
The skeyval Package∗

Version 0.5

Ahmed Musa�
Preston, Lancashire, UK

4th March 2010

Abstract

This package supplements the xkeyval package, hence the “s” in “skeyval.” It in-
troduces toggle keys and complementary (boolean and toggle) keys. It also provides
mechanisms for reserving, unreserving, suspending, restoring, and removing keys.
Furthermore, it introduces a set of commands for key definition which bar the de-
veloper or user from inadvertently redefining existing keys of the same family and
prefix. Commands are provided for checking the statuses of keys across multiple key
prefixes and families. Also, the package provides a scheme for defining multiple keys
of different genres using only one command, thereby making it possible to consider-
ably economize on tokens when defining keys. Some other general-purpose developer
macros are provided within the package.

License

This work (i.e., all the files in the skeyval bundle) may be distributed and/or modified
under the conditions of the LATEX Project Public License (LPPL), either version 1.3
of this license or any later version.

The LPPL maintenance status of this software is “author-maintained”. This software
is provided “as it is,” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose.

The package is now at open beta stage and package distributors, such as makers of
MiKTEX and TEXLive, should wait for at least a stable version 1.0 before embarking
on distribution. Bug reports are particularly welcome. Correspondents should use
the file skeyval-bugreport.tex provided as part of the bundle. c© MMX

∗The package was formerly called the keyreader package until version 0.5. The keyreader

package is obsolete and no longer supported.
The skeyval package is available at http://www.ctan.org/tex-archive/macros/latex/

contrib/skeyval/

mailto:a.musa@rocketmail.com
http://www.ctan.org/tex-archive/macros/latex/contrib/skeyval/
http://www.ctan.org/tex-archive/macros/latex/contrib/skeyval/

The skeyval Package Page 2 of 39

Contents

1 Motivation 2

2 Loading the skeyval package 3

3 Complementary boolean keys 4

4 Toggle switches and keys 5
4.1 Toggle switches 5
4.2 Toggle keys 7

5 Complementary toggle keys 9

6 Defining multiple keys by one
command 11
6.1 Choice key values 12
6.2 Some internals 13
6.3 Some examples 13

7 Input error 17

8 Conditionals in key macros 18

8.1 Using macros or token registers 18
8.2 Using a trick to submit the

conditionals 19
8.3 Using toggles 21

9 Checking and redefining keys 21
9.1 Checking the status of a key . . 21
9.2 Redefining keys 22

9.2.1 Avoiding multiple defi-
nitions of same key . . . 22

10 Disabling, reserving, suspending
keys, etc. 24
10.1 Disabling keys 24
10.2 Reserving and unreserving keys 26
10.3 Suspending and restoring keys . 27
10.4 Removing keys 27

11 Setting keys: list normalization 27

12 Miscellaneous macros 28

13 Version history 38

1 Motivation

TOggle switches or booleans were introduced by the etoolbox package and
have proved very useful mainly for two reasons: unlike the legacy TEX

switches which require three commands per switch, toggles require only one
command per switch, and toggles occupy their own separate namespace, thereby
avoiding clashes with other macros. So we can effectively have both the following
sets in the same file:

Example

1 \newif\ifmyboolean -> 3 separate commands:
2 \ifmyboolean \mybooleantrue
3 \mybooleanfalse

5 \newtoggle{myboolean} -> only 1 command and no clash with
6 commands in other namespaces.

However, the xkeyval package can’t be used to define and set toggle keys. The
present package fills this gap, by providing facilities for defining and setting
toggle keys. The work relies on some of the macros from the xkeyval package.

The skeyval Package Page 3 of 39

Secondly, the xkeyval package can’t be used to define and set complementary
keys, which can be handy in the case of boolean and toggle keys. The present
package introduces this concept and additionally permits the submission of indi-
vidual/different custom key macros to complementary boolean and toggle keys.

The third motivation for this package relates to economy of tokens in style
files. The xkeyval package provides \define@cmdkeys and \define@boolkeys
for defining and setting multiple command keys and boolean keys, but in each
category the keys must have the same default value and no key macro/function.
This package seeks to lift these restrictions, so that multiple keys of all categories
(ordinary keys, command keys, boolean keys, tog keys, and choice keys) can be
defined in one go (using only one command) and those keys can have different
default values and functions. This greatly minimizes tokens, as hundreds of keys
can, in principle, be issued simultaneously by one command.

Fourthly, macros are introduced for defining all key types without the fear of
inadvertently redefining existing keys in the same family and with the same key
prefix. This is similar to the \newcommand concept in LATEX.

The package also provides facilities for disabling, suspending, restoring and re-
moving keys across multiple families of keys.

The new macros can be used together with the machinery from the xkeyval
package for efficient and versatile key management.

2 Loading the skeyval package

The package can be loaded in style and class files by
Example

7 \RequirePackage[options]{skeyval}

and in document files via
Example

8 \usepackage[options]{skeyval}

where the options and their default values are

Macro

9 keyparser=;, macroprefix=mp@, keyprefix=KV, keyfamily=fam,
10 xchoicelist=false.

The 〈keyparser〉 is the separator between the keys in the key list to be defined
in one go (see examples in Section 6.3). The 〈macroprefix〉, 〈keyprefix〉, and
〈keyfamily〉 are, respectively, the macro prefix, key prefix and key family for all

The skeyval Package Page 4 of 39

the keys to be defined upon the declaration of these options. All these options
can be set or changed dynamically by using the \skvoptions macro:

Macro

11 \skvoptions{keyparser=;, macroprefix=mp@, keyprefix=KV,
12 keyfamily=fam, xchoicelist=false}.

If, as unlikely as it may seem, a clash arises between package and/or user
macros as a result of the use of the defaults for 〈macroprefix〉, 〈keyprefix〉
and 〈keyfamily〉, then the user will have to make his own choices for these
defaults so as to avoid clashes.

3 Complementary boolean keys

The syntax for creating complementary boolean keys is
Macro

13 \define@compboolkeys[〈keyprefix〉]{〈family〉}[〈macroprefix〉]
14 {〈primary boolean〉}[〈default value for primary boolean〉]
15 {〈secondary boolean〉}{〈func for primary boolean〉}
16 {〈func for secondary boolean〉}.

This command is robust and can be used in expansion contexts, but expandable
commands must be protected. When the user doesn’t supply the 〈keyprefix〉
and/or 〈macroprefix〉, the package will use 〈KV〉 and 〈mp@〉, respectively. When
one complementary boolean key (primary or secondary) is true, the other is
automatically set false; and vice versa: when one complementary boolean key
(primary or secondary) is false, the other is automatically set true. Infinite
loops, which are possible in back-linked key settings, are avoided in the skeyval
package. The tools of the xkeyval package, such as \setkeys, \presetkeys,
\savekeys, \savevalue, \usevalue, etc., are all applicable to complementary
boolean keys.

As an example, we define below two complementary boolean keys 〈draft〉 and
〈final〉 with different key macros:

Example

17 \define@compboolkeys[KV]{fam}[mp@]{draft}[true]{final}%
18 {%
19 \def\gobble##1{}%
20 }{%
21 \def\notgobble##1{##1}%
22 }.

The key prefix (default 〈KV〉), macro prefix (default 〈mp@〉), and key macros (no
default) can be empty:

The skeyval Package Page 5 of 39

Example

23 \define@compboolkeys{fam}{draft}[true]{final}{}{}.

The defined complementary keys 〈draft〉 and 〈final〉 can now be set as follows:

Example

24 \setkeys[KV]{fam}{draft=true}

26 \setkeys[KV]{fam}{final=true}

The second statement above reverses the boolean 〈draft〉 to 〈false〉, which
had been set in the first statement to 〈true〉. There is no apparent meaning to
the following:

Example

27 \setkeys[KV]{fam}{draft=true,final=true}.

Most applications of the xkeyval package do indeed use key and macro prefixes;
so it presumably makes sense here to assume that all uses of the present package
will somehow involve key and macro prefixes.

4 Toggle switches and keys

4.1 Toggle switches

The following toggle switches are defined in the skeyval package. They largely
mimic those in the etoolbox package, except for the commands \deftog and
\requiretog. There is no fear that the commands in this package will interfere
with those from the etoolbox package, since the control sequence names used
in the two packages are different.

All the commands in this section are robust and can be used in expansion
contexts.

Macro

28 \deftog{〈toggle〉}

This defines a new 〈toggle〉 whether or not 〈toggle〉 is already defined. If
〈toggle〉 is already defined, a warning message is logged in the transcript file
and the new definition is effected.

Macro

29 \newtog{〈toggle〉}

The skeyval Package Page 6 of 39

This defines a new 〈toggle〉 if 〈toggle〉 is not already defined; otherwise the
package issues a fatal error.

Macro

30 \providetog{〈toggle〉}

This defines a new 〈toggle〉 if 〈toggle〉 is not already defined. If 〈toggle〉 is
already defined, the command does nothing.

