
The skeyval PackageI,H

Version 0.6

Ahmed Musa�
Preston, Lancashire, UK

29th April 2010

Abstract

This package supplements the xkeyval package. It introduces toggle keys and com-
plementary (bipolar and unipolar) native-boolean and toggle-boolean keys. It also
provides mechanisms for reserving, unreserving, suspending, restoring, and removing
keys. Furthermore, it introduces a set of commands for key definition which bar the
developer or user from inadvertently redefining existing keys of the same family and
prefix. Commands are provided for checking the statuses of keys across multiple key
prefixes and families. Also, the package provides a scheme for defining multiple keys
of different genres using only one command, thereby making it possible to consid-
erably economize on tokens when defining keys. The package introduces the notion
of “user-value keys” and provides facilities for managing those keys. The pointer
mechanisms of the xkeyval, which were only available at key setting time, are now
invocable at key definition. Some other general-purpose developer macros and hooks
are provided by the package.

License

This work (i.e., all the files in the skeyval bundle) may be distributed and/or modified
under the conditions of the LATEX Project Public License (LPPL), either version 1.3
of this license or any later version.

The LATEX Project Public License maintenance status of this software is “author-
maintained”. This software is provided “as it is,” without warranty of any kind,
either expressed or implied, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

The package is now at open beta stage and package distributors are advised to wait
for at least a stable version 1.0 before embarking on distribution. Bug reports and
suggestions to improve the package are particularly welcome. Correspondents should
use the file skeyval-bugreport.tex, provided as part of the bundle, to report bugs.

c© MMX

IThe skeyval package was formerly called the keyreader package until version 0.5. The
keyreader is now obsolete and no longer supported.

HThe package is available at http://www.ctan.org/tex-archive/macros/latex/contrib/

skeyval/.

http://www.ctan.org/tex-archive/macros/latex/contrib/skeyval/
mailto:a.musa@rocketmail.com
http://www.ctan.org/tex-archive/macros/latex/contrib/skeyval/
http://www.ctan.org/tex-archive/macros/latex/contrib/skeyval/

The skeyval Package Page 2 of 69

Contents

1 Motivation 2

2 Brace stripping by the xkeyval

package 4

3 The skeyval package options 4

4 Complementary native boolean
keys 5
4.1 Bipolar native-boolean keys . . 5
4.2 Unipolar native-boolean keys . 6
4.3 Biunipolar native-boolean keys 7

5 Toggle booleans and keys 8
5.1 Toggle booleans 8
5.2 Toggle-boolean keys 10

6 Complementary toggle keys 12
6.1 Bipolar toggle-boolean keys . . 12
6.2 Unipolar toggle-boolean keys . 14
6.3 Biunipolar toggle-boolean keys 14

7 Defining multiple keys by one
command 15
7.1 Choice key values 16
7.2 Some examples 16

7.2.1 Parameterized macros
in key macros 21

7.3 The keycommand interface . . 23
7.4 Input error 24
7.5 Conditionals in key macros . . 24

7.5.1 Using macros or token
list registers 24

7.5.2 Using pseudo-primitives 26
7.5.3 Using switches 28
7.5.4 Using toggles 29

8 Checking and redefining keys 30

8.1 Checking the status of a key . . 30

8.2 Unintentional redefinition of keys 30

8.2.1 Avoiding multiple defi-
nitions of same key . . . 31

9 Disabling, reserving, suspending
keys, etc. 34

9.1 Disabling keys 34

9.2 Localizing keys 35

9.3 Reserving and unreserving keys 36

9.4 Suspending and restoring keys . 37

9.5 Removing keys 38

10 User-value keys 38

10.1 Using pointers to dynamically
indicate user-value keys 39

11 Extensions to the pointer system
of the xkeyval package 39

11.1 Examples 40

11.1.1 Legacy xkeyval pointer
features 40

11.1.2 Extensions by skeyval

package 41

12 Setting keys: list normalization 42

13 Miscellaneous macros 43

14 References 64

15 Version history 64

Index 66

1 Motivation

TOggle switches or booleans were introduced by the etoolbox package and
have proved attractive mainly for two reasons: unlike the legacy/native

TEX switches which require three commands per switch, toggles require only
one command per switch, and toggles occupy their own separate namespace,
thereby avoiding clashes with other macros. So we can effectively have both the
following sets in the same file:

Example

1 % Knuth/native switch:
2 \newif\ifmyboolean → 3 separate commands:

29th April 2010

The skeyval Package Page 3 of 69

3 \ifmyboolean \mybooleantrue
4 \mybooleanfalse

5 % Toggle switch:
6 \newtog{myboolean} → only 1 command and no clash with
7 commands in other namespaces.

Note: A toggle is also a boolean or switch. We refer to it here as toggle or
toggle switch or toggle boolean. The term Knuth/native switch is reserved here
for TEX’s legacy boolean or switch.

The xkeyval package can’t be used to define and set toggle keys. The present
package provides facilities for defining and setting toggle keys. The work relies
on some of the macros from the xkeyval package.

Secondly, the xkeyval package can’t be used to define and set complementary
(bipolar and unipolar) keys, which can be handy in the case of native boolean
and toggle keys. Complementary bipolar keys are mutually exclusive keys, i.e.,
they never assume the same state of a two-valued logic, and they switch states
automatically, depending on the state of any one of them. So whenever one
of them assumes one of the two states of a two-valued logic, the other one
automatically switches its state from whatever state it was previously, such that
the two are never in the same state. Simple examples of complementary bipolar
keys would be the options draft and final in a document; they are mutually
exclusive. Complementary bipolar keys carry equal charge, i.e., each one can
equally toggle the other with identical propensity, but the one that represents the
default state of a two-valued logic is usually considered the primary, while the
other is secondary. In many document classes, for instance, final is considered
a default document option and draft would have to be explicitly selected by
the user to toggle final to false.

Complementary unipolar keys, on the other hand, are mutually inclusive, i.e.,
both are always in the same state of a two-valued logic: when one is switched to a
particular state, the complement too is automatically toggled to the same state.
An example of complementary unipolar keys would be the options hyperref
and microtype in a package or class file. When hyperref package is loaded, we
may want microtype package loaded as well, and vice versa. Complementary
unipolar keys, like bipolar keys, also carry equal charge, i.e., one can toggle the
other with equal propensity, but to the same state for the two keys. For a pair
of unipolar keys, the primary key is the one that is associated with the default
state.

The present package introduces these concepts of bipolar and unipolar keys and
additionally permits the submission of individual/different custom key macros
to complementary (bipolar and unipolar) native boolean and toggle keys. Biu-
nipolar keys are introduced as well.

The third motivation for this package relates to economy of tokens in style files.
The xkeyval package provides \define@cmdkeys and \define@boolkeys for
defining and setting multiple command keys and boolean keys, but in each cat-
egory the keys must have the same default value and no key macro/function.

29th April 2010

The skeyval Package Page 4 of 69

This package seeks to lift these restrictions, so that multiple keys of all cate-
gories (ordinary keys, command keys, boolean keys, tog keys, and choice/menu
keys) can be defined in one go (using only one command) and those keys can
have different default values and functions. This greatly minimizes tokens, as
hundreds of keys can, in principle, be issued simultaneously by one command.

Fourthly, macros are introduced for defining all key types without the fear of
inadvertently redefining existing keys in the same family and with the same key
prefix. This has a philosophy similar to the \newcommand concept in LATEX.

The package also provides facilities for disabling, suspending, restoring and re-
moving keys across multiple families of keys. The pointer system of the xkeyval
package is also extended by the skeyval package, and the notion of “user-value”
keys is introduced.

The new macros can be used together with the machinery from the xkeyval
package for efficient and versatile key management.

2 Brace stripping by the xkeyval package

The xkeyval package strips off up to three levels of braces in the value part of the
key-value pair: one by using the keyval package’s leading and trailing space
removal command and two in internal parsings (at some known commands).
The keyval strips off only two levels of braces: one in using its space removal
routine and one in internal parsings. The kvsetkeys package strips off only one
level of braces. The matter of these differences has not yet been shown to have
serious implications for existing or new packages, although it is apparently of
concern to the keycommand package.

The skeyval package internally uses a space removal scheme that doesn’t strip
off braces from its arguments, but since the present package relies, to a good
extent, on the engine of the xkeyval package, the brace stripping effect has
remained.∗ It can easily be solved but there is currently no sufficient reason to
do so. If, odd enough, you want at least one level of braces to persist in the
value part of the key-value pair throughout parsing, you simply surround the
value with four levels of braces in the \setkeys command. If the users of this,
or the xkeyval package, feel that this issue is of significant concern, then it can
be addressed in the future.

3 The skeyval package options

The package can be loaded in style and class files by
Example

8 \RequirePackage[options]{skeyval}

and in document files via

∗We have had to redefine some of the internal macros of the xkeyval package, but getting
rid of the brace-stripping issue would require even more substantial revision of the internal
macros of the xkeyval package.

29th April 2010

The skeyval Package Page 5 of 69

Example

9 \usepackage[options]{skeyval}

where the user options and their default values are

Macro

10 keyparser=;, macroprefix=mp@, keyprefix=KV, keyfamily=fam,
11 verbose=false

The 〈keyparser〉 is the separator between the keys in the key list to be defined in
one go (see Subsection 7.2). The 〈macroprefix〉, 〈keyprefix〉, and 〈keyfamily〉
are, respectively, the macro prefix, key prefix and key family for all the keys to
be defined upon the declaration of these options. All these options can be set
or changed dynamically by using the \skvoptions macro:

Macro

12 \skvoptions{keyparser=;, macroprefix=mp@, keyprefix=KV,
13 keyfamily=fam}

These options are explained in more detail in subsequent sections.

If, as unlikely as it may seem, a clash arises between package and/or user
macros as a result of the use of the defaults for 〈macroprefix〉, 〈keyprefix〉
and 〈keyfamily〉, then the user will have to make his own choices for these
defaults so as to avoid clashes.

The skeyval package issues a fatal error if it is loaded before (or run without)
\documentclass.

4 Complementary native-boolean keys

4.1 Bipolar native-boolean keys

As mentioned in Section 1, complementary bipolar keys are keys that depend
inversely on each other: when one of them is in a particular state of a two-valued
logic, the other one automatically assumes the opposite or complementary state.
For each pair of bipolar keys, one is normally assumed to be the primary key
and the other the secondary. The primary boolean key will usually represent
the default state of a two-valued logic. Whenever one bipolar key (primary or
secondary) is true, its complement is automatically set false; and vice versa:
when one bipolar key (primary or secondary) is false, its complement is auto-
matically set true. Generally, the transition of the state of a key from negative
(false) to positive (true) is associated with the execution of the key’s macro.

The syntax for creating bipolar native-boolean keys is

Macro

14 \define@biboolkeys[〈keyprefix〉]{〈family〉}[〈macroprefix〉]
15 {〈primary boolean〉}[〈default value for primary boolean〉]

29th April 2010

The skeyval Package Page 6 of 69

16 {〈secondary boolean〉}{〈func for primary boolean〉}
17 {〈func for secondary boolean〉}

This command is robust and can be used in expansion contexts, but expand-
able commands may need to be protected. When the user doesn’t supply the
〈keyprefix〉 and/or 〈macroprefix〉, the package will use 〈KV〉 and 〈mp@〉, re-
spectively. When the default value for the primary boolean is not supplied,
the package will use true. Infinite loops, which are possible in back-linked key
settings, are avoided in the skeyval package. The machinery of the xkeyval
package, such as \setkeys, \presetkeys, \savekeys, \savevalue, \usevalue,
etc., are all applicable to complementary bipolar keys.

As an example, we define below two bipolar native-boolean keys 〈draft〉 and
〈final〉 with different key macros:

Example

18 \define@biboolkeys[KV]{fam}[mp@]{draft}[true]{final}%
19 {\def\noneofone##1{}}{\def\oneofone##1{##1}}

The key prefix (default KV), macro prefix (default mp@), key macros (no default),
and the default value of the primary boolean (true) can all be empty:

Example

20 \define@biboolkeys{fam}{draft}{final}{}{}.

The defined complementary bipolar keys 〈draft〉 and 〈final〉 can now be set
separately as follows:

Example

21 \setkeys[KV]{fam}{draft=true}

22 \setkeys[KV]{fam}{final=true}

The second statement above reverses the boolean 〈draft〉 to 〈false〉, which
had been set in the first statement to 〈true〉. There is no apparent meaning to
the following:

Example

23 \setkeys[KV]{fam}{draft=true,final=true}.

4.2 Unipolar native-boolean keys

Unipolar boolean keys are two keys that are always in the same state: when one
is true (or false), the other one is also true (or false). In this regard, the key
macro is always executed when a key transits to the “true” state. The syntax
for creating unipolar native-boolean keys is exactly as that for defining bipolar
native-boolean keys:

29th April 2010

The skeyval Package Page 7 of 69

Macro

24 \define@uniboolkeys[〈keyprefix〉]{〈family〉}[〈macroprefix〉]
25 {〈primary boolean〉}[〈default value for primary boolean〉]
26 {〈secondary boolean〉}{〈func for primary boolean〉}
27 {〈func for secondary boolean〉}

This command is robust and can be used in expansion contexts, but expand-
able commands may need to be protected. Again, if the user doesn’t supply
the 〈keyprefix〉 and/or 〈macroprefix〉, the package will use 〈KV〉 and 〈mp@〉,
respectively. When the default value for the primary boolean is not supplied,
the package will assume it to be true.

The following example constructs two unipolar boolean keys:
Example

28 \define@uniboolkeys[KV]{fam}[mp@]{pdfmode}[true]{microtype}%
29 {\temptoks{Yes, in ‘pdfmode’}}{\def\temp{‘microtype’ loaded}}

4.3 Biunipolar native-boolean keys

Biunipolar keys are the generalized forms of bipolar and unipolar boolean keys,
with one important restriction: unlike bipolar and unipolar keys, biunipolar
keys have no symmetrical relationships. That is to say that the relationship
between a pair of biunipolar keys is entirely determined by the primary key. A
pair of biunipolar boolean keys possess only one of the following four types of
relationship:

a) Unipolar property: When the primary key is false, it sets the secondary
key to false (? +-form of biunipolar keys). The secondary key macro isn’t
executed.

b) Bipolar property: When the primary key is false, it sets the secondary
key to true (?-form). The secondary key macro is executed.

c) Bipolar property: When the primary key is true, it sets the secondary
key to false (+-form). The secondary key macro isn’t executed.

d) Unipolar property: When the primary key is true, it sets the secondary
key to true (unsigned form). The secondary key macro is executed.

Of course, the primary key can be true only after it has been set.

The syntax for establishing biuni boolean keys is exactly like that for creating
other complementary boolean keys, except for the optional ? and + signs:

Macro

30 \define@biuniboolkeys?+[〈keyprefix〉]{〈family〉}[〈macroprefix〉]
31 {〈primary boolean〉}[〈default value for primary boolean〉]
32 {〈secondary boolean〉}{〈macro for primary boolean〉}
33 {〈macro for secondary boolean〉}

As an example, consider the arbitrary package or class options review and
preprint. The option preprint can automatically toggle review to true, but

29th April 2010

The skeyval Package Page 8 of 69

possibly not vice versa: not every preprint is a manuscript for review. This
is depicted below:

Example

34 \define@biuniboolkeys[KV]{fam}[mp@]{preprint}[true]{review}{}{%
35 \ifmp@review
36 \SKV@BeforeDocumentStart{%
37 \linespread{1.5}\selectfont
38 \def\banner{\fbox{\textit{This is a review document}}}%
39 }%
40 \else
41 \SKV@BeforeDocumentStart{\let\banner\@empty}%
42 \fi
43 }

As another example, consider the following biuni keys, each with its own macro:

Example

44 \define@biuniboolkeys?+[KV]{fam}[mp@]{brother}[true]{sister}{%
45 \ifmp@brother
46 \def\mybrother{Hamilton}%
47 \fi
48 }{%
49 \ifmp@sister
50 \SKV@AfterDocumentStart{\def\mysister{Kate}}%
51 \else
52 \SKV@AfterDocumentStart{\let\mysister\@gobble}%
53 \fi
54 }

55 \setkeys[KV]{fam}{brother=true}

5 Toggle booleans and keys

In the following Subsections 5.1 to 5.2 we define toggle booleans/switches and
use them to introduce toggle-boolean keys.

5.1 Toggle booleans

The following toggle switches are defined in the skeyval package. They largely
mimic those in the etoolbox package, except for the commands \deftog and
\requiretog. There is no fear that the commands in this package will interfere
with those from the etoolbox package, since the internal control sequences and
user interfaces of the two packages are different.

All the commands in this section are robust and can be used in expansion or
moving contexts, but fragile arguments would need to be protected in those
settings.

29th April 2010

The skeyval Package Page 9 of 69

Macro

56 \deftog{〈toggle〉}

This defines a new 〈toggle〉 whether or not 〈toggle〉 is already defined. If
〈toggle〉 is already defined, a warning message is logged in the transcript file
(if the package option verbose is selected) and the new definition is effected.

Macro

57 \newtog{〈toggle〉}

This defines a new 〈toggle〉 if 〈toggle〉 is not already defined; otherwise the
package issues a fatal error. You can define a set of toggles by the following
command:

Macro

58 \NewTogs[〈optional prefix〉]{〈toggles〉}[〈optional state〉],

where 〈toggles〉 is a comma-separated list. Each member of 〈toggles〉 is pre-
fixed with 〈prefix〉 upon definition. The optional 〈state〉 can be either true
or false. For example, we may define new toggles x, y, z by the following:

Example

59 \NewTogs[skv@]{x,y,z}[true]

Macro

60 \providetog{〈toggle〉}

This defines a new 〈toggle〉 if 〈toggle〉 is not already defined. If 〈toggle〉 is
already defined, the command does nothing.

Macro

61 \requiretog{〈toggle〉}

\requiretog takes arguments like \newtog and behaves like \providetog with
the difference: if the toggle is already defined, the command \requiretog calls
LATEX’s \CheckCommand to make sure that the new and existing definitions are
identical, whereas \providetog assumes that if the toggle is already defined, the
existing definition should persist. \requiretog assures that a toggle will have
the given definition, but (if the package option verbose is selected) \requiretog
also warns the user if there was a previous and different existing definition. For
example, if the toggle 〈toga〉 is currently 〈true〉, then since all new toggles start
out as 〈false〉, a call \requiretog{toga} will, if the package option verbose
is selected, issue a warning in the log file that the new and old definitions of
〈toga〉 don’t agree and the new definition, therefore, can’t go ahead.

The skeyval package also provides the command \requirecmd, which has the
same logic as \requiretog but can be used for general LATEX commands, in-
cluding those with optional arguments (see Section 13).

