
The SKB package - Create and maintain a

repository for long-living documents

Sven van der Meer

2010-08-04 v0.5

Abstract

This package provides macros that help to build a repository for long
living documents. It focuses on structure and re-use of text, code, figures
etc. The basic concept is to first separate structure from content (i.e. text
about a topic from the structure it is presented by) and then separating the
content from the actual published document, thus enabling easy re-use of
text blocks in different publications (i.e. text about a protocol in a short
article about this protocol as well as in a book about many protocols); all
without constantly copying or changing text. As a side effect, using the
document classes provided, it hides a lot of LaTeX from someone who just
wants to write articles and books.

Contents

1 The Intent 4

2 The Story 4
2.1 The Short Story . 4
2.2 The Long Story . 5

3 The Concept: Separate Things 6
3.1 Separate Content from Structure: the Repository Folder 7
3.2 Separating different Parts of a Document 8

3.2.1 Bibliography, Acronyms and Figures 8
3.2.2 Publications and Content 9
3.2.3 The Final Directory Structure 11

4 User Manual 11
4.1 Getting Started . 12

4.1.1 The SKB Distribution . 12
4.1.2 Installation . 12
4.1.3 Rebuild the SKB from Source 13
4.1.4 Confguration: skbconfig . 14

1

4.1.5 Confguration: View Options Used 15
4.1.6 Creating a Directory Structure 16

4.2 Files, Figures and Slides . 17
4.2.1 Files and Headings . 17
4.2.2 Figures . 18
4.2.3 Slides . 19

4.3 Filenames, Acronyms and References 21
4.3.1 Path and File Names . 21
4.3.2 Loading Acronyms and Bibliographic Information 21

4.4 Other useful Macros . 22
4.4.1 Emphasising Text . 22
4.4.2 Environments for lists and enumerates 22
4.4.3 Listings Styles and Support 23
4.4.4 Optional Text – Versions and Optional 24

5 Examples 25

6 Implementation: Kernel 26
6.1 Required Packages . 26
6.2 Conditiona/Optional Text Support 26
6.3 Provide Command . 28
6.4 Macro Redefinitions . 29
6.5 At End of Document . 29
6.6 Package Configuration . 29
6.7 Generic Input Macro . 31
6.8 Kernel support for skbinput . 31

7 Implementation: Configuring the SKB 33
7.1 Changing Configuration: skbconfig 33

7.1.1 The Macro Options . 33
7.1.2 The Macro . 33

7.2 Changing Configuration: skb.cfg and akblocal.cfg 34
7.3 Viewing Configuration: skboptionsused 35

8 Implementation: Files, Figures and Slides 35
8.1 Declaring Headings: skbheading . 35
8.2 Loading TEX files: skbinput . 36

8.2.1 Macro Options . 36
8.2.2 The Macro . 38

8.3 Loading Figures: skbfigure . 38
8.3.1 Macro Options . 38
8.3.2 The Macro . 40

8.4 Loading Slides: skbslide . 41
8.4.1 Some Extentions . 41
8.4.2 Macro Options . 42
8.4.3 The Macro . 43

2

9 Implementation: Filenames, Acronyms and References 44
9.1 Path and File Names . 44
9.2 Loading Acronyms . 44
9.3 Loading Reference Database . 45

10 Implementation: Other useful Macros 45
10.1 Emphasising Text: skbem . 45

10.1.1 Macro Options . 45
10.1.2 The Macro . 45

10.2 Emphasising Text: skbcode . 46
10.3 List Environments: skbnotelist and skbnoteenum 46
10.4 Acronyms in Footnotes: skbacft . 47
10.5 PDF Meta Information: skbpdfinfo and more 47
10.6 Listing Styles and Support . 48

11 Experimental Macros 50
11.1 Defining new relative Headings: skbheadingudc 50

11.1.1 Macro Options . 50
11.1.2 The Macro . 51

12 The Configuration File skb.cfg 51

13 The SKB Classes 52
13.1 The Class skbarticle . 52

13.1.1 Loaded Packages . 53
13.1.2 Memoir Options . 54
13.1.3 Misc Settings . 54

13.2 The Class skbbook . 55
13.2.1 Loaded Packages . 55
13.2.2 Memoir Options . 56
13.2.3 Misc Settings . 57

13.3 The Class skbbeamer . 58
13.3.1 Loaded Packages . 58
13.3.2 Misc Settings . 59

13.4 The Class skblncsbeamer . 59
13.4.1 Loaded Packages . 60
13.4.2 Memoir Options . 61
13.4.3 Misc Settings . 62

13.5 The Class skblncsppt . 62
13.5.1 Loaded Packages . 63
13.5.2 Memoir Options . 64
13.5.3 Misc Settings . 65

3

14 History and Change Log 65
14.1 v0.10 from 06-Jul-2010 . 65
14.2 v0.20 from 08-Jul-2010 . 66
14.3 v0.30 from 14-Jul-2010 . 66
14.4 v0.31 from 20-Jul-2010 . 67
14.5 v0.32 from 20-Jul-2010 . 67
14.6 v0.4 from 21-Jul-2010 . 67
14.7 v0.5 from 04-Aug-2010 . 68

1 The Intent

Provide a LATEXpackage that helps to create and maintain a repository for long-
living documents. It’s probably not usefull for some short-term articles, however,
I learned that most of my short term articles eventually become part of my long-
term documents. Here you go. The repository should allow for easy access to
’stuff’: text blocks, senteces, paragraphs, sections, complete chapters. But also
to figures, code sniplets, examples, etc. And I do want to limit the amount of
repetition of information. For example, if I use a certain example in an article I
might want to use the same (identical) example in a book or a presentation or
lecture notes. If I only copy the example I have to maintain several sources, and
over time I will not remember which of them is normative. As a side effect, I also
want to optimise document creation and limit the LATEXor document class specific
code in my documents.

2 The Story

2.1 The Short Story

I have written papers, done a lot of presentations, provided some book chapters,
still working on a book, participated in many research proposals and projects, and
created tons of notes and figures. As of early 2009, most of that information was
distributed over the repositories of different projects and organisations I worked
for, in some document management systems, on several websites, databases, my
preferred email client (which changed twice), different computers and later even
different external hard drives and USB sticks. Looking for specific text or a par-
ticular figure could easily end in a days work. Tools like desktop search engines
can help to find ’stuff’. I used them, but if they found anything it was hard to
maintain the context it was written in and some formats or sources were out of
reach for them. Even worse with figures and the many versions some of them
evolved in over time. After multiple jobs and several years, all I had is kind of a
very messy base of knowledge, well-hidden somewhere, thus very difficult to locate
and impossible to maintain.

So I started early 2009 to re-organise my ’stuff’. At the same time, I did realise
that moving away from LATEXwas part of the problem (and I thought using the
other text processor would help, it actually didn’t, long-term). So LATEXbecame,

4

again, the text processor of choice, and with it the ability for a complete different
approach to organise my ’stuff’. This was the moment the SKB was created.
SKB stands for Sven’s Knowledge Base. The LATEXpackage skb, described in this
article, forms part of a larger software system that uses SQLite databases, a small
PHP framework, Apache for HTML access and recently also a Java port.

My document repository uses the skb package, so most of my documents are
eventually LATEXdocuments. I am saying eventually because I still use other tools
(like Microsoft’s Powerpoint), but integrate their output in my repository. I do
all my figures these days using Inkscape, so the source is SVG and the output for
LATEXdocuments PDF. For editing the text files I do flip between UE Studio and
LeD. Parts of the content (such as acronyms and bibliographic information) are
maintained in SQLite databases and exported to LATEX. This package now shows
how I build my documents.

2.2 The Long Story

Over several years of writing documents (articles, books, reports, standards, re-
search proposals) ideas and concepts became distributed (actually a euphemism
for ’hidden’) within many many documents (in all sorts of formats) located at
many many locations (such as local file system, document management system,
subversion/perforce systems, web servers, email clients). The problems associated
to this situation are manifold:

� Ideas/concepts are hidden, often un-accessible and, as I experienced, search
tools are of limited help.

� The documents are written in all sorts of formats or available only in (usually
proprietary) binary formats. Ever tried to open a document written in MS
WinWord 6.0 with customised document template in a newer version of the
same programme? You know then what I am talking about.

� Reusing the ideas/concepts, once found in a document and managed to open
that very document, usually involves huge amount of re-formatting. This
will produce mistakes. Ever tried to use a BibTEX) generated reference list,
found in a PDF file in a new article? I found better ways to spend my nights
and weekends (yes, I am married and I have a garden).

� Over time, it can become very difficult to distinguish between different ver-
sions of a document, concept and/or idea. As it happens in real life, things
move on even in computing and the related sciences. Documents are written
for a specific historic context, which might but often will not appear in their
abstract (or the name of the folder their are stored in).

� The above issues do apply to figures and presentations as much as to the
text part of documents. Reorganising my documents/figures/presentations
I did find way too many duplicates. I have used too many graphic software
packages in the past 10 years which don’t exist anymore, or which do not
run on the latest version of my preferred operating system. Some of the
figures are only available in some sort of low-resolution bitmap, rendering
them useless even for a non-peer-reviewed article today (the original source

5

got ’lost’, in most cases because someone removed the project folder after
the project was terminated).

A solution is to create a unified document repository, then use this repository
as ’normative source’ to create documents for specific purposes while leaving the
text blocks, headings, figures, presentations, references, acronyms and all other
reusable ’stuff’ in the repository for the next document which might (hopefully
will) benefit from them. This can (did it for me already) safe a lot of time, demands
archiving (of published documents, thus creating a traceable history), helps to
keep important information updated (without jeopardising any other work) and
prevents losing any ’stuff’.

The repository needs a few rules, a (customisable) structure but beside that
only a bit of effort to be maintained. To give an example: while writing the first
version of this article (May 11, 2009), I have moved 4 lecture notes, 2 presen-
tations, 1 book chapter, 1 book (in writing), 1 textbook (for students, with 4
chapters) and 4 articles from my ’mess’ into my repository. This involved some
re-formatting (plus the occasional re-drawing) to bring the original sources into
the target formats. At the same time I did develop the rules of my repository,
the structure and the (mostly LATEX) code (and re-wrote/structured/ruled most
of them a few times). I ended up with 1,314 files in 87 folders, which create 9 arti-
cles, 2 books, 1 textbook, 3 lecture notes and this document (note: the number of
articles increased, because I could re-assemble ’stuff’ for new uses, spending some
five minutes per one new article). I did remove roughly 100 pages of text (take the
classic Spring LNCS format and you get the point of the number of characters)
and some 40 figures (all duplicates). I did find way too many errors in the original
sources (most of which have been created by ’re-using’ them earlier from even
more-original-sources).

3 The Concept: Separate Things

You already got the idea that separation is important, reading about published
documents and a normative repository. The basic idea is: think separation –
separate as much as you can, but not more. I know that this sounds like a strange
idea when the goal is a unified repository, but it is essential. So we separate
several concerns (taking a concept of distributed system design). So if we want to
facilitate re-usability, we have to:

1. separate content of a document from its structure and
2. separate the different parts of a document.

For the impatient:

1. Separating content from structure means to identify small, coherent blocks
of information, i.e. text describing a certain aspect or an example, and put
them separated into the repository folder.

2. Separating parts of a document means to separate the part that is important
for publishing from the part that is important for the content and put them

6

into different places (one in the publish folder and the other one in the
repository older). It also means to build a separate repository for figures,
since they could be used in many different small blocks of information.

3.1 Separate Content from Structure: the Repository Folder

Now, separating the structure from the content first. The structure of a document
(we stay with classic text documents like articles, books, etc. for a while) is words
in sentences in paragraphs in (sub-) sections in chapters (if its a book, of not
only sections)1. We collect sentences and paragraphs but separate them from
headings. LATEXis doing that already with the macros for chapters and sections.
We go one step further and provide a generic way to identify a heading with the
SKB macro \setheading. This allows to select the appropriate LATEXheading
level at a later stage having the context of that later stage in mind (i.e. it might
be a section in an article but a chapter in a book). Now we create a structure for
the resulting files in our repository, adding meaningful names to the directories
and files. Obviously the names of these folders should provide some idea about the
general characterisation of the files they contain. Example? Well, if you collect
information from Standard Defining Organisations (SDOs) the top folder could
be named sdo and the sub-folders using the respective SDO acronyms, such as
omg for the OMG and ieee for the IEEE and ietf for the IETF. We put all this
in a folder named repository, making it explicit that here is were we find all our
normative content. The following example shows how that looks like.

[repository]............................ the Repository Folder

sdothe folder with our SDO files

omgfiles for OMG ’stuff’

corba-idl.tex The CORBA IDL language

omg-mda.tex The OMG Model-driven Architecture

[...]

ieee files for IEEE ’stuff’

802-1.tex The IEEE LAN concept

ethernet.tex.................... The Ethernet protocol

[...]

ietf files for IETF ’stuff’

dns.texThe DNS protocol

uri.tex The URI specifications

[...]

[...]

[...]

1One very meticulous person might add ’characters’ and mention that there are more ways
to think about a document’s structure. But that person is not me. The structure I used fits the
purpose (as of now), if it doesn’t anymore I will look further.

7

The result: we have a structure of files, containing our ’stuff’, integrated in a
structure of folders that allows us to find it (the better this structure the more
helpful it is, and remember this is a ’personal’ repository, so your personal flavour
is king).

3.2 Separating different Parts of a Document

The next step is to separate the remaining parts of a document based on their
semantics. You are probably doing that already if you maintain a database for
bibliographic information and have many of your articles using it. But we can and
should do much more than that.

3.2.1 Bibliography, Acronyms and Figures

So the combination of LATEXand BibTEXalready helps us for this separation. Using
the acronym package, we can extend this to acronyms. Looking into the highly
common re-use of figures, we should look into this as well. Let’s take the organi-
sation of bibliographic information as a template. I store them using BibTEXand
process them with the biblatex package (but that is not critical for now). My
BibTEXdatabase is in a special folder (we can call it references for the moment)
and it uses a file structure that helps me to find information. This structure is
based on the BibTEXand biblatex classification, i.e. inproceedings, article, book,
thesis, standard, etc.

Now, I can do the same for figures: put them into a special folder (we can
call it figures for the moment), which contains the source of the figures and the
generated formats I need for my documents (usually PDF, some PNG). Now I can
reference these figures from the repository as well as for other use cases, such as
web publishing or presentations2.

Last not least, the acronym package allows for an automatic handling of
acronyms, including list of acronyms. It is very similar to BibTEX in that it will
only show the acronyms used in a document out of a (potentially large) database.

One might also want to create other specific structures, such as for program-
ming code. Dont’ stop yourself, it’s easier to combine things later (if the separa-
tion is not effective) than to separate things that are hugely integrated into each
other. For one of my internal projects, a parser generation environment based on
ANTLR, I created a special folder for the EBNF specifications along with railroad
diagrams. Now I can use them in my book and my papers.

Now we name the folders for the separated content. This is straight forward,
although you might want to use different names (don’t worry, the skb supports
that). We add to the already created repository folder the things we need for
figures (figures) and combine acronyms and BibTEXin a folder called database,

2My figures are exclusively in SVG using inkscape (www.inkscape.org). This has the advan-
tage of a standardised, text-based format with many export options. All my figures are in a
single root folder, structured very similar to the document folders created above, but separated
from it. This makes re-use of figures very easy.

8

separating the data from all other content 3. Now the directory structure looks
like this:

[root]................................... for instance /doc

database folder for all sorts of data for the repository

latex data in LATEX, such as our acronyms

bibtex.............................. BibTEX database

[...]

figures folder for figures, my sources are SVG & PDF

[...]

repository folder for the text files

[...]

What did we do so far? We did separate the different parts of our documents.
The more clinical you are, the better the result will be. But please note: separate
as much as you should, not as you could. If you don’t find a reason for separating
’stuff’, then don’t do it!

3.2.2 Publications and Content

Here is were it might get slightly more complicated than in the first few steps.
And you might see already that the reason for that is separation! We didn’t finish
the separation, we have to go one step further. And that means to separate now
the contents (with the references and acronyms and figures) from the reason to
publish a document. This last step of separation is more conceptual, being focused
on the why? and where? and how? we publish, rather than being focused on the
what? we publish.