Macro

31 \requiretog{〈toggle〉}

\requiretog takes arguments like \newtog and behaves like \providetog with
the difference: if the toggle is already defined, the command \requiretog calls
LATEX’s \CheckCommand to make sure that the new and existing definitions
are identical, whereas \providetog assumes that if the toggle is already de-
fined, the existing definition should persist. \requiretog assures that a toggle
will have the given definition, but \requiretog also warns the user if there
was a previous and different existing definition. For example, if the toggle
〈toga〉 is currently 〈true〉, then since all new toggles start out as 〈false〉, a
call \requiretog{toga} will issue a warning in the log file that the new and
old definitions of 〈toga〉 don’t agree and the new definition, therefore, can’t go
ahead.

The skeyval package also provides the command \requirecmd, which has the
same logic as \requiretog but can be used for general LATEX commands, in-
cluding those with optional arguments (see Section 12).

Macro

32 \settog{〈toggle〉}{〈true | false〉}

This command sets 〈toggle〉 to 〈value〉, where 〈value〉 may be either 〈true〉
or 〈false〉. This statement will issue an error if 〈toggle〉 wasn’t previously
defined.

Macro

33 \togtrue{〈toggle〉}

This sets 〈toggle〉 to 〈true〉. It will issue an error if 〈toggle〉 wasn’t previously
defined.

Macro

34 \togfalse{〈toggle〉}

This sets 〈toggle〉 to 〈false〉. It will issue an error if 〈toggle〉 wasn’t previously
defined.

The skeyval Package Page 7 of 39

Macro

35 \iftog{〈toggle〉}{〈true〉}{〈false〉}

This yields the 〈true〉 statement if the boolean 〈toggle〉 is currently 〈true〉, and
〈false〉 otherwise. It will issue an error if 〈toggle〉 wasn’t previously defined.

Macro

36 \ifnottog{〈toggle〉}{〈not true〉}{〈not false〉}

This behaves like \iftog but the logic of the test is reversed. It will issue an
error if 〈toggle〉 wasn’t previously defined.

4.2 Toggle keys

The syntax for defining toggle keys is exactly like those for boolean keys in
the xkeyval package. This allows all the machinery of the xkeyval package
(including \setkeys, \presetkeys, \savekeys, \savevalue, \usevalue, etc)
to be applicable to toggle keys.

As mentioned earlier, toggles have their own separate namespace. However, the
\setkeys command (and friends) of the xkeyval package is unaware of this.
This can cause problems when the user uses the same name for boolean and
toggle keys (or indeed any key type) in the same family and with the same
key prefix, believing rightly that toggle keys have their own separate names-
pace. If this is a source of significant concern to any user, he will be well ad-
vised to instead use the commands \newboolkey, \newboolkeys, \newtogkey,
\newtogkeys, etc., of Section 9. In those commands a mechanism is included to
bar keys from having the same name as other keys in the same family and with
the same prefix. Toggle keys can still share the same names with keys across
families and key prefixes. Since it is not always certain which of the keys the
user may want to first define (before its definition is possibly repeated), the fear
of interference has necessitated new syntaxes for defining all key types, which
completely avoid interference (see Section 9).

The user interfaces for defining toggle keys are

Macro

37 \define@togkey[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
38 {〈function〉}

40 \define@togkey+[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
41 {〈function1〉}{〈function2〉}

If the macro prefix 〈mp〉 is not specified, these create a toggle of the form
〈prefix〉@〈family〉@〈key〉 using \deftog (which initializes the toggle switch to

The skeyval Package Page 8 of 39

〈false〉) and a key macro of the form \〈prefix〉@〈family〉@〈key〉 which first
checks the validity of the user input. If the value is valid, it uses it to set the
toggle and then executes 〈function〉. If the user input wasn’t valid (i.e., neither
true nor false), then the toggle will not be set and the package will generate
a fatal error to this effect.

If 〈mp〉 is specified, then the key definition process will create a toggle of the
form 〈mp〉〈key〉 and a key macro of the form \〈mp〉〈key〉. The value 〈default〉
will be used by the key macro when the user sets the key without a value.

If the plus (+) version of the macro is used, the user can specify two key macros
〈function1〉 and 〈function2〉. If user input is valid, the macro will set the
toggle and executes 〈function1〉; otherwise, it will not set the boolean but will
execute 〈function2〉.

As an example, consider the following (adapted from the xkeyval package to
suit toggle keys):

Example

42 \define@togkey{fam}[my@]{frame}{%
43 \iftog{my@frame}{%
44 \PackageInfo{mypack}{Turning frames on}%
45 }{%
46 \PackageInfo{mypack}{Turning frames off}%
47 }%
48 }

50 \define@togkey+{fam}{shadow}{%
51 \iftog{KV@fam@shadow}{%
52 \PackageInfo{mypack}{Turning shadows on}%
53 }{%
54 \PackageInfo{mypack}{Turning shadows off}%
55 }%
56 }{%
57 \PackageWarning{mypack}{Erroneous input ‘#1’ ignored}%
58 }

The first example creates the toggle 〈my@frame〉 and defines the key macro
\KV@fam@frame to set the boolean (if the input is valid). The second key in-
timates the user of changed settings, or produces a warning when input was
incorrect.

It is also possible to define multiple toggle keys with a single command:

Macro

59 \define@togkeys[〈prefix〉]{〈family〉}[〈mp〉]{〈keys〉}[〈default〉]

The skeyval Package Page 9 of 39

This creates a toggle key for every entry in the comma-separated list 〈keys〉.
As is the case with the commands \define@cmdkeys and \define@boolkeys
from the xkeyval package, the individual keys in this case can’t have a custom
function. See section 6 for how to define multiple keys with custom functions.

As an example of defining multiple toggle keys, consider
Example

60 \define@togkeys{fam}[my@]{toga,togb,togc}

This is an abbreviation for
Example

61 \define@togkey{fam}[my@]{toga}{}
62 \define@togkey{fam}[my@]{togb}{}
63 \define@togkey{fam}[my@]{togc}{}

Now we can do
Example

64 \define@togkey{fam}[my@]{book}{%
65 \iftog{my@book}{\setkeys[KV]{fam}{togc=true}}{}%
66 }
67 \setkeys[KV]{fam}{book=true}

Toggle keys can be set in the same way that other key types are set.

The status of toggles can be examined by doing
Example

68 \show\SKV@toggle@〈mp〉〈key〉

when the 〈mp〉 is present. When the user has specified no 〈mp〉 in defining the
key, he has to issue

Example

69 \show\SKV@toggle@〈prefix〉@〈family〉@〈key〉.

5 Complementary toggle keys

Similar to complementary boolean keys of Section 3, the skeyval package in-
troduces a facility for creating complementary toggle keys. The syntax for this
is similar to that for defining complementary toggle keys:

The skeyval Package Page 10 of 39

Macro

70 \define@comptogkeys[〈keyprefix〉]{〈family〉}[〈macroprefix〉]
71 {〈primary toggle〉}[〈default value for primary toggle〉]
72 {〈secondary toggle〉}{〈func for primary toggle〉}
73 {〈func for secondary toggle〉}.

This command is robust and can be used in expansion contexts, but non-robust
commands have to be protected. When the user doesn’t supply the 〈keyprefix〉
and/or 〈macroprefix〉, the package will use 〈KV〉 and 〈mp@〉, respectively. When
one toggle key (primary or secondary) is true, the other is automatically set
false; and vice versa: when one toggle key (primary or secondary) is false, the
other is automatically set true.

As an example, we define below two complementary toggle keys 〈xdraft〉 and
〈xfinal〉 with different key macros:

Example

74 \define@comptogkeys[KV]{fam}[mp@]{xdraft}[true]{xfinal}%
75 {%
76 \def\gobble##1{}%
77 }{%
78 \def\notgobble##1{##1}%
79 }.

The key prefix (whose default is 〈KV〉), macro prefix (whose default is 〈mp@〉),
and key macros (no default) can be empty:

Example

80 \define@comptogkeys{fam}{xdraft}[true]{xfinal}{}{}.

The defined complementary toggle keys 〈xdraft〉 and 〈xfinal〉 can now be set
as follows:

Example

81 \setkeys[KV]{fam}{xdraft=true}

83 \setkeys[KV]{fam}{xfinal=true}

The second statement above reverses the toggle 〈xdraft〉 to 〈false〉, which had
been set in the first statement to 〈true〉.

Toggle keys may easily be confused with the conventional boolean keys, at the
time of definition and setting. It is therefore always safer to use the syntaxes
in Section 9 for defining keys; they avoid interference between new and existing
keys.

The skeyval Package Page 11 of 39

Note If we were to use the key names draft and final as toggle keys above,
instead of xdraft and xfinal, there would have been a clash with the keys
draft and final defined as (complementary) boolean keys in Section 3—
because they share the same family 〈fam〉 and prefix 〈KV〉. The names draft and
final can be used as toggles only if the family 〈fam〉 or prefix 〈KV〉 is changed.

6 Defining multiple keys of all genres by one command

The interface for defining multiple keys of all kinds in one go is the command
\define@keylist, whose syntax is

Macro

84 \define@keylist{〈key type/id〉, 〈key〉, 〈key default value〉,
85 〈key macro/function〉; 〈another set of key specifiers〉; etc}

There are five key types: 1 (ordinary key), 2 (command key), 3 (boolean key),
4 (toggle key), and 5 (choice key). The key and its attributes are separated
by commas; they constitute one object. The objects are separated by the
〈keyparser〉, which is the semicolon in the above example.