29th April 2010

The skeyval Package Page 10 of 69

Macro

62 \settog{〈toggle〉}{〈true | false〉}

This command sets 〈toggle〉 to 〈value〉, where 〈value〉 may be either 〈true〉
or 〈false〉. This statement will issue an error if 〈toggle〉 wasn’t previously
defined.

Macro

63 \togtrue{〈toggle〉}

This sets 〈toggle〉 to 〈true〉. It will issue an error if 〈toggle〉 wasn’t previously
defined.

Macro

64 \togfalse{〈toggle〉}

This sets 〈toggle〉 to 〈false〉. It will issue an error if 〈toggle〉 wasn’t previously
defined.

Macro

65 \iftog{〈toggle〉}{〈true〉}{〈false〉}

This yields the 〈true〉 statement if the boolean 〈toggle〉 is currently 〈true〉, and
〈false〉 otherwise. It will issue an error if 〈toggle〉 wasn’t previously defined.

Macro

66 \ifnottog{〈toggle〉}{〈not true〉}{〈not false〉}

This behaves like \iftog but reverses the logic of the test. It will issue an error
if 〈toggle〉 wasn’t previously defined.

5.2 Toggle-boolean keys

The user interfaces for defining toggle-boolean keys is exactly like those for
native-boolean keys in the xkeyval package. This allows all the machinery of the
xkeyval package (including \setkeys, \presetkeys, \savekeys, \savevalue,
\usevalue, etc) to be applicable to toggle-boolean keys.

As mentioned earlier, toggles have their own separate namespace. However, the
\setkeys command (and friends) of the xkeyval package is unaware of this.
This can cause problems when the user uses the same name for native-boolean
and toggle keys (or indeed any key type) in the same family and with the same
key prefix, believing rightly that toggle keys have their own separate names-
pace. If this is a source of significant concern to any user, he will be well ad-
vised to instead use the commands \newboolkey, \newboolkeys, \newtogkey,
\newtogkeys, etc., of Subsection 8.2. In those commands a mechanism is in-
cluded to bar keys from having the same name as other keys in the same family
and with the same prefix. Toggle keys can still share the same names with keys
across families and key prefixes. Since it is not always certain which of the keys
the user may want to first define (before its definition is possibly repeated),

29th April 2010

The skeyval Package Page 11 of 69

the fear of interference has necessitated new syntaxes for defining all key types,
which completely avoid interference (see Subsection 8.2).

The user interfaces for defining toggle keys are

Macro

67 \define@togkey[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
68 {〈function〉}

69 \define@togkey+[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
70 {〈function1〉}{〈function2〉}

If the macro prefix 〈mp〉 is not specified, these create a toggle of the form
〈prefix〉@〈family〉@〈key〉 using \deftog (which initializes the toggle switch
to false) and a key macro of the form \〈prefix〉@〈family〉@〈key〉 which first
checks the validity of the user input. If the value is valid, it uses it to set the
toggle and then executes 〈function〉. If the user input wasn’t valid (i.e., neither
true nor false), then the toggle will not be set and the package will generate
a fatal error to this effect.

If 〈mp〉 is specified, then the key definition process will create a toggle of the
form 〈mp〉〈key〉 and a key macro of the form \〈mp〉〈key〉. The value 〈default〉
will be used by the key macro when the user sets the key without a value.

If the plus (+) version of the macro is used, the user can specify two key macros
〈function1〉 and 〈function2〉. If user input is valid, the macro will set the
toggle and executes 〈function1〉; otherwise, it will not set the boolean but will
execute 〈function2〉.

As an example, consider the following:
Example

71 \define@togkey{fam}[my@]{frame}{%
72 \iftog{my@frame}{%
73 \PackageInfo{mypack}{Turning frames on}%
74 }{%
75 \PackageInfo{mypack}{Turning frames off}%
76 }%
77 }

78 \define@togkey+{fam}{shadow}{%
79 \iftog{KV@fam@shadow}{%
80 \PackageInfo{mypack}{Turning shadows on}%
81 }{%
82 \PackageInfo{mypack}{Turning shadows off}%
83 }%
84 }{%
85 \PackageWarning{mypack}{Erroneous input ‘#1’ ignored}%
86 }

The first example creates the toggle 〈my@frame〉 and defines the key macro
\KV@fam@frame to set the boolean (if the input is valid). The second key in-

29th April 2010

The skeyval Package Page 12 of 69

timates the user of changed settings, or produces a warning when input was
incorrect.

It is also possible to define multiple toggle keys with a single command:
Macro

87 \define@togkeys[〈prefix〉]{〈family〉}[〈mp〉]{〈keys〉}[〈default〉]

This creates a toggle key for every entry in the comma-separated list 〈keys〉.
As is the case with the commands \define@cmdkeys and \define@boolkeys
from the xkeyval package, the individual keys in this case can’t have a custom
function. See Section 7 for how to define multiple keys with custom functions.

As an example of defining multiple toggle keys, consider
Example

88 \define@togkeys{fam}[my@]{toga,togb,togc}

This is an abbreviation for
Example

89 \define@togkey{fam}[my@]{toga}{}
90 \define@togkey{fam}[my@]{togb}{}
91 \define@togkey{fam}[my@]{togc}{}

Now we can do
Example

92 \define@togkey{fam}[my@]{book}{%
93 \iftog{my@book}{\setkeys[KV]{fam}{togc=true}}{}%
94 }
95 \setkeys[KV]{fam}{book=true}

Toggle keys can be set in the same way that other key types are set.

The status of toggles can be examined by doing
Example

96 \show\SKV@toggle@〈mp〉〈key〉

when the 〈mp〉 is present. When the user has specified no 〈mp〉 in defining the
key, he has to issue

Example

97 \show\SKV@toggle@〈prefix〉@〈family〉@〈key〉.

6 Complementary toggle keys

6.1 Bipolar toggle-boolean keys

Similar to complementary native-boolean keys of Section 4, the skeyval package
introduces facilities for creating complementary (bipolar, unipolar and biunipo-

29th April 2010

The skeyval Package Page 13 of 69

lar) toggle keys. The syntax for defining bipolar toggle keys is identical to that
for defining bipolar native-boolean keys:

Macro

98 \define@bitogkeys[〈keyprefix〉]{〈family〉}[〈macroprefix〉]
99 {〈primary toggle〉}[〈default value for primary toggle〉]

100 {〈secondary toggle〉}{〈func for primary toggle〉}
101 {〈func for secondary toggle〉}.

This command is robust and can be used in expansion contexts, but non-robust
commands have to be protected. When the user doesn’t supply the 〈keyprefix〉
and/or 〈macroprefix〉, the package will use 〈KV〉 and 〈mp@〉, respectively. When
the default value for the primary toggle-boolean is not supplied, the package
will use true. When one of the bipolar toggle keys (primary or secondary) is
true, the other is automatically set false; and vice versa: when one toggle key
(primary or secondary) is false, the other is automatically set true.

As an example, we define below two bipolar toggle keys 〈xdraft〉 and 〈xfinal〉
with different key macros:

Example

102 \define@bitogkeys[KV]{fam}[mp@]{xdraft}[true]{xfinal}%
103 {\def\gobble##1{}}{\def\firstofone##1{##1}}

The key prefix (default KV), macro prefix (default mp@), key macros (no default),
and the default value of the primary boolean (default true) can all be empty:

Example

104 \define@bitogkeys{fam}{xdraft}{xfinal}{}{}.

The defined bipolar toggle keys 〈xdraft〉 and 〈xfinal〉 can now be set as follows:

Example

105 \setkeys[KV]{fam}{xdraft=true}

106 \setkeys[KV]{fam}{xfinal=true}

The second statement above reverses the toggle 〈xdraft〉 to 〈false〉, which had
been set in the first statement to 〈true〉.

Toggle keys may easily be confused with the conventional (native) boolean keys,
especially at the time of key setting. It is, therefore, always safer to use the
syntaxes in Subsection 8.2 for defining keys; they avoid interference between
new and existing keys.

Note: If we were to use the key names draft and final as toggle keys above,
instead of xdraft and xfinal, there would have been a clash with the keys
draft and final defined as (complementary) native-boolean keys in Section 4—
because they share the same family 〈fam〉 and prefix 〈KV〉. The names draft and

29th April 2010

The skeyval Package Page 14 of 69

final can be used as toggles only if the family 〈fam〉 or prefix 〈KV〉 is changed.
See Subsection 8.2.1 for further details.

6.2 Unipolar toggle-boolean keys

The syntax for defining unipolar toggle keys is exactly the same as that for
defining bipolar toggle keys:

Macro

107 \define@unitogkeys[〈keyprefix〉]{〈family〉}[〈macroprefix〉]
108 {〈primary toggle〉}[〈default value for primary toggle〉]
109 {〈secondary toggle〉}{〈func for primary toggle〉}
110 {〈func for secondary toggle〉}.

Here too, if the user doesn’t supply the 〈keyprefix〉 and/or 〈macroprefix〉,
the package will use 〈KV〉 and 〈mp@〉, respectively. When the default value for
the primary toggle key is not supplied, the package will use true.

Example

111 \define@unitogkeys[KV]{fam}[mp@]{draft}[true]{final}%
112 {\def\x##1{}}{\def\y##1{##1}}
113 \setkeys[KV]{fam}{draft=true}% ‘‘final’’ becomes ‘‘true’’ here.

6.3 Biunipolar toggle-boolean keys

The interface for creating biuni toggle keys is exactly like that for creating other
complementary boolean keys, except for the optional ? and + signs. The inter-
face is as follows (the meaning of the optional ? and + is given in Subsection 4.3):

Macro

114 \define@biunitogkeys?+[〈keyprefix〉]{〈family〉}[〈macroprefix〉]
115 {〈primary boolean〉}[〈default value for primary boolean〉]
116 {〈secondary boolean〉}{〈macro for primary boolean〉}
117 {〈macro for secondary boolean〉}

Example

118 \define@biunitogkeys+[KV]{fam}[mp@]{preprint}[true]{review}{%
119 \iftog{mp@preprint}{%
120 \def\banner{\fbox{\textsf{This is a preprint copy}}}%
121 }{}%
122 }{%
123 \iftog{mp@review}{%
124 \SKV@AtDocumentStart{\linespread{1.5}\selectfont}%
125 \def\banner{\fbox{\textit{This is a review article}}}%
126 }{%
127 \let\banner\@empty
128 }%

29th April 2010

The skeyval Package Page 15 of 69

129 }
130 \setkeys[KV]{fam}{preprint=false or true}

7 Defining multiple keys of all genres by one
command

The interface for defining multiple keys of all kinds in one go is the command
\define@keylist, whose syntax is

Macro

131 \define@keylist{〈key type/id〉, 〈key〉, 〈key default value〉,
132 〈key macro/function〉; 〈another set of key specifiers〉; etc}

There are five key types: 1 (ordinary key), 2 (command key), 3 (native-boolean
key), 4 (toggle-boolean key), and 5 (choice/menu key). The key types can be
indicated either in numeral format (1 to 5) or in alphabetic format (ord, cmd,
bool, tog, choice, menu). “Choice” and “menu” key types imply the same thing
(key type 5): the user can pick the name he prefers. The key and its attributes
are separated by commas; they constitute one “object” or “instance”. The
objects are separated by the 〈keyparser〉, which is the semicolon in the above
example.

If the key list is available in a macro, say,
Example

133 \def\keylist{〈key type/id〉, 〈key〉, 〈key default value〉,
134 〈key macro/function〉; 〈another set of key specifiers〉; etc},

then the keys can be defined by the starred form of \define@keylist:
Example

135 \define@keylist?\keylist.

\define@keylist? takes a macro as argument, while \define@keylist accepts
a key list.

The \define@keylist macro uses the following commands in the background:

Example

136 \define@key, \define@cmdkey, \define@boolkey,
137 \define@choicekey, \define@togkey.

Therefore, it assumes that it is safe to redefine a previously defined key. If this
assumption is unwarranted, then the user should consider using the machinery
of Subsection 8.2.∗

∗The machinery of Subsection 8.2 can be utilized to safely define new keys without the
fear of inadvertently redefining an existing key within the same family and with the same key
prefix.

29th April 2010

The skeyval Package Page 16 of 69

7.1 Choice key values

The \choicekeyvalues macro is provided for defining choice keys; it lists the
alternate admissible values for a choice key and thus can’t be empty when a
choice key is being defined via \define@keylist. Its syntax is

Macro

138 \choicekeyvalues?[〈prefix〉][〈family〉]{〈key〉}{〈list〉},

where 〈list〉 is a comma-separated list of admissible key values. Unless the key
prefix or family changes, the unstarred variant of \choicekeyvalues wouldn’t
allow you to set two \choicekeyvalues for the same choice key. The starred
variant \choicekeyvalues?, on the other hand, allows you to overwrite admis-
sible choice values for a key within a specified family and with the given key
prefix. The arguments 〈prefix〉 and 〈family〉 are optional, provided the key
prefix and family have been specified before calling \choicekeyvalues, using
\skvoptions. If 〈prefix〉 and 〈family〉 are not given, the prevailing key prefix
and key family are used internally by \choicekeyvalues to build distinct al-
ternate values list for the choice key. Therefore, any number of choice keys are
allowed to appear in one \define@keylist or \define@keylist? statement, if
their lists of alternate/admissible values have been set by \choicekeyvalues.
It doesn’t matter which choice key first gets a \choicekeyvalues.

To further save tokens, the macro \choicekeyvalues may be abbreviated by
\CKVS. It has to be provided for each choice key that is being defined.

For example, if we want to define two choice keys align and shootingmodes,
then before the call to \define@keylist, we have to set

Example

139 \CKVS{align}{center,right,left,justified}
140 \CKVS{shootingmodes}{portrait,indoor,foliage,underwater}

As mentioned earlier, the key family and other package options can be changed
dynamically via

Example

141 \skvoptions{keyparser=value,macroprefix=value,keyprefix=value,
142 keyfamily=value}.

In line with the philosophy of the xkeyval package, all the choice keys to be
defined using the skeyval package require a menu: choice keys, by definition,
have pre-ordained or expected values.

7.2 Some examples

In this section we provide a glimpse of the potential applications of the tools
provided by the skeyval package in the context of defining multiple keys by
one command.

Suppose that the key family and other attributes have been set as

29th April 2010

The skeyval Package Page 17 of 69

Example

143 \skvoptions{keyparser=;,macroprefix=mp@,keyprefix=KV,
144 keyfamily=fam}

Further, suppose we wish to define a set of keys {color,angle,scale,align}.
The key color will be defined as ordinary key, the keys angle and scale will
de defined as command keys, while the key align will be defined as a choice
key. Assume that the align key can only assume one of the values {center
| right | left | justified}, where the first three values would further imply
\centering, \flushright, and \flushleft, respectively. Moreover, we assume
that the key scale will be associated with a macro called \mydo, which depends
on a previously defined macro \do. Together with align, we would also like to
define another choice key: weather. The key color isn’t associated with any
macro. Then we can do:

Example

145 % We use space freely in these examples for the sake
146 % of illustration:
147 \def\someweather{windy}
148 \CKVS{align}{center,right,left,justified}
149 \CKVS{weather}{sunny,cloudy,lightrain,heavyrain,snow,
150 sleet,\someweather}

151 \def\funcforalign{%
152 \ifcase\nr\relax
153 \def\mp@align{\centering}%
154 \or\def\mp@align{\flushright}%
155 \or\def\mp@align{\flushleft}%
156 \or\let\mp@align\relax
157 \fi
158 }
159 % Keys ‘color’ and ‘mybool’ have no macro.
160 % Submitted value of key ‘angle’ is ##1 → \mp@angle.
161 \define@keylist{%
162 ord,color,gray!25,;
163 cmd,angle,45,\def\anglevalue{##1};
164 cmd,scale,1,\def\mydo####1{\do ####1};
165 choice,align,center,\funcforalign;
166 \listbreak;
167 bool,mybool,true,;
168 choice,weather,sunny,\edef\Weather{\val}%
169 }
170 \setkeys[KV]{fam}{angle=45,scale=1cm,weather=cloudy}

Note the number of parameter characters in the definition of \mydo. We will
return to this matter in Subsection 7.2.1. The \nr and \val macros are bin
parameters for choice keys, as defined by the xkeyval package. \val contains
the user input for the current key and \nr contains the numeral corresponding
to the numerical order of the user input in the \CKVS list, starting from 0 (zero).

29th April 2010

The skeyval Package Page 18 of 69

For example, in the \CKVS{align} list, the \nr values are center (0), right (1),
left (2), and justified (3). These parameters thus refresh with the choice
key and its user-supplied value.

Instead of defining the macro \funcforalign before hand, we can submit
its replacement text directly to the macro \define@keylist, but, because
\funcforalign contains a conditional, some care is needed in doing so (see Sub-
section 7.5). Once the key align has been defined, the macro \funcforalign
can’t be reused before the key align is set. This is because it is at key setting
time that the function \funcforalign would be called. This is uneconomi-
cal: it is thus desirable to submit the key macro directly to \define@keylist
irrespective of the presence of conditionals.

Please note the \listbreak token inserted on macro line 166 above. Because
of it, the keys mybool and weather will not be read and defined; all the keys
before \listbreak (i.e., color, angle, scale and align) will be read and
defined. All the entries for mybool and weather will instead be saved in the
macro \SKV@remainder, possibly for some other uses.

Hundreds of keys can be defined efficiently in this way, using very few tokens.
As another example, we consider the following keys:

Example

171 \CKVS?{align}{center,right,left,justified}
172 \CKVS{election}{state,federal,congress,senate}

173 \def\funcfortextwidth{\AtBeginDocument{\wlog{‘textwidth’ %
174 is ‘\mp@textwidth’}}}

175 \def\funcfortextheight{%
176 \ifx\@empty\mp@textheight
177 \wlog{‘textheight’ value empty}%
178 \else
179 \wlog{‘textheight’ value not empty}%
180 \fi
181 }

182 \def\funcforpaperwidth{\wlog{‘paperwidth’ was defined as %
183 ordinary key.}}

184 \def\funcforalign{%
185 \ifcase\nr\relax
186 \def\mp@align{\centering}%
187 \or\def\mp@align{\flushright}%
188 \or\def\mp@align{\flushleft}%
189 \or\let\mp@align\relax
190 \fi
191 }
192 % ‘boolvar’, ‘paperheight’ and ‘evensidemargin’ have no
193 % key macros:
194 \define@keylist{%
195 bool,boolvar,true,;

29th April 2010

The skeyval Package Page 19 of 69

196 ord,paperheight,\paperheight,;
197 ord,paperwidth,\paperwidth,\funcforpaperwidth;
198 cmd,textheight,\textheight,\funcfortextheight;
199 cmd,textwidth,\textwidth,\funcfortextwidth;
200 ord,evensidemargin,\evensidemargin,;
201 tog,togvar,true,\iftog{mp@togvar}{\def\catch####1{####1}}%
202 {\def\gobble####1{}};
203 choice,align,center,\funcforalign;
204 choice,election,congress,\def\electiontype{##1};
205 cmd,testdim,2cm,\long\def\funcfortestdim####1{%
206 A test dimension ####1 \endgraf\bigskip}%
207 }

208 \setkeys[KV]{fam}{togvar=true,testdim=1cm,election=senate}

The macro \electiontype corresponds to \val for choice key election. Again,
the intermediate/utility key macros can be reused only after their associated
keys have been set.

