siunitx — A comprehensive (SI) units package*

Joseph Wright*
Released 2012/08/28

Abstract

Physical quantities have both numbers and units, and each physical quantity

should be expressed as the product of a number and a unit. Typesetting physical
quantities requires care to ensure that the combined mathematical meaning of the
number-unit combination is clear. In particular, the SI units system lays down a
consistent set of units with rules on how these are to be used. However, differ-
ent countries and publishers have differing conventions on the exact appearance of
numbers (and units).
The siunitx package provides a set of tools for authors to typeset quantities in a
consistent way. The package has an extended set of configuration options which
make it possible to follow varying typographic conventions with the same input
syntax. The package includes automated processing of numbers and units, and the
ability to control tabular alignment of numbers.

Contents

1 Introduction 3

2 Installation 3

3 siunitx for the impatient 4

4 Using the siunitx package 5
4.1 Loadingthepackage o L. 5
42 Numbers. 6
43 Unitso 7
4.4 Theunitmacros 8
4.5 Creating new macros 12
4.6 Tabular material 13

*This file describes v2.5h, last revised 2012/08/28.
*E-mail: joseph.wright@morningstar2.co.uk

mailto:joseph.wright@morningstar2.co.uk

Comprehensive details of package control options

5.1 The key-value control system
52 Detectingfonts
53 Fontsettings 0 L.
5.4 Parsingnumbers L oL L o
5.5 Post-processing numbers Lo Lo 0oL
5.6 Printingnumbers L L Lo Lo
5.7 Multi-partnumbers L o o o o
5.8 Lists and ranges of numbers L L 0L
59 Angles e
5.10 Creatingunits L
5.11 Loading additional units
512 Usingunits L
5.13 Numbers withunits o ..
5.14 Tabular material 0 .
515 Symbols
516 Otheroptions
5.17 Local configurations

Localisation

Hints for using siunitx

7.1 Ensuring textor mathoutput. o0 0L,
7.2 Expanding contentintables
7.3 Using siunitx with datatool
7.4 Using units such as pms~ ! inheadings
7.5 A left-aligned column visually centred under a heading
7.6 Symbolsand XgIEX. o
7.7 Scaled document fonts with XgIEX
7.8 Interaction withtexdht.
7.9 Maximising performance,
7.10 Transferring settingstopgf,
7.11 Using siunitx with the cellspace package
7.12 Special considerations for the \kWh unit
7.13 Adding items after the last column of a tabular
7.14 Creating a column with numbers and units
7.15 Tables with headingrows
7.16 Associating a locale with a babel language

Information for those upgrading

8.1 Upgrading from version 1.
8.2 Upgrading from version 2.0 0r2.1
8.3 Upgrading from version2.2.
8.4 Upgrading from version2.3.
8.5 Upgrading from version2.4.

9 Correct application of (SI) units 79

9.1 Units e 8o
9.2 Mathematical meaning 81
9.3 Graphsandtables 82
10 Making suggestions and reporting bugs 85
11 Thanks 86
Change History 87
Index 92

1 Introduction

The correct application of units of measurement is very important in technical applica-
tions. For this reason, carefully-crafted definitions of a coherent units system have been
laid down by the Conférence Générale des Poids et Mesures (CGPM): this has resulted in
the Systeme International d’Unités (SI). At the same time, typographic conventions for
correctly displaying both numbers and units exist to ensure that no loss of meaning
occurs in printed matter.

siunitx aims to provide a unified method for IXTEX users to typeset numbers and
units correctly and easily. The design philosophy of siunitx is to follow the agreed rules
by default, but to allow variation through option settings. In this way, users can use
siunitx to follow the requirements of publishers, co-authors, universities, etc. without
needing to alter the input at all.

2 Installation

The package is supplied in dtx format and as a pre-extracted zip file, siunitx.tds.zip.
The later is most convenient for most users: simply unzip this in your local texmf
directory and run texhash to update the database of file locations. If you want to
unpack the dtx yourself, running tex siunitx.dtx will extract the package whereas
latex siunitx.dtx will extract it and also typeset the documentation.