If the key list is available in a macro, say,
Example

86 \def\keylist{〈key type/id〉, 〈key〉, 〈key default value〉,
87 〈key macro/function〉; 〈another set of key specifiers〉; etc},

then the keys can be defined by the starred form of \define@keylist:
Example

88 \define@keylist∗\keylist.

\define@keylist∗ takes a macro as argument, while \define@keylist accepts
a key list.

The \define@keylist macro uses the following commands in the background:

Example

89 \define@key, \define@cmdkey, \define@boolkey,
90 \define@choicekey, \define@togkey.

Therefore, it assumes that it is safe to redefine a previously defined key. If this
assumption is unwarranted, then the user should consider using the machinery

The skeyval Package Page 12 of 39

of Section 91.

6.1 Choice key values

The \ChoiceKeyValues macro is needed for choice keys; it lists the alternate
admissible values for a choice key and thus can’t be empty when a choice key is
being defined. Its syntax is

Macro

91 \ChoiceKeyValues{〈key〉}{〈list〉},

where 〈list〉 is a comma-separated list of admissible key values. To further
save tokens, the macro \ChoiceKeyValues may be abbreviated by \CKVS. It
has to be defined each time a choice key is being defined. For example, if we
want to define two choice keys align and election, then before the call to
\define@keylist, we have to set

Example

92 \CKVS{align}{center,right,left,justified}
93 \CKVS{election}{state,federal,congress,senate}.

It doesn’t matter which choice key first gets a \CKVS. The prevailing key prefix
and key family are used internally by \ChoiceKeyValues to build distinct al-
ternate values lists for choice keys.Unless the key family changes, you can’t
set two \ChoiceKeyValues for the same choice key. This will be possible
only if the package option xchoicelist (meaning “allow overwriting of choice
list”) has been set 〈true〉, either through \documentclass, \usepackage, or
\skvoptions. Therefore, any number of choice keys are allowed to appear in
one \define@keylist or \define@keylist∗ statement if their lists of alter-
nate/admissible values have been set by \CKVS.

As mentioned earlier, the key family and other package options can be changed
dynamically via

Example

94 \skvoptions{keyparser=value,macroprefix=value,keyprefix=value,
95 keyfamily=value,xchoicelist=value}.

In line with the philosophy of the xkeyval package, all the choice keys to be
defined using the skeyval package require \ChoiceKeyValues: choice keys, by
definition, have pre-ordained or acceptable values.

1In fact, I now often use the machinery of Section 9 to safely define new keys without the
fear of inadvertently redefining an existing key within the same family and with the same key
prefix.

The skeyval Package Page 13 of 39

6.2 Some internals

The internal equivalent of \ChoiceKeyValues (the choice key list of alternative
values) is the macro \〈keyprefix〉@〈keyfamily〉@〈key〉@〈altlist〉. For exam-
ple, for a key align in the family fam, and with prefix KV, the internal of \CKVS
is \KV@fam@align@altlist.

For all keys in a family, the internal of the key macro (provided at key definition
time) can be accessed via the macros

Macro

96 \〈keyprefix〉@〈keyfamily〉@〈key〉@〈func〉.

These internals are available for only the keys defined via \define@keylist or
\newkeylist!

It should be noted that the xkeyval package will save and provide a key value
when the value is saved (using the pointers \savevalue or \gsavevalue) at
the time the key is set, or when the key is included in the \savekeys (or
\gsavekeys) list. In that case, the saved value will be available in

Example

97 \XKV@〈keyprefix〉@〈keyfamily〉@〈key〉@〈value〉,

where the prefix XKV@ is usually added. The saved value can also be accessed
via \usevalue{〈key〉} but only within \setkeys command. Since the skeyval
package uses the machinery of the \xkeyval in the background, all these point-
ers can still be utilized for the keys defined via all the new key definition mecha-
nisms introduced by the skeyval package (e.g., the commands \define@togkey,
\define@keylist, \newkeylist, etc.).

The macro \〈keyprefix〉@〈keyfamily〉@〈key〉@〈func〉 is undefined if 〈key〉 has
not been defined or if it has been removed; and the macro

Example

98 \XKV@〈keyprefix〉@〈keyfamily〉@〈key〉@〈value〉

is undefined whenever 〈key〉 has no value specified, or has not been set. So it is
advisable to always test for the existence of these macros before they are used.

6.3 Some examples

In this section we provide a glimpse of the potential applications of the tools
provided by the skeyval package in the context of defining multiple keys by
one command.

Suppose that the key family and other attributes have been set as

The skeyval Package Page 14 of 39

Example

99 \skvoptions{keyparser=;,macroprefix=mp@,keyprefix=KV,
100 keyfamily=fam,xchoicelist=false}.

Further, suppose we wish to define a set of keys 〈color,angle,scale,align〉.
The keys color, angle and scale will de defined as command keys, while the
key align will be defined as a choice key. Assume that the align key can only
assume one of the values 〈center | right | left | justified〉, where the first
three values would further imply \centering, \flushright, and \flushleft,
respectively. Moreover, we assume that the key scale will be associated with a
macro called \mydo, which depends on a previously defined macro \do. Together
with align, we would also like to define another choice key: weather. The keys
color and angle aren’t associated with macros. Then we can do:

Example

101 \CKVS{align}{center,right,left,justified}
102 \CKVS{weather}{sunny,cloudy,lightrain,heavyrain,snow,
103 sleet,windy,\someweather}
104 % We assume that \someweather is defined
105 % somewhere and holds an admissible value
106 % for the key ‘‘weather’’ at any level.
107 \def\f@align{%
108 \ifcase\nr\relax
109 \def\mp@align{\centering}%
110 \or
111 \def\mp@align{\flushright}%
112 \or
113 \def\mp@align{\flushleft}%
114 \or
115 \let\mp@align\relax
116 \fi
117 }

119 \define@keylist{2,color,gray!25,;2,angle,45,;
120 2,scale,1,\def\mydo##1{\do ##1};5,align,center,\f@align;
121 \stopread;3,mybool,true,;
122 5,weather,sunny,\protected@edef\VWeather{\val}}.

The \nr and \val macros are bin parameters for choice keys, as defined by
the xkeyval package. \val contains the user input for the current key and
\nr contains the numeral corresponding to the user input in the \CKVS list,
starting from 0 (zero). For example, in the \CKVS{align} list, the \nr values
are center (0), right (1), left (2), and justified (3). These parameters thus
refresh with the choice key and its user-supplied value.

The skeyval Package Page 15 of 39

Instead of defining the macro \f@align before hand, we can submit its replace-
ment text directly to the macro \define@keylist, but, because \f@align con-
tains a conditional, some care is needed in doing so (see section 8). Once the key
align has been defined, the macro \f@align can be reused—perhaps to define
other keys—even before the key align is set. This is because it isn’t \f@align
that is used in defining the key align but its internal counterpart (i.e., a prefix
and family-dependent internal of \f@align, which is \KV@fam@align@func). In
this way, the user can economize on tokens. The same applies to all the macros
that may be used in defining keys via \define@keylist.

Note the \stopread command inserted above. Because of it, the key mybool
will not be read and defined; the rest (i.e., color, angle, scale and align)
will be read and defined. All the entries for mybool and weather will instead
be saved in the macro \SKV@remainder, possibly for some other uses.

Hundreds of keys can be defined efficiently in this way, using very few tokens.

As another example, we consider the following keys:
Example

123 \CKVS{align}{center,right,left,justified}
124 \CKVS{election}{state,federal,congress,senate}
125 % \CKVS needs to be defined only once for each key in a family.

127 \define@keylist{%
128 3,boolvar,true,;1,paperheight,\paperheight,;
129 1,paperwidth,\paperwidth,\f@paperwidth;
130 2,textheight,\textheight,\f@textheight;
131 2,textwidth,\textwidth,\f@textwidth;
132 1,evensidemargin,\evensidemargin,;
133 5,align,center,\f@align;
134 5,election,congress,;
135 2,testdim,2cm,\long\def\f@testdim##1{A test dimension ##1
136 \par\bigskip}%
137 % Note the number of parameter characters
138 % in the definition of \f@testdim.
139 }

which have the following trivial key macros:
Example

140 \def\f@textwidth{\AtBeginDocument{\wlog{‘textwidth’ %
141 is \mp@textwidth}}}

143 \def\f@textheight{%
144 \ifx\@empty\mp@textheight
145 \wlog{‘textheight’ value empty}%
146 \else

The skeyval Package Page 16 of 39

147 \wlog{‘textheight’ value not empty}%
148 \fi
149 }

151 \def\f@paperwidth{\wlog{‘paperwidth’ was defined as %
152 ordinary key.}}
153 \newcommand\f@align{%
154 \ifcase\nr\relax
155 \def\mp@align{\centering}%
156 \or
157 \def\mp@align{\flushright}%
158 \or
159 \def\mp@align{\flushleft}%
160 \or
161 \let\mp@align\relax
162 \fi
163 }

Again, once the keys have been defined, these macros can be reused.

The same set of keys can be defined via the starred form of \define@keylist:

Example

164 \def\keylist{%
165 3,boolvar,true,;1,paperheight,\paperheight,;
166 1,paperwidth,\paperwidth,\f@paperwidth;
167 2,textheight,\textheight,\f@textheight;
168 2,textwidth,\textwidth,\f@textwidth;
169 1,evensidemargin,\evensidemargin,;
170 4,mytoggle,true,\let\settoggle\settog;
171 5,align,center,\f@align;
172 5,election,congress,;
173 2,testdim,2cm,\long\def\f@testdim##1%
174 {Do something with ##1}%
175 }
176 \define@keylist∗\keylist.