The same set of keys can be defined via the starred form of \define@keylist,
as shown below:

Example

209 \def\keylistvector{%
210 bool,boolvar,true,;
211 ord,paperheight,\paperheight,;
212 ord,paperwidth,\paperwidth,\funcforpaperwidth;
213 cmd,textheight,\textheight,\funcfortextheight;
214 cmd,textwidth,\textwidth,\funcfortextwidth;
215 ord,evensidemargin,\evensidemargin,;
216 tog,togvar,true,\iftog{mp@togvar}{\def\catch####1{####1}}%
217 {\def\gobble####1{}};
218 choice,align,center,\funcforalign;
219 choice,election,congress,\def\electiontype{##1};
220 cmd,testdim,2cm,\long\def\funcfortestdim####1{%
221 A test dimension ####1 \endgraf\bigskip}%
222 }
223 \define@keylist?\keylistvector

Since the keys have been defined, they can now be set. In the following, we set
only two of the keys:

Example

224 \setkeys[KV]{fam}{align=right,testdim=3cm}

The macro \mp@align holds the value \flushright, while \KV@fam@testdim
holds the macros:

29th April 2010

The skeyval Package Page 20 of 69

Example

225 \def\mp@testdim{#1}
226 \long\def\funcfortestdim##1{A test dimension ##1},

where 〈#1〉 is the value (3cm) submitted for the key testdim. The number of
parameter characters normally increases in the macro \define@keylist (see
Subsection 7.2.1). After setting the keys, you can do \show\mp@align and
\show\KV@fam@testdim to confirm the above assertions.

The rest of the defined keys can now be set as follows:
Example

227 \setkeys[KV]{fam}{boolvar=true,paperheight,paperwidth,
228 textheight,textwidth=6cm}

Try \show\ifmp@boolvar to confirm that boolvar is now 〈true〉; it was orig-
inally set as 〈false〉. The macro \KV@fam@paperwidth holds the function
\funcforpaperwidth, while \mp@textheight holds the value submitted to key
textheight at any instance of \setkeys. By the above \setkeys, only the de-
fault values of paperheight, paperwidth, and textheight are presently avail-
able.

Instead of using macros to pass key macros and functions, it is also possible to
use token list registers. Some examples are provided below:

Example

229 \NewToks[temptoks]{a,b}
230 % See page 46 for definition of \NewToks and
231 % related commands.

232 \temptoksa{\ifmp@boola\def\do#1{%
233 \def#1##1##2{\expandafter\expandafter\expandafter\in@
234 \expandafter\expandafter\expandafter{\expandafter##1%
235 \expandafter}\expandafter{##2}}}\fi}

236 \temptoksb{\iftog{mp@toga}{\def\order#1{Use ‘#1’ now!}}%
237 {\def\altorder#1{Don’t use ‘#1’ now!}}}

238 \define@keylist{3,boola,true,\the\temptoksa;
239 4,toga,true,\the\temptoksb}

240 \setkeys[KV]{fam}{boola=true,toga=true}

The advantage of using token list registers is that the parameter characters
need not be doubled in the token list registers, unlike when using macros. The
token list register \temptoksa can be reused as soon as the key boola has been
set. See Subsection 7.5.1 for more information on using macros and token list
registers to parse key functions.

29th April 2010

The skeyval Package Page 21 of 69

7.2.1 Parameterized macros in key macros

The examples in Subsection 7.2 would have provided some glimpse of the rules
guiding the use of parameter characters in key macros. The general rules are as
follows:

a) When key macros are parsed through token list registers, the parameter
characters shouldn’t be doubled.

b) When key macros are parsed via intermediate macros, the parameter char-
acters should be doubled but only once.

c) In all other cases (i.e., when using \define@keylist and its starred vari-
ant) the parameter characters should be doubled twice.

TEX will flag a fatal error when any of these rules is breached. The following ex-
amples illustrate the use of these rules. The commands \skif, \skifx, \skelse
and \skfi are described in Subsection 7.5.2.

Example

241 \define@keylist{%
242 tog,toga,true,\iftog{mp@toga}{%
243 \def\swear####1{Repeat after me: ‘####1’!}%
244 }{%
245 \let\swear\@gobble
246 }%
247 }
248 \setkeys[KV]{fam}{toga=true}

249 \NewToks[temptoks]{a}

250 \temptoksa={\long\def\funcforproclaim#1%
251 {A proclaimed statement: #1}}
252 \define@keylist{%
253 bool,boola,true,\skif{mp@boola}\def\yes####1%
254 {Accept ‘####1’!}\skelse\def\no####1{Reject ‘####1’!}\skfi;
255 cmd,proclaim,Statement,\the\temptoksa
256 }
257 \setkeys[KV]{fam}{boola=true,proclaim=nature}

258 \CKVS{align}{left,right,center}

259 \define@keylist{choice,align,center,
260 \skifcase\nr
261 \def\hold####1{\def####1########1{===########1===}}%
262 \skor
263 \def\hold####1{\def####1########1{+++########1+++}}%
264 \skfi
265 }
266 \setkeys[KV]{fam}{align=right}

267 \CKVS{focus}{left,right,center}
268 \def\keylistvector{%

29th April 2010

The skeyval Package Page 22 of 69

269 choice,focus,center,\def\hold####1%
270 {\def####1########1{===########1===}}%
271 }
272 \define@keylist*\keylistvector
273 \setkeys[KV]{fam}{focus=right}

274 \def\keylistvector{cmd,keya,xxx,\def\hold####1%
275 {\def####1########1{===########1===}}}
276 \define@keylist*\keylistvector
277 \setkeys[KV]{fam}{keya=yyy}

278 \def\funcforkeyb{\def\hold##1{\def##1####1{===####1===}}}
279 \define@keylist{cmd,keyb,xxx,\funcforkeyb}
280 \setkeys[KV]{fam}{keyb=yyy}

281 \define@cmdkey[KV]{fam}[mp@]{keyc}[xxx]{\def\hold##1{##1}}
282 \setkeys[KV]{fam}{keyc=yyy}

283 \def\keylistvector{%
284 ord,keyda,aaa,\def\hold####1%
285 {\def####1########1{===########1===}};
286 cmd,keydb,bbb,\def\althold####1%
287 {\def####1########1{***########1***}}%
288 }
289 \define@keylist*\keylistvector
290 \setkeys[KV]{fam}{keyda=xxx,keydb=yyy}

291 % The next one fails. Why?
292 \define@keylist{ord,keye,unknown,\def\hold##1%
293 {\def##1####1{####1}}}

294 \define@keylist{%
295 ord,keyfa,xxx,
296 \skifx\x\y
297 \def\hold####1{\def####1########1{===########1===}}%
298 \skelse
299 \def\hold####1{\def####1########1{***########1***}}%
300 \skfi;
301 cmd,keyfb,yyy,
302 \SKV@ifx\x\y{%
303 \def\nosupergobble####1{\def####1########1{########1}}%
304 }{%
305 \def\supergobble####1{\def####1########1{}}%
306 }%
307 }
308 \setkeys[KV]{fam}{keyfa=value,keyfb=value}

309 \def\funcforboolb{\ifmp@boolba\def\do##1{%
310 \def##1####1####2{\expandafter\expandafter\expandafter\in@
311 \expandafter\expandafter\expandafter{\expandafter####1%

29th April 2010

The skeyval Package Page 23 of 69

312 \expandafter}\expandafter{####2}}}\fi}

313 \define@keylist{3,boolba,true,\funcforboolb;3,boolbb,true,;}
314 \setkeys[KV]{fam}{boolba=true}

315 \NewToks[temptoks]{a,b}

316 \temptoksa{\ifmp@boolc\def\do#1{%
317 \def#1##1##2{\expandafter\expandafter\expandafter\in@
318 \expandafter\expandafter\expandafter{\expandafter##1%
319 \expandafter}\expandafter{##2}}}\fi}
320 \temptoksb{\iftog{mp@togb}{\def\tempa#1{Use #1}}%
321 {\def\tempb#1{Don’t use #1}}}
322 \define@keylist{3,boolc,true,\the\temptoksa;
323 4,togb,true,\the\temptoksb}

324 \setkeys[KV]{fam}{boolc=true,togb=true}
325 \do\x \def\y{x} \def\z{xxx} \x\y\z

326 \def\keylistvector{bool,boold,true,
327 \ifswitchon{mp@boold}{%
328 \def\hold####1{\def####1########1{***########1***}}%
329 }{%
330 \def\hold####1{\def####1########1{===########1===}}%
331 }%
332 }
333 \define@keylist*\keylistvector
334 \setkeys[KV]{fam}{boold=true}

7.3 The keycommand interface

The \define@keylist macro provides an interface for defining commands in
the manner of the keycommand package. We haven’t developed this interface
well enough but the following example shows what is currently obtainable and
the possibilities for future enhancements. It is hoped that further work in this
direction will be undertaken in the future. I do foresee that the user interface
will be made lighter in the future. For now, the \skvoptions command needs
be reissued only when the key family changes, and in that case we simply have
to do \skvoptions{keyfamily=name}. Any future enhancement should seek to
hide the \setkeys command from the user.

Example

335 \skvoptions{keyparser=;,macroprefix=mp,keyprefix=KV,
336 keyfamily=rule}
337 \define@keylist{cmd,raise,.5ex,;cmd,width,1em,;
338 cmd,thick,.4pt,;bool,proclaim,true,}
339 \setkeys[KV]{rule}{raise,width,thick,proclaim=false}
340 \newcommand*\Rule[2][Hello]{%
341 \setkeys[KV]{rule}{#2}%

29th April 2010

The skeyval Package Page 24 of 69

342 \rule[\mpraise]{\mpwidth}{\mpthick}%
343 #1%
344 \rule[\mpraise]{\mpwidth}{\mpthick}\hspace*{1em}%
345 \ifmpproclaim \color{red}\fi\textdaggerdbl
346 }
347 \begin{document}
348 \parindent\z@
349 \begin{tabular*}\textwidth{rr}
350 \verb+\Rule[width=2em]{hello}+:&
351 \Rule[Hello World]{width=2em,proclaim}\cr
352 \verb+\Rule[thick=1pt,width=2em]{hello}+:&
353 \Rule{thick=2pt,width=2em}\cr
354 \verb+\Rule{hello}+:&
355 \Rule[Hello World]{proclaim}\cr
356 \verb+\Rule[thick=1pt,raise=1ex]{hello}+:&
357 \Rule[Hello World]{thick=1pt,raise=1ex}
358 \end{tabular*}
359 \end{document}

7.4 Input error

Native-boolean, toggle-boolean and choice keys issue error messages if the key
value is not valid, i.e., not in the list of admissible values. The admissible values
of native-boolean and toggle keys are true and false. The valid values of choice
keys are set by the user via \CKVS. The default input error is defined by the
macro \SKV@inputerr. It takes two arguments (i.e., value and key) and can be
customized by the user.

7.5 Conditionals in key macros

The TEX conditional primitives \if, \ifx, \else and \fi cannot appear in the
key macro when \define@keylist is being invoked. The reason can be traced
to the discussion on page 211 of the TEXBook and the loops used in the skeyval
package to define keys by means of \define@keylist. There are many possible
approaches to resolving this problem, but only four appear to be attractive (see
Subsections 7.5.1 to 7.5.4).

7.5.1 Burying conditionals in intermediate macros or token list registers

Key macros/functions involving conditional operations such as
Example

360 \ifmp@bool \do \else \donot \fi

can be submitted to \define@keylist via intermediate macros, as seen above
(in Subsection 7.2), but the approach isn’t economical and thus not advisable.
Nevertheless, we give more examples of deploying intermediate macros below.
Let the key macro prefix be mp@, the key prefix be KV, and the key family be
fam.

29th April 2010

The skeyval Package Page 25 of 69

Suppose we want to submit the following:
Example

361 \define@keylist{3,bool,true,\ifmp@bool \do \else \donot \fi}.

The presence of \if and \fi in the argument will trigger an error when TEX
is scanning and skipping tokens, and, secondly, because of the loops and con-
ditionals used by the skeyval package in defining keys via \define@keylist.
Neither \protect nor \noexpand is helpful here. One solution is to first define

Example

362 \def\funcforbool{\ifmp@bool \do \else \donot \fi}

and then do
Example

363 \define@keylist{3,bool,true,\funcforbool},

which will execute \funcforbool when the key bool is set. One significant
drawback of this approach is that once the key bool has been defined by
the above statement, the function \funcforbool may not be redefined and
reused before the key bool is set. This is wasteful and not advisable. This
approach is included here only for demonstration purposes. The schemes in
Subsections 7.5.2 to 7.5.3 are preferable.

As another example, we may do
Example

364 \def\funcforboola{\ifmp@boola\def\do##1{%
365 \def##1####1####2{\expandafter\expandafter\expandafter\in@
366 \expandafter\expandafter\expandafter{\expandafter####1%
367 \expandafter}\expandafter{####2}}}\fi}

368 \define@keylist{3,boola,true,\funcforboola}

369 \setkeys[KV]{fam}{boola=true}

370 \def\y{x} \def\z{xxx} \do\x \x\y\z

Token list registers can be used here economically instead of macros. Below we
define one native-boolean key and one toggle-boolean key:

Example

371 \NewToks[temptoks]{a,b}

372 \temptoksa{\ifmp@boola\def\do#1{%
373 \def#1##1##2{\expandafter\expandafter\expandafter\in@
374 \expandafter\expandafter\expandafter{\expandafter##1%
375 \expandafter}\expandafter{##2}}}\fi}

376 \temptoksb{\iftog{mp@toga}{\def\order#1{Use ‘#1’ now!}}{}}

29th April 2010

The skeyval Package Page 26 of 69

377 \define@keylist{3,boola,true,\the\temptoksa;
378 4,toga,true,\the\temptoksb}

379 \setkeys[KV]{fam}{boola=true,toga=true}

You can see the significant reduction in the number of parameter characters
when using token list registers. The utility token list registers \temptoksa and
\temptoksb can be reused to define many other keys as soon as the keys boola
and toga have been set. However, as noted earlier, the approach of using inter-
mediate macros and token list registers to parse arguments to \define@keylist
is not attractive because of the overheads in the number of macros and token
list registers.

7.5.2 Using pseudo-primitives to submit the conditionals

There are two downsides to the above approach of hiding conditionals in macros:
the macros have to be defined and, although they can be redefined and reused
(after the associated key has been set), they tend to defeat the initial aim of
the package, which is to economize on tokens.

Suppose we want to define a native-boolean key mybool with the following key
macro:

Example

380 \ifmp@mybool
381 \def\hold##1{\def##1####1{***####1***}}%
382 \else
383 \def\hold##1{\def##1####1{===####1===}}%
384 \fi

where the key prefix KV, key family fam, and the macro prefix mp@ are assumed
to have been defined previously. Then, instead of hiding the conditional in an
intermediate macro, we may adopt the following:

Example

385 \define@keylist{3,mybool,true,
386 \skif{mp@mybool}\def\hold##1{\def##1####1{***####1***}}%
387 \skelse\def\hold##1{\def##1####1{===####1===}}\skfi
388 }

389 \setkeys[KV]{fam}{mybool=true or false}
390 \hold\x

Here we have used \skif{mp@mybool}, \skifx, \skelse and \skfi for the
commands \ifmp@mybool, \ifx, \else and \fi, respectively, to hide the lat-
ter four from TEX’s scanning and skipping mechanism. It should be noted
that \skif{mp@mybool} requires that the argument 〈mp@mybool〉 be enclosed in
braces. Something like \skifmp@mybool will be interpreted by TEX as an unde-
fined control sequence when the key mybool is being set. Defining the command

29th April 2010

The skeyval Package Page 27 of 69

\skif{mp@mybool} to be \ifmp@mybool before hand would have failed because
TEX’s scanner would then get the hint of the assignment.

Note: We haven’t found any package that has defined \skif, \skifx, \skelse,
\skfi, \skifcase or \skor. The xifthen package uses \OR, not \skor. If the
situation changes in the future (i.e., if a package is observed to have defined any
of these commands), they will be appropriately modified in the skeyval package.
Information and feedback from package users is solicited in this regard.

We have redefined the \setkeys command of the xkeyval package to recognize
that \skif{boolean}, \skifx, \skelse, \skfi, \skifcase and \skor stand for
\ifboolean, \ifx, \else, \fi, \ifcase and \or, respectively. The redefined
\setkeys command has the same syntax as as in xkeyval package:

Macro

391 \setkeys[〈prefix〉]{〈families〉}[〈na〉]{〈keys=values〉}
392 \setkeys?[〈prefix〉]{〈families〉}[〈na〉]{〈keys=values〉}
393 \setkeys+[〈prefix〉]{〈families〉}[〈na〉]{〈keys=values〉}
394 \setkeys?+[〈prefix〉]{〈families〉}[〈na〉]{〈keys=values〉}.

No errors are produced if any of the sets 〈prefix〉, 〈families〉, 〈na〉, and
〈keys=values〉 is empty. In fact, an instruction such as \setkeys[]{}[]{}
is completely benign, and so is \setkeys{}{}.

Conditionals involving \ifcase: The case of conditionals involving \ifcase
can be handled in the same way as those involving \if:

Example

395 \CKVS{focus}{center,left,right,justified}

396 \temptoksa{\ifcase\nr\relax
397 \def\mp@focus{\centering}\or\def\mp@focus{\flushright}
398 \or\def\mp@focus{\flushleft}\or\let\mp@focus\relax\fi}

399 \define@keylist{5,focus,center,\the\temptoksa}

This can be written more compactly as follows, which obviates the need for
intermediate macros and list registers:

Example

400 \define@keylist{menu,focus,center,\skifcase\nr\relax
401 \def\mp@focus{\centering}\skor\def\mp@focus{\flushright}
402 \skor\def\mp@focus{\flushleft}\skor\let\mp@focus\relax\skfi}

Here, the skeyval package uses \skifcase, \skor, and \skfi for \ifcase, \or
and \fi, respectively; otherwise, TEX would be grumpy.

The key focus can now be readily set: \setkeys[KV]{fam}{focus=left}.

29th April 2010

The skeyval Package Page 28 of 69

7.5.3 Using switches to submit the conditionals

The approaches of Subsection 7.5.2 provide a familiar TEX-like syntax for sub-
mitting conditionals to \define@keylist. There is yet another approach that
we developed. It is related to the native TEX boolean conditional. By switches
we mean the usual TEX’s \iftrue and \iffalse booleans, but expressed in a
different semantics.