The package requires IXTEX3 support as provided in the I3kernel and I3packages
bundles. Both of these are available on cTaN as ready-to-install zip files. Suitable
versions are available in MiKTgX 2.9 and TgX Live 2012 (updating the relevant packages
online may be necessary). I4TEX3, and so siunitx, requires the e-TEX extensions: these
are available on all modern TgX systems.

Typesetting the documentation requires a number of packages in addition to those
needed to use the package. This is mainly because of the number of demonstration
items included in the text. To compile the documentation without error, you will need
the packages:

http://www.ctan.org

amsmath
booktabs
cancel
caption
cleveref
colortbl
csquotes
helvet
mathpazo
multirow
listings
pgfplots

xcolor

3 siunitx for the impatient

The package provides the user macros:

\ang [(options)]{(angle)}

\nun [(options)]{(number)}

\s1i [(options)1{{unit)}

\SI [(options)]{(number)} [(pre-unit)]{(unit)}
\numlist [{options)]{(numbers)}

\numrange [(options)]{(numbers) H{ (numberz)}
\SIlist [(options)]{(numbers){(unit)}

\SIrange [(options)]{(number1)}{(number2)}{ (unit)}
\sisetup{(options)}

\tablenun [{options)]{(number)}

plus the S and s column types for decimal alignments and units in tabular environ-
ments. These user macros and column types are designed for typesetting numbers and
units with control of appearance and with intelligent processing.

Numbers are processed with understanding of exponents, complex numbers and
multiplication.

12 345.678 90 \num{12345,67890} \\
1+2i \num{1+-2i} \\
0.3 x 10% \num{ .3e45} \\
1.654 x 2.34 x 3.430 \num{1.654 x 2.34 x 3.430}

The unit system can interpret units given as text to be used directly or as macro-
based units. In the latter case, different formatting is possible.

\si{kg.m.s"{-1}} \\

\si{\kilogram\metre\per\second} \\

\si[per-mode=symbol]
{\kilogram\metre\per\second} \\

\si[per-mode=symbol]
{\kilogram\metre\per\ampere\per\second}

kgms~!

kgms_1

kgm/s

kgm/(As)

Simple lists and ranges of numbers can be handled.

\numlist{10;20;30} \\
\SI1ist{0.13;0.67;0.80}{\milli\metre} \\
\numrange{10}{20} \\
\SIrange{0.13}{0.67}{\milli\metre}

10, 20 and 30

0.13mm, 0.67 mm and 0.80 mm

10 to 20

0.13 mm to 0.67 mm

By default, all text is typeset in the current upright, serif math font. This can
be changed by setting the appropriate options: \sisetup{detect-all} will use the
current font for typesetting.

4 Using the siunitx package

4.1 Loading the package
The package should be loaded in the usual IATEX 2¢ way.
\usepackage{siunitx}

The key-value options described later in this document can be used when loading the
package, for example

\num

\numlist

\numrange

\ang

\usepackage [version-1-compatibility]{siunitx}

to use options from version 1 of the package.

4.2 Numbers

Numbers are automatically formatted by the \num macro. This takes one optional
argument, (options), and one mandatory one, (number). The contents of (number) are
automatically formatted. The formatter removes ‘hard’ spaces (\, and ~), automatically
identifies exponents (by default marked using e, E, d or D) and adds the appropriate
spacing of large numbers. With the standard settings a leading zero is added before a
decimal marker, if needed: both “.” and ’,” are recognised as decimal markers.

123 \num{123%} A\
1234 \num{1234} A\
12345 \num{12345} \\
0.123 \num{0.123} \\
0.1234 \num{0,1234} \\
0.12345 \num{.12345} \\
3.45 x 1074 \num{3.45d-4} \\
—1010 \num{-e10}

Note that numbers are parsed before typesetting, which does have a performance over-
head (only obvious with very large amounts of numerical input). The parser under-
stands a range of input syntaxes, as demonstrated above.

Lists of numbers may be processed using the \numlist function. Each (number)
is given within the list of (numbers) within a brace pair, as the list can have a flexible
length. This function should be used in text mode, a common feature of all of the list
and range functions provided by siunitx."

10, 30, 50 and 70 \numlist{10;30;50;70}

Simple ranges of numbers can be handled using the \numrange function. This acts
in the same way as \num, but inserts a phrase or other text between the two entries.
This function should be used in text mode.