Since the keys have been defined, they can now be set. In the following, we set
only two of the keys:

Example

177 \setkeys[KV]{fam}{align=right,testdim=3cm}

The macro \mp@align holds the value \flushright, while

The skeyval Package Page 17 of 39

Example

178 \KV@fam@testdim

holds the macros:
Example

179 \def\mp@testdim{#1}
180 \long\def\f@testdim##1{A test dimension##1\par\bigskip},

where 〈#1〉 is the value submitted for the key testdim. Try \show\mp@align,
\show\KV@fam@testdim, and \show\f@testdim to confirm the above assertions.

The rest of the defined keys can now be set as follows:
Example

181 \setkeys[KV]{fam}{boolvar=true,paperheight,paperwidth,
182 textheight,textwidth=6cm}

Try \show\ifmp@boolvar to confirm that boolvar is now 〈true〉; it was orig-
inally set as 〈false〉. The macro \KV@fam@paperwidth holds the function
\f@paperwidth; \mp@textheight holds the value submitted to key textheight
at any instance of \setkeys. By the above \setkeys, only the default values
of paperheight, paperwidth, and textheight are presently available.

Instead of using macros to pass key macros and functions, it is also possible to
use token registers. An example is provided below:

Example

183 \toks0={\long\def\f@testdim#1{A test dimension #1\par\bigskip}}
184 \define@keylist{3,boolvar,true,;2,testdim,2cm,\the\toks0}.

The advantage of using token registers is that the parameter characters need not
be doubled in the token registers, unlike when using macros. The token register
\toks0 can be reused as soon as the key testdim is defined. See Section 8.1 for
more information on using macros and token registers to pass key functions.

7 Input error

Boolean, toggle and choice keys issue error messages if the key value is not valid,
i.e., not in the list of admissible values. The admissible values of boolean and
toggle keys are 〈true〉 and 〈false〉. The valid values of choice keys are set by
the user via \VKVS. The default input error is defined by \SKV@inputerr macro
to be

The skeyval Package Page 18 of 39

Macro

185 \SKV@err{Erroneous value ‘#1’ for key ‘#2’}{%
186 Please use the correct value for key ‘#2’.}.

\SKV@inputerr can be redefined by the user. It takes two arguments (i.e., value
and key).

8 Conditionals in key macros

The TEX conditional primitives \if and \fi cannot appear in the key macro
when \define@keylist is being invoked. The reason can be traced to the
discussion on page 211 of the TEXBook and the loop used in the skeyval package
to define keys. There are three approaches to resolving this problem, and the
user can choose anyone he/she prefers.

8.1 Burying conditionals in macros or token registers

Key macros/functions involving conditional operations such as
Example

187 \ifmp@bool \do \fi

can be submitted to \define@keylist via macros, as seen above. We give more
examples below.

Suppose we want to submit the following:
Example

188 \define@keylist{3,bool,true,\ifmp@bool \do \fi}.

The presence of \if and \fi in the argument will trigger an error when TEX is
scanning or skipping tokens, and, secondly, because of the loop and conditional
used by the skeyval package in defining keys. Neither \protect nor \noexpand
is helpful here. One solution is to first define

Example

189 \def\f@bool{\ifmp@bool \do \fi}

and then do
Example

190 \define@keylist{3,bool,true,\f@bool},

The skeyval Package Page 19 of 39

which will execute \f@bool when the key bool is set. Once the key bool has
been defined by the above statement, the function \f@bool may be redefined
and reused many times, any time, even before the setting of the key bool. It
isn’t the function \f@bool that is used in defining the key bool, but an internal
or meaning of \f@bool, depending on the contents of \f@bool.

As another example, we may do
Example

191 \def\f@abool{\ifmp@abool\def\do####1{%
192 \def####1########1{\expandafter\expandafter\expandafter\in@
193 \expandafter\expandafter\expandafter{\expandafter####1
194 \expandafter}\expandafter{########1}}}\fi}

196 \define@keylist{3,abool,true,\f@abool}.

Token registers (including scratch token registers) can be used here economically
instead of macros:

Example

197 \toks0{\ifmp@abool\def\do#1{%
198 \def#1##1{\expandafter\expandafter\expandafter\in@
199 \expandafter\expandafter\expandafter{\expandafter#1
200 \expandafter}\expandafter{##1}}}\fi}

202 \toks1{\iftog{toggleone}{def\tempa#1{Use #1}}{}}

204 \define@keylist{3,abool,true,\the\toks0;
205 4,toggleone,true,\the\toks1}

207 \setkeys[KV]{fam}{abool=true,toggleone=true}.

You can see the significant reduction in the number of parameter characters
when using token registers. The token registers \toks0 and \toks1 can be
reused to define many other keys as soon as the keys 〈abool〉 and 〈toggleone〉
have been defined, even before they are set.

8.2 Using a trick to submit the conditionals

There are two downsides to the above approach of hiding conditionals in macros:

a) The macros have to be defined and, although they can be redefined and
reused, they tend to defeat the initial aim of the package, which is to
economize on tokens.

b) If the conditionals involve macro definitions as in the above example, the
parameter characters have to be doubled in each instance, except when

The skeyval Package Page 20 of 39

using token registers.

Suppose we want to define a boolean key mybool with the following key macro:

Example

208 \ifmp@mybool\def\hold##1{\def##1####1{####1}}\fi,

where the macro prefix is mp@ and the key family has been defined previously.
Then, instead of hiding the conditional in a macro, we can go

Example

209 \define@keylist{3,mybool,true,
210 \fif{mp@mybool}\def\hold##1{\def##1####1{####1}}\ffi}.

Here we have used \fif{mp@mybool} and \ffi for \ifmp@mybool and \fi, re-
spectively, to hide the latter two from TEX’s scanning and skipping mechanism.
Please note that \fif{mp@mybool} requires that the argument 〈mp@mybool〉 be
enclosed in braces. Something like \fifmp@mybool will be interpreted by TEX
as undefined control sequence when the key mybool is being set.

We have redefined the \setkeys of the xkeyval package to understand that
\fif and \ffi stand for \if and \fi, respectively. The redefined \setkeys
command has the same syntax as as in xkeyval package:

Macro

211 \setkeys[〈prefix〉]{〈families〉}[〈na〉]{〈keys=values〉}
212 \setkeys∗[〈prefix〉]{〈families〉}[〈na〉]{〈keys=values〉}
213 \setkeys+[〈prefix〉]{〈families〉}[〈na〉]{〈keys=values〉}
214 \setkeys∗+[〈prefix〉]{〈families〉}[〈na〉]{〈keys=values〉}.

The reader who is unfamiliar with the meaning of star and plus signs in the
\setkeys command should consult the documentation for the xkeyval pack-
age. No errors are produced if any of the sets 〈prefix〉, 〈families〉, 〈na〉, and
〈keys=values〉 is empty. In fact, an instruction such as \setkeys[]{}[]{} is
completely benign, and so is \setkeys{}{}.

In the case of conditionals starting with \ifcase, a \noexpand before the
\ifcase solves the problem:

Example

215 \CKVS{focus}{center,left,right,justified}

217 \define@keylist{5,focus,center,\noexpand\ifcase\nr\relax
218 \def\mp@focus{\centering}\or\def\mp@focus{\flushright}
219 \or\def\mp@focus{\flushleft}\or\let\mp@focus\relax\fi
220 }

The skeyval Package Page 21 of 39

However, such conditionals may also be buried in macros or token registers.

8.3 Using toggles

Toggle switches, described in Section 4, can also be used to circumvent the
problem of matching \if and \fi in difficult circumstances, since toggles aren’t
TEX primitives. For example, the following works:

Example

221 \define@keylist{4,toggleone,true,
222 \iftog{toggleone}{\def\temp{This is defined by a toggle}}{}}.

And, as noted in Section 4, toggles are very economical.

9 Checking and redefining keys

9.1 Checking the status of a key

Three mechanism have been introduced in the skeyval package to ascertain the
statuses of keys. These are as follows.

Macro

223 \ifkeydefined[〈prefixes〉]{〈families〉}{〈key〉}{〈true〉}{〈false〉}.

This executes 〈true〉 if 〈key〉 is defined, reserved, or suspended with a prefix
in 〈prefixes〉 and family in 〈families〉; it returns 〈false〉 otherwise. This is
similar to the xkeyval package’s \key@ifundefined, but, apart from reversing
the logic of the test, \ifkeydefined loops over prefixes (in addition to looping
over families) to locate the key, and also considers reserved and suspended keys
as defined. The lists 〈prefixes〉 and 〈families〉 may contain nil, one or more
elements.

Macro

224 \ifkeyreserved[〈prefixes〉]{〈families〉}{〈key〉}{〈true〉}{〈false〉}

This returns 〈true〉 if 〈key〉 is reserved with a prefix in 〈prefixes〉 and family
in 〈families〉; it returns 〈false〉 otherwise. Reserved keys are introduced in
Section 10.2.