A new switch can be introduced by using the following command:

Macro

403 \newswitch{〈switch〉}{〈value/state〉}

There should be no \if in 〈switch〉 when using \newswitch. Valid values/states
of switches are ‘true’ (or ‘on’) and ‘false’ (or ‘off’). With this definition you can
issue \if〈switch〉, \〈switch〉true, and \〈switch〉false. One advantage of
\newswitch is that a switch can start off as either true (or on) or false (or
off), unlike the classical TEX’s case in which all booleans start off as false.
Also, switches can be used where primitive TEX conditionals may prove impos-
sible. For example, we know that you can’t do \let\ifabc\iftrue within the
body of a conditional text without hiding the assignment from TEX’s scanning
mechanism.

You can define many switches in a row by the following command:

Macro

404 \NewSwitches[〈optional prefix〉]{〈switches〉}[〈optional state〉]

Each member of 〈switches〉 is prefixed with 〈prefix〉 upon definition. The
optional 〈state〉 can be either true or false.

Here are some examples:
Example

405 \NewSwitches{x,y,z}
406 → \newswitch{x}{false} \newswitch{y}{false}
407 \newswitch{z}{false}

408 \NewSwitches[skv@]{u,w}[true]
409 → \newswitch{skv@u}{true} \newswitch{skv@w}{true}

Switches may be set and tested using the following commands:

Macro

410 \setswitch{〈switch〉}{〈value/state〉}

411 \switchon{〈switch〉} → \〈switch〉true

412 \switchtrue{〈switch〉} → \〈switch〉true

413 \switchoff{〈switch〉} → \〈switch〉false

29th April 2010

The skeyval Package Page 29 of 69

414 \switchfalse{〈switch〉} → \〈switch〉false

415 \ifswitchon{〈switch〉}{〈true text〉}{〈false text〉}

416 \ifswitchtrue{〈switch〉}{〈true text〉}{〈false text〉}

417 \ifswitchoff{〈switch〉}{〈not true〉}{〈not false〉}

418 \ifswitchfalse{〈switch〉}{〈not true〉}{〈not false〉}

Example

419 \NewSwitches{w,x,y,z}

420 \setswitch{w}{true} → \setswitch{w}{on}
421 \setswitch{x}{on} → \setswitch{x}{true}
422 \setswitch{y}{false} → \setswitch{y}{off}
423 \setswitch{z}{off} → \setswitch{z}{false}

424 \ifswitchon{x}{\def\xx{On}}{\def\xx{Off}}

425 \ifswitchoff{y}{\def\yy{Off}}{\def\yy{On}}

Suppose the key prefix is KV, the key family is fam, and the key macro is mp@.
The the following works:

Example

426 \define@keylist{3,switcha,true,
427 \ifswitchon{mp@switcha}{\def\say{Swtich ‘a’ is true}}
428 {\def\say{Swtich ‘a’ is false}}}

429 \setkeys[KV]{fam}{switcha=true or false}

Note: Please note that switch keys are boolean keys (type ‘3’ key). As yet,
when setting switch keys you must supply either true or false, not on or off.

7.5.4 Using toggles to submit the conditionals

Toggle booleans, described in Section 5, can also be used to circumvent the
problem of matching \if and \fi in difficult circumstances, since toggles aren’t
TEX primitives, and, as noted in Section 5, toggles are very economical. For
example, the following works:

Example

430 \define@keylist{4,toga,true,
431 \iftog{mp@toga}{\def\say{Toggle ‘a’ is true}}%
432 {\def\say{Toggle ‘a’ is false}}}

433 \setkeys[KV]{fam}{toga= true or false}

29th April 2010

The skeyval Package Page 30 of 69

where the key prefix, key family, and macro prefix are still assumed to be KV,
fam, mp@, respectively. Recall that toggle keys are type ‘4’ keys.

8 Checking and redefining keys

8.1 Checking the status of a key

Three mechanisms have been introduced in the skeyval package to ascertain
the statuses of keys. These are as follows.

Macro

434 \ifkeydefined[〈prefixes〉]{〈families〉}{〈key〉}{〈true〉}{〈false〉}

This executes 〈true〉 if 〈key〉 is defined, reserved, or suspended with a prefix
in 〈prefixes〉 and family in 〈families〉; it returns 〈false〉 otherwise. This is
similar to the xkeyval package’s \key@ifundefined, but, apart from reversing
the logic of the test, \ifkeydefined loops over prefixes (in addition to looping
over families) to locate the key, and also considers reserved and suspended keys
as defined. The lists 〈prefixes〉 and 〈families〉 may contain nil, one or more
elements.

Macro

435 \ifkeyreserved[〈prefixes〉]{〈families〉}{〈key〉}{〈true〉}{〈false〉}

This returns 〈true〉 if 〈key〉 is reserved with a prefix in 〈prefixes〉 and family
in 〈families〉; it returns 〈false〉 otherwise. Reserved keys are introduced in
Subsection 9.3.

Macro

436 \ifkeysuspended[〈prefixes〉]{〈families〉}{〈key〉}{〈true〉}{〈false〉}

This executes 〈true〉 if 〈key〉 is suspended with a prefix in 〈prefixes〉 and fam-
ily in 〈families〉; it executes 〈false〉 otherwise. Suspended keys are introduced
in Subsection 9.4.

8.2 Unintentional redefinition of keys

The xkeyval package, by default, permits the automatic redefining of keys
of the same 〈prefix〉 and 〈family〉: at the point of defining a new key, the
package doesn’t, by default, check whether or not the key had been previously
defined with the same 〈prefix〉 and 〈family〉. In some circumstances this can
be undesirable, and even dangerous, especially if the same key (of the same
〈prefix〉 and 〈family〉) is mistakenly redefined with different macros/functions
in the same package or across packages. One way to solve this problem is to
use xkeyval package’s \key@ifundefined command (or the skeyval package’s
\ifkeydefined) to confirm the status of a key prior to its definition. However,
using these commands before defining every key can be laborious.

Consider the following two scenarios:

29th April 2010

The skeyval Package Page 31 of 69

Example

437 \define@key[KV]{fam}{keya}[\star]{\def\tempa##1{##1}}

438 \define@boolkey[KV]{fam}{keya}[true]{%
439 \ifKV@fam@keya\def\tempb{#1}\fi}

440 \setkeys[KV]{fam}{keya=\textbullet}

Obviously the two definitions of 〈keya〉 are valid and will be implemented but the
\setkeys command here will issue an unintelligible error message, like LATEX’s
“You are in trouble here . . . ”. The key 〈keya〉 has been defined twice and
\setkeys has sought to use its latest definition to set its value, which is in-
correct. As mentioned in Subsection 5.2, the \setkeys command (and friends)
of the xkeyval package doesn’t know if a key has been redefined in the same
〈family〉 and with the same 〈prefix〉. At the high level, it doesn’t consider the
key type: it uses the latest definition of the key to set its value using the key’s
macro. This is particularly worrisome in the case of toggle keys, since although
toggle keys have their own separate namespace, they can easily be confusing (at
least to \setkeys) if they have names identical to other keys within the same
family and with the same prefix. In fact, the problem can manifest itself in
more ways than the scenario just depicted.

If the package option verbose is enabled, the skeyval package provides a warn-
ing system (by making an entry in the transcript log file) if an existing key is
being redefined (within the same family and with the same prefix) by any of the
following commands:

Macro

441 \define@key, \define@cmdkey, \define@cmdkeys,
442 \define@choicekey, \define@boolkey, \define@boolkeys,
443 \define@biboolkeys, \define@uniboolkeys, \define@biuniboolkeys,
444 \define@togkey, \define@togkeys, \define@bitogkeys,
445 \define@unitogkeys, \define@biunitogkeys

The machinery of Subsection 8.2.1 can be used to avoid inadvertently redefining
existing keys.

8.2.1 Avoiding multiple definitions of same key

For the above reasons, the skeyval package introduces the following commands,
which have the same syntaxes as their counterparts from the xkeyval and
skeyval packages but which bar the user from repeated definition of keys with
identical names within the same 〈family〉 and with the same 〈prefix〉:

Macro

446 % The following defines ‘‘ordinary’’ keys (the counterpart
447 % of \define@key from the xkeyval package):
448 \newordkey[〈prefix〉]{〈family〉}{〈key〉}[〈default〉]{〈funtion〉}

449 % Counterpart of \define@cmdkey:

29th April 2010

The skeyval Package Page 32 of 69

450 \newcmdkey[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
451 {〈funtion〉}

452 % Counterpart of \define@cmdkeys:
453 \newcmdkeys[〈prefix〉]{〈family〉}[〈mp〉]{〈keys〉}[〈default〉]

454 % Counterparts of \define@boolkey:
455 \newboolkey[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
456 {〈funtion〉}
457 \newboolkey+[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
458 {〈funtion1〉}{〈funtion2〉}

459 % Counterpart of \define@boolkeys:
460 \newboolkeys[〈prefix〉]{〈family〉}[〈mp〉]{〈keys〉}[〈default〉]

461 % Counterpart of \define@biboolkeys:
462 \newbiboolkeys[〈prefix〉]{〈family〉}[〈mp〉]
463 {〈primary boolean〉}[〈default value for primary boolean〉]
464 {〈secondary boolean〉}{〈func for primary boolean〉}
465 {〈func for secondary boolean〉}

466 % Counterpart of \define@uniboolkeys:
467 \newuniboolkeys[〈prefix〉]{〈family〉}[〈mp〉]
468 {〈primary boolean〉}[〈default value for primary boolean〉]
469 {〈secondary boolean〉}{〈func for primary boolean〉}
470 {〈func for secondary boolean〉}

471 % Counterpart of \define@biuniboolkeys:
472 \newbiuniboolkeys[〈prefix〉]{〈family〉}[〈mp〉]
473 {〈primary boolean〉}[〈default value for primary boolean〉]
474 {〈secondary boolean〉}{〈func for primary boolean〉}
475 {〈func for secondary boolean〉}

476 % Counterparts of \define@togkey:
477 \newtogkey[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
478 {〈funtion〉}
479 \newtogkey+[〈prefix〉]{〈family〉}[〈mp〉]{〈key〉}[〈default〉]%
480 {〈funtion1〉}{〈funtion2〉}

481 % Counterpart of \define@togkeys:
482 \newtogkeys[〈prefix〉]{〈family〉}[〈mp〉]{〈keys〉}[〈default〉]

483 % Counterpart of \define@bitogkeys:
484 \newbitogkeys[〈prefix〉]{〈family〉}[〈mp〉]
485 {〈primary toggle〉}[〈default value for primary toggle〉]
486 {〈secondary toggle〉}{〈func for primary toggle〉}
487 {〈func for secondary toggle〉}

488 % Counterpart of \define@unitogkeys:
489 \newunitogkeys[〈prefix〉]{〈family〉}[〈mp〉]

29th April 2010

The skeyval Package Page 33 of 69

490 {〈primary toggle〉}[〈default value for primary toggle〉]
491 {〈secondary toggle〉}{〈func for primary toggle〉}
492 {〈func for secondary toggle〉}

493 % Counterpart of \define@biunitogkeys:
494 \newbiunitogkeys[〈prefix〉]{〈family〉}[〈mp〉]
495 {〈primary toggle〉}[〈default value for primary toggle〉]
496 {〈secondary toggle〉}{〈func for primary toggle〉}
497 {〈func for secondary toggle〉}

498 % Counterparts of \define@choicekey:
499 \newchoicekey[〈prefix〉]{〈family〉}{〈key〉}[〈bin〉]{〈alt〉}%
500 [〈default〉]{〈funtion〉}
501 \newchoicekey?[〈prefix〉]{〈family〉}{〈key〉}[〈bin〉]{〈alt〉}%
502 [〈default〉]{〈funtion〉}
503 \newchoicekey+[〈prefix〉]{〈family〉}{〈key〉}[〈bin〉]{〈alt〉}%
504 [〈default〉]{〈funtion1〉}{〈funtion2〉}
505 \newchoicekey?+[〈prefix〉]{〈family〉}{〈key〉}[〈bin〉]{〈alt〉}%
506 [〈default〉]{〈funtion1〉}{〈funtion2〉}

507 % Counterpart of \define@keylist:
508 \newkeylist{〈key type/id〉, 〈key〉, 〈key default value〉,
509 〈key macro/function〉; 〈another set of key specifiers〉; etc}.

The following aliases are defined in the skeyval package:

Macro

510 \define@menukey?+ → \define@choicekey?+
511 \newmenukey?+ → \newchoicekey?+

We could simply have redefined/modified the legacy key definition commands
in the xkeyval package to make it impossible to define keys of the same name
in the same family and with the same prefix, but this approach would be unsafe
since there are many packages using the xkeyval package and those packages
may well have redefined identical keys. Moreover, the legacy key definition
commands from the xkeyval package may be needed to redefine a disabled key
(see Section 9).

All the commands of the type \newxxxkey∗ are robust and may be used in
expansion contexts without fear of premature expansion, although expandable
tokens in the definition may need to be protected.

With the above macros, the following will flag an understandable error message,
namely that the key 〈keya〉 is about being redefined in the same family 〈fam〉
and with the same prefix 〈KV〉:

∗We shall refer to keys of the type \newxxxkey as those of category \newkey, and keys of
the type \define@xxxkey as those of category \definekey.

29th April 2010

The skeyval Package Page 34 of 69

Example

512 \newordkey[KV]{fam}{keya}[\star]{\def\tempa##1{##1}}

513 \newboolkey[KV]{fam}{keya}[true]{%
514 \ifKV@fam@keya\def\tempb{#1}\fi}

9 Disabling, localizing, reserving, suspending,
restoring, and removing keys

Besides macros for defining keys, the skeyval package also introduces mecha-
nisms for disabling, localizing, reserving, suspending, restoring, and completely
removing existing keys.

9.1 Disabling keys

The skeyval package has modified the definition of \disable@keys from the
xkeyval package to allow for looping over key prefixes and key families and
for bespoke warnings and error messages, without engendering any potential
conflict with the legacy \disable@keys. The new command is still called
\disable@keys and has the same syntax as the native \disable@keys of the
xkeyval package, except that the new command accepts key prefixes (instead
of just one prefix) and key families (instead of just one family):

Macro

515 \disable@keys[〈prefixes〉]{〈families〉}{〈keys〉}.

Here 〈prefixes〉, 〈families〉, 〈keys〉 are lists of comma-separated entries re-
ferring to the keys to be disabled. Each of the lists 〈prefixes〉, 〈families〉,
〈keys〉 may contain nil, one or more elements. If any of the members in 〈keys〉
can’t be located in 〈families〉 and with prefix in 〈prefixes〉, an informational
(not error) message is logged in respect of this member, but only if the package
option verbose is selected.

The legacy version of \disable@keys (i.e., that of the xkeyval package) is still
available via the starred variant:

Macro

516 \disable@keys?[〈prefix〉]{〈family〉}{〈keys〉}

Note that this doesn’t accept key prefixes and families, but only one key pre-
fix and only one key family: the \disable@keys command from the xkeyval
package can only be used to disable keys with the same 〈prefix〉 and from the
same 〈family〉, but not across prefixes and families.

Any attempt to subsequently set or use a disabled key will prompt the fol-
lowing error message. (The xkeyval package issues a warning in this case.)
The error message can be modified by the user, but the names of the controls
\SKV@disabledkey@err and \SKV@disabledkey should be retained.

29th April 2010

The skeyval Package Page 35 of 69

Macro

517 \def\SKV@disabledkey@err{%
518 \PackageError{skeyval}{%
519 Key 〈key〉 with prefix 〈prefix〉 in family 〈family〉
520 was disabled on input line 〈lineno〉
521 }{%
522 You can’t set or reset 〈key〉 at this
523 late stage. Perhaps you’re required to set it
524 earlier, within a package or in the document’s preamble.
525 }%
526 }

If the user attempts to disable an undefined key, the xkeyval package issues
a fatal error; the skeyval package, on the other hand, issues a warning in the
transcript log file (if the package option verbose is selected), since the situation
isn’t fatal to the outcome of the LATEX pass or the document.

Disabled keys can be redefined with commands in the \definekey category
but not with commands in the \newkey category, since a disabled key remains
defined: only its macro has been replaced by an error message signifying the
disabling of the key.

Note: Reserved and suspended keys can’t be disabled, until they are unreserved
or restored (see Subsections 9.3 to 9.4).

9.2 Localizing keys

By localizing a key we mean disabling a key at the end of the current class
or package file. This is basically the command \disable@keys executed on
the hook \SKV@BeforeClassEnd or \SKV@BeforePackageEnd, depending on
\@currext. The hooks \SKV@BeforeClassEnd and \SKV@BeforePackageEnd
are described in Section 13 (macro lines 836 to 837).

The syntax for localizing keys is exactly like that for disabling keys:

Macro

527 \localize@keys[〈prefixes〉]{〈families〉}{〈keys〉}.

If any of the members of the set 〈keys〉 is not found in any of the members
of 〈families〉 and with a prefix from 〈prefixes〉, an informational message is
written into the log file (if the package option verbose is selected), but no errors
are flagged.

The starred variant of \localize@keys disables the keys listed in 〈keys〉, not at
the end of the package or class file, but right before the start of document (i.e.,
at the boundary between the document preamble and \AtBeginDocument):

Macro

528 \localize@keys?[〈prefixes〉]{〈families〉}{〈keys〉}.

29th April 2010

The skeyval Package Page 36 of 69

The hook used here is \SKV@BeforeDocumentStart, described in Section 13,
macro line 841.

A key can be localized as soon as it is defined. In fact, a key can be localized
even before it is defined: the actual disablement of the key will take place at the
execution of the contents of \SKV@BeforeClassEnd or \SKV@BeforePackageEnd
or \SKV@BeforeDocumentStart.

Localized keys can be redefined with commands in the \definekey category,
but not with commands in the \newkey category.

9.3 Reserving and unreserving keys

The xkeyval package bars its users from defining new keys with XKV as a prefix.
The skeyval package generalizes this concept via the following three developer
macros:

Macro

529 \ReserveKeyPrefixNames{〈list〉}

This allows the package developer to bar the future use of names appearing in
〈list〉 as key prefixes when defining, disabling, reserving and suspending keys;
but not when setting keys. The 〈list〉, whose members are comma-separated,
can be populated by the package developer as required.

Macro

530 \ReserveMacroPrefixNames{〈list〉}

This has a similar functionality to \ReserveKeyPrefixNames, but applies to
macro prefixes instead of key prefixes.

Macro

531 \ReserveFamilyNames{〈list〉}

This reserves family names 〈list〉 and prevents further use of members of
〈list〉.

Note: The lists in these macros are scanned only when defining, disabling,
reserving or suspending keys, and not when setting existing keys. If the lists
were also to be scanned when keys are being set, then a situation could arise in
which existing keys (including those defined by prior packages) couldn’t be set.