10 to 30 \numrange{10}{30}

Angles can be typeset using the \ang command. The (angle) can be given either as
a decimal number or as a semi-colon separated list of degrees, minutes and seconds,
which is called ‘arc format’ in this document. The numbers which make up an angle
are processed using the same system as other numbers.

'The reason for this restriction is that the separators between items may involve text-mode spaces which
must be able to vanish at line breaks. It is not possible to achieve this effect from inside math mode.

\si

\SI

10° \ang{10} A\

12.3° \ang{12.3} \\
45° \ang{4,53 \\
1°2/3" \ang{1;2;3} \\
1" \ang{;;1} \\
10° \ang{+10;;} \\
—0°1’ \ang{-0;1;}
4.3 Units

The symbol for a unit can be typeset using the \si macro: this provides full control
over output format for the unit. Like the \num macro, \si takes one optional and one
mandatory argument. The unit formatting system can accept two types of input. When
the (si) contains literal items (for example letters or numbers) then siunitx converts .
and ~ into inter-unit product and correctly positions sub- and superscripts specified
using _ and ~. The formatting methods will work with both math and text mode.

kgm/s? \si{kg.m/s"2} \\
gpdynwrnnokmts’l \si{g_{polymer}~mol_{cat}.s~{-1}}

The second operation mode for the \si macro is an ‘interpreted’ system, Here, each
unit, SI multiple prefix and power is given a macro name. These are entered in a
method very similar to the reading of the unit name in English.

\si{\kilo\gram\metre\per\square\second} \\

\si{\gram\per\cubic\centi\metre} \\
\si{\square\volt\cubic\lumen\per\farad} \\
\si{\metre\squared\per\gray\cubic\lux} \\

\si{\henry\second}

kgms 2

gem™3

V2Im3 F~!

m? Gy 1 1x3

Hs

On its own, this is less convenient than the direct method, although it does use meaning
rather than appearance for input. However, the package allows you to define new
unit macros; a large number of pre-defined abbreviations are also supplied. More
importantly, by defining macros for units, instead of literal input, new functionality is
made available. By altering the settings used by the package, the same input can yield
a variety of different output formats. For example, the \per macro can give reciprocal
powers, slashes or be used to construct units as fractions.

Very often, numbers and units are given together. Formally, the value of a quantity
is the product of the number and the unit, the space being regarded as a multiplication
sign [9]. The \SI macro combines the functionality of \num and \si, and makes this
both possible and easy. The (number) and (si) arguments work exactly like those for the
\num and \si macros, respectively. (preunit) is a unit to be typeset before the numerical
value (most likely to be a currency).

\SIlist

\SIrange

\meter

\celsius

Table 1: SI base units.

Unit Macro Symbol
ampere \ampere A
candela \candela cod
kelvin \kelvin K
kilogram \kilogram kg
metre \metre m
mole \mole mol
second \second S
\SI[mode=text]{1.23}{J.mo1"{-1}.K"{-1}} A\
\SI{.23e7}{\candela} A\

\SI[per-mode=symbol]{1.99} [\$]{\per\kilogram} \\
\SI [per-mode=fraction]{1,345}{\coulomb\per\mole}
1.23]mol ™ K™*

0.23 x 107 cd

$1.99/kg

1.345 5

mol

It is possible to set up the unit macros to be available outside of the \SI and \si
functions. This is not the standard behaviour as there is the risk of name clashes (for
example, \bar is used by other packages, and several packages define \degree). Full
details of using ‘stand alone’ units are found in Section 5.10.

Lists of numbers with units can be handled using the \SIlist function. The
behaviour of this function is similar to \numlist, but with the addition of a unit to
each number. This function should be used in text mode.

10m, 30m and 45m \SIlist{10;30;45}{\metre}

Ranges of numbers with units can be handled using the \SIrange function. The
behaviour of this function is similar to \numrange, but with the addition of a unit to
each number. This function should be used in text mode.

10m to 30m \SIrange{10}{30}{\metre}

4.4 The unit macros

The package always defines the basic set of SI units with macro names. This includes
the base SI units, the derived units with special names and the prefixes. A small
number of powers are also given pre-defined names. Full details of units in the SI are
available on-line [1].