Macro

225 \ifkeysuspended[〈prefixes〉]{〈families〉}{〈key〉}{〈true〉}{〈false〉}

This executes 〈true〉 if 〈key〉 is suspended with a prefix in 〈prefixes〉 and fam-
ily in 〈families〉; it executes 〈false〉 otherwise. Suspended keys are introduced
in Section 10.3.

The skeyval Package Page 22 of 39

9.2 Unintentional redefinition of keys

The xkeyval package, by default, permits the automatic redefining of keys
of the same 〈prefix〉 and 〈family〉: at the point of defining a new key, the
package doesn’t, by default, check whether or not the key had been previously
defined with the same 〈prefix〉 and 〈family〉. In some circumstances this can
be undesirable, and even dangerous, especially if the same key (of the same
〈prefix〉 and 〈family〉) is mistakenly redefined with different macros/functions
in the same package or across packages. One way to solve this problem is to
use xkeyval package’s \key@ifundefined command (or the skeyval package’s
\ifkeydefined) to confirm the status of a key prior to its definition. However,
using this command before defining every key can be laborious.

Consider the following two scenarios:
Example

226 \define@key[KV]{fam}{keya}[\star]{\def\tempa##1{##1}}
227 \define@boolkey[KV]{fam}{keya}[true]{%
228 \ifKV@fam@keya\def\tempb{#1}\fi}

230 \setkeys[KV]{fam}{keya=\textbullet}

Obviously the two definitions of 〈keya〉 are valid and will be implemented but the
\setkeys command will issue an unintelligible error message, like LATEX’s “You
are in trouble here . . . ”. The key 〈keya〉 has been defined twice and \setkeys
has sought to use its latest definition to set its value, which is incorrect. As
mentioned in Section 4.2, the \setkeys command (and friends) of the xkeyval
package doesn’t know if a key has been redefined in the same 〈family〉 and
with the same 〈prefix〉. At the high level, it doesn’t consider the key type: it
uses the latest definition of the key to set its value using the key’s macro. This
is particularly worrisome in the case of toggle keys, since although toggle keys
have their own separate namespace, they can easily be confusing (at least to
\setkeys) if they have names identical to other keys within the same family
and with the same prefix.

9.2.1 Avoiding multiple definitions of same key

For the above reasons, the skeyval package introduces the following commands,
which have the same syntaxes as their counterparts from the xkeyval and
skeyval packages but which bar the user from repeated definition of keys with
identical names within the same 〈family〉 and with the same 〈prefix〉:

Macro

231 % The following defines ‘‘ordinary’’ keys [the counterpart
232 % of \define@key from the xkeyval package]:
233 \newordkey[〈prefix〉]{〈family〉}{〈key〉}[〈default〉]{〈funtion〉}

The skeyval Package Page 23 of 39

235 % Counterpart of \define@cmdkey:
236 \newcmdkey[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
237 {〈funtion〉}

239 % Counterpart of \define@cmdkeys:
240 \newcmdkeys[〈prefix〉]{〈family〉}[〈mp〉]{〈keys〉}[〈default〉]

242 % Counterparts of \define@boolkey:
243 \newboolkey[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
244 {〈funtion〉}
245 \newboolkey+[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
246 {〈funtion1〉}{〈funtion2〉}

248 % Counterpart of \define@compboolkeys:
249 \newcompboolkeys[〈prefix〉]{〈family〉}[〈mp〉]
250 {〈primary boolean〉}[〈default value for primary boolean〉]
251 {〈secondary boolean〉}{〈func for primary boolean〉}
252 {〈func for secondary boolean〉}

254 % Counterparts of \define@togkey:
255 \newtogkey[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
256 {〈funtion〉}
257 \newtogkey+[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
258 {〈funtion1〉}{〈funtion2〉}

260 % Counterpart of \define@comptogkeys:
261 \newcomptogkeys[〈prefix〉]{〈family〉}[〈mp〉]
262 {〈primary toggle〉}[〈default value for primary toggle〉]
263 {〈secondary toggle〉}{〈func for primary toggle〉}
264 {〈func for secondary toggle〉}

266 % Counterparts of \define@choicekey:
267 \newchoicekey[〈prefix〉]{〈family〉}{〈key〉}[〈bin〉]{〈alt〉}%
268 [〈default〉]{〈funtion〉}
269 \newchoicekey∗[〈prefix〉]{〈family〉}{〈key〉}[〈bin〉]{〈alt〉}%
270 [〈default〉]{〈funtion〉}
271 \newchoicekey+[〈prefix〉]{〈family〉}{〈key〉}[〈bin〉]{〈alt〉}%
272 [〈default〉]{〈funtion1〉}{〈funtion2〉}
273 \newchoicekey∗+[〈prefix〉]{〈family〉}{〈key〉}[〈bin〉]{〈alt〉}%
274 [〈default〉]{〈funtion1〉}{〈funtion2〉}

276 % Counterpart of \define@keylist:
277 \newkeylist{〈key type/id〉, 〈key〉, 〈key default value〉,
278 〈key macro/function〉; 〈another set of key specifiers〉; etc}.

The skeyval Package Page 24 of 39

We could simply have redefined/modified the legacy key definition commands
in the xkeyval package to make it impossible to define keys of the same name
in the same family and with the same prefix, but this approach would be unsafe
since there are many packages using the xkeyval package and those packages
may well have redefined identical keys. Moreover, the legacy key definition
commands from the xkeyval package may be needed to redefine a disabled key
(see Section 10).

All the commands of the type \newxxxkey are robust and may be used in
expansion contexts without fear of premature expansion, although expandable
tokens in the definition must be protected.2

With the above macros, the following will flag an understandable error message,
namely that the key 〈keya〉 is about being redefined in the same family 〈fam〉
and with the same prefix 〈KV〉:

Example

279 \newordkey[KV]{fam}{keya}[\star]{\def\tempa##1{##1}}
280 \newboolkey[KV]{fam}{keya}[true]{%
281 \ifKV@fam@keya\def\tempb{#1}\fi}

10 Disabling, reserving, suspending, restoring, and re-
moving keys

Besides macros for defining keys, the skeyval package also introduces mecha-
nisms for disabling, reserving, suspending, restoring, and completely removing
existing keys.

10.1 Disabling keys

The skeyval package has modified the definition of \disable@keys from the
xkeyval package to allow for looping over key prefixes and key families and
for bespoke warnings and error messages, without engendering any potential
conflict with the legacy \disable@keys. The new command is still called
\disable@keys and has the same syntax as the native \disable@keys of the
xkeyval package, except that the new command accepts key prefixes (instead
of just one prefix) and key families (instead of just one family):

Macro

282 \disable@keys[〈prefixes〉]{〈families〉}{〈keys〉}.

2We shall refer to keys of the type \newxxxkey as those of category \newkey, and keys of
the type \define@xxxkey as those of category \definekey.

The skeyval Package Page 25 of 39

Here 〈prefixes〉, 〈families〉, 〈keys〉 are lists of comma-separated entries re-
ferring to the keys to be disabled. Each of the lists 〈prefixes〉, 〈families〉,
〈keys〉 may contain nil, one or more elements. If any of the members in 〈keys〉
can’t be located in 〈families〉 and within 〈prefixes〉, an informational (not
error) message is logged in respect of this member.

The legacy version of \disable@keys (i.e., that of the xkeyval package) is still
available via the starred version:

Macro

283 \disable@keys∗[〈prefix〉]{〈family〉}{〈keys〉}.

Note that this doesn’t accept key prefixes and families, but only one key pre-
fix and only one key family: the \disable@keys command from the xkeyval
package can only be used to disable keys with the same 〈prefix〉 and from the
same 〈family〉, but not across prefixes and families.

Any attempt to subsequently set or use a disabled key will prompt the fol-
lowing error message. (The xkeyval package issues a warning in this case.)
The error message can be modified by the user, but the names of the controls
\SKV@disabledkey@err and \SKV@disabledkey should be retained.

Macro

284 \def\SKV@disabledkey@err{%
285 \@latex@error{%
286 Key 〈key〉 with prefix 〈prefix〉 in family 〈family〉
287 was disabled on input line 〈lineno〉
288 }{%
289 You can’t set or reset 〈key〉 at this
290 late stage. Perhaps you’re required to set it
291 earlier, in the document’s preamble.
292 }%
293 }

If the user attempts to disable an undefined key, the xkeyval package issues
a fatal error; the skeyval package, on the other hand, issues a warning in the
transcript .log file, since the situation isn’t fatal to the outcome.

Disabled keys can be redefined with commands in the \definekey category
but not with commands in the \newkey category, since a disabled key remains
defined: only its macro has been replaced by an error message signifying the
disabling of the key.

Note: Reserved and suspended keys can’t be disabled, until they are unreserved
or restored (see Sections 10.2 and 10.3).

The skeyval Package Page 26 of 39

10.2 Reserving and unreserving keys

The xkeyval package bars its users from defining new keys with XKV as a prefix.
The skeyval package generalizes this concept via the following three developer
macros:

Macro

294 \ReserveKeyPrefixNames{〈list〉}

This allows the package developer to bar the future use of names appearing in
〈list〉 as key prefixes. The 〈list〉, whose members are comma-separated, can
be populated by the package developer as required.