So we do publish for many reasons: articles for research, project proposals,
reports, lecture notes, standard documents, annotated presentations, sometimes
even books. We publish for a specific purpose, in a specific (soon historic) context,
using the requested format (and style sheets) and a particular structure of our
document that fits the purpose. That means we organise and structure our content
every time according to these constrains. Thus we need a new directory structure
for that, since we will not reuse that as often as our ’stuff’ itself. Remember,
we use the skb macro \skbheading for headings, not the classical LATEXmacros
like \section, so our files effectively do not contain much information about their
place in the structure, only that they claim one 4. This comes in handy now,
since all we have actually to do is to assign a document heading level to every
repository file we load. Let’s create a folder for the published documents and

3Now, the reason for the database folder and it’s structure is that the whole SKB contains
more databases, all of which reside here. If you want to simply apply this to LATEXdocuments
you might want to use a different strutural approach.

4Currently experimental, but soon to be ready, there will be an extension to the \skbheading

macro that allows a little bit more information to be put in the repository files. For the moment
this is captured in the \skbheadingduc macro.

9

call it published with a set of sub-folders that help us to understand the general
context of the publication. My directory structure could look like this:

[your repository root] path to your repository, like /dev/documents

[...]

publish folder for published documents

articlessuch as articles

booksor books

lecture notesor lecture notes for computer science

presentations................... ...or general presentations

[...]

[...]

We could, and it usually makes sense to do so, go one step further in that
separation. This time within the documents in the published folder. The reason
is the structure of LATEX documents: they do need some commands specific to
LATEX, which we don’t necessarily want to mix with the commands that input our
content (the files from repository). So it would make sense to have another pair of
documents here, one containing all LATEX commands needed to create a document,
and one containing all the commands that include our content. Say we have a few
articles for state of the art discussions on naming, object-models and protocols, we
could create the following structure for the article folder :

articles our articles

naming.tex the file creating an article on naming

object-models.tex the file creating an article on object-models

protocols.texthe file creating an article on protocols

tex a folder containing the tex files that include our content

naming.tex the file including all content for naming

object-models.tex ... the file including all content for object-models

protocols.tex.......... the file including all content for protocols

Now everything is structured, thus simple again. If we are looking for content,
we go to the repository directory and the directory names help us to find what
we are looking for. If we need a figure, we do the same at the figures directory.
acronyms and bibtex help with the respective other content. If we want a specific
published document, we simply check the published directory and will have a look
into a tex sub-directory to see what content is include how.

Good news, the separation is finished! What have we done? We have separated
the contents from the structure by creating, created a separate directory structure
for figures, another one for bibliographic data, one for acronyms and finally a
complete directory structure for published documents. Content and title form a

10

pair, include figure, use acronyms and references and are combined in the published
documents. At this point we can start calling it document repository.

3.2.3 The Final Directory Structure

As this is the final and complete root directory of our repository:

[your repository root] path to your repository, like /dev/documents

database folder for all sorts of data for the repository

latex ... this is were LATEXdata will be collected, such as our acronyms

bibtex................... folder for all BibTEX reference files

figures folder for figures, my sources are SVG & PDF

publish folder for published documents

articlessuch as articles

booksor books

lecture notesor lecture notes for computer science

presentations................... ...or general presentations

repository folder for the text content

4 User Manual

The SKB provides macros that simplify file handling and hide some LATEX code
(i.e. for figures) from the user, thus helping everyone to focus on the actual
document one wants to write. There are a few macros, and they can be catagorised
as follows.

� Files and Headings: \skbinput and \skbheading are used to load files and
manage the headings of documents, i.e. associating a heading with a level
in the document structure (section, subsection, etc.)

� Figures: \skbfigure is your Swiss Army knife for loading figures and graph-
ics.

� Path and filenames - these macros provide direct access to SKB-managed
paths and filenames.

� Input files - here we have a few macros that load .tex files, figures, slides and
slide annotations.

� Emphasising text - some macros that deal with typesetting text in different
ways to emphasise that text from the surrounding paragraph.

� List styles - SKB specific environments adding specific behaviour to lists
and enumerate environments.

� Listings - basically a few pre-defined styles for using the listing environment.
� PDF Info - some macros that help to set meta information in PDF docu-

ments.
� Acronyms - some macros that help to load the acronym database and more.
� BibTEX- one macro that loads bibliographic information.

11

For the impatient, we start with a few examples. The first one shows how to use
the SKB to produce a simple article. The second one exmplains how the documen-
tation for the SKB is created using most of the SKB macros. Then we detail the
usage of all the macros, following the above introduced categorisation.

4.1 Getting Started

4.1.1 The SKB Distribution

The SKB distribution that one can download from SourceForge or CTAN (CTAN
coming soon) contains the source files for the SKB, the generated classes and
styles, the generated documentation and the source files for the user guide. The
following example shows the structure and content of the SKB distribution.

[start folder]

doc The generated PDFs and User Guide Sources

[user-guide]....................Sources for the User Guide

skb.pdf..................... The generated Documentation

skb-guide.pdf...................... The User Guide only

run The generated Class and Style Files

skb.cfg...................... The global Configuration File

skb.sty................................The Style File

*.cls The Class Files

source................................. The Source files

skb.dtx...................... Documented LATEXSource File

skb.ins...........................The LATEXInstaller File

*.txtManifest, Licence, Todo List and History as plain Text

4.1.2 Installation

There are two ways to install the SKB. The first option is have it automatically
installed by your LATEX distribution using TEXLife or the CTAN archive5. The
second option is a manual installation doing the following steps:

1. Go to your LATEX distribution to the folder tex/latex.
2. Create a folder skb.
3. Copy all files from the directory run of this package to the newly created

folder tex/latex/skb.
4. Update the filename database of your LATEX distibution. Please see the

manual or help files of your LATEX distribution for details.

If you want copy the source and documentation files as well, then do the following
steps. We start with the documentation:

1. Go to your LATEX distribution to the folder doc/latex.

5Note: This option is not yet supported, since the SKB has not yet been submitted to CTAN.

12

2. Create a folder skb.
3. Copy all files from the directory doc of this package to the newly created

folder doc/latex/skb.

And now the source files of the SKB:

1. Go to your LATEX distribution to the folder source/latex.
2. Create a folder skb.
3. Copy all files and directories from the directory source of this package to

the newly created folder source/latex/skb.

Now you have installed the SKB and you are ready to use it.

4.1.3 Rebuild the SKB from Source

The SKB class and style files as well as the documentation can be rebuild from
its sources very easily. The class and style files are part of the documented
LATEXsources in the file source/skb.dtx and the LATEXinstaller (source/skb.ins)
provides all necessary instructions. Simply follow the steps shown in the first part
of the following example. All you have to do then is to copy the files created to
your LATEX distribution.

#Rebuild Class and Style files
$cd run; latex ../ source/skb.ins
-> creates: skb.cfg , skb.sty , skbarticle.cls , skbbook.cls ,

skbbeamer.cls , skblncsbeamer.cls and skblncsppt.cls

#Rebuild Documentation
$cd doc
$pdflatex ../ source/skb.dtx # repeat twice
$pdflatex user -guide/user -guide # repeat twice
$pdflatex user -guide/ug -slides -anim # repeat twice
$pdflatex user -guide/ug -slides -noanim # repeat twice
$pdflatex user -guide/ug -slides -notes # repeat twice

remove all files except the PDFs for cleanup

The SKB documentation comes in several different ways. The file source/skb.dtx
contains the documented source while the files in doc/user-guide can be used
to generate the User Guide without source documentation, the SKB presentation
(animated and not animated) and the lecture notes for the presentation.

When processing the file source/skb.dtx, the User Guide will automati-
cally be included in the generated PDF if it is found in either of the directo-
ries source/../doc/user-guide (when using the SKB original distribution) or
source/../doc/latex/skb/user-guide (when the SKB is already installed with
your LATEXdistribution).

The second part of the example above shows how to generate the com-
plete SKB documentation. Please note that the sequence is partially impor-
tant, for instance the file ug-slides-noanim must be processed before the file
ug-slides-notes.

Please note that the SKB documentation is heavily using the SKB macros, so
you will need to have the style and class files installed before you can rebuild the
documentation.

13

4.1.4 Confguration: skbconfig

There are multiple options to configure the SKB. The following list contains all\skbconfig

possible options starting with the least significant. That means that the higher
priority settings, which overwrite other settings, will be listed at the bottom.

� Change the file skb.sty in your LATEXdistribution. This might require
administrator (root) privileges. This option, while possible, is not recom-
mended.

� Change the file skb.cfg in your LATEXdistribution. This might require ad-
ministrator (root) privileges. This option is suitable for a system wide con-
figuration, say on your own computer or laptop.

� Create a file skblocal.cfg in your personal LATEXstyle/template directory.
This will be the most convenient way to configure the SKB. Note: you might
need to refresh the file database of your LATEXdistribution.

� Use \skbconfig in your documents.

If you chose option 1 we assume you know what you are doing. In case you
chose options 2-3, you can use the macro \skbconfig to do the configuration for
you. The macro comes with options for all possible settings of the SKB. Table 1
describes all options and shows their default value. Please note that the SKB can
currently not handle inputs from directories outside the root hierarchy. However,
one can call \skbconfig anytime to change the root directory, but be carefull with
potential side effects!.

Table 1: Options for skbconfig

Option Description Default

root Sets the root path of the SKB. Everything that the
SKB processes should be located below the root.

/doc

pub Sets the path for the published documents. publish

rep Sets the path for the repository documents. /repository

fig Sets the path for figures. /figures

sli Sets the path for the slides. /transparencies

acr,
acrfile

The SKBuses the acronym package and these two macros
dtail the directory (acr) and the file (acrfile) where the
acronyms can be found.

acr:
database/latex

acrfile:
acronym

bib,
bibfile

These two macros detail the directory (bib) and the
main file (bibfile) where bibliographic information
(BibTEX database) can be found.

bib:
database/bibtex

bibfile:
bibliography

14

The macro \skbconfig requires one argument, which describes where the con-
figuration has been changed. This is helpful in combination with the macro
\skboptionsused to trace configuration settings. For instance, in the files
skb.cfg and skblocal.cfg we should use the respective filename. When changing
configuration settings elsewhere, some other descriptive text should be useful.

The following code shows the example for \kbconfig. The first one is the
defailt content of the file skb.cfg. It basically sets all possible configuration
options to their default value.

%default content of skb.cfg
\skbconfig[

root=/doc ,fig=figures ,sli=slides
acr=database/latex ,acrfile=acronym ,
bib=database/bibtex ,bibfile=bibliograhpy ,
rep=repository ,pub=publish

]{skb.cfg}

%using relative path for root and no directory structure
\skbconfig[

root=./,rep=,pub=,fig=,sli=,
acr=,acrfile=acronym ,
bib=,bibfile=bibliograhpy

]{ myfile.tex}

If you want to change the configuration settings for a single document without
any directory structure, overwriting all default settings (from skb.sty, skb.cfg
and skblocal.cfg and using the current relative path, you can use the second
examle shown above.

To trace the configuration settings, you can use \skboptionsused. Please see
for details on this macro.

4.1.5 Confguration: View Options Used

This macro will print out a warning including the currently used configuration\skboptionsused

information and the change list for each of them. For example, if the configuration
for root has not been changed the output for root will be

- root [skb.sty]: /doc

but if the configuration for fig has been changed using \skbconfig to
graphics the output for root will be

- fib [skb.sty, skbconfig]: graphics

This macro is automatically called at the end of processing.
When creating the documentation for the SKB by running pdflatex skb.dtx,

the following output will be created:

Package skb Warning: Options last changed by: skb -presentation
(skb) Change log:
(skb) - root = skb.sty , ug-slides -noanim.tex
(skb) - acr = skb.sty
(skb) - acrfile = skb.sty
(skb) - bib = skb.sty
(skb) - bibfile = skb.sty
(skb) - rep = skb.sty
(skb) - pub = skb.sty , ug -slides -noanim.tex
(skb) - fig = skb.sty
(skb) - sli = skb.sty , skb -presentation
(skb) Last set Path/File Options:

15

(skb) - file root = user -guide/
(skb) - path root = user -guide
(skb) - file acr = user -guide/database/latex/acronym
(skb) - file bib = user -guide/database/bibtex/bibliography
(skb) - path bib = user -guide/database/bibtex
(skb) - path rep = user -guide/repository/
(skb) - path pub = user -guide//
(skb) - path fig = user -guide/figures/
(skb) - path sli = user -guide/slides/ .

The change log shows that all configuration options have been set by skb.sty

and later by skb.cfg. Furthermore, the configuration option root has been
changed by skb.dtx.

4.1.6 Creating a Directory Structure

The real power (and possibly madness) of the SKB comes with the separation
of different parts of a document into different directory structures. For the user
guide, we assume the following general directory structure .

[your repository root] path to your repository, like /dev/documents

database folder for all sorts of data for the repository

latex ... this is were LATEXdata will be collected, such as our acronyms

bibtex................... folder for all BibTEX reference files

figures folder for figures, my sources are SVG & PDF

publish folder for published documents

articlessuch as articles

booksor books

lecture notesor lecture notes for computer science

presentations................... ...or general presentations

repository folder for the text content

To create this structure, go to the directory were you want to put all your
documents, say /doc. Now create the folders database, figures, publish and
repository and the respective sub-folders as shown above. Finally, configure the
SKB by either editing one of the configuration files or adding the following line
to all of your published documents (and of course change the text myfile.tex to
something that tells you about the location of the configuration change):

\skbconfig[root=/doc ,
acr=database/latex ,acrfile=acronym ,
bib=database/bibtex ,bibfile=bibliograhpy ,
rep=repository ,pub=publish ,
fig=figures ,sli=slides

]{ myfile.tex}

The directory structures for the publish folder and the repository folder reflect
different views to your document base. The publish folder contains documents
that are published for a reason (i.e. articles, books, presentations, white papers,

16

work in progress) while the repository folder contains content, most likely struc-
tured following a content-specific categorisation. The choice of how the directory
structure looks like is yours, and of course you could also have multiple document
directories with completely different structures, for instance one for computer sci-
ence publications and one for a gardening book. The SKB does not set any limit,
since it can be configured very flexibly to your needs (please see subsubsection 4.1.4
for more details) .

4.2 Files, Figures and Slides

4.2.1 Files and Headings

Just to remember: we have two different types of files in two different directory\skbinput

\skbheading structures. The repository folder stores the content and the publish folder stores
everything needed to produce complete documents. For the content in the reposi-
tory, we mark headings with the macro \skbheading. This macro has no options
and no arguments and is simply called with the text for the heading, as shown in
the following example.

\skbheading{My Heading}

Leaving the argument empty will have the same effect as calling the original
LATEX macros directly with an empty argument.

The association of a LATEX document level with the heading is then defined
for the published documents (in the publish folder) using the macro \skbinput.
This macro provides a number of options and requires one argument. The follwing
examples shows a few use cases for \skbinput. For all possible options, please see
Table 3

1 \skbinput{myfile}
2 \skbinput[from=rep]{ myfile}
3 \skbinput[from=pub]{ myfile}
4 \skbinput[level=chapter]{ myfile}
5 \skbinput[from=pub ,level=chapter]{ myfile}
6 \skbinput[from=pub]{test/myfile}

Table 3: Options for skbinput

Option Description Values

from Set the directory from where the file
should be loaded.

pub, rep, fig, sli

level Set the document level to be
used for the next occurance of
\skbheading

book, part, title, chapter,
section, subsection,
subsubsection

Let’s start with the simpliest form, one argument only shown in line 1. The
macro will look for a file called myfile.tex in the root directory of the SKB. The
file extension .tex is automatically added, and since we did not specify any special

17

directory the root directory is used instead. If the file is not found, the macro will
throw an error providing the full path and filename it did try to load.

Line 2 shows how we can load the file myfile.tex from the repository folder.
As you can see, the option from is supplied with the argument rep, which in fact
directs the macro to look for myfile.tex in the repository folder. Should the
file be located in the folder for published documents, we simply change the from

option to pub as shown in line 3.
If from is used and neither pub nor rep is given, the macro will trow an error.
To associate a document level for the heading, we can use the option level

to define which level we want. This option understands all standard document
levels from the memoir package: book, part, title, chapter, section, subsection and
subsubsection. So, if we want to load myfile.tex as a chapter we simple invoke
\skbinput as shown in line 4 of the example.