The seven base SI units are always defined (Table 1). In addition, the macro \meter
is available as an alias for \metre, for users of US spellings. The full details of the base
units are given in the SI Brochure [3].

The SI also lists a number of units which have special names and symbols [4]:

\percent

\deka

\square
\squared
\cubic
\cubed

Table 2: Coherent derived units in the SI with special names and symbols.

Unit Macro Symbol Unit Macro Symbol
becquerel \becquerel Bq newton \newton N
degree Celsius \degreeCelsius °C ohm \ohm Q
coulomb \coulomb C pascal \pascal Pa
farad \farad F radian \radian rad
gray \gray Gy siemens \siemens S
hertz \hertz Hz sievert \sievert Sv
henry \henry H steradian \steradian sr
joule \joule J tesla \tesla T
katal \katal kat volt \volt \%
lumen \lumen Im watt \watt \W
lux \lux Ix weber \weber Wb

Table 3: Non-SI units accepted for use with the International System of Units.

Unit Macro Symbol
day \day d
degree \degree °
hectare \hectare ha
hour \hour h
litre \litre 1
\liter L
minute (plane angle) \arcminute '
minute (time) \minute min
second (plane angle) \arcsecond "
tonne \tonne t

these are listed in Table 2. As a short-cut for the degree Celsius, the unit \celsius is
defined equivalent to \degreeCelsius .

In addition to the official SI units, siunitx also provides macros for a number of
units which are accepted for use in the SI although they are not SI units. Table 3 lists
the ‘accepted” units [6]. Some units are fundamental physical quantities, and these
are non-SI but can be used within the SI (Table 4, [7]). There are also a set of non-SI
units which are used in certain defined circumstances (Table 5), although they are not
necessarily officially sanctioned [8]. The package also predefines the \percent macro.
While this is not a unit, it is used in the same way in many cases and is therefore
provided on the grounds of realism.

In addition to the units themselves, siunitx provides pre-defined macros for all
of the SI prefixes (Table 6, [5]). The spelling “\deka’ is provided for US users as an
alternative to \deca.

A small number of pre-defined powers are provided as macros. \square and

Table 4: Non-SI units whose values in SI units must be obtained experimentally.

Unit Macro Symbol
astronomical unit \astronomicalunit ua
atomic mass unit \atomicmassunit u
bohr \bohr ag
speed of light \clight co
dalton \dalton Da
electron mass \electronmass Me
electronvolt \electronvolt eV
elementary charge \elementarycharge e
hartree \hartree Ey
reduced Planck constant \planckbar h

Table 5: Other non-SI units.

Unit Macro Symbol
angstrom \angstrom A

bar \bar bar
barn \barn b

bel \bel B
decibel \decibel dB
knot \knot kn
millimetre of mercury \mmHg mmHg
nautical mile \nauticalmile M
neper \neper Np

Table 6: SI prefixes.

Prefix Macro Symbol Power Prefix Macro Symbol Power
yocto \yocto y —24 deca \deca da 1
zepto \zepto z —21 hecto \hecto h 2
atto \atto a —18 kilo \kilo k 3
femto \femto f -15 mega \mega M 6
pico \pico p —12 giga \giga G 9
nano \nano n -9 tera \tera T 12
micro \micro n —6 peta \peta P 15
milli \milli m -3 exa \exa E 18
centi \centi c -2 zetta \zetta zZ 21
deci \deci d -1 yotta \yotta Y 24

10

\tothe
\raiseto

\per

\of

\cancel
\highlight

\cubic are intended for use before units, with \squared and \cubed going after the
unit.

qu \si{\square\becquerel} \\
J?Im~! \si{\joule\squared\per\lumen} \\
3VT3 \si{\cubic\lux\volt\tesla\cubed}

Generic powers can be inserted on a one-off basis using the \tothe and \raiseto
macros. These are the only macros for units which take an argument:

H° \si{\henry\tothe{5}} \\
rad*® \si{\raiseto{4.5}\radian}

Reciprocal powers are indicated using the \per macro. This applies to the next unit
only, unless the sticky-per option is turned on.