These macros could be used, for instances, to secure against future use the
key prefixes, macro prefixes, and key families that have used in a new style or
class file. For example, we have used these facilities to bar users of the skeyval
package from using the key prefix SKV, the family name skeyval, and the macro
prefix SKV@ to define new keys in their packages.

Macro

532 \ReserveKeyPrefixNames?{〈list〉}
533 \ReserveMacroPrefixNames?{〈list〉}
534 \ReserveFamilyNames?{〈list〉}

29th April 2010

The skeyval Package Page 37 of 69

These starred variants take effect at end of current package; the unstarred ones
above assume immediate effect. If the developer wants to use any member
of 〈list〉 in his own package, it may be necessary for him to use the starred
versions.

In addition to the above reservation commands, the skeyval package also in-
troduces the following command:

Macro

535 \reserve@keys[〈prefixes〉]{〈families〉}{〈keys〉},

where the lists 〈prefixes〉, 〈families〉, 〈keys〉 can contain nil, one or more
elements. Defined, reserved and suspended keys can’t be reserved.

Reserved keys have to be unreserved with the following command before they
can be defined and used:

Macro

536 \unreserve@keys[〈prefixes〉]{〈families〉}{〈keys〉},

where, again, the lists 〈prefixes〉, 〈families〉, 〈keys〉 can contain nil, one or
more elements. If a key was not previously reserved, this command will simply
issue an informational message in the log file (if the package option verbose
is selected) and ignore that key. Defined keys and suspended keys can also be
unreserved, which is equivalent to removing the keys (see Subsection 9.5).

9.4 Suspending and restoring keys

For some keys, it might be preferable to temporarily suspend them from a family
(rather than disable or remove them) and restore them later. In this way, a key’s
state and macro can be frozen while the key remains defined.

The syntax for suspending keys is

Macro

537 \suspend@keys[〈prefixes〉]{〈families〉}{〈keys〉},

where the lists 〈prefixes〉, 〈families〉, 〈keys〉 can contain nil, one or more
elements. A key of particular prefix not previously defined in a family can’t
be suspended from that family. Similarly, a key previously suspended from a
family can’t be suspended again (for the second time) from the same family
without being first restored in that family.

Suspended keys can be restored to their frozen states (ex ante suspension) by
the following command:

Macro

538 \restore@keys[〈prefixes〉]{〈families〉}{〈keys〉}.

Only keys (with a given prefix) previously suspended from a family can be
restored in that family: “unsuspended” keys can’t be restored.

29th April 2010

The skeyval Package Page 38 of 69

9.5 Removing keys

The skeyval package provides for removing keys completely, such that any
attempt to set or use a removed key will prompt the error message that the
key is undefined in the given family and with the given prefix. The command
\key@ifundefined from the xkeyval package and the macro \ifkeydefined
from the skeyval package will both identify a removed key as undefined. The
syntax for removing keys is:

Macro

539 \remove@keys[〈prefixes〉]{〈families〉}{〈keys〉}

Removed keys can’t be restored but can be redefined with the commands in
both the \newkey and \definekey categories.

10 User-value keys

We define these keys as those for which the user must supply values at key
setting time whether or not the keys have default values. All the commands
for defining new keys have a facility for providing the default value of a key,
which would be used by the \setkeys macro if the user didn’t supply a value
for the key. If no default value has been specified for a key at definition time
and no value is provided at key setting time, the xkeyval package will issue a
fatal error. This scenario is preserved by the skeyval package. In addition, the
skeyval package introduces a facility for requiring a user to supply a value for
a key whether or not that key had a default value at definition time. Why is
this necessary or useful? You may specify default values for keys in a package
or class file to aid future revisions of the package, or for other purposes, but
such values may not be suitable for all users—or indeed for any user. Examples
of this type of situation abound: the signatory to a letter, the module code or
title in a faculty programme, etc.

The following command can be used to require a user to supply a value for a
key at key setting time, whether or not that key has a default value:

Macro

540 \uservaluekeys[〈prefix〉]{〈family〉}{〈keys〉}

where 〈keys〉 is the list of keys with 〈prefix〉 and in 〈family〉 for which the
user must supply values at key setting time. It is obviously not logical to loop
over key prefixes or families in this case. What the command \uservaluekeys
does is to populate the container \SKV@〈prefix〉@〈family〉@uservalue which is
scanned for user-value key names at key setting time.

The \uservaluekeys macro works incrementally, i.e., new inputs are added to
an existing list for the family in question only if they haven’t previously been
included.

Example

541 \newcmdkey[KV]{fam}[mp@]{keya}[12pt]{\def\x{#1}}
542 \newboolkey[KV]{fam}[mp@]{boola}[true]%

29th April 2010

The skeyval Package Page 39 of 69

543 {\ifmp@boola\def\x{#1}\fi}

544 \uservaluekeys[KV]{fam}{keya,boola}

545 \setkeys[KV]{fam}{keya,boola=true}
546 → Error (no value supplied for ‘keya’)

10.1 Using pointers to dynamically indicate user-value keys

Instead of using the macro \uservaluekeys to accumulate user-value keys, there
is another way to dynamically specify these keys at key definition time: by using
pointers. At key definition time, the pointers \uservalue and \guservalue can
be associated with a user-value key. In the following statements, the pointer
\uservalue specifies that the user of the affected key must supply a value at
the time of using/setting the key. The pointer \uservalue has local effect, i.e.,
its impact can’t escape local groups; on the other hand, \guservalue has global
effect, i.e., using it within or out of a local group means that the user of the
affected key must specify a value for the key at key setting time. \guservalue
ensures that the internal container \SKV@〈prefix〉@〈family〉@uservalue is de-
fined globally so that the settings can escape local groups.

Example

547 \newordkey[KV]{fam}{\uservalue{keya}}[12pt]{\def\x{#1}}

548 \define@togkey+[KV]{fam}[mp@]{\guservalue{toga}}[true]%
549 {%
550 \iftog{mp@toga}{\def\x{#1}}{}%
551 }{%
552 \@latex@error{Value ‘#1’ not valid}\@ehc
553 }

As these examples show, the newly introduced pointers (namely, \uservalue
and \guservalue) can be used to dynamically build a list of user-value keys.
See Section 11 for more comments on pointer systems.

11 Extensions to the pointer system of the xkeyval

package

The xkeyval package introduced a key pointer system. This basically involves
the pointers \savevalue, \gsavevalue, and \usevalue. However, by the mech-
anism of that package, these pointers could be used only within the \setkeys
command or context. In the key definition commands, the \usevalue pointer
could also be used in default values of keys, as in

Example

554 \define@key{fam}{keya}{\def\keya{#1}}
555 \define@key{fam}{keyb}[\usevalue{keya}]{\def\keyb{#1}}
556 \define@key{fam}{keyc}[\usevalue{keyb}]{\def\keyc{#1}}

29th April 2010

The skeyval Package Page 40 of 69

557 \setkeys{fam}{\savevalue{keya}=test}
558 \setkeys{fam}{\savevalue{keyb}}% Yes, this also works.
559 \setkeys{fam}{keyc}

The default values of keys are called (invoked) within \setkeys. The point-
ers can’t, however, be used as part of key names outside default values. The
following, e.g., fails:

Example

560 \define@key{fam}{\savevalue{keya}}{\def\keya{#1}}

The skeyval package has extended the pointer system to be issuable as part of
key names within key definition commands in the two scenarios illustrated above
(within and outside default values). Moreover, the pointers \savevalue and
\gsavevalue can be deployed concurrently with \uservalue and \guservalue
of Subsection 10.1 within the same key definition command. In combining the
two pointer subclasses (i.e., \savevalue subclass and \uservalue subclass) in
the same key definition command, it doesn’t matter which subclass comes first,
as the following examples show.

The pointers \savevalue and \gsavevalue make entries into the container
\XKV@〈prefix〉@〈family〉@save that is used by the xkeyval package to hold
keys whose values should be saved at key setting time. The difference between
\savevalue and \gsavevalue is that the former has a local effect while the lat-
ter can escape local groups (similar to the group properties of \uservalue and
\guservalue of Subsection 10.1). The pointers \savevalue and \gsavevalue
of the skeyval package are entirely compatible with those of the xkeyval pack-
age. One additional new feature is that the pointer \gsavevalue prompts the
global revision of the container \XKV@〈prefix〉@〈family〉@save and also makes
global pointer entries∗ of the affected keys into the container. The effects of the
new feature are illustrated by the following examples. Depending on application,
this new feature may be more attractive than the traditional one implemented
via \setkeys. One obvious advantage of the new system emanates from the
fact that some keys do not have default values.

11.1 Examples

11.1.1 Legacy xkeyval pointer features

The following provide examples of legacy pointer features of the xkeyval pack-
age (key pointers at key setting time):

Example

561 \savekeys[KV]{fam}{keya,\global{keyb}}
562 \gsavekeys[KV]{fam}{keyc,keyd,\global{keye}}

∗By global pointer entry we mean an entry like \global{keya} for keya into the container
\XKV@〈prefix〉@〈family〉@save.

29th April 2010

The skeyval Package Page 41 of 69

563 \setkeys[KV]{fam}{\gsavevalue{keyd}=yyy,
564 keye=\usevalue{keyd}}

If we had included \global{keyb} in \gsavekeys of macro line 562, its en-
try in \savekeys would have been overwritten, since keys in the container
\XKV@KV@fam@save normally get overwritten if they have the same name. The
macro \gsavekeys ensures the global definition of \XKV@KV@fam@save when
the keys keyc, keyd and keye are being included, while \global{keyb} ensures
that, when keyb is used in a \setkeys command, its value will be saved globally
to \KV@fam@keyb@value. When the keys keyc and keyd are set, their values
will be saved locally, even though the container \XKV@KV@fam@save was defined
globally when the keys keyc and keyd were inserted. However, when keys keyb
and keye are set, their values will be saved globally (even though keyb appears
in \savekeys and not in \gsavekeys).

The pointer \gsavevalue{keyd} of macro line 563 will ensure that the value of
keyd is saved globally to \KV@fam@keyd@value at \setkeys.

11.1.2 Extensions by skeyval package

The following provide examples of new pointer features enabled by the skeyval
package (key pointers at key definition time):

Example

565 \define@key[KV]{fam}{\savevalue{keya}}[xxx]{\def\x{*#1*}}

566 \newordkey[KV]{fam}{\gsavevalue{keyb}}[zzz]{\def\x{=#1=}}

567 \newtogkey+[KV]{fam}[mp@]{\savevalue\uservalue{toga}}[true]%
568 {
569 \iftog{mp@toga}{\def\x{#1}}{}%
570 }{%
571 \@latex@error{Value ’#1’ not valid}\@ehc
572 }

573 \define@cmdkey[KV]{fam}[mp@]{\uservalue\savevalue{keyc}}%
574 [www]{\def\x{#1}}

575 \newboolkey+[KV]{fam}[mp@]{\gsavevalue\uservalue{boola}}%
576 [true]{%
577 \ifmp@boola\def\x{#1}\fi
578 }{%
579 \@latex@error{Value ’#1’ not valid}\@ehc
580 }

581 \define@cmdkey[KV]{fam}[mp@]{\guservalue\savevalue{keyd}}%
582 [www]{\def\x{#1}}

583 \newchoicekey?+[KV]{fam}{\guservalue\gsavevalue{align}}%
584 [\val\nr]{center,right,left}[center]%

29th April 2010

The skeyval Package Page 42 of 69

585 {%
586 \ifcase\nr\relax
587 \def\@align{\centering}%
588 \or
589 \def\@align{\flushright}%
590 \or
591 \def\@align{\flushleft}%
592 \fi
593 }{%
594 \@latex@error{Inadmissible value ‘#1’ for align}\@ehc
595 }

596 \setkeys[KV]{fam}{keya=Hello World,keyb=\usevalue{keya}}

With the new mechanism of the skeyval package, the \gsavevalue pointer in
the command on macro line 566 will ensure that \global{keyb} (not keyb) is
inserted in the container \XKV@KV@fam@save and that this container is updated
globally after \global{keyb} has been inserted. At \setkeys, in view of the
entry \global{keyb}, the value of keyb will be saved globally. The same applies
to keys boola and align. This thus has a double effect. Keys keyc and keyd
will be saved locally.

12 Setting keys: list normalization

We have redefined the \setkeys command of the xkeyval package in two re-
spects: firstly to accommodate the use of the \skif, \skifx, \skelse, and
\skfi macros of Subsection 7.5.2, and secondly to automatically convert dou-
ble (or even multiple) commas and equality signs inadvertently submitted by
the user into single comma and single equality sign. The following exaggerated
example depicts the difficulties that might arise and which we wish to address:

Example

597 \define@key[KV]{fam}{width}[1cm]{}
598 \define@key[KV]{fam}{color}[black]{}
599 \setkeys[KV]{fam}{width= =2cm, ,,color, == = =,green}

Here, the legacy \setkeys will give the value nil to the key width, and the
default value of the key color, if it was specified at key definition time, will
be given to the key color. Some of the mistakes (especially spurious values
without keys) can disrupt a compilation run, while some (multiple commas and
equality signs) will not be fatal to compilation but may lead to bizarre results of
subsequent calculations. Mistakes of this kind can, surprisingly, be difficult to
trace. The extra spaces and multiple commas aren’t as serious as the multiple
equality signs and values without keys, but we have taken care of all peculiar
situations in the new \setkeys. Multiple commas, equality signs, and spaces
are now detected and reduced appropriately: that is what we mean by key-value
list normalization. We have adopted the premise that “,=” (comma followed
by equal) and “=,” (equal followed by comma) are both most likely to mean

29th April 2010

The skeyval Package Page 43 of 69

“=” (equal). In the unlikely event that this premise fails, then the user may get
tricky errors if he makes this type of mistake.

If, for any reason, the user needs to pass keys with “,=” and/or “=,”, then he
may separate the comma from the equality sign with {}, e.g., as in

Example

600 \setkeys[KV]{fam}{width=2cm,head={},tail=not measured},

which shows that the value of the key head is \empty, a valid and better as-
signment.

13 Miscellaneous macros

This package is predominantly about LATEX keys and their efficient creation and
management, but it also contains many commands for general TEX program-
ming, such that a package author may not need to redefine most of them or
load some other packages to access those commands. Some of the available
commands are described in this section. The index provides a comprehensive
quick resource locator for the commands.

Defining new commands

The following are provided in the skeyval package but you’re advised to use
the \TestProvidedCommand macro (described below) to test that you are really
using the \newdef of the skeyval package:

Macro

601 \SKV@newdef?〈cs〉〈parameters〉{〈replacement text〉}
602 \newdef?〈cs〉〈parameters〉{〈replacement text〉}

These commands adopt TEX’s syntax and accept parameter delimiters. They
are both robust. The unstarred variant produces long macros. The command
\newdef is defined in the skeyval package only if it hasn’t been defined by a
previously loaded package; the command \SKV@newdef, on the other hand, is
always available. If 〈cs〉 was previously defined, both \SKV@newdef and \newdef
will issue an error.

Defining robust commands

Macro

603 \SKV@robustdef?〈cs〉〈parameters〉{〈replacement text〉}
604 \robustdef?〈cs〉〈parameters〉{〈replacement text〉}

These use ε-TEX’s \protected prefix to provide something resembling LATEX’s
\DeclareRobustCommand whilst conforming to TEX’s \def interface. The un-
starred variants produce long macros. These commands accept parameter de-
limiters and are all robust. The command \robustdef is defined in the skeyval

29th April 2010

The skeyval Package Page 44 of 69

package only if it hasn’t been defined by a previously loaded package; the com-
mand \SKV@robustdef, on the other hand, is always available. If 〈cs〉 was
previously defined, both \SKV@robustdef and \robustdef will issue an error.
You can use the above \TestProvidedCommand to check whether or not you are
using the \robustdef of the skeyval package.

TEX-like \providecommand

Macro

605 \SKV@providedef?〈cs〉〈parameters〉{〈replacement text〉}
606 \providedef?〈cs〉〈parameters〉{〈replacement text〉}
607 \SKV@providerobustdef?〈cs〉〈parameters〉{〈replacement text〉}
608 \providerobustdef?〈cs〉〈parameters〉{〈replacement text〉}

These emulate LATEX’s \providecommand, but they conform to TEX’s \def in-
terface. The unstarred variants produce long macros. These commands ac-
cept parameter delimiters and are all robust. The commands \providedef and
\providerobustdef are defined in the skeyval package only if they haven’t
been defined by a previously loaded package; the commands \SKV@providedef
and \SKV@providerobustdef, on the other hand, are always available. Macros
defined by \SKV@providerobustdef and \providerobustdef are robust, while
those defined by \SKV@providedef and \providedef are nonrobust. If 〈cs〉 was
previously defined, all these commands will simply ignore the new definition and
enter a message to this effect in the log file (if the package option verbose is
selected).

\requirecmd

Macro

609 \requirecmd{〈cs〉}[〈number of args〉][〈default〉]%
610 {〈replacement text〉}

This is explained in Subsection 5.1. If 〈cs〉 is already defined, \requirecmd
checks if the new and old definitions are identical. If they aren’t, a warning
message is logged in the transcript file (if the package option verbose is selected)
and the new definition is aborted.

Testing “provided” commands

Macro

611 \TestProvidedCommand〈cs〉{〈true text〉}{〈false text〉}

This can be used to test whether or not one is using the \newdef (or any other
“provided” command) of the skeyval package. Here 〈cs〉 is either \newdef or
any “provided” command. In fact, if you define any command using the macro
\SKV@providedef or \SKV@providerobustdef (see below), you can verify by
\TestProvidedCommand whether or not the new definition is the one in effect.

29th April 2010

The skeyval Package Page 45 of 69

Example

612 \SKV@providerobustdef*\newcmd{\newcommand}

613 \TestProvidedCommand\newcmd{%
614 \@latex@info{‘\string\newcmd’ is ‘\string\newcommand’}%
615 }{%
616 \@latex@error{‘\string\newcmd’ isn’t %
617 ‘\string\newcommand’}\@ehd
618 }

Declaring new unique variables collectively

New definable variables can be introduced in sets by the following commands.
Macro

619 \NewIfs[〈optional prefix〉]{〈boolean list〉}[〈optional state〉]

This provides, for each member of the comma-separated list 〈boolean list〉,
a new native-boolean register if the register didn’t already exist, otherwise an
error is flagged. Each member of 〈boolean list〉 is prefixed with 〈prefix〉
upon definition. The optional 〈state〉 can be either true or false.

Example

620 \NewIfs[bool]{a,b,c}[true]
621 → \newif\ifboola \newif\ifboolb \newif\ifboolc
622 \boolatrue \boolbtrue \boolctrue

623 \NewIfs{boold} → \newif\ifboold

Notice that members of the list 〈boolean list〉 don’t have \if in their names.
Macro

624 \NewTogs[〈optional prefix〉]{〈tog list〉}[〈optional state〉]

This provides a new toggle register for each member of the comma-separated
list 〈tog list〉 if the register didn’t already exist, otherwise an error is flagged.
Each member of 〈tog list〉 is prefixed with 〈prefix〉 upon definition. The
optional 〈state〉 can be either true or false.