Since myfile.tex is part of the repository, we combine the two options from and
level (see line 5). This call to \input will load myfile.tex from the repository
and use \chapter for the heading found in that file. If myfile.tex is in a sub
folder, we simply add that sub folder to the filename. An example is shown in line
6 assuming the the file is located in the repository sub-folder examples.

4.2.2 Figures

The classic way to add figures to your document is to have a PDF or PNG or JPG\skbfigure

file ready, include it using \includegraphics while putting it into a box to resize
it (i.e. to the width of the text in your document), putting this very box into
a figure environment so that LATEX can process list of figures etc. and of course
adding lable and caption to it. Here is some LATEX example, which also uses the
center environment:

\begin{figure }\ begin{center}
\resizebox {\ textwidth }{!}{

\includegraphics[width=\ textwidth]{../ figures/myfig }}
\caption{My Figure }\label{myfig}

\end{center }\end{figure}

With the SKB macro \skbfigure things become a little bit simplier. takes
a number of options and one argument. The following code shows a number of
examples for using this macro.

1 \skbfigure{myfig}
2 \skbfigure[figure ,center]{myfig}
3 \skbfigure[figure ,center ,width=\ textwidth]{myfig}
4 \skbfigure[figure ,center ,
5 caption=My Figure ,label=myfig]{ myfig}

Let’s start with the easy usage, simply using the one argument to load a figure,
as shown in line 1. This call will simply use \includegraphics and \resizebox

to load the figure myfig from the figure directory, so we do not need to say
../figures anymore. To use the figure and the center environment, we simply
add two options requesting exactly that, as shown in line 2. In other words, using
the option figure will put the myfig in a figure environment and using the option
center will center the figure.

18

Similar for width and height information. Say the figure should be rescaled to
the width of the text in your document you simply add width to the options,
as shown in line 3 Use height for height or both options if required. Note
that the width and the hight are automatically applied to the \resizebox and
\includegraphics. You can also add caption and label information using the
respective options (lines 4 and 5). Now we will have the same result as the classi
LATEX example. You can also add the required position for your figure, if using
the figure environment applying the option position with the usual paramters,
including H from the float environment.

Table 4: Options for skbfigure

Option Description

width Set the width to be used with \esizebox and \ncludegraphics.

height Set the height to be used with \esizebox and \ncludegraphics.

center Use center environment.

figure Use figure environment.

position The position to be used within figure environment. This option
will be ignored if not combined with figure.

caption The caption to be used. Ignored if the option figure is not used.

label The label to be used. Ignored if the option figure is not used.

multiinclide The label to be used. Ignored if the option figure is not used.

The last option for the macro \skbfigure is called multiinclude. It can be
used with the beamer package to realise animations by loading a series of images
and showing them in sequence with or without overlaying. If used, this option
will overwrite all other options resulting in a simple call to \ultiinclude within
a resised box. One can use all standard multiinclude paramters with \skbfigure,
just omit the enclosing brackets. For instance, if you want to use multiinclude on
the myfig with the options <+-> call

\ s k b f i g u r e [mu l t i i n c lude=+−]{myfig}

The figure size will be automatically set to \textwidth and the height to
!. The start of the multiinclude is fixed to be 0, the format is PDF. For more
informatio on how to use multiinclude please refer to mpmulti and beamer pack-
ages.

4.2.3 Slides

This macro helps to create lecture notes (handouts) using PDF slides and\skbslide

LATEX notes without using the beamer package. The reason for adding this to
the SKB was to integrate slides from sources outside the LATEX universe (i.e. Mi-
crosoft Powerpoint). Some of my presentations are done using Powerpoint, but for

19

handouts I do prefer using LATEX thus benefiting from many of the automated fea-
tures it provides (references, acronyms). As a nice side effect, the output generated
is scalable (assuming that the PDF sources of the slides contain scalable images
rather than bitmaps, which can be easily realised using for instance Inkscape’s
EMF export within Microsoft Powerpoint slides).

The macro \skbslide provides all means to include PDF slides with or with-
out annotations, annotations only and it can load the annotations using different
mechanisms. The macro offers two options to set the input path for the slides and
the annotations: slidefrom and notefrom. If slidefrom is used, then the slide
(PDF) file will be loaded from the requested path (sli, rep or pub). If notefrom
is used, then the annotation (TEX) file will be loaded from the requested path
(sli, rep or pub). The default path for slides and annotations is the path for
slides.

The third option annotate requests to load annotations. If not used, no an-
notations will be loaded. It can be used in combination with the two arguments
to automated loading annotations.

The two arguments of this macro define the files for the slide and the annota-
tion. They can be used as followes:

� Argument 1 is the slide to be loaded. If a name if given, we load the PDF
using \inputgraphics with width being \textwidth. If no name is given,
no slide will be loaded.

� Argument 2 is the file with the annotations in combination with the option
annotate. If this option is not used then no annotations will be loaded. If
the option is used and no name is given, then the annotation is loaded from
a file with the same name as the slide plus the extension .tex. If this option
is used and a name is given then this file will be loaded.

This provides the following combinations for \skbslide

� Slide only: argument 1 has the name for the PDF, argument 2 is empty
� Annotation only: argument 1 is empty, argument 2 has the name for the

TEX, option annotate used
� Slide with Annotation 1: argument 1 has the name for the PDF, argument

2 has the name for the TEX, option annotate used
� Slide with Annotation 2: argument 1 has the name for the PDF, argument

is empty, option annotate used
� do nothing: leave both arguments empty

Some examples on how to use \skbslide:

1 \skbslide{myslides/slide 1}{}
2 \skbslide{myslides/slide 2}{}\ clearpage
3 \skbslide[annotate]{ myslides/slide 3}{}
4 \skbslide[annotate ,notefrom=rep]
5 {myslides/theme 1}{ text/theme1}
6 \skbslide[annotate ,notefrom=rep ,slidefrom=rep]
7 {text/theme 2}{ text/theme2}

In line 1 and 2 we load myslides/slide1.pdf and myslides/slide2.pdf from
the default directory without any annotations and clear the page after that. In

20

line 3 we load myslides/slide2.pdf and request this slide to be annotated with-
out giving a specific file name, thus loading myslides/slide3.tex, both files
from the default slides directory. In lines 4&5 we change the directory for the
notes and request a particular file to be loaded, resulting in the slide loaded as
myslides/theme1.pdf from the slides directory and the annotations loaded as
text/theme1.tex from the repository. Finally, in lines 6&7 we change both fold-
ers to the repository, this loading text/theme2.pdf and text/theme2.tex from
the repository.

The macro \skbslidecite provides some simple means to add citations to\skbslidecite

annotated slides. It takes two arguments, the first one for the type of citation and
the second one for the actual citation. Here a simple example:

1 \skbslidecite{Slide }{\ cite{tanenbaum -andrew:book :2003}}
2 \skbslidecite{Notes }{\ cite{standard:IETF:RFC :1155}}

The first line states that the slide contains material from a book of Tannenbaum
and the second line states that the annotation contains material from an IETF
RFC standard documents (RFC 1155). Since this macro is very simple, any con-
tent can be given for the two arguments.

4.3 Filenames, Acronyms and References

4.3.1 Path and File Names

The SKB provides a number of macros to directly create path and file names.\skbfileroot

\skbpathroot

\skbfileacr

\skbfilebib

\skbpathbib

\skbfilerep

\skbfilepub

\skbfilefig

\skbfilesli

Most of these macros are actually used within the SKB , but they might also be
useful for users to access files without using the provided specialised macros (such
as \skbinput. The following macros are provided:

� \skbpathroot – returns the set root path of the SKB .
� \skbfileroot – returns the set root path and adds /#1, i.e. the directory

separator and the argument provided.
� \skbfileacr – returns the path (including root) and file name for the

acronym database.
� \skbfilebib – returns the path (including root) and file name for the file

that loads the reference database (BibTEX).
� \skbpathbib – returns the path (including root) to the reference database.
� \skbfilerep – returns the path to the repository and adds /#1, i.e. the

directory separator and the argument provided.
� \skbfilepub – returns the path to the folder with the published documents

and adds /#1, i.e. the directory separator and the argument provided.
� \skbfilefig – returns the path to the figure folder and adds /#1, i.e. the

directory separator and the argument provided.
� \skbfilesli – returns the path to the slide folder and adds /#1, i.e. the

directory separator and the argument provided.

4.3.2 Loading Acronyms and Bibliographic Information

These two macros can be used to load the acronym database (\skbacronyms)\skbacronyms

\skbbibtex

21

and the references (\skbbibtex). Both macros behave identical: they use
\InputIfFileExists to check whether the acronym or bibtex file exists. If so,
they simply input the file. If not, they use \PackageError to throw an error
with a help message, showing the requested database file to input. One should
use \skbacronyms at the place in the document were the list of acronyms should
be printed and \skbbibtex at the beginning of the document to load the biblio-
graphic information.

4.4 Other useful Macros

4.4.1 Emphasising Text

Highlighting or emphasising text is an important aspect of many technical docu-\skbem

ments. One can use LATEXmacros directly to set text in italic or bold. This has the
disadvantage that there is no meaningful information given as on why that text is
treated in a special way. Furthermore, when the editor requires to change certain
highlights, it will be very difficult to go through a large document and figure out
which text is to be changed.

To prevent that from happening, one can use LATEXmacros to actually distign-
guish between different highlighted text. A simple start is provided by the SKB.
It is simply because, at the moment, it only supports three different ways and no
furhter meaningful information. But it is a start.

The macro \skbem comes with three different options. The option bold will
set the text given in the argument in bold face. Similar, the option italic will set
it italic. Last not least, the option code will use another SKB macro (\skbcode)
for typesetting the argument text. The following code shows some examples for
the macro:

Use \cmd{\skbem} to produce \skbem[bold]{bold},
\skbem[italic]{ italic} or \skbem[code]{type writer} text.

The example above shows the macro \skbem[code]{skbem} with
the option \skbem[italic]{bold} and \skbem[bold]{ italic }.

And here the tinal type setting of that example:
Use \skbem to produce bold, italic or type writer text.
The example above shows the macro skbem with the option bold and italic.
This macro \skbcode is a facade for calling the macro \stinline from the\skbcode

listing package with a basic style that uses type writer font (ttfamily).

4.4.2 Environments for lists and enumerates

These two environments mimic the macro \tightlists from the memoir package.\skbnotelist

\skbnoteenum It might be usefull when not using memoir to minimise the margin between items
in lists (iemize) and enumerations (enumerate).

Both environments do the following:

� Store current value of \parskip and \itemsep.
� Set \parskip and \itemsep to 0cm.

22

� Use the original environments (itemize for skbnotelist and enumerate for
skbnoteenum)

� Set \parskip and \itemsep back to thir original value.

Here is an example using first the classic list environment (itemize) and then
the SKBmacro \kbnotelist 6 7 :

� Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua.

� Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

� Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur.

� Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

Now list with \skbnotelist:

� Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua.

� Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

� Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur.

� Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

Note: both macros will only change the margins of the memoir package is not
loaded!

4.4.3 Listings Styles and Support

The SKB comes with a few predefined styles for the listing package. Most of them
use type writer font in scriptsize, arrange a grey box around the listing and set
the keywords to Blue4.

� generic – for any generic listing without specifying a language and no line
numbers.

� genericLN – same as generic, just with line number in the left side, which
means allowing extra space left to the listing box.

6For those who are interested, the ‘Lorem Ipsum’ is the standard phrase commonly used since
the 1500s.

7The following examples might have no effect on annotated slides...

23

� gentab – almost the same as generic, but without definitions for frame and
numbers, which seem to collide with some table environments.

� genericLNspecial – same as genericLN, just with a lighter grey for the box.
� beamer-example – style designed for examples in beamer frames.
� beamer-exampleLN – same as beamer-example, just with line numbers on

the left, which means allowing extra space left to the listing box.
� javaCode – generic style plus lanugage Java.

There is also one macro supported, which sets the listing style back to normal,\lstdefinestyle

i.e. after changing it in the text. Some macros in the SKB make use of this.
All that \lstdefinestyle does is setting the basic style back to type writer
font.

4.4.4 Optional Text – Versions and Optional

The SKB provides two means to include text and other LATEXcommands on an
otional basis. They are pre-configured and will be automatically set/unset accord-
ing to the three main document types the SKB supports:

� text – is equivalent to any classic text document, for instance an article or
a book.

� slide – is used to idenify slides, for instance beamer frames.
� note – is used to identify lecture notes or handouts, in essence annotated

slides (frames).
� anim – for beamer frames, used for text with animation activated.
� noanim – for beamer frames, used for text with animation deactivated.
� memoir – used for documents that include the memoir package.

We use the packages versions and optional and support both. The main dif-
ference is that with versions one has to use \beging and \end while with optional
one can use more than one of the above introduced types. The macros for provided
for optional text are:

� \skbmodetext and options using text – will be valid if neither beamer nor
beamerarticle is loaded (normal text).

� \skbmodeslide and options using slide – will be valid if the beamer package
is loaded (slides).

� \skbmodenote and options using note – will be valid if the beamerarticle
package is loaded (annotated slides).

� \skbmodeanim and options using anim – will be valid if the beamer package
is loaded and the SKB is loaded with the argument beameranim

� \skbmodenoanim and options using noanim – will be valid if the beamer
package is loaded and the SKB is loaded with the argument beamernoanim

� \skbmodememoir and options using memoir – will be valid if the memoir
package is loaded

The following code shows a few examples on how to use the optional text.

24

5 Examples

A Simple Article

Take the article that describes the state of the art in protocols. Remember, we
have all the contents for that in our repository directory. We go the directory
that has the published articles published/articles and create a new file say
protocols.tex .

\documentclass{skbarticle}

\begin{document}
\author{Sven van der Meer}
\title{Protocols , Formats and Communication Services}
\maketitle
\tableofcontents*
\bigskip

\skbinput[from=rep]{sota/protocols}

\section{Introduction}
\skbinput[from=rep ,level=subsection]

{sota/protocols/data_encoding}
\skbinput[from=rep ,level=subsection]

{sota/protocols/message -formates}
\skbinput[from=rep ,level=subsection]

{sota/protocols/protocols}
\skbinput[from=rep ,level=subsection]

{sota/protocols/protocol -services}

\skbinput[from=rep ,level=section]{sdo/omg/corba -giop}
\skbinput[from=rep ,level=section]{sdo/ietf/snmp -protocol}
\skbinput[from=rep ,level=section]{sdo/itu/x700-cmip}
\skbinput[from=rep ,level=section]{sdo/w3c/http}

\end{document}
\endinput

The article uses the class skbarticle. That class will load the SKB package
and the memoir class and do all settings we need. It prepares the title page and
prints the table of contents like any other LATEXarticle. The it uses \skbinput to
load files from the repository. The first one is loaded without requesting a level.
In other words, there is some text right at the beginning of our article, without
any special heading, like an abstract.

Then we do start the section ’Introduction’ and collect a few files with their
heading categorised as sub-sections. Reading the directory and file names, we can
already guess what the introduction will be doing: it introduces general proto-
col concepts with regard to data encoding, protocol message formats, protocols
themselves and protocol services. The last block loads four files with headings
categorised as sections. Using the directory names, we see that the remaining
article describes the protocols GIOP defined by the OMG, SNMP by the IETF,
CMIP by the ITU-T and finally HTTP by the W3C.

Finally, we load acronyms and bebliography and finishing the article. This
example will create a table of contents similar to this:

1 Introduction . 1

25

1.1 Data Encoding 2
1.2 Message Formats 5
1.3 Protocols . 7
1.4 Protocol Services 9

2 General Inter -ORB Protocol 10
3 Simple Network Management Protocol 13
4 Common Management Information Protocol 15
5 Hypertext Transport Protocol 18

Job done. Now we can use LATEX or PDF-LATEX to compile our article.

6 Implementation: Kernel

First we do announce the package.

1 〈∗skbpackage〉
2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesPackage{skb}[2010/08/04 Sven’s Knowledge Base - SKB for LaTeX v0.5]

Next we process the package’s options. To do that, we define a new if that indi-
cates if we process slides with or without animation, and then we set that new if
accordingly.