Jmol 1 K1 \si{\joule\per\mole\per\kelvin} \\
Jmol 1K \si{\joule\per\mole\kelvin} \\
H-S \si{\per\henry\tothe{5}} \\

Bq_2 \si{\per\square\becquerel}

As for generic powers, generic qualifiers are also available using the \of function:

\si{\kilogram\of{metal}} \\
\SI[qualifier-mode = brackets]
{0.1}{\milli\mole\of{cat}\per\kilogram\of{prod}?}

kgmetal
0.1 mmol(cat) kg(prodf1

If the cancel package is loaded, it is possible to ‘cancel out” units using the \cancel
macro. This applies to the next unit, in a similar manner to a prefix. The \highlight
macro is also available to selectively colour units. Both \cancel and \highlight are of
course outside of the normal semantic meaning of units, but are provided as they may
be useful in some cases.

\si[per-mode = fraction]
{\cancel\kilogram\metre\per\cancel\kilogram\per\second} \\

\si{\highlight{red}\kilogram\metre\per\second} \\

\si[unit-color = purplel
{\highlight{red}\kilogram\metre\per\second}
m

3

kgms~!

kgms™!

When using the unit macros, the package is able to validate the input given. As
part of this, stand-alone unit prefixes can be used with the \si macro

\si{\kilo} \\

\si{\micro} \\

\si[prefixes-as-symbols = falsel{\kilo}
k

u
10°

11

\DeclareSIUnit

\DeclareSIPrefix
\DeclareBinaryPrefix

\DeclareSIPostPower
\DeclareSIPrePower

However, the package only allows a single prefix to be used in this way: multiple
prefixes will give an error, as will trying to give a number without a unit. So the
following will raise errors:

\si{\kilo\gram\micro} \\
\SI{10}{\micro}

4.5 Creating new macros

The various macro components of a unit have to be defined before they can be used.
The package supplies a number of common definitions, but new definitions are also
possible. As the definition of a logical unit should remain the same in a single docu-
ment, these creation functions are all preamble-only.

New units are produced using the \DeclareSIUnit macro. (symbol) can con-
tain literal input, other units, multiple prefixes, powers and \per, although literal text
should not be intermixed with unit macros. Units can be created with (options) from
the usual list understood by siuntix, and apply the specific unit macro only. The (first)
optional argument to \SI and \si can be used to override the settings for the unit. A
typical example is the \degree unit.

3.1415° \SI{3.1415}{\degree}

This is declared in the package as:

\DeclareSIUnit [number-unit-product = {}]
\degree{\SIUnitSymbolDegree}

The spacing can still be altered at point of use:

\SI{67890}{\degree} \\

\SI [number-unit-product = \;]1{67890}{\degree}
67 890°

67890 °

The meaning of a pre-defined unit can be altered by using \DeclareSIUnit after load-
ing siunitx. This will overwrite the original definition with the newer version.

The standard SI powers of ten are defined by the package, and are described
above. However, the user can define new prefixes with \DeclareSIPrefix. The
\DeclareBinaryPrefix function is also available for creating binary prefixes, with the
same syntax ((powers-ten) being replaced by (powers-two)). For example, \kilo and
\kibi are defined:

\DeclareSIPrefix\kilo{k}{3}
\DeclareBinaryPrefix\kibi{Ki}{10}

These create power macros to appear before or after the unit they apply to. For
example, the preamble to a document might contain:

\DeclareSIPrePower\quartic{4}
\DeclareSIPostPower\tothefourth{4}

12

\DeclareSIQualifier

with the functions then used in the document as:

kg4 \si{\kilogram\tothefourth}\\
m* \si{\quartic\metre}

Following the syntax of the other macros, qualifiers are created with the syntax
\DeclareSIQualifier{(qualifier)}{(symbol)}. In contrast to the other parts of a unit,
there are no pre-defined qualifiers. It is therefore entirely up to the user to create these.
For example, to identify the mass of a product created when using a particular catalyst,
the preamble could contain:

\DeclareSIQualifier\polymer{pol}
\DeclareSIQualifier\catalyst{cat}

and then in the body the document could read:

\SI{1.234}{\gram\polymer\per\mole\catalyst\per\hour}
—11-1
h

cat

1.234 g, mol,

4.6 Tabular material

Aligning numbers in tabular content is handled by a new column type, the S column.
This new column type can align material using a number of different strategies, with
the aim of flexibility of output without needing to alter the input. The method used as
standard is to place the decimal marker in the number at the centre of the cell and to
align the material appropriately (Table 7).

\begin{table}
\caption{Standard behaviour of the \texttt{S} column type.}
\label{tab:S:standard}
\centering
\begin{tabular}{S}
\toprule

{Some Values} \\
\midrule
2.3456 \\
34.2345 \\
-6.7835 \\
90.473 \\
5642.5 AR
1.2e3 \\
e4 \\
\bottomrule
\end{tabular}
\end{table}

The S column will attempt to automatically detect material which should be placed
before or after a number, and will maintain the alignment of the numerical data
(Table 8). If the material could be mistaken for part of a number, it should be protected

13

Table 7: Standard behaviour of the S column type.

Some Values

2.3456
34.2345
—6.7835
90.473
5642.5
1.2 x 103
104

Table 8: Detection of surrounding material in an § column.

Some Values

975.31

a

by braces. The use of \color in a table cell will also be detected and will override any
general colour applied by siunitx.

\begin{table}
\caption{Detection of surrounding material in an \texttt{S}
column.}
\label{tab:S:extras}
\centering
\begin{tabular}{S[color=orange]}
\toprule
{Some Values} \\
\midrule
12.34 \\
\color{purple} 975,31 \\
44.268 \textsuperscript{\emph{a}} \\
\bottomrule
\end{tabular}
\end{table}

\tablenum Within more complex tables, aligned numbers may be desirable within the argu-
ment of \multicolumn or \multirow.”> The \tablenum function is available to achieve
alignment in these situations: this is, in effect, a macro version of the S macro (Table 9).

\begin{table}
\caption{Controlling complex alignment with the \cs{tablenum}
macro.}

2Provided by the multirow package

14

Table 9: Controlling complex alignment with the \tablenum macro.

Heading _ Heading Heading Heading

Info More info
Info More info 88.999]j]‘;‘]i
12.34
333.5567 33.435 d‘ac;
4563.21

\label{tab:tablenum}
\centering
\begin{tabular}{lr}
\toprule
Heading & Heading \\
\midrule
Info & More info \\
Info & More info \\
\multicolumn{2}{c}{\tablenum[table-format = 4.4]1{12,34}} \\
\multicolumn{2}{c}{\tablenum[table-format = 4.4]{333.5567}} \\
\multicolumn{2}{c}{\tablenum[table-format = 4.4]{4563.21}} \\
\bottomrule
\end{tabular}
\hfil
\begin{tabular}{lr}
\toprule
Heading & Heading \\
\midrule
\multirow{2}*{\tablenum{88,999}} & aaa \\
& bbb \\
\multirow{2}*{\tablenum{33,435}} & ccc \\
& ddd \\
\bottomrule
\end{tabular}
\end{table}

As a complement to the S column type, siunitx also provides a second column type,
s. This is intended for producing columns of units. This allows both macro-based and
explicit units to be printed easily (Table 10).

\begin{table}
\centering
\caption{Units in tables.}
\label{tab:s:demo}
\begin{tabular}{s}
\toprule
\multicolumn{1}{c}{Unit} \\
\midrule

15

Table 10: Units in tables.

Unit
m?2 s*1
Pa
ms!

Table 11: The s column processes everything.

Unit

\metre\squared\per\second \\
\pascal \\
m.s”{-1} \\
\bottomrule
\end{tabular}
\end{table}

As the \si macro can take literal or macro input, the s column cannot validate the
input. Everything in an s column is therefore passed to the \si macro for processing.
To prevent this, you have to use \multicolumn, as is shown in Table 11. Notice that
braces alone do not prevent processing and colouring of the cell contents.

\begin{table}
\centering
\caption{The \texttt{s} column processes everything.}
\label{tab:s:processing}
\sisetup{color = orange}

\begin{tabular}{ss}
\toprule
{Unit} & \multicolumn{1}{c}{Unit}\\
\midrule

{\si{m"3}} & \multicolumn{1}{c}{\si{m~33}} \\
\kilogram & \kilogram \\
\bottomrule
\end{tabular}
\end{table}

16

\sisetup

detect-weight
detect-family
detect-shape
detect-mode

detect-all
detect-none

5 Comprehensive details of package control options

5.1 The key-value control system

The behaviour of the siunitx package is controlled by a number of key—value options.
These can be given globally using the \sisetup function or locally as the optional
argument to the user macros.