Example

625 \NewTogs[tog]{a,b,c}[true]
626 → \newtog{toga} \newtog{togb} \newtog{togc}
627 \togtrue{toga} \togtrue{togb} \togtrue{togc}

628 \NewTogs{togd} → \newtog{togd}

Macro

629 \NewToks[〈optional prefix〉]{〈toks list〉}

29th April 2010

The skeyval Package Page 46 of 69

This provides a new token list register for each member of the comma-separated
list 〈toks list〉 if the register didn’t already exist, otherwise an error is flagged.
Each member of 〈toks list〉 is prefixed with 〈prefix〉 upon definition.

Example

630 \NewToks[toks]{a,b,c}
631 → \newtoks\toksa \newtoks\toksb \newtoks\toksc

632 \NewToks{toksd} → \newtoks\toksd

Macro

633 \NewCounts[〈optional prefix〉]{〈counter list〉}

This provides a new counter register for each member of the comma-separated
list 〈counter list〉 if the register didn’t already exist, otherwise an error is
flagged. Each member of 〈counter list〉 is prefixed with 〈prefix〉 upon defi-
nition.

Macro

634 \NewDimens[〈optional prefix〉]{〈dimen list〉}

This provides a new dimension register for each member of the comma-separated
list 〈dimen list〉 if the register didn’t already exist, otherwise an error is
flagged. Each member of 〈dimen list〉 is prefixed with 〈prefix〉 upon defi-
nition.

Macro

635 \NewBoxes[〈optional prefix〉]{〈box list〉}

This allocates a new box register for each member of the comma-separated list
〈box list〉 if the box register didn’t already exist, otherwise an error is flagged.
Each member of 〈box list〉 is prefixed with 〈prefix〉 upon definition.

Example

636 \NewBoxes[box]{a,b,c}
637 → \newbox\boxa \newbox\boxb \newbox\boxc

638 \NewBoxes{boxd} → \newbox\boxd

Macro

639 \NewWrites[〈optional prefix〉]{〈stream list〉}

This allocates a new output stream for each member of the comma-separated list
〈stream list〉 if the stream didn’t already exist, otherwise an error is flagged.
Each member of 〈stream list〉 is prefixed with 〈prefix〉 upon definition.

Example

640 \NewWrites[write]{a,b,c}
641 → \newwrite\writea \newwrite\writeb \newwrite\writec

29th April 2010

The skeyval Package Page 47 of 69

642 \NewWrites{writed} → \newwrite\writed

All the macros \NewIfs, \NewToks, \NewCounts, \NewDimens, \NewBoxes, and
\NewWrites are non-outer, unlike their primitive counterparts.

Defining new names

Macro

643 \SKV@csdef+{〈name〉}{〈definition〉}
644 \SKV@csgdef+{〈name〉}{〈definition〉}
645 \SKV@csedef+{〈name〉}{〈definition〉}
646 \SKV@csxdef+{〈name〉}{〈definition〉}

The unsigned variants of these turn 〈name〉 into a control sequence in terms
of 〈definition〉 whether or not the control was already defined. No error or
warning messages are issued. The plus (+) variants turn 〈name〉 into a control
sequence if it wasn’t already defined; if it is already defined, an error message
is flagged. These derive from a concept based on that of \newcommand, but
(i) \relax’ed commands are considered undefined in this regard, and (ii) these
commands retain the powerful machinery of plain TEX.

Note: The skeyval package contains other undocumented tools for defining
new commands.

Name use

Macro

647 \SKV@csuse{〈name〉}

This is similar to LATEX’s legacy \@nameuse but returns \@empty (instead of an
error) if 〈name〉 is undefined. This is due originally to etoolbox package.

\let assignments

Macro

648 \SKV@newlet{〈cs1〉}{〈cs2〉}
649 \NewLet{〈cs1〉}{〈cs2〉}

These assign 〈cs2〉 to 〈cs1〉 if 〈cs2〉 exists and if 〈cs1〉 isn’t already defined,
otherwise an error is flagged. The command \NewLet is defined in the skeyval
package only if it hasn’t been defined by a previously loaded package; the
command \SKV@newlet, on the other hand, is always available. You can use
\TestProvidedCommand (macro line 611) to test whether or not you are using
the \NewLet command of the skeyval package.

29th April 2010

The skeyval Package Page 48 of 69

Macro

650 \SKV@cslet{〈name〉}{〈cs〉}
651 \SKV@letcs{〈cs〉}{〈name〉}
652 \SKV@csletcs{〈name〉}{〈name〉}

These perform \let assignments if the second argument is defined, otherwise
an error message is flagged. The notation 〈cs〉 means a control sequence, and
〈name〉 means a control sequence name.

Macro

653 \SKV@cslet?{〈name〉}{〈cs〉}
654 \SKV@letcs?{〈cs〉}{〈name〉}
655 \SKV@csletcs?{〈name〉}{〈name〉}

These perform \let assignments whether or not the second argument is defined.
If the second argument is undefined, the first remains undefined and the hash
table is not filled.

Number and dimension expressions

Macro

656 \SKV@numdef+?{〈num〉}{〈expression〉}

\SKV@numdef defines 〈num〉 from 〈expression〉 using ε-TEX’s \numexpr. If 〈num〉
was previously undefined, it is first initialized with \newcount before the ex-
pression is built. If you do \SKV@numdef\x{1+2+3}, you would need to prefix
\x with \the or \number in expressions. Expressions defined by \SKV@numdef
can be used with TEX’s operators such as \advance or \multiply and ε-TEX’s
\numexpr operator.

The plus sign (+) means that \SKV@numdef takes a control sequence name in-
stead of a control sequence, while the question mark (?) implies that the macro
\SKV@numdef effects a global assignment which can thus escape local groups.

Macro

657 \SKV@dimdef+?{〈dim〉}{〈expression〉}

\SKV@dimdef defines 〈dim〉 from 〈expression〉 using ε-TEX’s \dimexpr. If 〈dim〉
was previously undefined, it is first initialized with \newdimen before the ex-
pression is built. If you do \SKV@dimdef\x{1pt+2pt+3pt}, you would need to
prefix \x with \the in expressions. Expressions defined by \SKV@dimdef can be
used with ε-TEX’s \dimexpr operator.

The plus sign (+) means that \SKV@dimdef takes a control sequence name in-
stead of a control sequence, while the question mark (?) implies that the macro
\SKV@dimdef effects a global assignment which can thus escape local groups.

29th April 2010

The skeyval Package Page 49 of 69

Verifying definability

Macro

658 \SKV@ifdefinable〈cs〉{〈function〉}

LATEX kernel’s \@ifdefinable fills up the hash table and also considers com-
mands that are \relax’ed as defined. Moreover, if the command being tested
(〈cs〉 in the above example) is definable, the \@ifdefinable macro begins ex-
ecuting 〈function〉 while still in the \if . . . \fi conditional. You can’t do
\let\ifabc\iftrue in such conditionals. The command \SKV@ifdefinable,
which is robust, seeks to avoid these problems.

Macro

659 \SKV@ifdefinable@n{〈list〉}

The macro \SKV@ifdefinable@n accepts a comma-separated list of control se-
quence names whose definability are to be tested. It should be noted that
the macro \SKV@ifdefinable@n doesn’t accept 〈function〉, unlike the above
\SKV@ifdefinable. The aim of \SKV@ifdefinable@n is simply to test the
definability of instances/members of 〈list〉.

Example

660 \SKV@ifdefinable@n{ax,ay,az}

Macro

661 \SKV@ifnew?+[〈optional parser〉]{〈list〉}

The macro \SKV@ifnew is similar to, but more versatile, than the command
\SKV@ifdefinable@n. The star sign (?) in \SKV@ifnew indicates that 〈list〉
is available in a macro, say \mylist; and the plus sign (+) shows \SKV@ifnew
that members of 〈list〉 (or \mylist) are control sequence names, otherwise
they are control sequences (see examples below). The default value of the op-
tional 〈parser〉 is “,” (comma). The macro \SKV@ifnew doesn’t execute any
〈function〉. Both \SKV@ifdefinable@n and \SKV@ifnew are robust.

Example

662 \def\mylist{ax,ay,az}
663 \SKV@ifnew?+[,]\mylist
664 \SKV@ifnew?+\mylist
665 \SKV@ifnew+{ax,ay,az}
666 \SKV@ifnew{\ax\ay\az}
667 \def\my@list{\ax\ay\az}
668 \SKV@ifnew?\my@list
669 \def\my@@list{ax;ay;az}
670 \SKV@ifnew?+[;]\my@@list
671 \SKV@ifnew\ax → \SKV@ifnew+{ax} → \SKV@ifdefinable@n{ax}

29th April 2010

The skeyval Package Page 50 of 69

Verifying the status of variables

Macro

672 \SKV@ifdef〈cs〉{〈true〉}{〈false〉}
673 \SKV@ifcsdef{〈name〉}{〈true〉}{〈false〉}
674 \SKV@ifundef〈cs〉{〈true〉}{〈false〉}
675 \SKV@ifcsundef{〈name〉}{〈true〉}{〈false〉}

These use ε-TEX’s facilities to test the existence of the control sequence 〈cs〉
or control sequence name 〈name〉. These commands aren’t robust and may
be used to determine the current state of the macro replacement text, if such
replacement text contains these commands. \relax’ed macros are considered
undefined by all these commands. To test if a macro is \relax’ed, use the
following commands:

Macro

676 \SKV@ifrelax〈cs〉{〈true〉}{〈false〉}
677 \SKV@ifcsrelax{〈name〉}{〈true〉}{〈false〉}

Macro

678 \SKV@ifdefax〈cs〉{〈defined〉}{〈relaxed〉}{〈undefined〉}
679 \SKV@ifcsdefax{〈name〉}{〈defined〉}{〈relaxed〉}{〈undefined〉}

These test if 〈cs〉 or 〈name〉 is defined, relaxed, or undefined. In using these
three-valued logical tests, it is often easy to forget to include the null state (i.e.,
〈undefined〉) because TEX is dominated by two-valued logical tests.

Undefining macros

Macro

680 \SKV@Undef?+?[〈optional parser〉]{〈cs〉}

This undefines the macros or control sequence names in the list 〈cs〉 (of nil,
one or more elements) such that TEX will subsequently consider each element
undefined. The star sign (?) indicates that 〈cs〉 is given as a macro whose
contents are to be individually undefined, and the plus sign (+) shows that 〈cs〉
is made up of control sequence names instead of control sequences. The question
mark (?) directs \SKV@Undef to globally undefine all the control sequences or
names in 〈cs〉. Control sequence names are to be separated by the parser;
control sequences shouldn’t be separated. The default value of the 〈parser〉
is “,” (comma). The command \SKV@Undef is robust (it will thus not expand
in expansion contexts), but fragile arguments would need to be protected in
expansion contexts.∗

∗Macros such as \@ifnextchar, \@ifstar, and those involving optional arguments nor-
mally can’t be evaluated in expansion contexts. The same applies to the skeyval package
macros with optional arguments. The etextools package introduced expandable variants of
these commands, but in the contexts these commands are employed in the skeyval package,

29th April 2010

The skeyval Package Page 51 of 69

Example

681 \def\unwanted{tempa,tempb,tempc,temp1}

682 \SKV@Undef?+?[,]\unwanted

683 \def\unwanted{t1emp,te2mp,tem3p}

684 \SKV@Undef?+?[,]\unwanted

685 \SKV@Undef+?[;]{tempd;tempe;tempf}

686 \SKV@Undef\tempe

687 \SKV@Undef?{\tempea\tempeb\tempec\temped}

688 \SKV@Undef+{tempf}

689 \SKV@Undef?\tempg

690 \def\notwanted{\temph\tempi\tempj}

691 \SKV@Undef?\notwanted

The following non-generic variants avoid the above complications of signs, but
they don’t take lists:

Macro

692 \SKV@undef{〈cs〉} → \SKV@Undef{〈cs〉}
693 \SKV@gundef{〈cs〉} → \SKV@Undef?{〈cs〉}
694 \SKV@csundef{〈cs name〉} → \SKV@Undef+{〈cs〉}
695 \SKV@csgundef{〈cs name〉} → \SKV@Undef+?{〈cs〉}

Expansion control

Macro

696 \SKV@expox{〈cs〉}

This expands its argument 〈cs〉 once and forbids further expansion.

Macro

697 \SKV@expcsox{〈name〉}

the expandable variants aren’t particularly advantageous. The main reason is that some of
our internal macros (e.g., looping macros) aren’t amenable to full expansion anyway. Actu-
ally, the skeyval package provides the fully expandable variants (\SKV@TestOpt, \SKV@IfStar,
\SKV@IfPlus, and \SKV@IfAsk) of the non-expandable commands \SKV@testopt, \SKV@ifstar,
\SKV@ifplus, and \SKV@ifask. The commands \SKV@ifask and \SKV@IfAsk look for an op-
tional question mark (?).

29th April 2010

The skeyval Package Page 52 of 69

This is similar to \SKV@expox but accepts control sequence name 〈name〉 instead
of control sequence.

Macro

698 \SKV@exptx{〈cs〉}

This expands its argument 〈cs〉 twice and forbids further expansion.

Macro

699 \SKV@expcstx{〈name〉}

This is similar to \SKV@exptx but accepts control sequence name 〈name〉 instead
of control sequence.

Macro

700 \SKV@expargs〈n〉〈function〉〈arg1〉〈arg2〉\@nil

LATEX’s \@expandtwoargs is often used as a utility macro to expand two ar-
guments 〈arg1〉 and 〈arg2〉 in order to execute 〈function〉. The command
\SKV@expargs, on the other hand, accepts up to four expansion types, signified
by 〈n〉, which runs from 0 to 3:

a) If 〈n〉 is 0, then 〈arg2〉 is empty and only 〈arg1〉 will be expanded before
〈function〉 is executed.

b) If 〈n〉 is 1, then both 〈arg1〉 and 〈arg2〉 are nonempty but only 〈arg2〉
will be expanded before 〈function〉 is executed.

c) When 〈n〉 is 2, then both 〈arg1〉 and 〈arg2〉 are nonempty and both will
be expanded before 〈function〉 is executed. This is equivalent to LATEX’s
\@expandtwoargs.

d) If 〈n〉 is 3, then both 〈arg1〉 and 〈arg2〉 are nonempty but only 〈arg1〉 is
expanded before 〈function〉 is executed.

e) If 〈n〉 isn’t in the list {0,1,2,3}, then an error message is flagged.

Because 〈arg2〉 is delimited, it can be empty. The command \SKV@expargs can
be used to save \expandafter’s, but caution should be exercised in deploying
it: for example, the \edef it uses may expand too deeply in some cases. Also,
precaution may be necessary when the expanded arguments (〈arg1〉 and/or
〈arg2〉) involve the TEX primitive \if. When invoking \SKV@expargs, the
macros \SKV@expox and \SKV@exptx can be used to control the level of expan-
sion.

Some trivial examples follow:
Example

701 \SKV@expargs{0}{\def\tempc#1#2}{\def\noexpand##1{##2}}\@nil
702 \tempc\tempa{aaa}
703 \tempc\tempb{abcaaabbccbca}
704 \SKV@expargs{2}\SKV@in@\tempa\tempb\@nil
705 \show\ifin@

29th April 2010

The skeyval Package Page 53 of 69

These expressions show how \SKV@expargs can be used to economize on chains
of \expandafter’s. The expression on macro line 701, for example, isn’t directly
possible by \@expandtwoargs.

Checking values of choice keys

Choice keys should, by definition, have preordained values. This requirement
can be useful even for non-choice keys.

Macro

706 \SKV@checkchoice{〈value〉}{〈altlist〉}{〈true〉}{〈false〉}

This is an enhanced form of xkeyval package’s \XKV@checkchoice. It checks
if the user-submitted 〈value〉 of a key (say, 〈keya〉) is in the list 〈altlist〉. It
executes 〈true〉 if 〈value〉 is found in 〈altlist〉 and 〈false〉 otherwise. Addi-
tionally, it returns \val for the expanded value of 〈value〉 and \nr for the nu-
merical order of \val in the list 〈altlist〉. If 〈value〉 isn’t found in 〈altlist〉,
then \nr will return −1. If 〈value〉 and 〈altlist〉 are buried in macros, the
macros are fully expanded before the search for 〈value〉 in the list 〈altlist〉
is effected. In that case, \val will hold the expanded form of 〈value〉 and can
be used in subsequent computations. Choice keys do accept macros as values,
but such values aren’t directly suitable for matching against the contents of
〈altlist〉. For example, 〈altlist〉 may be the set {left,right,center}, but
given as a macro \@altlist, while 〈value〉 is given as \def\@value{center}.
Obviously, \@value contains one of the elements of 〈altlist〉, but choice keys
won’t know this without the expansion of both \@altlist and \@value. This
is raison d’ê tre of the \SKV@checkchoice macro.

Moreover, \SKV@checkchoice can be used in the definition of non-choice keys.
In the following example we check the value of an ordinary key by means of
\SKV@checkchoice:

Example

707 \def\@altlist{left,right,center}
708 \newordkey[KV]{fam}{keya}[true]{%
709 \SKV@checkchoice{#1}{\@altlist}{%
710 \ifcase\nr\relax
711 \edef\tempa##1##2{##1===\val===##2}%
712 \or
713 \edef\tempa##1##2{##1***\val***##2}%
714 \or
715 \edef\tempa##1##2{##1+++\val+++##2}%
716 \fi
717 }{%
718 \@latex@error{Wrong value for ‘keya’}\@eha
719 }%
720 }
721 \def\@value{center}
722 \setkeys[KV]{fam}{keya=\@value}

29th April 2010

The skeyval Package Page 54 of 69

The reader may wish to do \show\tempa to see what \tempa gets upon setting
the key keya.

Testing for substring

Macro

723 \SKV@in@{〈substring〉}{〈string〉}

This is similar to the LATEX kernel’s \in@{〈substring〉}{〈string〉} which tests
if 〈substring〉 is in 〈string〉, but the present test avoids the problem of false
result, which is typified by the following test:

Example

724 \in@{aa}{ababba}

This incorrectly returns \ifin@ as \iftrue. The macro \SKV@in@, on the other
hand, correctly gives \ifin@ as \iffalse in this case. The command \SKV@in@
is robust.

Macro

725 \in@tog{〈substring〉}{〈string〉}

In this case the returned boolean is the toggle switch 〈in@〉 instead of the kernel’s
〈in@〉 switch which is used as \ifin@. The toggle 〈in@〉 can be used in the
following way and in other manners that toggles can be employed:

Example

726 \iftog{in@}{〈true〉}{〈false〉}.