4 \newif\if@skbBeamerAnim

5 \@skbBeamerAnimfalse

6 \DeclareOption{beameranim}{\@skbBeamerAnimtrue}

7 \DeclareOption{beamernoanim}{\@skbBeamerAnimfalse}

8 \ProcessOptions\relax

6.1 Required Packages

Now we load a few packages that we need within the SKB. We use keyval to
allow for options in macros, the listings package for all listings, dirtree to show
tree structures similar to a directory tree, ifpdf to establish whether we use PDF
or not, datetime to get the current date and the versions package to allow for
optional text. Note: some packages, such as the package optional, are loaded at a
later stage.

9 \RequirePackage{keyval}

10 \RequirePackage{listings}

11 \RequirePackage{dirtree}

12 \RequirePackage{ifpdf}

13 \RequirePackage{datetime}

14 \RequirePackage{versions}

6.2 Conditiona/Optional Text Support

Now we set everything that we need to provide optional text. Basically, we want
to distinguish between the following modes: text (normal text), slide (for slides),

26

note (for slite annotations), anim (for animated slides, noanim (for non-animated
slides) and memoir (if we use the memoir package).

We start with the memoir package. First we define a configuration value (used
when loading the package optional) and a new if (telling us later if memoir is
loaded or not).

15 \def\skb@cfg@memoir{}

16 \newif\ifSkbMemoirLoaded

Now we test for the memoir package. Note, if this package is loaded after the
SKB, this test and all following actions will fail. If the package is loaded, then
we set the if to true, activate (include) the environment skbmodememoir and set
our configuration value to the string ”, memoir”. If the memoir package is not
loaded, then we set the if to false, deactivate (exclude) the environment skbmode-
memoir and load the package booktabs (to provide the commands \toprule and
\bottomrule.

17 \@ifclassloaded{memoir}

18 {\SkbMemoirLoadedtrue

19 \includeversion{skbmodememoir}

20 \def\skb@cfg@memoir{,memoir}}

21 {\SkbMemoirLoadedfalse

22 \excludeversion{skbmodememoir}

23 \RequirePackage{booktabs}}

Now we check for the style beamerarticle. We define an if, set its default value to
false and test for of the package is loaded (if so, we change the if to true).

24 \newif\ifSkbBeamerArticleLoaded

25 \SkbBeamerArticleLoadedfalse

26 \@ifpackageloaded{beamerarticle}{\SkbBeamerArticleLoadedtrue}{}

Now we check for the beamer package. e define an if, set its default value to false
and test for of the package is loaded (if so, we change the if to true).

27 \newif\ifSkbBeamerLoaded

28 \SkbBeamerLoadedfalse

29 \@ifclassloaded{beamer}{\SkbBeamerLoadedtrue}{}

Now we process the first optional text support. First, we define a configuration
value for beamer animations. If animations are requested (skb package option, see
above), we set that value to the string ”,anim” and activate (include) the environ-
ment skbmodeanim and deactivate (exclude) the environment skbmodenoanim.
If no-animation is requested (skb package option, see above) or as default we
set the value to the string ”,noanim” and deactivate (exclude) the environment
skbmodeanim and activate (include) the environment skbmodenoanim.

30 \def\skb@cfg@beameranim{}

31 \if@skbBeamerAnim

32 \def\skb@cfg@beameranim{,anim}

33 \excludeversion{skbmodenoanim}

27

34 \includeversion{skbmodeanim}

35 \else

36 \def\skb@cfg@beameranim{,noanim}

37 \excludeversion{skbmodeanim}

38 \includeversion{skbmodenoanim}

39 \fi

Now we are ready to provide for all other optional text support. The code con-
figures the environments skbmodetext, skbmodenote and skbmodeslide and loads
the optional package depending if we have the beamer package loaded or have the
package beamerarticle loaded or have none of the two packages loaded. The en-
vironments (package versions) are excluded or included accordingly. The package
optional is loaded with the respective option activated (text, note or slide) and
using the two configuration values we have defined above (these values are either
empty having no effect or contain the option to be included).

40 \ifSkbBeamerLoaded

41 \excludeversion{skbmodetext}

42 \excludeversion{skbmodenote}

43 \includeversion{skbmodeslide}

44 \RequirePackage[slide\skb@cfg@memoir\skb@cfg@beameranim]{optional}

45 \else\ifSkbBeamerArticleLoaded

46 \excludeversion{skbmodetext}

47 \includeversion{skbmodenote}

48 \excludeversion{skbmodeslide}

49 \RequirePackage[note\skb@cfg@memoir\skb@cfg@beameranim]{optional}

50 \else

51 \includeversion{skbmodetext}

52 \excludeversion{skbmodenote}

53 \excludeversion{skbmodeslide}

54 \RequirePackage[text\skb@cfg@memoir\skb@cfg@beameranim]{optional}

55 \fi\fi

6.3 Provide Command

The SKB provides for a few commands that the documentation (and maybe your\SKB

\BibTeX

\DescribeMacro

\cmdprint

\cmd

documents as well) expect to be available. The first two are for typesetting SKB
and BibTeX, the rest are simply usefull.

56 \providecommand{\SKB}{{\scshape SKB}}

57 \providecommand{\BibTeX}{{\scshape Bib}\TeX}

58 \providecommand{\DescribeMacro}[1]{\relax}

59 \providecommand{\cmdprint}[1]{\texttt{\string#1}}

60 \providecommand{\cmd}[1]{\cmdprint{#1}}%

28

6.4 Macro Redefinitions

The SKB documentation uses the package dirtree and we want to have some of
its default settings changed. For the comments, the default configuration we want
is an small, italic serif font in blue; and for the style part we want a type writer
font in black.

61 \renewcommand*\DTstylecomment{\itshape\sffamily\color{blue}\small}

62 \renewcommand*\DTstyle{\ttfamily\textcolor{black}}

6.5 At End of Document

Last not least, we define what should happen at the end of the processing of
the input document. At them moment, we call \skbpdfinfo to set PDF meta
information and \skboptionsused to print out the change log and current set of
SKB configuration options.

63 \AtEndDocument{

64 \skbpdfinfo

65 \skboptionsused

66 }

6.6 Package Configuration

The basic idea of the SKB is that different parts of a document (figures, slides,
repository, published documents) reside in different folders. So the main config-
uration of the SKBis to provide macros to set and get these folders and to load
files from them.

To simplify coding, we introduce some macros that handle configuration infor-
mation. These macros will be used by the SKB package to define, set and get
configuration information. The macros also store the origin of changes to the
configuration information.

This variable is used to temporarily store macros and strings. The value can\skb@tmp

change anytime a new SKB macro is called.

67 \newcommand{\skb@tmp}{}

Is used to store the last location (second argument of \skbconfig) were any\skb@cfg@origlast

configuration information has been changed. The currently possible locations
are skb.sty for default values, skb.cfg for the general configuration file,
skblocal.cfg for the local configuration file and skbconfig when the macro
\skbconfig was called.

68 \newcommand{\skb@cfg@origlast}{skb.sty}

This macro is used to define new configuration information. It defines two new\skb@defCfgVars

macros, one for the name of the configuration information and one for storing a

29

change log. The first argument is the name to be used and the second argument
the default initialisation. For instance, to add the configuration information for
the root path with the default value ‘/doc’ call

\skb@defCfgVars{root }{/ doc}

69 \newcommand{\skb@defCfgVars}[2]{

70 \@namedef{skb@cfg@var@#1}{#2}

71 \@namedef{skb@cfg@orig@#1}{skb.sty}

72 }

Alter configuration information and append the location from where its called\skb@setCfgVars

(second argument of \skbconfig taken from \kb@cfg@origlast) to the change
log.

73 \newcommand{\skb@setCfgVars}[2]{

74 \@namedef{skb@cfg@var@#1}{#2}

75 \expandafter\protected@edef\csname skb@cfg@orig@#1\endcsname%

76 {\csname skb@cfg@orig@#1\endcsname,\space \skb@cfg@origlast}%

77 }

This macro provides access to configuration values. It is used everywhere in the\skb@getCfgVars

SKB to retrieve configuration values.

78 \newcommand{\skb@getCfgVars}[1]{%

79 \csname skb@cfg@var@#1\endcsname%

80 }%

Now we use \skb@defCfgVars to initialise all configuration values the SKB uses.

The first one is the root directory. Everything that the SKB processes should be\skb@cfg@var@root

located below the root. The SKB can currently not handle inputs from directories
outside the root hierarchy (Note: one can call \skbconfig anytime to change the
root directory, but be carefull with potential side effects!). The default value for
the root directory is /doc.

81 \skb@defCfgVars{root}{/doc}

These two values define the directory and the file name for the acronym database.\skb@cfg@var@acr

\skb@cfg@var@acrfile The SKB uses the acronym package and the two macros detail the directory
(acr) and the file (acrfile) where the acronyms can be found. The default for
the directory is database/latex and the default for the file is acronym.

82 \skb@defCfgVars{acr}{database/latex}

83 \skb@defCfgVars{acrfile}{acronym}

These two values define the directory and the file name for the BibTEXdatabase.\skb@cfg@var@bib

\skb@cfg@var@bibfile The two macros detail the directory (bib) and the main file (bibfile) where
bibliographic information can be found. The default for the directory is
database/bibtex and the default for the file is bibliography.tex.

84 \skb@defCfgVars{bib}{database/bibtex}

30

85 \skb@defCfgVars{bibfile}{bibliography}

This value points to the repository directory. The default value is repository.\skb@cfg@var@rep

86 \skb@defCfgVars{rep}{repository}

This value points to the folder with the published documents. The default value\skb@cfg@var@pub

is publish.

87 \skb@defCfgVars{pub}{publish}

This value points to the directory for figures. The default value is figures.\skb@cfg@var@fig

88 \skb@defCfgVars{fig}{figures}

This value points to the directory for slides. The default value is transparencies.\skb@cfg@var@sli

89 \skb@defCfgVars{sli}{transparencies}

6.7 Generic Input Macro

\skb@input@doife is the generic input macro. It expects four arguments. The\skb@input@doife

first argument is the SKB macro that should be used to input a file. The second
argument is the actual file to be loaded, without file extension. The third argument
is the file extension to be used. The fours argument is plain text that should be
added to the help message in case an arror occured while loading the file. If the
second and third argument are empty, we assume that the first argument already
contains directory and file and file extension information.

90 \newcommand{\skb@input@doife}[4]{%

91 \def\filearg{#2}

92 \ifx\filearg\empty%

93 \edef\intfile{\csname #1\endcsname}%

94 \else%

95 \edef\intfile{\csname #1\endcsname{#2}#3}%

96 \fi%

97 \InputIfFileExists{\intfile}{}%

98 {\PackageError{skb}%

99 {file not found: \intfile}%

100 {I did not find the requested file #4,%

101 \MessageBreak please check: \intfile%

102 \MessageBreak <return> to continue, no file loaded}%

103 }%

104 }

6.8 Kernel support for skbinput

This is the actual core functionality of the SKB package: flexibly load files from
various pre-defined locations (folders). We start with a few macros that we can
use later to test options using the package keyval.

31

This macro represents the string ”rep”, which will be later used to test for macro\skb@input@var@rep

options, for instance in \skbinput.

105 \def\skb@input@var@rep{rep}

This macro represents the string ”pub”, which will be later used to test for macro\skb@input@var@pub

options, for instance in \skbinput.

106 \def\skb@input@var@pub{pub}

This macro represents the string ”fig”, which will be later used to test for macro\skb@input@var@fig

options, for instance in \skbinput.

107 \def\skb@input@var@fig{fig}

This macro represents the string ”sli”, which will be later used to test for macro\skb@input@var@sli

options, for instance in \skbinput.

108 \def\skb@input@var@sli{sli}

The next set of macros will load files from various supported folders. All of
them behave identical: they expect argument 1 being the reuqest file and use
\InputIfFileExists to check whether this file exists. If so, they simply input
the file using \input. If not, they use \PackageError to throw an error with
a help message, showing the requested directory and file. The extention .tex is
automatically added to the argument, which in turn should only contain the path
and the basename of the file.

Load a given .tex file from the root directory.\skb@input@doroot

109 \newcommand{\skb@input@doroot}[1]{%

110 \def\intarg{#1}

111 \skb@input@doife{skbfileroot}{\intarg}{.tex}{in given location}

112 }

Load a given .tex file from the repository.\skb@input@dorep

113 \newcommand{\skb@input@dorep}[1]{%

114 \def\intarg{#1}

115 \skb@input@doife{skbfilerep}{\intarg}{.tex}{in the repository}

116 }

Load a given .tex file from the directory with the published documents.\skb@input@dopub

117 \newcommand{\skb@input@dopub}[1]{%

118 \def\intarg{#1}

119 \skb@input@doife{skbfilepub}{\intarg}{.tex}{in the published document folder}

120 }

Load a given .tex file from the figure directory.\skb@input@dofig

121 \newcommand{\skb@input@dofig}[1]{%

122 \def\intarg{#1}

123 \skb@input@doife{skbfilefig}{\intarg}{.tex}{in the figure folder}

32

124 }

Load a given .tex file from the slide directory.\skb@input@dosli

125 \newcommand{\skb@input@dosli}[1]{%

126 \def\intarg{#1}

127 \skb@input@doife{skbfilesli}{\intarg}{.tex}{in the slide folder}

128 }

These two macros are used to load files. \skb@input@call will point to the\skb@input@call

\skb@input@set currently requested load macro (see above). \skb@input@set sets the default load
option in \skb@input@call to \skb@input@doroot. That means if no option is
given for an input directory, then the SKB root directory will be used.

129 \def\skb@input@call{}

130 \newcommand\skb@input@set{%

131 \gdef\skb@input@call{\skb@input@doroot}

132 }

7 Implementation: Configuring the SKB

7.1 Changing Configuration: skbconfig

7.1.1 The Macro Options

The macro provides one option per SKB configuration value. Each option expects
one paramter; the new value. The options are root (for the root directory), acr
(for the acronym directory), acrfile (for the acronym file), bib (for the bibtex
directory), bibfile (for the bibtex file), rep (for the repository directory), pub
(for the directory with the published documents) and sli (for the directory with
slides).

133 \define@key{skbconfig}{root}[]{\skb@setCfgVars{root}{#1}}

134 \define@key{skbconfig}{acr}[]{\skb@setCfgVars{acr}{#1}}

135 \define@key{skbconfig}{acrfile}[]{\skb@setCfgVars{acrfile}{#1}}

136 \define@key{skbconfig}{bib}[]{\skb@setCfgVars{bib}{#1}}

137 \define@key{skbconfig}{bibfile}[]{\skb@setCfgVars{bibfile}{#1}}

138 \define@key{skbconfig}{rep}[]{\skb@setCfgVars{rep}{#1}}

139 \define@key{skbconfig}{pub}[]{\skb@setCfgVars{pub}{#1}}

140 \define@key{skbconfig}{fig}[]{\skb@setCfgVars{fig}{#1}}

141 \define@key{skbconfig}{sli}[]{\skb@setCfgVars{sli}{#1}}

7.1.2 The Macro

This macro allows to change the main directory and path information for the SKB.\skbconfig

It reads the provided options and changes the requested values in the SKB. The

33

macro takes one argument which will set the origin of the configuration change.
If this argument is empty, the origin will be set to skbconfig.

142 \newcommand{\skbconfig}[2][]{

143 \def\intarg{#2}

If no second argument is given, then set \skb@cfg@origlast to the string
”skbconfig” (this macro’s name) otherwise use the second argument to set
\skb@cfg@origlast. In both cases, print out a general warning about the change
of configuration values for later trace or debugging.

144 \ifx\intarg\empty

145 \renewcommand{\skb@cfg@origlast}{skbconfig}

146 \PackageWarning{skb}{load options overwritten by skbconfig}

147 \else

148 \renewcommand{\skb@cfg@origlast}{#2}

149 \PackageWarning{skb}{load options overwritten by #2}

150 \fi

Now use the keyval package to process the options. They will set the respective
configuration values, so there is nothing else to do here.