Macro

295 \ReserveMacroPrefixNames{〈list〉}

This has a similar functionality to \ReserveKeyPrefixNames, but applies to
macro prefixes instead of key prefixes.

Macro

296 \ReserveFamilyNames{〈list〉}

This applies to family names.

Note: One potential difficulty with the use of these macros is the fact that keys
already defined by packages the developer would want to use can’t appear in
these lists since the lists are scanned both when defining and setting keys.

In addition to the above three commands, the skeyval package also introduces
the following command:

Macro

297 \reserve@keys[〈prefixes〉]{〈families〉}{〈keys〉},

where the lists 〈prefixes〉, 〈families〉, 〈keys〉 can contain nil, one or more
elements. Defined, reserved and suspended keys can’t be reserved.

Reserved keys have to be unreserved with the following command before they
can be defined and used:

Macro

298 \unreserve@keys[〈prefixes〉]{〈families〉}{〈keys〉},

where, again, the lists 〈prefixes〉, 〈families〉, 〈keys〉 can contain nil, one or
more elements. If a key was not previously reserved, this command will simply
issue an informational message in the log file and ignore that key. Incidentally,
defined keys and suspended keys can also be unreserved, which is equivalent to
removing the keys (see Section 10.4).

The skeyval Package Page 27 of 39

10.3 Suspending and restoring keys

For some keys, it might be preferable to temporarily suspend them from a family
(rather than disable or remove them) and restore them later. In this way, a key’s
state and macro can be frozen while the key remains defined.

The syntax for suspending keys is
Macro

299 \suspend@keys[〈prefixes〉]{〈families〉}{〈keys〉},

where the lists 〈prefixes〉, 〈families〉, 〈keys〉 can contain nil, one or more
elements. A key of particular prefix not previously defined in a family can’t
be suspended from that family. Similarly, a key previously suspended from a
family can’t be suspended again (for the second time) from the same family
without being first restored in that family.

Suspended keys can be restored to their frozen states (ex ante suspension) by
the following command:

Macro

300 \restore@keys[〈prefixes〉]{〈families〉}{〈keys〉}.

Only keys (with a given prefix) previously suspended from a family can be
restored in that family: “unsuspended” keys can’t be restored.

10.4 Removing keys

The skeyval package provides for removing keys completely, such that any
attempt to set or use a removed key will prompt the error message that the
key is undefined in the given family and with the given prefix. The command
\key@ifundefined from the xkeyval package and the macro \ifkeydefined
from the skeyval package will both identify a removed key as undefined. The
syntax for removing keys is:

Macro

301 \remove@keys[〈prefixes〉]{〈families〉}{〈keys〉}.

Removed keys can’t be restored but can be redefined with the commands in
both the \newkey and \definekey categories.

11 Setting keys: list normalization

We have redefined the \setkeys command of the xkeyval package in two re-
spects: firstly to accommodate the use of the \fif and \ffi macros of Sec-
tion 8.2, and secondly to automatically convert double (or even multiple) com-

The skeyval Package Page 28 of 39

mas and equality signs inadvertently submitted by the user into single comma
and single equality sign. The following exaggerated example depicts the diffi-
culties that might arise:

Example

302 \define@key[KV]{fam}{width}[1cm]{}
303 \define@key[KV]{fam}{color}[black]{}
304 \setkeys[KV]{fam}{width= =2cm, ,,color, == = =,green}

Here, the legacy \setkeys will give the value nil to the key width, and the
default value of the key color, if it was specified at key definition time, will
be given to the key color. Some of the mistakes (especially spurious values
without keys) can disrupt a compilation run, while some (multiple commas and
equality signs) will not be fatal to compilation but may lead to bizarre results of
subsequent calculations. Mistakes of this kind can, surprisingly, be difficult to
trace. The extra spaces and multiple commas aren’t as serious as the multiple
equality signs and values without keys, but we have taken care of all peculiar
situations in the new \setkeys. Multiple commas, equality signs, and spaces
are now detected and reduced appropriately: that is what we mean by key-value
list normalization. We have adopted the premise that “,=” (comma followed
by equal) and “=,” (equal followed by comma) are both most likely to mean
“=” (equal). In the unlikely event that this premise fails, then the user may get
tricky errors if he makes this type of mistake: there is perhaps no silver bullet
in this regard!

If, for any reason, the user needs to pass keys with “,=” and/or “=,”, then he
may separate the comma from the equality sign with {}, e.g., as in

Example

305 \setkeys[KV]{fam}{width=2cm,head={},tail=not measured},

which shows that the value of the key head is \empty, a valid and better as-
signment.

12 Miscellaneous macros

This package is predominantly about LATEX keys and their efficient management,
but it also contains many commands for general use, such that a package author
may not need to redefine most of them or load some other packages to access
those commands. Some of the available commands are described in this section.

Macro

306 \in@tog{〈subtoken〉}{〈token〉}

This is similar to the LATEX kernel’s \in@{〈subtoken〉}{〈token〉} which tests
if 〈subtoken〉 is in 〈token〉, but this time the returned boolean is the toggle

The skeyval Package Page 29 of 39

switch 〈in@〉 instead of the kernel’s 〈in@〉 switch which is used as \ifin@. The
toggle 〈in@〉 can be used in the following way and in other manners that toggles
can be employed:

Example

307 \iftog{in@}{〈true〉}{〈false〉}.

The command \in@tog is robust.

Macro

308 \in@tok{〈subtoken〉}{〈token〉}

Sometimes you want to use the LATEX kernel’s \in@{〈subtoken〉}{〈token〉} to
test if 〈subtoken〉 is in 〈token〉 irrespective of their catcodes. The robust com-
mand \in@tok{〈subtoken〉}{〈token〉} makes this possible, and eliminates the
tokens that would have been necessary if the user was required to first deto-
kenize the two arguments. It returns the same switch \ifin@ as the kernel’s
\in@{〈subtoken〉}{〈token〉}.

Macro

309 \SKV@ifdefinable〈cs〉{〈function〉}
310 \SKV@for@ifdefinable〈listcmd〉{〈function〉}

LATEXkernel’s \@ifdefinable fills up the hash table and also considers com-
mands that are \relax’ed as defined. Moreover, if the command being tested
(〈cs〉 in the above example) is definable, the \@ifdefinable macro begins ex-
ecuting 〈function〉 while still in the \if . . . \fi conditional. The command
\SKV@ifdefinable seeks to avoid these problems.

The macro \SKV@for@ifdefinable accepts a comma-separated list 〈listcmd〉
of control sequence names whose definability are to be tested. Both commands
\SKV@ifdefinable and \SKV@for@ifdefinable are robust.

Macro

311 \SKV@expandargs〈n〉〈function〉〈arg1〉〈arg2〉\SKV@nil

LATEX’s \@expandtwoargs is often used as a utility macro to expand two ar-
guments 〈arg1〉 and 〈arg2〉 in order to execute 〈function〉. The command
\SKV@expandargs accepts up to four expansion types, signified by 〈n〉, which
runs from 0 to 3:

a) If 〈n〉 is 0, then 〈arg2〉 is empty and only 〈arg1〉 will be expanded before
〈function〉 is executed.

b) If 〈n〉 is 1, then both 〈arg1〉 and 〈arg2〉 are nonempty but only 〈arg2〉
will be expanded before 〈function〉 is executed.

The skeyval Package Page 30 of 39

c) When 〈n〉 is 2, then both 〈arg1〉 and 〈arg2〉 are nonempty and both will
be expanded before 〈function〉 is executed. This is equivalent to LATEX’s
\@expandtwoargs.

d) If 〈n〉 is 3, then both 〈arg1〉 and 〈arg2〉 are nonempty but only 〈arg1〉 is
expanded before 〈function〉 is executed.

e) If 〈n〉 isn’t in the list {0,1,2,3}, then an error message is flagged.

Because 〈arg2〉 is delimited, it can be empty. The command \SKV@expandargs
can be used to save \expandafter’s, but it isn’t an all-purpose macro: for ex-
ample, the \edef it uses may expand too deeply in some cases. Also, care should
be exercised when the expanded argument (〈arg1〉 and/or 〈arg2〉) involve the
TEX primitive \if.

Some trivial examples follow:
Example

312 \SKV@expandargs{0}{\def\tempc#1#2}{\def\noexpand##1{##2}}%
313 \SKV@nil
314 \tempc\tempa{aaa}
315 \tempc\tempb{abcaaabbccbca}
316 \SKV@expandargs{2}\in@\tempa\tempb\SKV@nil
317 \show\ifin@

Compare these expressions with the chains of \expandafter’s in Section 8.1.
Macro

318 \SKV@checkchoice{〈keyvalue〉}{〈altlist〉}{〈true〉}{〈false〉}

This is the expandable form of xkeyval package’s \XKV@checkchoice. It checks
if the user-submitted value 〈keyvalue〉 of a 〈key〉 is in the list 〈altlist〉. It
executes 〈true〉 if 〈keyvalue〉 is found in 〈altlist〉 and 〈false〉 otherwise.
Additionally, it returns \val for the expanded value of 〈keyvalue〉 and \nr for
the numerical order of \val in the list 〈altlist〉. If 〈keyvalue〉 isn’t found in
〈altlist〉, then \nr will return −1. If 〈keyvalue〉 and 〈altlist〉 are buried
in macros, the macros are fully expanded before the search for 〈keyvalue〉 in
the list 〈altlist〉 is effected. In that case, \val will hold the expanded form
of 〈keyvalue〉 and can be used in subsequent computations. Choice keys do
accept macros as values, but such values aren’t directly suitable for match-
ing against the contents of 〈altlist〉. For example, 〈altlist〉 may be the
set {left,right,center}, but given as a macro \altlist@, while 〈keyvalue〉
is given as \def\keyvalue@{center}. Obviously, \keyvalue@ contains one
of the elements of 〈altlist〉, but choice keys won’t know this without the
expansion of both \altlist@ and \keyvalue@. This is raison d’ê tre of the
\SKV@checkchoice macro.