The command \in@tog is robust.

Macro

727 \in@tok{〈substring〉}{〈string〉}

Sometimes you want to use the LATEX kernel’s \in@{〈substring〉}{〈string〉}
to test if 〈substring〉 is in 〈string〉 irrespective of their catcodes. The robust
command \in@tok{〈substring〉}{〈string〉} makes this possible, and elimi-
nates the tokens that would have been necessary if the user was required to
first detokenize the two arguments. It returns the same switch \ifin@ as the
kernel’s \in@{〈substring〉}{〈string〉}. Actually, it calls \SKV@in@ to avoid
false returns.

Testing equality of strings

Macro

728 \SKV@ifstrequal{〈string1〉}{〈string2〉}{〈true〉}{〈false〉}
729 \SKV@ifstrnotequal{〈string1〉}{〈string2〉}{〈not true〉}{〈not false〉}

29th April 2010

The skeyval Package Page 55 of 69

730 \SKV@oifstrequal{〈string1〉}{〈string2〉}{〈true〉}{〈false〉}
731 \SKV@xifstrequal{〈string1〉}{〈string2〉}{〈true〉}{〈false〉}

In order to properly test the equality of strings, it may be necessary to remove
leading and trailing spaces before the test. Such spaces may have cropped into
the strings from input or from pre-processing and may invalidate the test. The
macro \SKV@ifstrequal takes care of such situations. It executes 〈true〉 if
〈string1〉 is equal (character code wise) to 〈string2〉, and 〈false〉 otherwise.
Both 〈string1〉 and 〈string2〉 are detokenized before the test. The macro
\SKV@oifstrequal is similar to \SKV@ifstrequal but first expands its argu-
ments (the two strings 〈string1〉 and 〈string2〉) once before the test. The
macro \SKV@xifstrequal first expands its arguments fully before the test.

Testing for empty or blank

Macro

732 \SKV@ifempty{〈token〉}{〈true〉}{〈false〉}
733 \SKV@ifnotempty{〈token〉}{〈not true〉}{〈not false〉}
734 \SKV@oifempty{〈token〉}{〈true〉}{〈false〉}
735 \SKV@xifempty{〈token〉}{〈true〉}{〈false〉}

These yield 〈true〉 if 〈token〉 is empty, and 〈false〉 otherwise. In the com-
mand \SKV@ifempty, 〈token〉 isn’t expanded before the test; in the command
\SKV@oifempty, 〈token〉 is expanded once before the test; in the command
\SKV@xifempty, 〈token〉 is fully expanded before the test.

Macro

736 \SKV@ifblank{〈token〉}{〈true〉}{〈false〉}
737 \SKV@ifnotblank{〈token〉}{〈not true〉}{〈not false〉}
738 \SKV@oifblank{〈token〉}{〈true〉}{〈false〉}
739 \SKV@xifblank{〈token〉}{〈true〉}{〈false〉}

These macros test if the argument is blank or not. The first of these is from
ifmtarg package. \SKV@oifblank expands its argument once before the test,
while \SKV@xifblank expands its argument fully before the test.

Verifying draft and final options

Macro

740 \SKV@ifdraft{〈true〉}{〈false〉}
741 \SKV@ifnotdraft{〈not true〉}{〈not false〉}
742 \SKV@iffinal{〈true〉}{〈false〉}
743 \SKV@ifnotfinal{〈not true〉}{〈not false〉}
744 \iftog{draft}{〈true〉}{〈false〉}
745 \ifnottog{draft}{〈not true〉}{〈not false〉}
746 \iftog{final}{〈true〉}{〈false〉}
747 \ifnottog{final}{〈not true〉}{〈not false〉}

29th April 2010

The skeyval Package Page 56 of 69

These execute 〈true〉 or 〈false〉 depending on whether draft or final appears
as true in the options list of \documentclass or \usepackage{skeyval}. The
default is that final is true, which implies that draft is false by default. The
keys draft and final are complementary native-boolean keys (see Section 4),
which reduces the risk of mixing them. These commands are robust.

Macro

748 \ifdraft{〈true〉}{〈false〉}
749 \ifnotdraft{〈not true〉}{〈not false〉}
750 \iffinal{〈true〉}{〈false〉}
751 \ifnotfinal{〈not true〉}{〈not false〉}

These are also defined in the skeyval package, but because packages such
as ifdraft package already exist, the skeyval package defines them only if
they haven’t already been defined. If they existed before skeyval package is
loaded, they aren’t redefined, and (if the package option verbose is selected)
a warning is logged in the transcript file to indicate that the definition being
used isn’t from the skeyval package. The warning is logged only once. I am
aware of the existence of only \ifdraft outside the skeyval package: there-
fore, the definition of \ifdraft is deferred until \AtBeginDocument. You can
use \TestProvidedCommand to check the version of the \ifdraft that you are
using.

Verifying dvi and pdf modes

Macro

752 \SKV@ifpdf{〈true〉}{〈false〉}
753 \SKV@ifnotpdf{〈not true〉}{〈not false〉}
754 \iftog{pdf}{〈true〉}{〈false〉}
755 \ifnottog{pdf}{〈not true〉}{〈not false〉}

These execute 〈true〉 or 〈false〉 depending on whether dvi or pdf output is
being produced. These commands are robust and may be used in expansion
contexts.

Macro

756 \ifpdf{〈true〉}{〈false〉}
757 \ifnotpdf{〈not true〉}{〈not false〉}

These are available only if they haven’t been previously defined by another
package. If they existed outside the skeyval package, a warning is logged in
the transcript log file (if the package option verbose is selected), but only once,
and the commands are not redefined. In particular, the above \ifpdf is available
only at \AtBeginDocument and is defined only if it doesn’t already exist. The
reason is that the popular hyperref package loads the ifpdf package and the
ifpdf package will abort if it detects that \ifpdf has been defined by a package
loaded earlier.

29th April 2010

The skeyval Package Page 57 of 69

Note: The \ifpdf command of the ifpdf package is used in the \if . . . \else
. . . \fi conditional, while the above \ifpdf command is used as indicated above.
You can use the \TestProvidedCommand macro to check the version of the
\ifpdf that you are using.

Tests related to package loading

Macro

758 \@ifpackagecurrent{〈package〉}{〈date〉}{〈true〉}{〈false〉}
759 \@ifpackagenotcurrent{〈package〉}{〈date〉}{〈not true〉}{〈not false〉}

These executes 〈true〉 if the date of the current/loaded version 〈package〉 is
greater than or equal to 〈date〉. This is similar to LATEX’s \@ifpackagelater
but, unlike the latter, both \@ifpackagecurrent and \@ifpackagenotcurrent
are robust. My main reason for these commands is that the nomenclature
\@ifpackagelater is subject to the wrong interpretation of being space (rather
than time) related.

Macro

760 \@afterpackageloaded{〈package〉}{〈code〉}

This executes 〈code〉 only after 〈package〉 has been loaded. This has been
optimized from the afterpackage package to avoid filling up the hash table
with hooks that are relax’ed or indeed undefined, and to warn the user if
〈package〉 was not eventually loaded. If at the start of document, 〈package〉
has not been loaded, a warning message is entered in the log file. Use the
following \@ensurepackageloaded macro if you really need an error message
in this case.

Macro

761 \@ensurepackageloaded{〈packages〉}

This will issue an error at start of document if any member of the comma-
separated list 〈packages〉 wasn’t loaded before then. This command can be
used to signpost those packages that must be loaded later.

Commands restricted to package and preamble

Macro

762 \SKV@onlypreamble{〈list〉}
763 \SKV@onlypackage

The LATEX kernel’s macro \@onlypreamble accepts only one command at a time
(i.e., you can’t give it a list of preamble commands in one go), and the error mes-
sage \@notprerr is not that precise, since it doesn’t indicate the command that
has been wrongly placed in the document’s body. The use of \@onlypreamble in
a style or class file can be monotonous if the file has many preamble commands.
The macro \SKV@onlypreamble takes a no-comma 〈list〉 of commands at once

29th April 2010

The skeyval Package Page 58 of 69

and gives precise error messages related to the incorrectly located commands.
The 〈list〉 may be populated with nil, one, or more control sequences, e.g.,

Example

764 \SKV@onlypreamble{\macroa \macrob \macroc}

All preamble commands can be collected together in one \SKV@onlypreamble,
preferably at the end of the style or class file.

The function \SKV@onlypackage may be used to restrict commands to packages
only. For example, the following restricts the command \x to packages only:

Example

765 \def\x#1{\SKV@onlypackage\usearg{#1}}

Extended \aftergroup and \afterassignment

Macro

766 \SKV@aftergroup{〈code〉}
767 \SKV@aftergroup?{〈code〉}
768 \SKV@afterassignment{〈code〉}
769 \SKV@afterassignment?{〈code〉}

TEX’s \aftergroup and \afterassignment don’t accept arbitrary code. These
commands execute the arbitrary 〈code〉 after a group or assignment. The starred
variants expand 〈code〉 once before the assignment or before exiting the group.
These commands don’t accumulate the group and assignment counters indefi-
nitely: the counters are initialized after each group or each assignment.

Some examples follow:
Example

770 \let\gobblex\@firstofone
771 \def\protected@mydef{%
772 \let\@@protect\protect
773 \let\protect\@unexpandable@protect
774 \SKV@afterassignment{%
775 \restore@protect
776 \let\gobblex\@gobble
777 }%
778 \edef
779 }

780 \def\aa{aaa} \def\bb{bbb} \def\xx{xxx} \def\yy{yyy}

781 \begin{document}
782 \begingroup
783 \SKV@aftergroup{\par\aa***\bb}%
784 \SKV@aftergroup{\par\bb***\aa}%
785 \begingroup

29th April 2010

The skeyval Package Page 59 of 69

786 \SKV@aftergroup{\par\xx+++\yy}%
787 \SKV@aftergroup{\par\yy+++\xx}%
788 \endgroup
789 \endgroup
790 \end{document}

List processing

Macro

791 \SKV@for@a{〈list〉}〈cmd〉{〈function〉}
792 \SKV@for@b〈listcmd〉〈cmd〉{〈function〉}

These are fast for-loops that accept general list parsers and allow for list breaks,
as well as give the remainder of the list if a break occurs within the list. Elements
of 〈list〉 are stored in 〈cmd〉, and 〈function〉 is executed for each element
of 〈list〉. The 〈list〉, which is populated by parser-separated elements, is
not expanded before the iteration, but 〈listcmd〉 is expanded once before the
commencement of the loop. The list parser is dynamically declarable via

Macro

793 \SKV@CommandGenParser{〈parser〉} or
794 \skvoptions{genparser=〈parser〉},

Also, these iteration macros use the more powerful \SKV@ifblank to check
whether or not 〈list〉 is empty or blank. The commands \SKV@for@a and
\SKV@for@b are robust, but in expansion contexts, both 〈cmd〉 and 〈function〉
will need to be protected. In the \SKV@for@b command, 〈listcmd〉 is expanded
once before the iteration commences. The 〈parser〉 persists in effect until it is
changed by another call to \SKV@CommandGenParser or \skvoptions as above.

Note: One snag with a generic list parser like \SKV@CommandGenParser is that
the user must always remember to call it and set the right parser before begin-
ning an iteration, otherwise there might be unpleasant results, since a previous
call to \SKV@CommandGenParser might have set a parser that is no longer valid.
To obviate this type of situation, the following commands are also provided in
the skeyval package:

Macro

795 \SKV@for[〈parser〉]{〈list〉}〈cmd〉{〈function〉}
796 \SKV@for?[〈parser〉]〈listcmd〉〈cmd〉{〈function〉}

The 〈parser〉 appears as an optional argument in these commands and its de-
fault value is “,” (comma). These commands allow the user to provide the
〈parser〉 with every call. The unstarred and starred versions of \SKV@for are
equivalent to \SKV@for@a and \SKV@for@b, respectively. Both sets (\SKV@for@a
and \SKV@for@b | \SKV@for and \SKV@for?) may be needed in different circum-
stances. In applications where the 〈parser〉 is fixed, the commands \SKV@for@a

29th April 2010

The skeyval Package Page 60 of 69

and \SKV@for@b are faster than \SKV@for and \SKV@for? because in the former
cases the 〈parser〉 would then need to be set only once: each call to \SKV@for
or \SKV@for?, whether or not the optional 〈parser〉 is provided, resets the
〈parser〉.

The list parser itself is available in \parser, which can be used in 〈function〉.
An example follows:

Example

797 \SKV@CommandGenParser{;}
798 \SKV@for@a{a;b;c;d}\cmd{\if a\cmd ‘\cmd’\ is ‘a’\parser
799 \else\space ‘\cmd’\ isn’t ‘a’\parser\fi}.

This list can be broken after, say, elements “a” and “b”, as follows:
Example

800 \SKV@for@a{a;b;listbreak;c;d}\cmd
801 {\if a\cmd ‘\cmd’\ is ‘a’\parser\else\space ‘\cmd’\
802 isn’t ‘a’\parser\fi},

upon which the remainder of the list is accessible from \SKV@remainder.
Macro

803 \SKV@tfor@a{〈list〉}〈cmd〉{〈function〉}
804 \SKV@tfor@b〈listcmd〉〈cmd〉{〈function〉}

The first of these (i.e., \SKV@tfor@a) is equivalent to LATEX kernel’s \@tfor,
which loops over 〈list〉 token-wise (character or control sequence token), but
these two macros have been prompted by the following rationale. Note that
〈list〉 is not a comma-separated list! In \SKV@tfor@b, 〈listcmd〉 is expanded
once before the commencement of the loop. The two commands \SKV@tfor@a
and \SKV@tfor@b are both robust.

The \@break@tfor of the LATEX kernel allows the user to break out of the
\@tfor loop but provides no mechanism for saving the remainder of the 〈list〉
upon breaking the list. Secondly, I have had trouble breaking out of simple
\@tfor loops. For example, the following fails: LATEX complains of “extra “fi”,
the reason being obvious.

Example

805 \def\one{One}\def\two{Two}\def\three{Three}
806 \@tfor\x:=\one\two\@break@tfor\three\do{\x}

Thirdly, if the content of \x above is sanitized/detokenized in the loop be-
fore being used in 〈function〉 (or sanitized in the 〈function〉 itself), then
\@break@tfor can’t break the loop. Consider the following:

Example

807 \@tfor\x:=\one\two\@break@tfor\three\do{%
808 \edef\x{\detokenize\expandafter{\x}}%
809 }

29th April 2010

The skeyval Package Page 61 of 69

Clearly, \@break@tfor can’t break this loop. The macros \SKV@tfor@a and
\SKV@tfor@b circumvent these problems. Additionally, they (a) reorder the
arguments such that 〈list〉 comes before 〈cmd〉, and (b) remove the need for
the usual delimitating tokens, thereby making their syntaxes mimic those of
\SKV@for@a and \SKV@for@b.

In the following, the remainder of the list (namely, \three) can be accessed
from the macro \SKV@remainder:

Example

810 \SKV@tfor@a{\one\two\listbreak\three}\x{%
811 \edef\x{\detokenize\expandafter{\x}}%
812 }

Macro

813 \SKV@tfor{〈list〉}〈cmd〉{〈function〉}
814 \SKV@tfor?〈listcmd〉〈cmd〉{〈function〉}

These are equivalent to \SKV@tfor@a and \SKV@tfor@b respectively.

Hook management

Hooking to user-defined macros

Macro

815 \SKV@appto?+?〈cs〉{〈content〉}

This appends 〈content〉 to 〈cs〉. If 〈cs〉 was previously undefined, it is initial-
ized with 〈content〉. The star (?) sign directs \SKV@appto to expand 〈content〉
once before appending 〈content〉 to 〈cs〉. The plus (+) sign means that 〈cs〉 is
a control sequence name instead of a control sequence, while the question mark
(?) instructs \SKV@appto to append 〈content〉 to 〈cs〉 globally (to escape local
groups). This command is robust, but fragile arguments must be protected in
expansion contexts.

Except for the initialization of undefined 〈cs〉, \SKV@appto? is equivalent to
LATEX’s \g@addto@macro.

The following non-generic, less powerful, forms of \SKV@appto are also available,
but they don’t have the starred (?) variants:

Macro

816 \apptomac〈cs〉{〈content〉}
817 → \SKV@appto〈cs〉{〈content〉}
818 \gapptomac〈cs〉{〈content〉}
819 → \SKV@appto?〈cs〉{〈content〉}
820 \csapptomac{〈name〉}{〈content〉}
821 → \SKV@appto+{〈name〉}{〈content〉}
822 \csgapptomac{〈name〉}{〈content〉}
823 → \SKV@appto+?{〈name〉}{〈content〉}

29th April 2010

The skeyval Package Page 62 of 69

Macro

824 \SKV@prepto?+?〈cs〉{〈content〉}

This prepends 〈content〉 to 〈cs〉. If 〈cs〉 was previously undefined, it is ini-
tialized with 〈content〉. The star (?) sign directs \SKV@prepto to expand
〈content〉 once before prepending it to 〈cs〉. The plus (+) sign means that
〈cs〉 is a control sequence name instead of a control sequence, while the ques-
tion mark (?) instructs \SKV@prepto to prepend 〈content〉 to 〈cs〉 globally (to
escape local groups). This command is robust, but fragile arguments must be
protected in expansion contexts.

Again, the following non-generic versions of \SKV@prepto are available, but they
don’t have the starred (?) variants:

Macro

825 \preptomac〈cs〉{〈content〉}
826 → \SKV@prepto〈cs〉{〈content〉}
827 \gpreptomac〈cs〉{〈content〉}
828 → \SKV@prepto?〈cs〉{〈content〉}
829 \cspreptomac{〈name〉}{〈content〉}
830 → \SKV@prepto+{〈name〉}{〈content〉}
831 \csgpreptomac{〈name〉}{〈content〉}
832 → \SKV@prepto+?{〈name〉}{〈content〉}

Macro

833 \SKV@addtolist+?[〈parser〉]〈csa〉〈csb〉

This adds the contents of the macro 〈csb〉 to the list in the container 〈csa〉.
The plus sign (+) means that 〈csa〉 is a control sequence name, and the question
mark (?) directs \SKV@addtolist to add the contents of 〈csb〉 to 〈csa〉 globally
(to escape local groups). The optional argument 〈parser〉 is the list parser, ie,
the separator of the instances in 〈csa〉. Its default value is “,” (comma).

Package and document hooks

Macro

834 \SKV@AtPackageEnd{〈code〉}
835 \SKV@AtClassEnd{〈code〉}

These are the robust versions of the well-known LATEX hooks \AtEndOfPackage
and \AtEndOfClass.