151 \setkeys{skbconfig}{#1}

152 }

7.2 Changing Configuration: skb.cfg and akblocal.cfg

The SKBcan also be configured using external configuration files. Two files will
be loaded if they exist:

� skb.cfg – Should be used with the installed package in your TEX/LATEX dis-
tribution. If it exists, it will overwrite the default options for directories and
paths.

� skblocal.cfg – Should be used in your local styles/template directory. If
it exsits, it will overwrite the default options as well as the options loaded
with skb.cfg.

We use \InputIfFileExists to test if the configuration file exist. If true, we load
the configuration file and print out a general warning for later trace or debugging.
If not, we simply do nothing.

153 \InputIfFileExists{skb.cfg}{%

154 \PackageWarning{skb}{load options from skb.cfg}

155 }{}

156 \InputIfFileExists{skblocal.cfg}{%

157 \PackageWarning{skb}{load options from skblocal.cfg}

158 }{}

34

7.3 Viewing Configuration: skboptionsused

This macro can be used to print out a message (as package warning), which con-\skboptionsused

tains the change log and the currently used value for all SKB configuration values.

159 \newcommand{\skboptionsused}{

160 \PackageWarningNoLine{skb}{%

161 Options last changed by: \skb@cfg@origlast \MessageBreak

162 Change log: \MessageBreak

163 - root = \skb@cfg@orig@root \MessageBreak

164 - acr = \skb@cfg@orig@acr \MessageBreak

165 - acrfile = \skb@cfg@orig@acrfile \MessageBreak

166 - bib = \skb@cfg@orig@bib \MessageBreak

167 - bibfile = \skb@cfg@orig@bibfile \MessageBreak

168 - rep = \skb@cfg@orig@rep \MessageBreak

169 - pub = \skb@cfg@orig@pub \MessageBreak

170 - fig = \skb@cfg@orig@fig \MessageBreak

171 - sli = \skb@cfg@orig@sli \MessageBreak

172 Last set Path/File Options: \MessageBreak

173 - file root = \skbfileroot{} \MessageBreak

174 - path root = \skbpathroot \MessageBreak

175 - file acr = \skbfileacr \MessageBreak

176 - file bib = \skbfilebib \MessageBreak

177 - path bib = \skbpathbib \MessageBreak

178 - path rep = \skbfilerep{} \MessageBreak

179 - path pub = \skbfilepub{} \MessageBreak

180 - path fig = \skbfilefig{} \MessageBreak

181 - path sli = \skbfilesli{}

182 }

183 }

8 Implementation: Files, Figures and Slides

8.1 Declaring Headings: skbheading

This macro can be used everywhere to declare a new heading and let the SKB de-\skbheading

cide which document level to use. The actual document level must be declared in
the loading file using \skbinput with the option level, otherwise this command
will have no effect.

184 \newcommand{\skbheading}[1]{

185 \ifx\empty\skb@inputLevel

186 #1

187 \else%

188 \skb@inputLevel{#1}%

189 \fi

190 }

35

8.2 Loading TEX files: skbinput

8.2.1 Macro Options

The option from is used to point to one of the following SKB directories: theskbinput: opt from

repository (from=rep), the folder with the published documents (from=pub), the
figure folder (from=fig) or the slide folder (from=sli). The option is optional,
but when used must give one of the those values. The SKB will throw an er-
ror otherwise. The implementation works as follows: if the option is used, its
paramter is evaluated. Depending on which SKB directories is requested, the value
\skb@input@call is set to point to the respective load load macro. For instance,
if the requested directory is the repository (from=rep) then \skb@input@call will
be pointed to \skb@input@dorep.

191 \define@key{skbinput}{from}[]{%

192 \def\intarg{#1}

193 \ifx\skb@input@var@rep\intarg

194 \gdef\skb@input@call{\skb@input@dorep}

195 \else\ifx\skb@input@var@pub\intarg

196 \gdef\skb@input@call{\skb@input@dopub}

197 \else\ifx\skb@input@var@fig\intarg

198 \gdef\skb@input@call{\skb@input@dofig}

199 \else\ifx\skb@input@var@sli\intarg

200 \gdef\skb@input@call{\skb@input@dosli}

201 \else

202 \PackageError{skb}%

203 {Value for option \@tempa\space not supported: \intarg}%

204 {I do not know the value \intarg\space for the option \@tempa.%

205 \MessageBreak Please use either "rep", "pub", "fig" or "sli".%

206 \MessageBreak <return> to continue, no file will be loaded}

207 \fi\fi\fi\fi

208 }

The option level is used to define the document level to be used for the next occu-skbinput: opt level

rance of \skbheading. Supported are all document levels known to LATEX and no
check is done whether the currently used document class supports them or not (for
instance, the article class does not support the document level chapter, however,
memoir supports it even in article mode). The supported paramters for this option
are: book (memoir pacakge), part (memoir pacakge), title (base LATEX classes),
chapter (LATEX book class), section (base LATEX classes), subsection (base
LATEX classes) and subsubsection (base LATEX classes).

The option is optional, but when used must give one of the above described values.
The package will throw an error otherwise.

We start be defining the macros we use later for testing the option. This might be a
slightly awkward way to do it, I am still looking into optimising this code. Anyway,
we define everything we need for book, part, title, chapter, section, subsection and
subsubsection.

36

209 \def\skb@inputLevelBook{book}

210 \def\skb@inputLevelPart{part}

211 \def\skb@inputLevelTitle{title}

212 \def\skb@inputLevelChapter{chapter}

213 \def\skb@inputLevelSection{section}

214 \def\skb@inputLevelSubSection{subsection}

215 \def\skb@inputLevelSubSubSection{subsubsection}

Now we define a macro that will be used to point to the selected input level
(\skb@inputLevel) and a macro that will be used to set the default input level
to be empty (i.e. do nothing, \skb@SetInputLevel).

216 \def\skb@inputLevel{}

217 \newcommand\skb@SetInputLevel{\gdef\skb@inputLevel{}}

And here is the actual definition of the option level. For each supported parame-
ter (introduced and defined above) we test if it was provided calling the option (put
into \\intarg on start) and if so we point \skb@inputLevel to the LATEX macro
realising that document level. For instance, if the requested level is subsection
we point \skb@inputLevel to the LATEX macro \subsection. That means we
can later simply call \skb@inputLevel to instruct LATEX to realise the requested
document level. In case the parameter is not supported, the option will throw an
error along with a help message.

218 \define@key{skbinput}{level}[]{%

219 \def\intarg{#1}

220 \ifx\skb@inputLevelBook\intarg

221 \let\skb@inputLevel=\book

222 \else\ifx\skb@inputLevelPart\intarg

223 \let\skb@inputLevel=\part

224 \else\ifx\skb@inputLevelTitle\intarg

225 \let\skb@inputLevel=\title

226 \else\ifx\skb@inputLevelChapter\intarg

227 \let\skb@inputLevel=\chapter

228 \else\ifx\skb@inputLevelSection\intarg

229 \let\skb@inputLevel=\section

230 \else\ifx\skb@inputLevelSubSection\intarg

231 \let\skb@inputLevel=\subsection

232 \else\ifx\skb@inputLevelSubSubSection\intarg

233 \let\skb@inputLevel=\subsubsection

234 \else

235 \PackageError{skb}%

236 {Value for option \@tempa\space not supported: \intarg}%

237 {I do not know the value \intarg\space for the option \@tempa.%

238 \MessageBreak Please use only: book, part, title, chapter,%

239 \MessageBreak section, subsection or subsubsection.%

240 \MessageBreak <return> to continue, no level will be set and heading is ignored}

241 \fi\fi\fi\fi\fi\fi\fi

242 }

37

8.2.2 The Macro

This macro will load a .tex file from the root directory or from an SKB known\skbinput

directory (if option from is applied). It will also configure the document level
macro for the next use of \skbjeading, if the option level is applied. If level
is not used, then \skbheading will have no effect. The macro first sets the input
level to be empty (\skb@input@set) and the input macro to the default value
(\skb@input@set). The it processes the options (using the keyval pacakge) and
finally calls \skb@input@call to realise the load of the requested file.

243 \newcommand\skbinput[2][]{%

244 \skb@input@set

245 \skb@SetInputLevel

246 \setkeys{skbinput}{#1}

247 \skb@input@call{#2}

248 }

8.3 Loading Figures: skbfigure

8.3.1 Macro Options

This macro supportes a number of options. To be able to test for the applied
options, we first define a few macros that will be used by \skbfigure to realise
the requested figure input. We define one macro per option supported.

249 \def\skb@FigureOptWidth{}

250 \def\skb@FigureOptHeight{}

251 \def\skb@FigureOptCenter{}

252 \def\skb@FigureOptFigure{}

253 \def\skb@FigureOptPosition{}

254 \def\skb@FigureOptCaption{}

255 \def\skb@FigureOptLabel{}

256 \def\skb@FigureOptMultiinclide{}

To be able to reset all of these macros before processing a figure, we define a reset
macro.

257 \newcommand{\skb@figureOptReset}{

258 \gdef\skb@FigureOptWidth{}

259 \gdef\skb@FigureOptHeight{}

260 \gdef\skb@FigureOptCenter{}

261 \gdef\skb@FigureOptFigure{}

262 \gdef\skb@FigureOptPosition{}

263 \gdef\skb@FigureOptCaption{}

264 \gdef\skb@FigureOptLabel{}

265 \gdef\skb@FigureOptMultiinclide{}

266 }

38

Now we define all options for \skbfigure. All options work the same way: they
either take the parameter given and put it into the corresponding macro we defined
above or simply set the corresponding macro to true. This way we can test these
corresponding macros for being empty (default) or not and then decide how to
process the figure input.

The first one is called width used for the width of \resizebox and \ncludegraphics.skbfigure opt width

267 \define@key{skbfigures}{width}[]{%

268 \gdef\skb@FigureOptWidth{#1}

269 }

The option height is used for the height of \resizebox and \ncludegraphics.skbfigure opt height

270 \define@key{skbfigures}{height}[]{%

271 \gdef\skb@FigureOptHeight{#1}

272 }

The option center is used to trigger the center environment (so it only needs toskbfigure opt center

set true).

273 \define@key{skbfigures}{center}[true]{%

274 \gdef\skb@FigureOptCenter{true}

275 }

The option figure is used to trigger the figure environment (so it only needs to setskbfigure opt figure

true).

276 \define@key{skbfigures}{figure}[true]{%

277 \gdef\skb@FigureOptFigure{true}

278 }

The option position is used to fix the position when figure environment is usedskbfigure opt position

279 \define@key{skbfigures}{position}[]{%

280 \gdef\skb@FigureOptPosition{\begin{figure}[#1]}

281 }

The option caption is used to define the caption of the figure used as \captionskbfigure opt caption

282 \define@key{skbfigures}{caption}[]{%

283 \gdef\skb@FigureOptCaption{\caption{#1}}

284 }

The option label is used to define the label of the figure used as \labelskbfigure opt label

285 \define@key{skbfigures}{label}[]{%

286 \gdef\skb@FigureOptLabel{\label{fig:#1}}

287 }

The option multiinclude is a special option to use \multiinclude, automaticallyskbfigure opt multiinclude

deactivates all other options

288 \define@key{skbfigures}{multiinclude}[]{%

39

289 \gdef\skb@FigureOptMultiinclide{#1}

290 }

8.3.2 The Macro

\skbfigure itself expects options (processed using keyval) and the actual file to\skbfigure

be included. The file name should start at the figure root directory.

291 \newcommand{\skbfigure}[2][]{

First, we call our reset function and then use keyval to process the options.

292 \skb@figureOptReset

293 \setkeys{skbfigures}{#1}%

294

Now we process the options figure and position to decide if and how to use the
figure environment. If the figure option has been used, we test if the position
option has been used as well. If figure and position have been used, we call
\skb@FigureOptPosition, which expands to \beginfigure[option]. If only
the figure option was used, we directly invoke \beginfigure.

295 \ifx\skb@FigureOptFigure\empty\else

296 \ifx\skb@FigureOptPosition\empty

297 \begin{figure}

298 \else

299 \skb@FigureOptPosition

300 \fi

301 \fi

Next is the center option. If it was used, we call \begincenter.

302 \ifx\skb@FigureOptCenter\empty\else\begin{center}\fi

303

The core of the macro. If the option multiinclude was not used, we proceed load
the figure as we would usually do with LATEX. If multiinclude was used, then we
simply call \multiinclude with the given overlay information, starting at number
0, using PDF format and scaling everything to \textwidth.

304 \ifx\skb@FigureOptMultiinclide\empty

305 \ifx\skb@FigureOptWidth\empty

306 \ifx\skb@FigureOptHeight\empty

307 \resizebox{!}{!}%

308 {\includegraphics[]%

309 {\skbfilefig{#2}}}

310 \else

311 \resizebox{!}{\skb@FigureOptHeight}%

312 {\includegraphics[height=\skb@FigureOptHeight]%

313 {\skbfilefig{#2}}}

314 \fi

40

315 \else

316 \ifx\skb@FigureOptHeight\empty

317 \resizebox{\skb@FigureOptWidth}{!}%

318 {\includegraphics[width=\skb@FigureOptWidth]%

319 {\skbfilefig{#2}}}

320 \else

321 \resizebox{\skb@FigureOptWidth}%

322 {\skb@FigureOptHeight}%

323 {\includegraphics[%

324 width=\skb@FigureOptWidth,%

325 height=\skb@FigureOptHeight%]%

326 {\skbfilefig{#2}}}

327 \fi

328 \fi

329 \else

330 \resizebox{\textwidth}{!}%

331 {\multiinclude[<\skb@FigureOptMultiinclide>]%

332 [start=0,format=pdf,graphics={width=\textwidth}]%

333 {\skbfilefig{#2}}}

334 \fi

335

If we did use the figure environment, then we check for given caption and label.

336 \ifx\skb@FigureOptFigure\empty\else%

337 \skb@FigureOptCaption

338 \skb@FigureOptLabel

339 \fi%

340

And finally we close the figure and center environments if we did open them earlier.

341 \ifx\skb@FigureOptCenter\empty\else\end{center}\fi

342 \ifx\skb@FigureOptFigure\empty\else\end{figure}\fi

343 }

8.4 Loading Slides: skbslide

This macro allows to load a (configurable) combination of PDF slide and LATEX an-
notation to be loaded in a single call.

8.4.1 Some Extentions

The first is a macro that will maintain the current path and file for loading slides.\skb@slides@callpath

344 \def\skb@slides@callpath{}

The second is a macro to load annotations from the slide folder.\skb@slides@doslinote

345 \newcommand{\skb@slides@doslinote}[1]{%

41

346 \def\intarg{#1}

347 \skb@input@doife{skbfilesli}{\intarg}{.tex}{in the slides folder}

348 }

8.4.2 Macro Options

The option slidefrom is used to point to one of the following SKB directories:\skbslideopt slidefrom

sli (the folder for slides) or pub (the folder for published documents) or rep (the
repository directory). The option is optional, but when used must give one of the
above described values. The SKB will throw an error otherwise.

349 \define@key{skbslide}{slidefrom}[]{%

350 \def\intarg{#1}

351 \ifx\skb@input@var@sli\intarg

352 \let\skb@slides@callpath=\skbfilesli

353 \else\ifx\skb@input@var@pub\intarg

354 \let\skb@slides@callpath=\skbfilepub

355 \else\ifx\skb@input@var@rep\intarg

356 \let\skb@slides@callpath=\skbfilerep

357 \else

358 \PackageError{skb}%

359 {Value for option \@tempa\space not supported: \intarg}%

360 {I do not know the value \intarg\space for the option \@tempa.%

361 \MessageBreak Please use either "pub", "rep" or "sli".%

362 \MessageBreak <return> to continue, no file will be loaded}

363 \fi\fi\fi

364 }

The option notefrom is used to point to one of the following SKB directories:\skbslideopt notefrom

sli (the folder for slides) or pub (the folder for published documents) or rep (the
repository directory). The option is optional, but when used must give one of the
above described values. The SKB will throw an error otherwise.