Moreover, \SKV@checkchoice can be used in the definition of non-choice keys.
An example follows:

The skeyval Package Page 31 of 39

Example

319 \def\altlist@{left,right,center}
320 \newordkey[KV]{fam}{keya}[true]{%
321 \SKV@checkchoice{#1}{\altlist@}{%
322 \ifcase\nr\relax
323 \edef\tempa##1##2{##1===\val===##2}%
324 \or
325 \edef\tempa##1##2{##1***\val***##2}%
326 \or
327 \edef\tempa##1##2{##1+++\val+++##2}%
328 \fi
329 }{%
330 \@latex@error{Wrong value for ‘keya’}\@eha
331 }%
332 }
333 \def\keyvalue@{center}
334 \setkeys[KV]{fam}{keya=\keyvalue@}

The reader may wish to do \show\tempa to see what \tempa gets upon setting
the key keya.

Macro

335 \requirecmd{〈cs〉}[〈number of args〉][〈default〉]%
336 {〈replacement text〉}

This is explained in Section 4.1. If 〈cs〉 is already defined, \requirecmd checks
if the new and old definitions are identical. If they aren’t, a warning message is
logged in the transcript file and the new definition is aborted.

Macro

337 \SKV@for@a{〈list〉}〈cmd〉{〈function〉}
338 \SKV@for@b〈listcmd〉〈cmd〉{〈function〉}

A fast for-loop adapted from the xkeyval package to accept general list parsers.
Elements of 〈list〉 are stored in 〈cmd〉, and 〈function〉 is executed for each ele-
ment of 〈list〉. The 〈list〉, which is populated by comma-separated elements,
is not expanded. This accepts a general list parser, dynamically declarable via

Macro

339 \SKV@CommandGenParser{〈parser〉} or
340 \skvoptions{genparser=〈parser〉},

instead of just one type of parser (“comma” in the xkeyval package). Also, this
uses the more powerful \SKV@ifblank to check whether or not 〈list〉 is empty
or blank. The command \SKV@for@a is robust, but in expansion contexts, both

The skeyval Package Page 32 of 39

〈cmd〉 and 〈function〉 will need to be somehow protected. In the \SKV@for@b
command, 〈listcmd〉 is expanded once before the iteration commences. One
snag with \SKV@CommandGenParser is that the user must always remember to
call it and set the right parser before beginning an iteration, otherwise there
might be unpleasant surprises, since a previous call to \SKV@CommandGenParser
might have set a parser that is no longer valid.

Macro

341 \SKV@tfor@a〈cmd〉{〈list〉}{〈function〉}
342 \SKV@tfor@b〈cmd〉〈listcmd〉{〈function〉}

The first of these (i.e., \SKV@tfor@a) is equivalent to LATEX kernel’s \@tfor,
which loops over 〈list〉 token-wise (character or control sequence token), but
here we have removed the need for the usual delimitation tokens. Note that
〈list〉 is not a comma-separated list! In \SKV@tfor@b, 〈listcmd〉 is expanded
once before the commencement of the loop. The two commands \SKV@tfor@a
and \SKV@tfor@b are both robust.

Macro

343 \SKV@ifstrequal{〈token1〉}{〈token2〉}{〈true〉}{〈false〉}
344 \SKV@oifstrequal{〈token1〉}{〈token2〉}{〈true〉}{〈false〉}
345 \SKV@xifstrequal{〈token1〉}{〈token2〉}{〈true〉}{〈false〉}

In order to properly test the equality of strings, it may be necessary to re-
move leading and trailing spaces before the test. Such spaces may have cropped
into the strings from input or from pre-processing and may invalidate the test.
The macro \SKV@ifstrequal takes care of such situations. It executes 〈true〉
if 〈token1〉 is equal (character code wise) to 〈token2〉, and 〈false〉 other-
wise. Both 〈token1〉 and 〈token2〉 are detokenized before the test. The macro
\SKV@oifstrequal is similar to \SKV@ifstrequal but first expands its argu-
ments (the two token lists 〈token1〉 and 〈token2〉) once before the test. The
macro \SKV@xifstrequal first expands its arguments fully before the test.

Macro

346 \SKV@ifblank{〈token〉}{〈true〉}{〈false〉}
347 \SKV@oifblank{〈token〉}{〈true〉}{〈false〉}
348 \SKV@xifblank{〈token〉}{〈true〉}{〈false〉}

These macros test if the argument is blank or not. The first of these is from
ifmtarg package. \SKV@oifblank expands its argument once before the test,
while \SKV@xifblank expands its argument fully before the test.

Macro

349 \SKV@ifstrempty{〈token〉}{〈true〉}{〈false〉}
350 \SKV@oifstrempty{〈token〉}{〈true〉}{〈false〉}
351 \SKV@xifstrempty{〈token〉}{〈true〉}{〈false〉}

The skeyval Package Page 33 of 39

These yield 〈true〉 if 〈token〉 is empty, and 〈false〉 otherwise. In the macro
\SKV@ifstrempty, 〈token〉 isn’t expanded before the test; in the command
\SKV@oifstrempty, 〈token〉 is expanded once before the test; in the command
\SKV@xifstrempty, 〈token〉 is fully expanded before the test.

Macro

352 \SKV@expandox{〈cs〉}

This expands its argument 〈cs〉 once and forbids further expansion.

Macro

353 \SKV@expandnameox{〈name〉}

This is similar to \SKV@expandox but accepts control sequence name 〈name〉
instead of control sequence.

Macro

354 \SKV@expandtx{〈cs〉}

This expands its argument 〈cs〉 twice and forbids further expansion.

Macro

355 \SKV@expandnametx{〈name〉}

This is similar to \SKV@expandtx but accepts control sequence name instead of
control sequence.

Macro

356 \@afterpackageloaded{〈package〉}{〈code〉}

This executes 〈code〉 only after the package 〈package〉 has been loaded. This
has been optimized from the afterpackage package to avoid filling up the hash
table with hooks that are relax’ed or indeed undefined.

Macro

357 \SKV@newlet{〈cs1〉}{〈cs2〉}

This assigns 〈cs2〉 to 〈cs1〉 if 〈cs2〉 exists and if 〈cs1〉 isn’t already defined,
otherwise an error is flagged.

Macro

358 \SKV@newtoks{〈toks〉}

This provides a new token register 〈toks〉 if the register didn’t already exist,
otherwise an error is flagged.

The skeyval Package Page 34 of 39

Macro

359 \SKV@newcount{〈counter〉}

This provides a new counter register 〈counter〉 if the register didn’t already
exist, otherwise an error is flagged.

Macro

360 \SKV@newdimen{〈dimen〉}

This provides a new dimension register 〈dimen〉 if the register didn’t already
exist, otherwise an error is flagged.

Macro

361 \SKV@numdef{〈num〉}{〈expression〉}
362 \SKV@numnamedef{〈num〉}{〈expression〉}
363 \SKV@numgdef{〈num〉}{〈expression〉}
364 \SKV@numnamegdef{〈num〉}{〈expression〉}

\SKV@numdef defines 〈num〉 from 〈expression〉 using ε-TEX’s \numexpr. It is
similar to etoolbox’s \numdef but is defined by a counter expression instead
of \edef (which etoolbox uses). If 〈num〉 is previously undefined, it is first
initialized before the expression is built. The difference between \numdef and
\SKV@numdef is that if you do \numdef\x{1+2+3}, you can use \x without,
depending on context, prefixing it with \the or \number. \SKV@numdef, on the
other hand, will require \the or \number. Also, \SKV@numdef includes two tests
of its arguments.

\SKV@numnamedef is the same as \SKV@numdef but takes a control sequence
name instead of a control sequence.

The macros \SKV@numgdef and \SKV@numnamegdef, unlike \SKV@numdef and
\SKV@numnamedef, effect global assignments and thus can escape local groups.

Macro

365 \SKV@dimdef{〈dimen〉}{〈expression〉}
366 \SKV@dimnamedef{〈dimen〉}{〈expression〉}
367 \SKV@dimgdef{〈dimen〉}{〈expression〉}
368 \SKV@dimnamegdef{〈dimen〉}{〈expression〉}

\SKV@dimdef defines 〈dimen〉 from 〈expression〉 using ε-TEX’s \dimexpr. It is
similar to etoolbox’s \dimdef but is defined by a dimension expression instead
of \edef. If 〈dimen〉 is previously undefined, it is first initialized before the
expression is built. The difference between \dimdef and \SKV@dimdef is that
if you do \dimdef\x{1pt+2mm+3cm}, you can use \x without prefixing it with
\the. \SKV@dimdef, on the other hand, will require \the.

