\fi
\snap@urite{\string\RequireVersions\@charlb}/

Since the exact version number of TEX is not normally accessible from inside
KTEX, we use a nominal date of 1990/03/25, which is when version 3.0 of
tex.web was released by Knuth.

\snap@urite{\space\space *{application}{TeX}/
\space\space\space\space\space{1990/03/25 v3.x}}/
\@for\@currname:=\@filelist\do{/

\filename@parse\Q@currname

\ifx\filename@ext\relax
\def\@tempa{file}\def\@tempd{.tex}\def\filename@ext{tex}/,
\def\@tempb{~~"~}%

\else\ifx\filename@ext\@pkgextension
\def\@tempa{package}\let\@tempd\Qempty
\def\@tempb{}’

\else\ifx\filename®@ext\@clsextension
\def\@tempa{class}\let\@tempd\@empty
\def\@tempb{~ "}V

\else\ifx\filename®@ext\@fmtextension
\def\@tempa{format}\let\@tempd\Qempty
\def\@tempb{~1}/

\else\ifx\filename®@ext\@tfmextension
\def\@tempa{tfm}\let\@tempd\Qempty
\def\@tempb{~ "~~~}

\else
\def\@tempa{file}\edef\Q@tempd{.\filename@ext}%
\def\@tempb{~~"~}%

\Fi\fi\fi\fi\fi

\@xp\let\@xp\@tempe
\csname ver@\filename@base.\filename@ext\endcsname

If a file contains just \ProvidesFoo{xyz} without any optional argument, then
\ver@xyz ends up empty. Resetting it to \relax is the easiest way to get the
fallback version number in that case also.

\ifx\@tempe\@empty \let\@tempe\relax \fi

\edef\Qtempe{’,
\ifx\@tempe\relax 0000/00/00 v0.0%

3. IMPLEMENTATION 9

\else
\@xp\@xp\@xp\snap@trim@version\@xp\Q@tempe\space v0.0 v0.0 \@nil
\fi
Yh
\edef\@tempc{\filename@area\filename@base\@tempd}’ full file name
\@xp\snap@pad\@tempc\space™ "~~~ TTITIIII \@nil\@tempd

\begingroup \let~\space
\snap@write{\space\space *{\@tempal}\@tempb{\@tempc}\@tempd{\@tempel}}%
\endgroup
Y
\snap@write{\@charrbl}y,
\ifx\snap@urite\typeout
\else \immediate\closeout\snap@out
\typeout{Dependency list written on \jobname.dep.}’
\fi
Yh
The \rqv@compare@lists function checks to see if any files are found only
in the RequireVersions list or only in \@filelist. To see which files are only in
\@filelist, we map the \rqv@condense function across both lists, reinitializ-
ing \L (used here as a scratch variable) in between. As a side effect this leaves
the desired file names in \L. Then the same process with the order of the lists
reversed tells us which ones are only in \rqv@list.

\def\rqv@condense#1,{}
\if ,#1,%
\else
\@xp\ifx\csname ver@#1\endcsname\N
\else
\edef\L{\L,#13}%
\@xp\let\csname ver@#1\endcsname=\N
\fi
\fi
\rqv@condense

}

\def\rqv@compare@lists{/,
\begingroup
\def\N{1}\let\L=\@gobble
\@xp\rqv@condense \rqv@list,TeX,{,\relax\@xp\@gobbletwo\@xp},
\ifx\L\@gobble\let\L\@empty\fi
\let\rqv@list=\L
\let\L=\@gobble
\@xp\rqv@condense \@filelist,{,\relax\@xp\@gobbletwo\@xp},7%
\ifx\L\@gobble\let\L\Q@empty\fi
\@for\@currname:=\L\do{Y%
\snap@mismatch{snapshot}{"~J%
File \@currname\space loaded though not in
\noexpand\RequireVersions listY
F\@ehc
Y

10 THE SNAPSHOT PACKAGE

\def\N{2}\let\L=\@gobble
\@xp\rqv@condense\@filelist,TeX,{, \relax\@xp\@gobbletwo\@xpl},%
\let\L=\@gobble
\@xp\rqv@condense\rqv@list,{, \relax\0@xp\@gobbletwo\@xp},%
\ifx\L\@gobble\let\L\@empty\fi
\@for\@currname:=\L\do{%
\snap@mismatch{snapshot}{"~J%
File \@currname\space [\csname rqv@\@currname\endcsname]
required but not loaded
F\@ehc
Y
\endgroup
}

See the documentation above for the ‘test’ option.