365 \define@key{skbslide}{notefrom}[]{%

366 \def\intarg{#1}

367 \ifx\skb@input@var@sli\intarg

368 \gdef\skb@input@call{\skb@slides@doslinote}

369 \else\ifx\skb@input@var@pub\intarg

370 \gdef\skb@input@call{\skb@input@dopub}

371 \else\ifx\skb@input@var@rep\intarg

372 \gdef\skb@input@call{\skb@input@dorep}

373 \else

374 \PackageError{skb}%

375 {Value for option \@tempa\space not supported: \intarg}%

376 {I do not know the value \intarg\space for the option \@tempa.%

377 \MessageBreak Please use either "pub", "rep" or "sli".%

378 \MessageBreak <return> to continue, no file will be loaded}

379 \fi\fi\fi

380 }

42

The option annotate requests to load annotations for the slide. If not given, no\skbslideopt annotate

annotations will be loaded.

381 \def\skb@slides@loadnote{}

382 \define@key{skbslide}{annotate}[true]{%

383 \gdef\skb@slides@loadnote{true}

384 }

8.4.3 The Macro

This macro will load the slide and annotation, depending on the options provided.\skbslide

385 \newcommand\skbslide[3][]{%

386 \gdef\skb@slides@loadnote{}

387 \gdef\skb@input@call{\skb@slides@doslinote}

388 \let\skb@slides@callpath=\skbfilesli

389 \setkeys{skbslide}{#1}

390

391 \def\sl{#2}

392 \def\an{#3}

393

394 \ifx\sl\empty\else

395 \begin{figure}[!bh]

396 \resizebox{\textwidth}{!}{\includegraphics[width=\textwidth]{\skb@slides@callpath{#2}}}

397 \end{figure}

398 \fi

399

400 \ifx\skb@slides@loadnote\empty\else

401 \ifx\an\empty

402 \skb@input@call{#2}

403 \clearpage

404 \else

405 \skb@input@call{#3}

406 \clearpage

407 \fi

408 \fi

409 }

This simple macro can help to provide standardised citations on annotation pages.\skbslide

410 \newcommand{\skbslidecite}[2]{\small Source \textit{#2}: \textit{#1} \normalsize}

43

9 Implementation: Filenames, Acronyms and
References

9.1 Path and File Names

These macros are used within the SKB to generate path and filenames for all
known directories and files. They basically provide user-level access to kernel-
level processed configuration date. All path names, except root, are fully qualified
from root. All filenames are fully qualified from root. Macros that expect an
argument use that very argument as the reuqested filename to provide path and
filename.

This macro returns the currently set root path.\skbpathroot

411 \newcommand{\skbpathroot}{\skb@getCfgVars{root}}

This macro takes the given argument and prefixes the root path to it.\skbfileroot

412 \newcommand{\skbfileroot}[1]{\skb@getCfgVars{root}/#1}

This macro returns the file of the acronym database.\skbfileacr

413 \newcommand{\skbfileacr}{\skb@getCfgVars{root}/\skb@getCfgVars{acr}/\skb@getCfgVars{acrfile}}

This macro returns the path to the reference library.\skbpathbib

414 \newcommand{\skbpathbib}{\skb@getCfgVars{root}/\skb@getCfgVars{bib}}

This macro returns the file that is used to load the reference library.\skbfilebib

415 \newcommand{\skbfilebib}{\skb@getCfgVars{root}/\skb@getCfgVars{bib}/\skb@getCfgVars{bibfile}}

This macro takes the provided argument and prefixes the path to the repository\skbfilerep

to it.

416 \newcommand{\skbfilerep}[1]{\skb@getCfgVars{root}/\skb@getCfgVars{rep}/#1}

This macro takes the provided argument and prefixes the path to the published\skbfilepub

documents to it.

417 \newcommand{\skbfilepub}[1]{\skb@getCfgVars{root}/\skb@getCfgVars{pub}/#1}

This macro takes the provided argument and prefixes the path to the figures to it.\skbfilefig

418 \newcommand{\skbfilefig}[1]{\skb@getCfgVars{root}/\skb@getCfgVars{fig}/#1}

This macro takes the provided argument and prefixes the path to the slides to it.\skbfilesli

419 \newcommand{\skbfilesli}[1]{\skb@getCfgVars{root}/\skb@getCfgVars{sli}/#1}

9.2 Loading Acronyms

This macro will load the acronym database. It should be used at the place in your\skbacronyms

44

document were you want the list of acronyms to appear. If the file is not found,
an error is thrown.

420 \newcommand{\skbacronyms}{%

421 \skb@input@doife{skbfileacr}{}{}{for acronym database}

422 }

9.3 Loading Reference Database

This macro will load the reference database. It should be used before you start\skbbibtex

the actual document. If the file is not found, an error is thrown.

423 \newcommand{\skbbibtex}{%

424 \skb@input@doife{skbfilebib}{}{}{for bibtex database}

425 }

10 Implementation: Other useful Macros

10.1 Emphasising Text: skbem

10.1.1 Macro Options

This option will typset the given text for \skbem using italic font.skbem opt italic

426 \def\skb@emCmd{}

427 \define@key{skbem}{italic}[true]{%

428 \gdef\skb@emCmd{\textit}%

429 }%

This option will typset the given text for \skbem using bold font.skbem opt bold

430 \define@key{skbem}{bold}[true]{%

431 \gdef\skb@emCmd{\textbf}%

432 }%

This option will typset the given text for \skbem using the command \skbcodeskbem opt code

(see below).

433 \define@key{skbem}{code}[true]{%

434 \gdef\skb@emCmd{\skbcode}%

435 }%

10.1.2 The Macro

This macro helps to emphasise text in an explicit way (as compared to use font\skbem

commands within the actual text). Simply call with the one of the option to
emphasise text.

45

436 \newcommand{\skbem}[2][]{%

437 \gdef\skb@emCmd{}%

438 \setkeys{skbem}{#1}%

439 \skb@emCmd{#2}%

440 }%

10.2 Emphasising Text: skbcode

This macro is a facade for calling \lstinline with basicstyle set to type writer\skbcode

font. It is used by skbem with the option code to call \lstinline but can also
be called directly.

441 \newcommand{\skbcode}[1]{%

442 \lstinline[basicstyle=\ttfamily]{#1}%

443 }%

10.3 List Environments: skbnotelist and skbnoteenum

These environments simulate \tightlist from the memoir package. They work
identical: call the environment itemize (for skbnotelist) or enumerate (for skb-
noteenum), temoprarily store the values of \parskip and \temsep, set the two
values to 0 (thus minimising the margin between items) and on exit simply restore
these two values

These two variables temporarily store \parskip and \itemsep.\skb@TmpParskp

\skb@TmpItemsep
444 \def\skb@TmpParskp{}

445 \def\skb@TmpItemsep{}

New Environment skbnotelist to minimise the margin between list items.\skbnotelist

446 \newenvironment{skbnotelist}

447 {

448 \begin{itemize}%

449 \ifSkbMemoirLoaded\else

450 \gdef\skb@TmpParskp{\parskip}\setlength{\parskip}{0cm}%

451 \gdef\skb@TmpItemsep{\itemsep}\setlength{\itemsep}{0cm}%

452 \fi

453 }

454 {

455 \end{itemize}%

456 \ifSkbMemoirLoaded\else

457 \setlength{\parskip}{\skb@TmpParskp}%

458 \setlength{\itemsep}{\skb@TmpItemsep}%

459 \fi%

460 }

New Environment skbnotelist to minimise the margin between list items.\skbnoteenum

46

461 \newenvironment{skbnoteenum}%

462 {

463 \begin{enumerate}%

464 \ifSkbMemoirLoaded\else

465 \gdef\skb@TmpParskp{\parskip}\setlength{\parskip}{0cm}%

466 \gdef\skb@TmpItemsep{\itemsep}\setlength{\itemsep}{0cm}%

467 \fi

468 }

469 {

470 \end{enumerate}%

471 \ifSkbMemoirLoaded\else

472 \setlength{\parskip}{\skb@TmpParskp}%

473 \setlength{\itemsep}{\skb@TmpItemsep}%

474 \fi%

475 }

10.4 Acronyms in Footnotes: skbacft

This macro provides some functionality that the acronym package does not offer:\skbacft

introducing acronyms in a footnote (if they are used the first time) or simply
use the short form. I found this is useful when writing books, where sometimes
introducing acronym in the normal text flow somehow disturbs that very flow.

476 \newcommand{\skbacft}[1]{%

477 \ifAC@dua

478 \ifAC@starred\acl*{#1}\else\acl{#1}\fi%

479 \else

480 \expandafter\ifx\csname ac@#1\endcsname\AC@used%

481 \acs{#1}%

482 \else

483 \acs{#1}\footnote{\acf{#1}}%

484 \fi

485 \fi}

10.5 PDF Meta Information: skbpdfinfo and more

This macro allows to set text for the title of the generated PDF.\skbtitle

486 \def\skb@TitleText{}

487 \newcommand{\skbtitle}[1]{\gdef\skb@TitleText{#1}}

This macro allows to set text for the author of the generated PDF.\skbauthor

488 \def\skb@AuthorText{}

489 \newcommand{\skbauthor}[1]{\gdef\skb@AuthorText{#1}}

This macro allows to set text for the subject of the generated PDF.\skbsubject

490 \def\skb@SubjectText{}

491 \newcommand{\skbsubject}[1]{\gdef\skb@SubjectText{#1}}

47

This macro allows to set text for the keywords of the generated PDF.\skbkeywords

492 \def\skb@KeywordsText{}

493 \newcommand{\skbkeywords}[1]{\gdef\skb@KeywordsText{#1}}

This macro will set the PDF information in the generated PDF. It first checks\skbpdfinfo

if we are in PDF mode, and then uses the information from \skb@AuthorText,
\skb@TitleText plus subject and keywords from above.

494 \newcommand{\skbpdfinfo}{%

495 \ifpdf

496 \pdfinfo{

497 /Author (\skb@AuthorText)

498 /Title (\skb@TitleText)

499 /ModDate (D:\pdfdate)

500 /Subject (\skb@SubjectText)

501 /Keywords (\skb@KeywordsText)

502 }

503 \fi

504 }

10.6 Listing Styles and Support

The SKB comes with a few pre-defined styles for the listing package. Most
of these predefined styles use type writer font in scriptsize, arrange a grey box
around the listing and set the keywords to Blue4.

The first style is the for any generic listing without specifying a language and no
line numbers.

505 \lstdefinestyle{generic}

506 {basicstyle=\scriptsize\ttfamily, backgroundcolor=\color[gray]{.9},

507 frame=single, framerule=.5pt, numbers=none,

508 linewidth=0.99\textwidth, xleftmargin=3pt,

509 keywordstyle=\bfseries\color{Blue4},

510 identifierstyle=\bfseries}

This style is designed for listings within tables. It is similar to the generic one
above, except that the definitions for frame and numbers are not used, which seem
to collide with some table environments.

511 \lstdefinestyle{gentab}

512 {basicstyle=\scriptsize\ttfamily, backgroundcolor=\color[gray]{.9},

513 framerule=0pt,

514 linewidth=.86\textwidth, xleftmargin=3pt,

515 keywordstyle=\bfseries\color{Blue4},

516 identifierstyle=\bfseries}

This style is the same as the generic one above, except that it switches on line
numbers and allows extra space for them within the grey box.

48

517 \lstdefinestyle{genericLN}

518 {basicstyle=\scriptsize\ttfamily, backgroundcolor=\color[gray]{.9},

519 frame=single, framerule=.5pt, numbers=left,

520 linewidth=0.99\textwidth, xleftmargin=20pt,

521 keywordstyle=\bfseries\color{Blue4},

522 identifierstyle=\bfseries}

This style is based on the style genricLN, basically using a slightly brighter grey
for the box.

523 \lstdefinestyle{genericLNspecial}

524 {basicstyle=\small\ttfamily, backgroundcolor=\color[gray]{.97},

525 frame=single, framerule=.5pt, numbers=left,

526 linewidth=0.99\textwidth, xleftmargin=20pt,

527 keywordstyle=\bfseries\color{Blue4},

528 identifierstyle=\bfseries}

This style is designed for examples within slides (frames) using the beamer package.

529 \lstdefinestyle{beamer-example}

530 {basicstyle=\scriptsize\ttfamily,

531 frame=single, framerule=0pt, numbers=none,

532 linewidth=0.99\textwidth, xleftmargin=3pt,

533 keywordstyle=\bfseries\color{Blue4},

534 identifierstyle=\bfseries}

This style is designed for examples within slides (frames) using the beamer with
added line numbers.

535 \lstdefinestyle{beamer-exampleLN}

536 {basicstyle=\scriptsize\ttfamily,

537 frame=single, framerule=0pt, numbers=left,

538 linewidth=0.99\textwidth, xleftmargin=20pt,

539 keywordstyle=\bfseries\color{Blue4},

540 identifierstyle=\bfseries}

This style uses the definitions from the generic style above and set the language
to Java.

541 \lstdefinestyle{javaCode}

542 {basicstyle=\scriptsize\ttfamily, backgroundcolor=\color[gray]{.9},

543 frame=single, framerule=0pt, language=JAVA,

544 numbers=none,

545 keywordstyle=\bfseries\color{Blue4},

546 identifierstyle=,

547 linewidth=0.99\columnwidth}

This style can be used to set ‘normal’ style after changing it.

548 \lstdefinestyle{inText}

549 {basicstyle=\ttfamily}

49

11 Experimental Macros

This part of the SKB is experimental. Please do not use it for production code or
important documents. The macros in this section will be moved as soon as they
are stable, or simply removed. They can, as long as they stay in this section, be
changed at any time in future releases.

11.1 Defining new relative Headings: skbheadingudc

When we set the document level with \skbheading, it might be usefull to actually
have a macro that allows to relatively change headings. This is usefull if we have
more than one heading in a repository file, where the first one defines the heading
and will get an associative document level from the calling document while any
subsequent heading might need to go one level up or down. The macro here works
as long as we don’t need to recursively store document levels. So it is not stable
right now and makes only sense if used for single headings.

First, a macro that we use to point to the new heading (rather than the one used
by \skbinput.

550 \def\skb@newHeading{}

11.1.1 Macro Options

Now the option down, which indicates that this heading should be one level down
from the previous one.

551 \define@key{skbheadings}{down}[true]{%

552 \ifx\skb@inputLevel\part

553 \let\skb@newHeading=\chapter

554 \let\skb@inputLevel=\chapter

555 \else\ifx\skb@inputLevel\chapter

556 \let\skb@newHeading=\section

557 \let\skb@inputLevel=\section

558 \else\ifx\skb@inputLevel\section

559 \let\skb@newHeading=\subsection

560 \let\skb@inputLevel=\subsection

561 \else\ifx\skb@inputLevel\subsection

562 \let\skb@newHeading=\subsubsection

563 \let\skb@inputLevel=\subsubsection

564 \else

565 \KV@err{Invalid current level for SkbNewHeading(down),

566 please use: part, chapter, section or subsection}

567 \fi\fi\fi\fi

568 }

50

Now the option up, which indicates that this heading should be one level up from
the previous one.

569 \define@key{skbheadings}{up}[true]{%

570 \ifx\skb@inputLevel\chapter

571 \let\skb@newHeading=\part

572 \let\skb@inputLevel=\part

573 \else\ifx\skb@inputLevel\section

574 \let\skb@newHeading=\chapter

575 \let\skb@inputLevel=\chapter

576 \else\ifx\skb@inputLevel\subsection

577 \let\skb@newHeading=\section

578 \let\skb@inputLevel=\section

579 \else\ifx\skb@inputLevel\subsubsection

580 \let\skb@newHeading=\subsection

581 \let\skb@inputLevel=\subsection

582 \else

583 \KV@err{Invalid current level for SkbNewHeading(up),

584 please use: chapter, section, subsection or subsubsection}

585 \fi\fi\fi\fi

586 }

Now the option last, which indicates that this heading should be on the same level
as the previous one.

587 \define@key{skbheadings}{last}[true]{%

588 \let\skb@newHeading=\skb@inputLevel%

589 }

11.1.2 The Macro

\skbheadingudc

590 \newcommand{\skbheadingudc}[2][]{%

591 \gdef\skb@newHeading{}

592 \setkeys{skbheadings}{#1}%

593 \ifx\empty\skb@newHeading\else%

594 \skb@newHeading{#2}%

595 \fi

596 }

597 〈/skbpackage〉

12 The Configuration File skb.cfg

This file is used to overwrite the default values for the SKB configuration options.
It calles the macro \skbconfig using all possible options of that very macro and

51

providing usefull text as origin of the configuration change skb.cfg. Use this as
template for the local configuration file skblocal.cfg if you need one.