The skeyval Package Page 35 of 39

The macros \SKV@dimgdef and \SKV@dimnamegdef, unlike \SKV@dimdef and
\SKV@dimnamedef, effect global assignments.

Macro

369 \SKV@newnamedef{〈name〉}{〈definition〉}
370 \SKV@newnamegdef{〈name〉}{〈definition〉}
371 \SKV@newnameedef{〈name〉}{〈definition〉}
372 \SKV@newnamexdef{〈name〉}{〈definition〉}

These turn 〈name〉 into a control sequence if it wasn’t already defined. If it is
already defined, an error message is flagged. These derive from a concept based
on that of \newcommand, but (i) \relax’ed commands are considered undefined
in this regard, and (ii) these commands retain the powerful machinery of plain
TEX.

Macro

373 \SKV@namedef{〈name〉}{〈definition〉}
374 \SKV@namegdef{〈name〉}{〈definition〉}
375 \SKV@nameedef{〈name〉}{〈definition〉}
376 \SKV@namexdef{〈name〉}{〈definition〉}

These turn 〈name〉 into a control sequence whether or not the control was already
defined. No error or warning messages are issued.

Macro

377 \nameletcs{〈name〉}{〈cs〉}
378 \csletname{〈cs〉}{〈name〉}
379 \nameletname{〈name〉}{〈name〉}

These perform \let assignments if the second argument is defined, otherwise
an error message is flagged. 〈cs〉 means a control sequence.

Macro

380 \@nameletcs{〈name〉}{〈cs〉}
381 \@csletname{〈cs〉}{〈name〉}
382 \@nameletname{〈name〉}{〈name〉}

These perform \let assignments whether or not the second argument is defined.
If the second argument is undefined, the hash table is not filled.

Macro

383 \SKV@nameuse{〈name〉}

This is similar to LATEX’s \@nameuse but returns \@empty if 〈name〉 is undefined.
The idea derives from the etoolbox package.

The skeyval Package Page 36 of 39

Macro

384 \SKV@ifdef{〈cs〉}{〈true〉}{〈false〉}
385 \SKV@ifnamedef{〈name〉}{〈true〉}{〈false〉}
386 \SKV@ifundef{〈cs〉}{〈true〉}{〈false〉}
387 \SKV@ifnameundef{〈name〉}{〈true〉}{〈false〉}

These use ε-TEX’s facilities to test the existence of the control sequence 〈cs〉 or
〈name〉. \relax’ed commands are considered undefined in this regard. These
are based on similar concepts from the etoolbox package.

Macro

388 \SKV@findescape{〈arg〉}{〈true〉}{〈false〉}

This returns 〈true〉 if 〈arg〉 starts with the \escapechar, and 〈false〉 other-
wise. The \escapechar is locally made equal to 92 before the test.

Macro

389 \SKV@undef{〈cs〉}
390 \SKV@gundef{〈cs〉}
391 \SKV@nameundef{〈name〉}
392 \SKV@namegundef{〈name〉}

These undefine the macro 〈cs〉 or control sequence name 〈name〉 such that TEX
will subsequently consider them undefined. The macros 〈\SKV@gundef〉 and
〈\SKV@namegundef〉 undefine their argument globally.

Macro

393 \SKV@aftergroup{〈code〉}
394 \SKV@aftergroup∗{〈code〉}
395 \SKV@afterassignment{〈code〉}
396 \SKV@afterassignment∗{〈code〉}

These execute the arbitrary 〈code〉 after a group or assignment. The starred
versions fully expand 〈code〉 before the assignment (or before exiting the group).
These are similar to \AfterGroup and \AfterAssignment of etextools pack-
age but they don’t accumulate the group and assignment counters indefinitely:
the counters are initialized after each group or each assignment.

Some examples follow:
Example

397 \def\aa{aaa}\def\bb{bbb}\def\xx{xxx}\def\yy{yyy}
398 \begingroup
399 \SKV@aftergroup{\par\aa***\bb}%
400 \SKV@aftergroup{\par\bb***\aa}%
401 \begingroup

The skeyval Package Page 37 of 39

402 \SKV@aftergroup{\par\xx+++\yy}%
403 \SKV@aftergroup{\par\yy+++\xx}%
404 \endgroup
405 \endgroup

407 \let\gobblex\@firstofone
408 \def\protected@funnydef{%
409 \let\@@protect\protect
410 \let\protect\@unexpandable@protect
411 \SKV@afterassignment{\restore@protect\let\gobblex\@gobble}%
412 \edef
413 }

Macro

414 \SKV@apptomacro@a〈cs〉〈content〉
415 \SKV@apptomacro@b〈cs〉〈content〉
416 \SKV@gapptomacro@a〈cs〉〈content〉
417 \SKV@gapptomacro@b〈cs〉〈content〉

This appends 〈content〉 to 〈cs〉. If 〈cs〉 was previously undefined, it is ini-
tialized with 〈content〉. \SKV@apptomacro@a doesn’t expand 〈content〉 before
appending it to 〈cs〉, while \SKV@apptomacro@b expands 〈content〉 once be-
fore appending it’s contents to 〈cs〉. The macros \SKV@gapptomacro@a and
\SKV@gapptomacro@b have global effect, which can escape local groups. Except
for the initialization of undefined 〈cs〉, \SKV@gapptomacro@a is equivalent to
LATEX’s \g@addto@macro.

Macro

418 \SKV@preptomacro@a〈cs〉〈content〉
419 \SKV@preptomacro@b〈cs〉〈content〉
420 \SKV@gpreptomacro@a〈cs〉〈content〉
421 \SKV@gpreptomacro@b〈cs〉〈content〉

These perpend 〈content〉 to 〈cs〉. If 〈cs〉 was previously undefined, it is initial-
ized with 〈content〉. \SKV@preptomacro@a doesn’t expand 〈content〉 before
prepending it to 〈cs〉, while \SKV@preptomacro@b expands 〈content〉 once be-
fore prepending it’s contents to 〈cs〉. The macros \SKV@gapptomacro@a and
\SKV@gapptomacro@b have global effect.

Macro

422 \InputFileOnce[〈path〉]{〈filename〉}

This inputs 〈filename〉 on 〈path〉 but only once. The argument 〈path〉 is
optional and its default value is the current/document’s directory. If 〈filename〉
had previously been read, an error message is flagged and the input is aborted.

The skeyval Package Page 38 of 39

If 〈filename〉 doesn’t exist on 〈path〉, an opportunity is given to the user to
type in the correct file name on the screen, or continue with the LATEX pass
without inputting the file. If the user wants to input 〈filename〉 more than
once in one document, then he should set \SKV@inputonce to 〈false〉 before
the call to \InputFileOnce, either by simply issuing \SKV@inputoncefalse or
via \skvoptions:

Example

423 \skvoptions{inputonce=false}.

\SKV@inputonce can, of course, be toggled between 〈false〉 and 〈true〉.
Macro

424 \AtStartOfDocument{〈code〉}

This is the expansion-context version of the hook \AtBeginDocument. Some-
times you want to do something like

Macro

425 \edef\tempa{\AtBeginDocument{%
426 \def\noexpand\tempb{come with me}}},

which is impossible without a \noexpand before \AtBeginDocument. With
\AtStartOfDocument the protection is not necessary.

Two more expansion-context document hooks are provided below:

Macro

427 \BeforeStartOfDocument{〈code〉}
428 \AfterStartOfDocument{〈code〉}.

These mimic the \AtEndPreamble and \AfterEndPreamble hooks from the
etoolbox package.

13 Version history

This package was called the keyreader package until version 0.5, when the name
became a misnomer.

a) Version 0.1 [01/01/2010]
i) Provided machinery for reading multiple keys of all kinds from just one

command.
ii) Introduced complementary boolean keys.

b) Version 0.2 [10/01/2010]
i) Corrected a bug.

c) Version 0.3 [20/01/2010]

The skeyval Package Page 39 of 39

i) Introduced toggles and toggle keys.
d) Version 0.4 [01/02/2010]

i) Introduced complementary toggle keys.
e) Version 0.5 [23/02/2010]

i) Provided facilities for avoiding repeated definition of same key (when
desired).

ii) Provided mechanisms for disabling, reserving, unreserving, suspending,
restoring, and removing keys after they have been defined.

iii) Redefined a few of xkeyval package’s macros.
iv) Included some developer macros.

	1 Motivation
	2 Loading the skeyval package
	3 Complementary boolean keys
	4 Toggle switches and keys
	4.1 Toggle switches
	4.2 Toggle keys

	5 Complementary toggle keys
	6 Defining multiple keys by one command
	6.1 Choice key values
	6.2 Some internals
	6.3 Some examples

	7 Input error
	8 Conditionals in key macros
	8.1 Using macros or token registers
	8.2 Using a trick to submit the conditionals
	8.3 Using toggles

	9 Checking and redefining keys
	9.1 Checking the status of a key
	9.2 Redefining keys
	9.2.1 Avoiding multiple definitions of same key

	10 Disabling, reserving, suspending keys, etc.
	10.1 Disabling keys
	10.2 Reserving and unreserving keys
	10.3 Suspending and restoring keys
	10.4 Removing keys

	11 Setting keys: list normalization
	12 Miscellaneous macros
	13 Version history