Macro

836 \SKV@BeforePackageEnd{〈code〉}
837 \SKV@BeforeClassEnd{〈code〉}
838 \SKV@AfterPackageEnd{〈code〉}
839 \SKV@AfterClassEnd{〈code〉}

29th April 2010

The skeyval Package Page 63 of 69

The first two of these hook to just before \AtEndOfPackage or \AtEndOfClass;
the third and fourth hook to just after \AtEndOfPackage or \AtEndOfClass.
They are all robust. These commands have been necessitated by some tasks in
the skeyval package, but may be useful in some other contexts.

Macro

840 \SKV@AtDocumentStart{〈code〉}

This is the robust version of the LATEX hook \AtBeginDocument. It can be used
in expansion contexts without protection, but fragile arguments within it must
be protected.

Macro

841 \SKV@BeforeDocumentStart{〈code〉}
842 \SKV@AfterDocumentStart{〈code〉}

These provide two more document hooks. They are both robust. The command
\SKV@BeforeDocumentStart differs from \AtBeginDocument in that the former
is executed right at the end of the preamble, before the main auxiliary file (as
written on the previous LATEX run) is read and prior to the execution of any
\AtBeginDocument code. It isn’t possible to write to the auxiliary file at the
point \SKV@BeforeDocumentStart is executed.

\SKV@AfterDocumentStart differs from \AtBeginDocument in the sense that
the former is executed at the tag end of \begin\{document\}, after the execu-
tion of any \AtBeginDocument code. Commands whose scope are restricted to
the document’s preamble with \@onlypreamble or \SKV@onlypreamble are no
longer committable when \SKV@AfterDocumentStart is being executed.

Macro

843 \SKV@AtDocumentEnd{〈code〉}
844 \SKV@BeforeLastPage{〈code〉}
845 \SKV@AfterLastPage{〈code〉}
846 \SKV@AfterDocumentEnd{〈code〉}

The last three of these are wrappers developed based on the atveryend package,
which provides a consistent mechanism for \enddocument methods. The macro
\SKV@AtDocumentEnd is the robust equivalent of \AtEndDocument. The macro
\SKV@BeforeLastPage appends 〈code〉 after the \@enddocumenthook but be-
fore the last \clearpage, and thus before the last shipout. The command
\SKV@AfterLastPage executes 〈code〉 after the last \clearpage invoked within
\enddocument, i.e., after the last shipout but before the main auxiliary file is
closed. This is, e.g., the right instance to record the last document page in the
auxiliary file.

The command \SKV@AfterDocumentEnd appends 〈code〉 to the very end of the
document, after all of the end-of-document codes have been executed (i.e., after
the main .aux file of the current pass has been read and all \AtEndDocument
codes have been effected, except font and label/reference warnings).

29th April 2010

The skeyval Package Page 64 of 69

Inputting files

Macro

847 \InputFileOnce[〈path〉]{〈file〉}
848 \InputFileOnce?[〈path〉]{〈file〉}

The unstarred variant of this command inputs 〈file〉 on 〈path〉 but only once
in one LATEX pass. The argument 〈path〉 is optional and its default value is
the current/document’s environment/directory. If 〈file〉 had previously been
read, a warning message is entered in the transcript log file (if the package
option verbose is selected) and the input is aborted. If 〈file〉 doesn’t exist on
〈path〉, as many as desired opportunities are given to the user to type in the
correct filename on the screen, or enter “no” to continue with the LATEX pass
without inputting the file.

If the user wants to input 〈file〉 more than once in one document, then he
should use the starred (?) variant of \InputFileOnce.

14 References

All the (LA)TEX packages cited in this guide are available on CTAN (the Com-
prehensive TEX Archive Network).

15 Version history

The following change history highlights significant changes that affect user util-
ities and interfaces; mutations of technical nature are not documented in this
section. The numbers on the right-hand side of the following lists are section
numbers; the star sign (?) means the subject features in the package but is not
reflected anywhere in this user guide.

Version 0.1 [2010/01/01]

First public release under the name keyreader package ?

Introduced complementary native-boolean keys 4

Provided machinery for reading multiple keys of all kinds from just one
command . 7

Version 0.2 [2010/01/10]

Fixed a bug and optimized the \define@keylist loop 7

Version 0.3 [2010/01/20]

Introduced toggles and toggle-boolean keys 5

Version 0.4 [2010/02/01]

Introduced complementary toggle-boolean keys 6

29th April 2010

http://www.ctan.org/tex-archive/macros/latex/contrib/

The skeyval Package Page 65 of 69

Version 0.5 [2010/02/23]

Changed the name of the package from keyreader package to skeyval
package . ?

Introduced the following macros . 8.1

\ifkeydefined, \ifkeyreserved, \ifkeysuspended

Provided the following facilities . 8.2.1

\newordkey, \newcmdkey, \newboolkey, \newchoicekey,
\newtogkey, \define@biboolkeys, \newbiboolkeys,
\define@bitogkeys, \newbitogkeys, \define@uniboolkeys,
\newuniboolkeys, \define@unitogkeys, \newunitogkeys,
\define@biuniboolkeys, \newbiuniboolkeys,
\define@biunitogkeys, \newbiunitogkeys

Provided mechanisms for disabling, localizing, reserving, unreserving,
suspending, restoring, and removing keys 9

Redefined a few of xkeyval package’s internal macros

Normalization of key-value lists before parsing 12

Included some developer macros . 13

Version 0.6 [2010/03/30]

Modified the mechanics of the internal macros of the following 9.3

\ReserveKeyPrefixNames, \ReserveKeyPrefixNames?,
\ReserveMacroPrefixNames, \ReserveMacroPrefixNames?,
\ReserveFamilyNames, \ReserveFamilyNames?

Introduced the following macros . 13

\SKV@AtPackageEnd, \SKV@BeforePackageEnd,
\SKV@AfterPackageEnd, \SKV@AtDocumentEnd,
\SKV@BeforeLastPage, \SKV@AfterLastPage,
\SKV@AfterDocumentEnd, \SKV@onlypreamble,
\SKV@onlypackage, \SKV@ifdraft, \SKV@iffinal,
\SKV@ifpdf, \@ensurepackageloaded, \InputFileOnce,
\newswitch, etc.

Alert the user if skeyval package is loaded before \documentclass . . 3

Introduced “user-value” keys . 10

Extended the pointer system of the xkeyval package 11

Corrected a bug in the xkeyval package which, if \setkeys are nested in a
class file, gives non-empty \@unusedoptionlist even if all the options of
\documentclass have been used . ?

29th April 2010

The skeyval Package Page 66 of 69

Index

Index numbers refer to page numbers.

Symbols

\@afterpackageloaded 57

\@break@tfor . 60

\@currext . 35

\@enddocumenthook63

\@ensurepackageloaded 57, 65

\@expandtwoargs . 52

\@ifnextchar . 50

\@ifpackagecurrent 57

\@ifpackagelater . 57

\@ifpackagenotcurrent 57

\@ifstar . 50

\@nameuse . 47

\@notprerr . 57

\@onlypreamble . 63

\@tfor . 60

\@unusedoptionlist 65

A

\apptomac . 62

\AtBeginDocument 18, 35, 56, 63

\AtEndDocument . 63

\AtEndOfClass .62, 63

\AtEndOfPackage 62, 63

B

\begin{document} . 63

C

\CheckCommand . 9

\choicekeyvalues . 16

\CKVS 16, 17, 18, 24, 27

\clearpage . 63

\csapptomac .62

\csgapptomac . 62

\csgpreptomac . 62

\cspreptomac . 62

D

\DeclareRobustCommand 43

\define@biboolkeys 6, 31, 65

\define@bitogkeys 13, 31, 65

\define@biuniboolkeys 7, 31, 65

\define@biuniboolkeys* 7

\define@biuniboolkeys*+ 7

\define@biunitogkeys 14, 31, 65

\define@biunitogkeys* 14

\define@biunitogkeys*+ 14

\define@boolkey 15, 31

\define@boolkeys 3, 12
\define@choicekey 15, 33
\define@cmdkey 15, 31, 42
\define@cmdkeys 3, 12, 31
\define@key15, 31, 40, 42
\define@keylist . . .15, 16, 18–20, 24–27,

30, 64
\define@keylist* 15, 19
\define@menukey . 33
\define@menukey* . 33
\define@togkey 11, 12, 15, 39
\define@togkey+ . 11
\define@togkeys . 12
\define@uniboolkeys 7, 31, 65
\define@unitogkeys 14, 31, 65
\definekey 33, 35, 36, 38
\deftog . 8, 11
\dimexpr . 48
\disable@keys .34, 35
\disable@keys* . 34
\documentclass 5, 56, 65

E
\enddocument . 63

G
\g@addto@macro . 61
\gapptomac . 62
\global{key} . 40
\gpreptomac .62
\gsavekeys . 40
\gsavevalue . 39, 42
\guservalue . 39, 40

I
\ifdraft . 56
\iffinal . 56
\ifin@ . 54
\ifkeydefined 30, 38, 65
\ifkeyreserved 30, 65
\ifkeysuspended 30, 65
\ifnotdraft .56
\ifnotfinal .56
\ifnotpdf . 56
\ifnottog . 10
\ifnottog{draft} . 56
\ifnottog{final} . 56
\ifnottog{pdf} . 56
\ifpdf . 56
\ifswitchfalse . 29
\ifswitchoff . 29
\ifswitchon .29

29th April 2010

The skeyval Package Page 67 of 69

\ifswitchtrue . 29

\iftog 10, 30, 39, 42, 54

\iftog{draft} . 56

\iftog{final} . 56

\iftog{pdf} .56

\in@tog . 54

\in@tok . 54

\InputFileOnce 64, 65

K

key-value . 4

\key@ifundefined 30, 38

keycommand . 23

keyfamily . 5

keyparser . 5

keyprefix . 5

L

\listbreak . 18

\localize@keys . 35

\localize@keys* . 36

M

macroprefix . 5

N

\newbiboolkeys 31, 65

\newbitogkeys .31, 65

\newbiuniboolkeys 31, 65

\newbiunitogkeys 31, 65

\newboolkey10, 31, 39, 65

\newboolkeys . 10, 31

\NewBoxes . 46

\newchoicekey 31, 42, 65

\newchoicekey* . 33

\newchoicekey*+ . 33

\newcmdkey 31, 39, 65

\newcount . 48

\NewCounts . 46

\newdef . 43

\newdef* . 43

\newdimen . 48

\NewDimens . 46

\NewIfs . 45

\newkey 33, 35, 36, 38

\newkeylist .33

\newkeylist* . 33

\NewLet . 47

\newmenukey .33

\newmenukey* . 33

\newordkey 31, 39, 42, 65

\newswitch . 29

\NewSwitches . 29

\newtog . 9
\newtogkey 10, 31, 42, 65
\newtogkeys . 10, 31
\NewTogs .9, 45
\NewToks . 26, 46
\newuniboolkeys 31, 65
\newunitogkeys 31, 65
\NewWrites . 46
\nr . 17, 53
\number . 48
\numexpr . 48

P
Packages .

afterpackage .57
atveryend . 63
etextools . 50
etoolbox 2, 8, 47
hyperref .3, 56
ifdraft . 56
ifmtarg . 55
ifpdf . 56, 57
keycommand 4, 23
keyreader 1, 64, 65
keyval .4
kvsetkeys . 4
microtype . 3
skeyval . 1, 4–6, 8, 9, 12, 16, 24, 25,

27, 30, 31, 33–38, 40–44, 47,
50, 51, 56, 59, 63, 65

xifthen . 27
xkeyval 1, 3, 4, 6, 10, 12, 16, 17, 27,

30, 31, 33–36, 38–40, 42, 53, 65
\parser . 60
\preptomac . 62
\presetkeys . 6, 10
\protected . 43
\providecommand . 44
\providedef see \SKV@providedef
\providerobustdef44
\providerobustdef* 44
\providetog . 9

R
\remove@keys . 38
\requirecmd . 9, 44
\requiretog . 8, 9
\reserve@keys . 37
\ReserveFamilyNames 36, 65
\ReserveFamilyNames*.37, 65
\ReserveKeyPrefixNames 36, 65
\ReserveKeyPrefixNames* 37, 65
\ReserveMacroPrefixNames 36, 65
\ReserveMacroPrefixNames* 37, 65
\restore@keys . 37

29th April 2010

The skeyval Package Page 68 of 69

\robustdef . 43

\robustdef* .43

S

\savekeys . 6, 10, 40

\savevalue .6, 10, 39

\setkeys . . 4, 6, 10, 12–15, 19, 20, 26, 27,
31, 38–43, 65

\setkeys* . 27

\setkeys*+ . 27

\setswitch . 29

\settog . 10

\skelse .26, 42

\skfi . 26, 27, 42

\skif . 26, 42

\skifcase . 26, 27

\skifx . 26, 42

\skor . 26, 27

\SKV@addtolist . 62

\SKV@addtolist+ . 62

\SKV@addtolist+? . 62

\SKV@afterassignment 58

\SKV@afterassignment* 58

\SKV@AfterClassEnd 63

\SKV@AfterDocumentEnd 63, 65

\SKV@AfterDocumentStart 8, 63

\SKV@aftergroup . 58

\SKV@aftergroup* . 58

\SKV@AfterLastPage 63, 65

\SKV@AfterPackageEnd.63, 65

\SKV@appto . 61

\SKV@appto* .61

\SKV@appto*+ . 61

\SKV@appto*+? . 61

\SKV@AtClassEnd . 62

\SKV@AtDocumentEnd 63, 65

\SKV@AtDocumentStart.15, 63

\SKV@AtPackageEnd 62, 65

\SKV@BeforeClassEnd 35, 36, 63

\SKV@BeforeDocumentStart 8, 36, 63

\SKV@BeforeLastPage 63, 65

\SKV@BeforePackageEnd . . . 35, 36, 63, 65

\SKV@checkchoice . 53

\SKV@CommandGenParser 59

\SKV@csdef . 47

\SKV@csedef .47

\SKV@csgdef .47

\SKV@csgundef . 51

\SKV@cslet . 48

\SKV@cslet* .48

\SKV@csletcs . 48

\SKV@csletcs* . 48

\SKV@csundef . 51

\SKV@csuse . 47
\SKV@csxdef .47
\SKV@dimdef .48
\SKV@disabledkey . 34
\SKV@disabledkey@err 35
\SKV@expargs . 52
\SKV@expcsox . 52
\SKV@expcstx . 52
\SKV@expox . 51
\SKV@exptx . 52
\SKV@for . 59
\SKV@for* . 59
\SKV@for@a . 59, 61
\SKV@for@b . 59, 61
\SKV@gundef .51
\SKV@IfAsk . 51
\SKV@ifask . 51
\SKV@ifblank . 55, 59
\SKV@ifcsdef . 50
\SKV@ifcsdefax . 50
\SKV@ifcsrelax . 50
\SKV@ifcsundef . 50
\SKV@ifdef . 50
\SKV@ifdefax . 50
\SKV@ifdefinable . 49
\SKV@ifdefinable@n 49
\SKV@ifdraft . 56, 65
\SKV@ifempty . 55
\SKV@iffinal . 56, 65
\SKV@ifnew . 49
\SKV@ifnew* .49
\SKV@ifnew*+ . 49
\SKV@ifnotblank . 55
\SKV@ifnotdraft . 56
\SKV@ifnotempty . 55
\SKV@ifnotfinal . 56
\SKV@ifnotpdf . 56
\SKV@ifpdf . 56, 65
\SKV@IfPlus .51
\SKV@ifplus .51
\SKV@ifrelax . 50
\SKV@IfStar .51
\SKV@ifstar .51
\SKV@ifstrequal . 55
\SKV@ifstrnotequal 55
\SKV@ifundef . 50
\SKV@in@ . 53, 54
\SKV@letcs . 48
\SKV@letcs* .48
\SKV@newdef .43
\SKV@newdef* . 43
\SKV@newlet .47
\SKV@numdef .48
\SKV@oifblank . 55

29th April 2010

The skeyval Package Page 69 of 69

\SKV@oifempty . 55

\SKV@oifstrequal . 55

\SKV@onlypackage . 57

\SKV@onlypreamble 57, 63, 65

\SKV@prepto .62

\SKV@prepto* . 62

\SKV@prepto*+ . 62

\SKV@prepto*+? . 62

\SKV@providedef . 44

\SKV@providedef* . 44

\SKV@providerobustdef 44

\SKV@providerobustdef* 44

\SKV@remainder 18, 60, 61

\SKV@robustdef . 43

\SKV@robustdef* . 43

\SKV@TestOpt . 51

\SKV@testopt . 51

\SKV@tfor . 61

\SKV@tfor* . 61

\SKV@tfor@a .60

\SKV@tfor@b .60

\SKV@Undef . 50

\SKV@undef . 51

\SKV@Undef* .50

\SKV@Undef*+ . 50

\SKV@Undef*+? . 50

\SKV@xifblank . 55

\SKV@xifempty . 55

\SKV@xifstrequal . 55

\skvoptions 5, 16, 17, 59

\suspend@keys . 37

\switchfalse . 29

\switchoff . 29

\switchon . 29

\switchtrue .29

T

\TestProvidedCommand 47, 56, 57

The TEXBook . 24

\togfalse . 10

\togtrue . 10

U

\unreserve@keys . 37

\uservalue . 39, 40

\uservaluekeys . 38

\usevalue . 6, 10, 39

V

\val . 17, 53

verbose . 5

X

\XKV@KV@fam@save . 41

29th April 2010

	1 Motivation
	2 Brace stripping by the xkeyval package
	3 The skeyval package options
	4 Complementary native boolean keys
	4.1 Bipolar native-boolean keys
	4.2 Unipolar native-boolean keys
	4.3 Biunipolar native-boolean keys

	5 Toggle booleans and keys
	5.1 Toggle booleans
	5.2 Toggle-boolean keys

	6 Complementary toggle keys
	6.1 Bipolar toggle-boolean keys
	6.2 Unipolar toggle-boolean keys
	6.3 Biunipolar toggle-boolean keys

	7 Defining multiple keys by one command
	7.1 Choice key values
	7.2 Some examples
	7.2.1 Parameterized macros in key macros

	7.3 The keycommand interface
	7.4 Input error
	7.5 Conditionals in key macros
	7.5.1 Using macros or token list registers
	7.5.2 Using pseudo-primitives
	7.5.3 Using switches
	7.5.4 Using toggles

	8 Checking and redefining keys
	8.1 Checking the status of a key
	8.2 Unintentional redefinition of keys
	8.2.1 Avoiding multiple definitions of same key

	9 Disabling, reserving, suspending keys, etc.
	9.1 Disabling keys
	9.2 Localizing keys
	9.3 Reserving and unreserving keys
	9.4 Suspending and restoring keys
	9.5 Removing keys

	10 User-value keys
	10.1 Using pointers to dynamically indicate user-value keys

	11 Extensions to the pointer system of the xkeyval package
	11.1 Examples
	11.1.1 Legacy xkeyval pointer features
	11.1.2 Extensions by skeyval package

	12 Setting keys: list normalization
	13 Miscellaneous macros
	14 References
	15 Version history
	Index