598 〈∗skbcfg〉
599 \skbconfig[root=/doc,

600 acr=database/latex,

601 acrfile=acronym,

602 bib=database/bibtex,

603 bibfile=bibliograhpy,

604 rep=repository,

605 pub=publish,

606 fig=figures,

607 sli=slides

608]{skb.cfg}

609 〈/skbcfg〉

13 The SKB Classes

13.1 The Class skbarticle

This class is an example on how to use the SKB with memoir. I use skbarticle
for my articles. Using this class as a template, one can easily write other classes
or change/overwrite the settings done here.

First, we announce the package and the font definition file.

610 〈∗skbarticle〉
611 \NeedsTeXFormat{LaTeX2e}

612 \ProvidesClass{skbarticle}[2010/08/04 The SKB Article class v0.5]

Now we load the memoir class with the following options:

� 10pt - for 10 point font size
� a4paper - I am European, so A4 paper makes sense here
� extrafontsizes - tbd
� twoside - I want my articles to be set with different even/odd pages
� onecolumn - I don’t necessarily like 2-columns for my articles
� openright - tbd
� article - use memoir as if it is an article

613 \LoadClass[10pt,a4paper,extrafontsizes,twoside,onecolumn,openright,article]{memoir}

Load the SKB.

614 \RequirePackage{skb}

52

13.1.1 Loaded Packages

I prefer BibLaTeX over plain BibTEX, and other parts of the SKB (such as the
LAMP server) produce BibLaTeX. The options are:

� style - is set to alphanumeric, much better to find/remember references. If
writing for IEEE or LNCS, numeric would be the prefered option.

� sorting - is set to none, not needed here.
� hyperref - I want to have hyperef with my citations

615 \RequirePackage[style=alphabetic,sorting=none,hyperref]{biblatex}

Load the acronym package and print only the acronyms actually used in the doc-
ument. This might move into the SKB package later

616 \RequirePackage[printonlyused]{acronym}

Load a view packages that I tend to use quite often:

� etoolbox - etoolbox
� comment - Add comments to your LATEX files
� graphicx - Enhanced graphic support, with key/value interface for include

graphics
� longtable - Helps with tables that span multiple pages
� colortbl - Allows coloured cells in tables

617 \RequirePackage{etoolbox,comment,graphicx,longtable,colortbl}

And some more packages needed quite often:

� textcomp - Special characters, such as ® and ©
� gensymb - Generic characters (math and text mode), such as °, �,�, µ and
W

� wasysym - Adds characters from wasy font, such as ,, 4 and !
� units - Typeset units correctly (and produce ’nice’ fractions), such as 10 m/s

and 1/2
� float - Improves interface for floating environments (such as figures, tables)
� xmpmulti - tbd

618 \RequirePackage{textcomp,gensymb,wasysym,units,xmpmulti,float}

The xcolor package provides driver independent access to all sorts of colour tins,
shades, tones and mixes. I like x11names, as you can tell.

619 \RequirePackage[x11names]{xcolor}

The hyperref package provides layout for hyper references, such as URLs and
references within a document, such as acronyms, citations and the table of con-
tents. We use the option colorlings and then provide the colors we prefer for links
(linkcolor), citations (citecolor) and URLs (urlcolor).

53

620 \RequirePackage[colorlinks,%

621 linkcolor=AntiqueWhite4,%

622 citecolor=SeaGreen4,%

623 urlcolor=RoyalBlue3%

624]{hyperref}

625 %\RequirePackage[colorlinks,linkcolor=blue]{hyperref}

13.1.2 Memoir Options

Not sure, but I don’t think semi-iso-pages are good. So not used right now.

626 %\semiisopage

Change the margins for even and odd pages. Odd to 1cm and even to 1cm.

627 \setlength{\oddsidemargin}{1cm}

628 \setlength{\evensidemargin}{0cm}

Set width and height for the text. At the moment only the width, to 15cm

629 \setlength{\textwidth}{15cm}

630 %\setlength{\textheight}{24cm}

Don’t use chapter numbers in sections, thus making them looking like sections in
a classic article (1 instead of the default 0.1)

631 \def\thesection{\arabic{section}}

Allow table of contents to go up to sub-sections

632 \settocdepth{subsection}

And numbering up to subsubsections

633 \setsecnumdepth{subsubsection}

For lists, memoir provides different layouts. We use tightlists here, but can switch
that to firmlists if needed

634 \tightlists

635 %\firmlists

What are these for? I forgot...

636 \midsloppy

637 \raggedbottom

13.1.3 Misc Settings

Load the bibliographic information using the SKB.

638 \skbbibtex

54

Finally, we do set the sort option for the bibliography to anyt (biblatex)

639 \ExecuteBibliographyOptions{sorting=anyt}

There is no code for \AtBeginDocument and \AtEndDocument, so we are done
now.

640 〈/skbarticle〉

13.2 The Class skbbook

This class is an example on how to use the SKB with memoir. I use skbbook for
my books. Using this class as a template, one can easily write other classes or
change/overwrite the settings done here.

First, we announce the package and the font definition file.

641 〈∗skbbook〉
642 \NeedsTeXFormat{LaTeX2e}

643 \ProvidesClass{skbbook}[2010/08/04 The SKB Book class v0.5]

Now we load the memoir class with the following options:

� 11pt - for 11 point font size
� a4paper - I am European, so A4 paper makes sense here
� extrafontsizes - tbd
� twoside - I want my articles to be set with different even/odd pages
� onecolumn - I don’t necessarily like 2-columns for my articles
� openright - tbd

644 \LoadClass[11pt,a4paper,extrafontsizes,twoside,onecolumn,openright]{memoir}

Load the SKB.

645 \RequirePackage{skb}

13.2.1 Loaded Packages

I prefer BibLaTeX over plain BibTEX, and other parts of the SKB (such as the
LAMP server) produce BibLaTeX. The options are:

� style - is set to alphanumeric, much better to find/remember references. If
writing for IEEE or LNCS, numeric would be the prefered option.

� sorting - is set to none, not needed here.
� hyperref - I want to have hyperef with my citations

646 \RequirePackage[style=alphabetic,sorting=none,hyperref]{biblatex}

55

Load the acronym package and print only the acronyms actually used in the doc-
ument. This might move into the SKB package later

647 \RequirePackage[printonlyused]{acronym}

Load a view packages that I tend to use quite often:

� etoolbox - etoolbox
� comment - Add comments to your LATEX files
� graphicx - Enhanced graphic support, with key/value interface for include

graphics
� longtable - Helps with tables that span multiple pages
� colortbl - Allows coloured cells in tables

648 \RequirePackage{etoolbox,comment,graphicx,longtable,colortbl}

And some more packages needed quite often:

� textcomp - Special characters, such as ® and ©
� gensymb - Generic characters (math and text mode), such as °, �,�, µ and
W

� wasysym - Adds characters from wasy font, such as ,, 4 and !
� units - Typeset units correctly (and produce ’nice’ fractions), such as 10 m/s

and 1/2
� float - Improves interface for floating environments (such as figures, tables)
� xmpmulti - tbd

649 \RequirePackage{textcomp,gensymb,wasysym,units,xmpmulti,float}

The xcolor package provides driver independent access to all sorts of colour tins,
shades, tones and mixes. I like x11names, as you can tell.

650 \RequirePackage[x11names]{xcolor}

The hyperref package provides layout for hyper references, such as URLs and
references within a document, such as acronyms, citations and the table of con-
tents. We use the option colorlings and then provide the colors we prefer for links
(linkcolor), citations (citecolor) and URLs (urlcolor).

651 \RequirePackage[colorlinks,%

652 linkcolor=AntiqueWhite4,%

653 citecolor=SeaGreen4,%

654 urlcolor=RoyalBlue3%

655]{hyperref}

656 %\RequirePackage[colorlinks,linkcolor=blue]{hyperref}

13.2.2 Memoir Options

Not sure, but I don’t think semi-iso-pages are good. So not used right now.

657 %\semiisopage

56

Set the head styles to komalike (the other nice style is memman).

658 \headstyles{komalike}

Change the margins for even and odd pages. Odd to .5cm and even to 0cm.

659 \setlength{\oddsidemargin}{.5cm}

660 \setlength{\evensidemargin}{0cm}

Set width and height for the text. Width to 15cm and length t0 22cm.

661 \setlength{\textwidth}{15cm}

662 \setlength{\textheight}{22cm}

Get half a centimeter back from the topmargin.

663 \setlength{\topmargin}{-.5cm}

Allow table of contents to go up to subsub-sections

664 \settocdepth{subsubsection}

And numbering up to subsubsections

665 \setsecnumdepth{subsubsection}

For lists, memoir provides different layouts. We use tightlists here, but can switch
that to firmlists if needed

666 \tightlists

667 %\firmlists

What are these for? I forgot...

668 \midsloppy

669 \raggedbottom

Chapters shoud look like the memoir veelo style.

670 \chapterstyle{veelo}

13.2.3 Misc Settings

Load the bibliographic information using the SKB.

671 \skbbibtex

Finally, we do set the sort option for the bibliography to anyt (biblatex)

672 \ExecuteBibliographyOptions{sorting=anyt}

There is no code for \AtBeginDocument and \AtEndDocument, so we are done
now.

673 〈/skbbook〉

57

13.3 The Class skbbeamer

This class is an example on how to use the SKB with memoir. I use skbbeamer
for my beamer presentations. Using this class as a template, one can easily write
other classes or change/overwrite the settings done here.

First, we announce the package and the font definition file and process the options.

674 〈∗skbbeamer〉
675 \NeedsTeXFormat{LaTeX2e}

676 \ProvidesClass{skbbeamer}[2010/08/04 The SKB Beamer class v0.5]

677 \DeclareOption{beameranim}{\PassOptionsToPackage{\CurrentOption}{skb}}

678 \DeclareOption{beamernoanim}{\PassOptionsToPackage{\CurrentOption}{skb}}

679 \ProcessOptions\relax

Now we load the xcolor package and then the beamer class. That should load the
x11names some of the SKB listing styles use while not creating any clash between
the packages beamer and xcolor.

680 \RequirePackage[x11names]{xcolor}

681 \LoadClass[x11names]{beamer}

Load the SKB.

682 \RequirePackage{skb}

13.3.1 Loaded Packages

I prefer BibLaTeX over plain BibTEX, and other parts of the SKB (such as the
LAMP server) produce BibLaTeX. The options are:

� style - is set to alphanumeric, much better to find/remember references. If
writing for IEEE or LNCS, numeric would be the prefered option.

� sorting - is set to none, not needed here.
� hyperref - I want to have hyperef with my citations

683 \RequirePackage[style=alphabetic,sorting=none,hyperref]{biblatex}

Load the acronym package and print only the acronyms actually used in the doc-
ument. This might move into the SKB package later

684 \RequirePackage[printonlyused]{acronym}

Load a view packages that I tend to use quite often:

� etoolbox - etoolbox
� comment - Add comments to your LATEX files
� graphicx - Enhanced graphic support, with key/value interface for include

graphics
� longtable - Helps with tables that span multiple pages

58

� colortbl - Allows coloured cells in tables

685 \RequirePackage{etoolbox,comment,graphicx,longtable,colortbl}

And some more packages needed quite often:

� textcomp - Special characters, such as ® and ©
� gensymb - Generic characters (math and text mode), such as °, �,�, µ and
W

� wasysym - Adds characters from wasy font, such as ,, 4 and !
� units - Typeset units correctly (and produce ’nice’ fractions), such as 10 m/s

and 1/2
� float - Improves interface for floating environments (such as figures, tables)
� xmpmulti - tbd

686 \RequirePackage{textcomp,gensymb,wasysym,units,xmpmulti,float}

13.3.2 Misc Settings

Load the bibliographic information using the SKB.

687 \skbbibtex

And some default settings for the dirtree package.

688 \renewcommand*\DTstylecomment{\itshape\sffamily\color{blue}\scriptsize}

689 \setlength{\DTbaselineskip}{10pt}

690 \DTsetlength{0.2em}{1em}{0.2em}{0.4pt}{1.6pt}

691 \renewcommand*\DTstyle{\scriptsize\ttfamily\textcolor{black}}

There is no code for \AtBeginDocument and \AtEndDocument, so we are done
now.

692 〈/skbbeamer〉

13.4 The Class skblncsbeamer

This class is an example on how to use the SKB with memoir. I use skblncsbeamer
for my beamer based handouts. Using this class as a template, one can easily write
other classes or change/overwrite the settings done here.

First, we announce the package and the font definition file.

693 〈∗skblncsbeamer〉
694 \NeedsTeXFormat{LaTeX2e}

695 \ProvidesClass{skblncsbeamer}[2010/08/04 The SKB LNCS Beamer class v0.5]

Just in case there is no \titlepage declared, the beamerarticle wants that.

696 \providecommand{\titlepage}{}

59

Now we load the memoir class with the following options:

� 9pt - for 9 point font size
� a4paper - I am European, so A4 paper makes sense here
� extrafontsizes - tbd
� twoside - I want my articles to be set with different even/odd pages
� onecolumn - I don’t necessarily like 2-columns for my articles
� openright - tbd
� article - use memoir as if it is an article
� x11names - this option will be forwarded to the xcolor/graphics packages

697 \LoadClass[9pt,a4paper,extrafontsizes,twoside,onecolumn,openright,article,x11names]{memoir}

For Beamer handouts, we need the beamerarticle package to load the frame thumb-
nails.

698 \RequirePackage{beamerarticle,pgf}

Load the SKB.

699 \RequirePackage{skb}

13.4.1 Loaded Packages

I prefer BibLaTeX over plain BibTEX, and other parts of the SKB (such as the
LAMP server) produce BibLaTeX. The options are:

� style - is set to alphanumeric, much better to find/remember references. If
writing for IEEE or LNCS, numeric would be the prefered option.

� sorting - is set to none, not needed here.
� hyperref - I want to have hyperef with my citations

700 \RequirePackage[style=alphabetic,sorting=none,hyperref]{biblatex}

Load the acronym package and print only the acronyms actually used in the doc-
ument. This might move into the SKB package later

701 \RequirePackage[printonlyused]{acronym}

Load a view packages that I tend to use quite often:

� etoolbox - etoolbox
� comment - Add comments to your LATEX files
� graphicx - Enhanced graphic support, with key/value interface for include

graphics
� longtable - Helps with tables that span multiple pages
� colortbl - Allows coloured cells in tables

702 \RequirePackage{etoolbox,comment,graphicx,longtable,colortbl}

60

And some more packages needed quite often:

� textcomp - Special characters, such as ® and ©
� gensymb - Generic characters (math and text mode), such as °, �,�, µ and
W

� wasysym - Adds characters from wasy font, such as ,, 4 and !
� units - Typeset units correctly (and produce ’nice’ fractions), such as 10 m/s

and 1/2
� float - Improves interface for floating environments (such as figures, tables)
� xmpmulti - tbd

703 \RequirePackage{textcomp,gensymb,wasysym,units,xmpmulti}

13.4.2 Memoir Options

Not sure, but I don’t think semi-iso-pages are good. So not used right now.

704 %\semiisopage

We do want to list files.

705 \listfiles

Change the margins for even and odd pages. Odd to 0cm and even to 1cm.

706 \setlength{\oddsidemargin}{0cm}

707 \setlength{\evensidemargin}{0cm}

Set width and height for the text. Width to 15cm and height to 24.5cm.

708 \setlength{\textwidth}{15cm}

709 \setlength{\textheight}{24.5cm}

Get half a centimeter back from the topmargin.

710 \setlength{\topmargin}{-1.5cm}

Don’t use chapter numbers in sections, thus making them looking like sections in
a classic article (1 instead of the default 0.1)

711 \def\thesection{\arabic{section}}

Allow table of contents to go up to sub-sections

712 \settocdepth{subsection}

And numbering up to subsubsections

713 \setsecnumdepth{subsubsection}

Set the head styles to komalike (the other nice style is memman).

714 \headstyles{komalike}

61

For lists, memoir provides different layouts. We use tightlists here, but can switch
that to firmlists if needed

715 \tightlists

716 %\firmlists

What are these for? I forgot...