\begingroup \catcode\endlinechar=12\relax %
\long\gdef\snap@ignoline#1
{}\endgroup %

\def\snap@fake@input#1#2#3#4{J,
\ifx#1\snapx@end
\aftergroup\@@end \@xp\@gobblefour
\else
\ifx#1\snapx@format
\else
\message{~"J}%
\@xp\snap@fake@b\@0input #3#1\relax
\fi
\fi
\@ifnextchar *\snap@store@version\snap@store@error

}

\newcommand{\rqvTest}[2] [1{%
\begingroup \catcode\endlinechar=12
\catcode‘\%=12 \catcode‘\{=12 \catcode‘\}=12\relax

Since \snap@fake@input just compares \snapx@foo with \ifx, making \snapx@application
and \snapx@tfm compare equal to \snap@format ensures that only one com-
parison is needed to tell if we shouldn’t attempt to input the current file type.
\let\snapx@application=\snapx@format \let\snapx@tfm=\snap@format
\@ifnextchar *\snap@store@version\snap@store@error#2*{end}{}{}%

\endgroup
}

\@ifundefined{snap@fake@b}{}{%
\let\snap@store@b\snap@fake@input
\let\RequireVersions\rqvTest

}

Compensate for a bug in old versions of amsgen.sty. This is a little tricky.
Old version: \ver@amsgen=1996/10/29 v1.2b
New version: \ver@amsgen.sty=1999/11/30 v2.0

3. IMPLEMENTATION 11

%\@namedef{ver@amsgen.sty}{1996/10/29 v1.2b}
\AtBeginDocument{%
\@ifundefined{ver@amsgen}{}{/
\@xp\let\csname ver@amsgen.sty\Oxp\endcsname
\csname ver@amsgen\endcsname
Y
}
Terminate here without touching I#TEX internals, unless one of the relevant
snapshot options was chosen.

\let\snap@compare@versions\@gobble \let\snap@check\@gobble
\let\snap@selfcheck\@gobble \let\snap@selfcheck@a\@gobble
\ifx\snap@select\@empty \endinput \fi

\begingroup \catcode‘\.=11\relax
\gdef\snap@selfcheck@b#1\rqv@snapshot.sty#2#3\0nil{T#2}
\gdef\snap@selfcheck@a#1{}

\if\@xp\snap@selfcheck@b\csname rqv@#1\endcsname TY

\rqv@snapshot.sty F\@nil
\snap@check{#1}%

\fi
}
\endgroup

\def\@nofmt#1.fmt.#2 {#1 }

\def\snap@mismatch@a#1#2#3{%
\snap@mismatch{snapshot}{~"~J%
\space\space Required version #2 of \@nofmt#l.fmt. and~"J%
\space\space provided version #3 do not matchy
F\@ehc
}

When comparing \rqv@foo.sty (information from a previous KTEX run)
with \ver@foo.sty (information from current run), we first call \snap@trim@version
on the latter to clear away any idiosyncrasies in the contents.

\def\snap@compare@versions#1{/
\begingroup
\@ifundefined{rqve#1}{}{%
\edef\0{\csname rqv@#1\endcsnamel}’,
\edef\1{\csname ver@#1\endcsnamely,
\edef\1{\@xp\snap@trim@version\1l v0.0 v0.0 \@nill}},
\edef\@tempa{\@xp\snap@select\0 v0.0 v0.0 \@nill}},
\edef\Q@tempb{\@xp\snap@select\1 v0.0 v0.0 \@nill}
\ifx\@tempa\@tempb
\else
\edef\@tempd{\@nx\snap@mismatch@a{#1}{\@tempal}{\@tempbl}}/,
\@xp\Q@tempd
\fi
Y
\endgroup
}

12 THE SNAPSHOT PACKAGE

Because \ProvidesFile is used in .fd files which are normally read with
special catcodes, there tend to be problems with whitespace characters being er-
roneously lost from the second argument. Since we have to put in a \snap@check
call anyway, while we’re at it let’s fix a bug of this type that affected some older
versions of KTEX.

\def\ProvidesFile#1{}
\def\snap@checker{\snap@check{#1}}/
\begingroup
\aftergroup\snap@checker
\catcode‘\ 10\catcode\endlinechar 10 %
\@makeother\ /%
\@makeother\&,
\@ifnextchar [{\@providesfile{#1}}{\@providesfile{#1}[1}%
}

\def\@pr@videpackage [#1]{%
\expandafter\xdef\csname ver@\@currname.\@currext\endcsname{#1}/,
\ifx\@currext\@clsextension
\typeout{Document Class: \@gtempa\space#1}/,

\else
\wlog{Package: \@gtempa\space#1}}
\fi
\snap@check{\@currname.\@currext}}
}

The usual \endinput to ensure that random garbage at the end of the file
doesn’t get copied by docstrip.

\endinput

To Do

e Provide a test to distinguish between shared-use files and document-
specific files? Document-specific files would be things like graphics files
loaded via \includegraphics or book chapters loaded via \include.

But there might also be something like \input{my-book-macros} in

the preamble. Maybe authors should be encouraged to put this after
\begin{document}? Or, even, after \begin{abstract} so that the ab-
stract will contain only lowest-common-denominator KTEX commands?

The non-document-specific files most commonly loaded after \begin{document}
would be .fd files, but there is also the possibility of autoloaded stuff
(alatex format).