717 \midsloppy

718 \raggedbottom

Set parindent to 0pt and parskip to 0.2pt.

719 \parindent0pt

720 \setlength{\parskip}{0.2cm}

13.4.3 Misc Settings

Do an index.

721 \makeindex

Load the bibliographic information using the SKB.

722 \skbbibtex

Before we start with the actual document, we want the title slide and the table of
contents on the first page.

723 \AtBeginDocument{

724 \resizebox{\textwidth}{!}{\includeslide{title}}

725 \bigskip

726 \tableofcontents*

727 \bigskip

728 \newpage

729 }

There is no code for \AtEndDocument, so we are done now.

730 〈/skblncsbeamer〉

13.5 The Class skblncsppt

This class is an example on how to use the SKB with memoir. I use skblncsppt
for handouts (anotated slides) based on Microsoft’s PPT. Reason for that is that
the PDF export and print routines in Microsoft Office 2010 no longer support
vector images for the slide thumbnails, which renders handouts almost useless. So
I do print the PPT slides into PDF (screen resolution, that way one avoids frames
around the slides), and then LaTeX to generate handouts. Using this class as a
template, one can easily write other classes or change/overwrite the settings done
here.

62

First, we announce the package and the font definition file.

731 〈∗skblncsppt〉
732 \NeedsTeXFormat{LaTeX2e}

733 \ProvidesClass{skblncsppt}[2010/08/04 The SKB LNCS PPT class v0.5]

Now we load the memoir class with the following options:

� 9pt - for 9 point font size
� a4paper - I am European, so A4 paper makes sense here
� extrafontsizes - tbd
� twoside - I want my articles to be set with different even/odd pages
� onecolumn - I don’t necessarily like 2-columns for my articles
� openright - tbd
� article - use memoir as if it is an article

734 \LoadClass[9pt,a4paper,extrafontsizes,twoside,onecolumn,openright,article]{memoir}

Load the SKB.

735 \RequirePackage{skb}

13.5.1 Loaded Packages

I prefer BibLaTeX over plain BibTEX, and other parts of the SKB (such as the
LAMP server) produce BibLaTeX. The options are:

� style - is set to alphanumeric, much better to find/remember references. If
writing for IEEE or LNCS, numeric would be the prefered option.

� sorting - is set to none, not needed here.
� hyperref - I want to have hyperef with my citations

736 \RequirePackage[style=alphabetic,sorting=none,hyperref]{biblatex}

Load the acronym package and print only the acronyms actually used in the doc-
ument. This might move into the SKB package later

737 \RequirePackage[printonlyused]{acronym}

Load a view packages that I tend to use quite often:

� etoolbox - etoolbox
� comment - Add comments to your LATEX files
� graphicx - Enhanced graphic support, with key/value interface for include

graphics
� longtable - Helps with tables that span multiple pages
� colortbl - Allows coloured cells in tables

738 \RequirePackage{etoolbox,comment,graphicx,longtable,colortbl}

63

And some more packages needed quite often:

� textcomp - Special characters, such as ® and ©
� gensymb - Generic characters (math and text mode), such as °, �,�, µ and
W

� wasysym - Adds characters from wasy font, such as ,, 4 and !
� units - Typeset units correctly (and produce ’nice’ fractions), such as 10 m/s

and 1/2
� float - Improves interface for floating environments (such as figures, tables)
� xmpmulti - tbd

739 \RequirePackage{textcomp,gensymb,wasysym,units,xmpmulti,float}

The xcolor package provides driver independent access to all sorts of colour tins,
shades, tones and mixes. I like x11names, as you can tell.

740 \RequirePackage[x11names]{xcolor}

The hyperref package provides layout for hyper references, such as URLs and
references within a document, such as acronyms, citations and the table of con-
tents. We use the option colorlings and then provide the colors we prefer for links
(linkcolor), citations (citecolor) and URLs (urlcolor).

741 \RequirePackage[colorlinks,%

742 linkcolor=AntiqueWhite4,%

743 citecolor=SeaGreen4,%

744 urlcolor=RoyalBlue3%

745]{hyperref}

746 %\RequirePackage[colorlinks,linkcolor=blue]{hyperref}

13.5.2 Memoir Options

Not sure, but I don’t think semi-iso-pages are good. So not used right now.

747 %\semiisopage

We do want to list files.

748 \listfiles

Change the margins for even and odd pages. Odd to 0cm and even to 1cm.

749 \setlength{\oddsidemargin}{0cm}

750 \setlength{\evensidemargin}{0cm}

Set width and height for the text. Width to 15cm and height to 24.5cm.

751 \setlength{\textwidth}{15cm}

752 \setlength{\textheight}{24.5cm}

Get half a centimeter back from the topmargin.

753 \setlength{\topmargin}{-1.5cm}

64

Don’t use chapter numbers in sections, thus making them looking like sections in
a classic article (1 instead of the default 0.1)

754 \def\thesection{\arabic{section}}

Allow table of contents to go up to sub-sections

755 \settocdepth{subsection}

And numbering up to subsubsections

756 \setsecnumdepth{subsubsection}

Set the head styles to komalike (the other nice style is memman).

757 \headstyles{komalike}

For lists, memoir provides different layouts. We use tightlists here, but can switch
that to firmlists if needed

758 \tightlists

759 %\firmlists

What are these for? I forgot...

760 \midsloppy

761 \raggedbottom

We want ruled pages and arabic page numbering.

762 \pagestyle{ruled}

763 \pagenumbering{arabic}

13.5.3 Misc Settings

Do an index.

764 \makeindex

Load the bibliographic information using the SKB.

765 \skbbibtex

There is no code for \AtBeginDocument and \AtEndDocument, so we are done
now.

766 〈/skblncsppt〉

14 History and Change Log

14.1 v0.10 from 06-Jul-2010

� first source forge release of the skb

65

� at this stage a collection of .sty and .tex files
� documentation in a separate pdf file
� included acronym list

14.2 v0.20 from 08-Jul-2010

� first LaTeX package version of the skb
� no changes in the documentation and no change in commands
� removed acronym list

14.3 v0.30 from 14-Jul-2010

� First dtx release of the skb, including the package and all classes introduced
in v0.2

� Integrated parts of the v0.1 pdf as documentation and added documentation
for many commands (not finished though)

� Re-write of all load commands (publish, repository, figures, acronyms, bib)
and rename of all old load commands, new command names use only lower-
cases in their names

� In rewrite, many commands could be removed w/o losing their functionality
� New Commands:

– \skbfigure – load figures with some options
– \skbinput – load files with some options
– \skbheading – set heading text in a file loaded
– \skbheadingudc – set heading relatively to the last heading level (up,

down, current) (experimental)
– \skbem – emphasise code using options
– \skbacft – rename of \SkbAcFT
– \skbacronyms – rename of \SkbLoadAcronyms
– \skbbibtex – rename of \SkbLoadBibtex
– environment skbnotelist – itemize list with \parskip 0 and \itemskip 0

– environment skbnoteenum – enumerate list with \parskip 0 and
\itemskip 0

� Replaced Commands:

– \SkbSetTitle 7→ replaced by \skbheading

– \SkbFigure 7→ removed, closest is \skbfigure (but changed be-
haviour!)

– \listingInline 7→ replaced by \skbem[code]

– \SkbEmIT 7→ replaced by \skbem[italic]

– \SkbEmBF 7→ replaced by \skbem[bold]

– \SkbAcFT 7→ replaced by \skbacft

– \SkbLoadAcronyms 7→ replaced by \skbacronyms

– \SkbLoadBibtex 7→ replaced by \skbbibtex

– \SkbLoadRepository 7→ replaced by \skbinput[from=rep]

66

– \SkbLoadPublish 7→ replaced by \skbinput[from=pub]

– \SkbItemizeBegin 7→ replaced by \begin{skbnotelist

– \SkbItemizeEnd 7→ replaced by \end{skbnotelist

– \SkbEnumerateBegin 7→ replaced by \begin{skbnoteenum

– \SkbEnumerateEnd 7→ replaced by \end{skbnoteenum

– \SkbFigureBeamerTextWidth 7→ replaced by \skbfigure[width=##]

– \SkbFigureBeamerTextHeight 7→ replaced by \skbfigure[height=##]

– \SkbFigureBeamerNoResize 7→ replaced by \skbfigure[]

– \SkbFigureBeamerTextWidthPDFMulti 7→ replaced by \skbfigure[multiinclude=##]

14.4 v0.31 from 20-Jul-2010

� fixed space problem in \skbem

� added error handling to the options skbconfig and skbheading
� added error handling for skbinput related macros
� separated documentation, skb.dtx is now using itself to create the documen-

tation
� removed old code: DeclareOptions (none declared)
� changed a lot in the documentation
� prepare for CTAN submission, i.e. adding README and other things
� New Commands:

– \skbconfig – change the path/file options
– \skbsubject – add subject information for PDF
– \subkeywords – add keyword information for PDF
– \skbpdfinfo – generate PDF information

� Changed Commands:

– \skbfigure – added option for position, moved caption/label from ar-
gument to option

– \title – re-newed to store PDF info information (experimental)
– \author – re-newed to store PDF info information (experimental)

� Replaced Commands:

– \SkbCodeInline 7→ replaced by \skbcode

14.5 v0.32 from 20-Jul-2010

� fastest re-release, I had built-in some problems and excluded important code
in v0.31, fixed now

14.6 v0.4 from 21-Jul-2010

� major re-write of the kernel subsequently the documentation. Most internal
macros will have been changed or removed, some are added. Also re-arranged
the macros in the dtx file to (hopefully) optimise the documentation

67

� added input for skb.cfg and skblocal.cfg to overwrite package options with
configuration files

� added skb.cfg to the distribution
� New Commands:

– \skbpathroot – returns current root path
– \skbfileroot – returns root/#1
– \skbfileacr – returns current acronym path and file
– \skbfilebib – returns current bibtex path and file
– \skbpathbib – returns current bibtex path
– \skbfilerep – returns rep/#1
– \skbfilepub – returns pub/#1
– \skbfilefig – returns fig/#1
– \skbfilesli – returns sli/#1
– \skboptionsused – prints a warning with change log of otptions and

current values

� Changed Commands:

– \skbconfig – added parameter to identify origin of the configuration
change

� Replaced Commands:

– \SkbPathBib 7→ replaced by \skbpathbib

– \SkbPathFig 7→ replaced by \skbfilefig

14.7 v0.5 from 04-Aug-2010

� added example describing how the SKB uses itself to create parts of its
documentation

� removed the redefinition of \title and \author, since they intererred with
the beamer package definitions of these macros. added \skbtitle and
\skbauthor instead.

� added RequiredPackage in the class skbbeamer before loading beamer to
load xcolors with x11names

� added test for nemoir class: if loaded, then skbnotelist and skbnoteenum
will have no effect; if not loaded, then the package booktabs will be loaded
(for top/mid/bottomrule

� added test for beamer package: depending if beamer or beamerarticle are
loaded, the SKB will initialise a few newe ifs

� added required package dirtree, and redefinition of some dirtree styles
� added two options to the SKBpackage: beameranim and beamernoanim
� added the package versions with the environments: skbmodetext, skbmode-

note and skbmodeslide
� added the package optional with the options: text, note, slide, anim and

noanim
� internally, the package optional also provides memoir

68

� changed the documentation, moved manual description to user guide in
folder /doc, moved history.tex into the dtx file and changed most of the
actual documentation (still not finished though)

� skbbeamer: corrected load of beamer package
� skblncsbeamer: moved load of skb after beamerarticle to allow skb to create

proper options
� added \providecommand for \escribeMacro and \cmd, so that we can use

the user-guide in the dtx and stand-alone
� added conditional load of skb.dtx in the driver
� changed the sequence of definitions in the dtx file, again, hopefully the last

time
� Bug Fixes (SF=sourceforge):

– SF#3032749 (skboptionsused doesn’t work) – fixed, changed \skb@setCfgVars

– SF#3032752 (history section for v0.4 has wrong date) – fixed, changed
the heading

– SF#3032754 (skb.cfg missing/empty) – fixed, changed the installer
(skb.ins) to generate it and my local scripts to put it into /run

– SF#3033124 (renewcommand title/author doesn’t work) – fixed, no
renewcommand anymore, two new commands to set author/title for
pdfinfo

– SF#3038935 (skbinput not working w/o from) – fixed, can load from
root directory now

� New Commands:

– \skbtitle – title for PDF info
– \skbauthor – author for PDF info
– \skbslide – load slides and annotations
– \skbslidecite – for citations on slide annotation pages

� Changed Commands:

– \skbinput – added option to load tex files from figures directory (option
fig)

� Replaced Commands:

– \SkbLoadSlideNotes 7→ replaced by \skbslide with option annotate
and first argument only

– \SkbLoadSlideNotesDifferent 7→ replaced by \skbslide with option
annotate and both arguments

– \SkbLoadSlideNotesExtern 7→ replaced by \skbslide with option an-
notate and both arguments and option notefrom set

– \SkbLoadSlideNotes 7→ replaced by \skbslide without annotate and
first argument only

– \SkbLoadSlideOnlyNotes 7→ replaced by \skbslide with option an-
notate and second argument only

– \SkbSlideSource 7→ replaced by \skbslidecite

– \SkbBeamerAnimtrue 7→ replaced by options beameranim and beamer-
noanim for skbbeamer

69

– \SkbBeamerAnimtrue 7→ usage of this if replaced by \opt with anim
and noanim

70

	The Intent
	The Story
	The Short Story
	The Long Story

	The Concept: Separate Things
	Separate Content from Structure: the Repository Folder
	Separating different Parts of a Document
	Bibliography, Acronyms and Figures
	Publications and Content
	The Final Directory Structure

	User Manual
	Getting Started
	The SKB Distribution
	Installation
	Rebuild the SKB from Source
	Confguration: skbconfig
	Confguration: View Options Used
	Creating a Directory Structure

	Files, Figures and Slides
	Files and Headings
	Figures
	Slides

	Filenames, Acronyms and References
	Path and File Names
	Loading Acronyms and Bibliographic Information

	Other useful Macros
	Emphasising Text
	Environments for lists and enumerates
	Listings Styles and Support
	Optional Text – Versions and Optional

	Examples
	Implementation: Kernel
	Required Packages
	Conditiona/Optional Text Support
	Provide Command
	Macro Redefinitions
	At End of Document
	Package Configuration
	Generic Input Macro
	Kernel support for skbinput

	Implementation: Configuring the SKB
	Changing Configuration: skbconfig
	The Macro Options
	The Macro

	Changing Configuration: skb.cfg and akblocal.cfg
	Viewing Configuration: skboptionsused

	Implementation: Files, Figures and Slides
	Declaring Headings: skbheading
	Loading TeX files: skbinput
	Macro Options
	The Macro

	Loading Figures: skbfigure
	Macro Options
	The Macro

	Loading Slides: skbslide
	Some Extentions
	Macro Options
	The Macro

	Implementation: Filenames, Acronyms and References
	Path and File Names
	Loading Acronyms
	Loading Reference Database

	Implementation: Other useful Macros
	Emphasising Text: skbem
	Macro Options
	The Macro

	Emphasising Text: skbcode
	List Environments: skbnotelist and skbnoteenum
	Acronyms in Footnotes: skbacft
	PDF Meta Information: skbpdfinfo and more
	Listing Styles and Support

	Experimental Macros
	Defining new relative Headings: skbheadingudc
	Macro Options
	The Macro

	The Configuration File skb.cfg
	The SKB Classes
	The Class skbarticle
	Loaded Packages
	Memoir Options
	Misc Settings

	The Class skbbook
	Loaded Packages
	Memoir Options
	Misc Settings

	The Class skbbeamer
	Loaded Packages
	Misc Settings

	The Class skblncsbeamer
	Loaded Packages
	Memoir Options
	Misc Settings

	The Class skblncsppt
	Loaded Packages
	Memoir Options
	Misc Settings

	History and Change Log
	v0.10 from 06-Jul-2010
	v0.20 from 08-Jul-2010
	v0.30 from 14-Jul-2010
	v0.31 from 20-Jul-2010
	v0.32 from 20-Jul-2010
	v0.4 from 21-Jul-2010
	v0.5 from 04-Aug-2010