The package uses a range of different key types:

Choice Takes a limited number of choices, which are described separately for each key.
Integer Requires a number as the argument.

Length Requires a length, either as a literal value such as 2.0 cm, or stored as a IXTEX
length, or TgX dimension.

Literal A key which uses the value(s) given directly, either to check input (for ex-
ample the input-digits key) or in output.

Macro Requires a macro, which may need a single argument.

Math Similar to a literal option, but the input is always used in math mode, irre-
spective of other siunitx settings. Thus to text-mode only input must be placed
inside the argument of a \text macro.

Meta These are options which actually apply a number of other options. As such, they
do not take any value at all.

Switch These are on—off switches, and recognise true and false. Giving just the key
name also turns the key on.

The tables of option names use these descriptions to indicate how the keys should be
used.

5.2 Detecting fonts

The siunitx package controls the font used to print output independently of the sur-
rounding material. The standard method is to ignore the surroundings entirely, and to
use the current body fonts. However, the package can detect and follow surrounding
bold, italic and font family changes. The font detection options are summarised in
Table 12.

The options detect-weight and detect-shape set detection of the prevailing
font weight and font shape states, respectively. The font shape state is only checked
if the surrounding material is not in math mode (as math text is always italic). The
detect-shape option is an extension of the older detect-italic option, which is re-
tained for backward compatibility. Detecting the current family (roman, sans serif or
monospaced) is controlled by the detect-family setting, while the current mode (text
or math) is detected using the detect-mode switch. For convenience, all of the preced-
ing options can be turned on or off in one go using the detect-all and detect-none

17

detect-inline-family
detect-inline-weight

detect-display-math

Table 12: Font detection options.

Option name Type Default
detect-all Meta (none)
detect-display-math Switch false
detect-family Switch false

detect-inline-family Choice text
detect-inline-weight Choice text

detect-mode Switch false
detect-none Meta (none)
detect-shape Switch false
detect-weight Switch false

options. As the names indicate, detect-all sets all of detect-weight, detect-family,
detect-shape and detect-mode to true, while detect-none sets all of them to false.

When siunitx macros are used in in-line math, the detection of font weight and
font family can be tuned using the detect-inline-family and detect-inline-weight
options. Both of these take the choices text and math.

\sisetupq{
detect-family = true,
detect-inline-family = math
b4
$\num{1234}$ \\
1234 { \sffamily $\num{1234}$ } \\
1234 $ \mathsf { \num{1234}} $ \\
1234 \sisetup{detect-inline-family = text}
1234 { \sffamily $\num{1234}$ } \\
1234 $ \mathsf { \num{1234} } $ \\
5678 \sisetupq{
5678 detect-weight = true,
5678 detect-inline-weight = math
5678 b4
5678 $\num{5678}$ \\

{ \boldmath $\num{5678}$ } \\

{ \bfseries $\num{5678}$ } \\
\sisetup{detect-inline-weight = text}

{ \boldmath $\num{5678}$ } \\

{ \bfseries $\num{5678}$ }

The font detection system can treat displayed mathematical content in two ways.
This is controlled by the detect-display-math option. When set true, display math-
ematics is treated independently from the body of the document. Thus the local math
font is checked for matching. In contrast, when set false, display material is treated
with the current running text font.3

3Here, ‘display” math means either typeset in TgX’s display math mode or using the AMS display-like

18

mode

math-rm
math-sf
math-tt
text-rm
text-sf
text-tt

Table 13: Font options (also available as number-. .. and unit-... versions).

Option name Type Default

color Literal (none)
math-rm Macro \mathrm
math-sf Macro \mathsf
math-tt Macro \mathtt
mode Choice math
text-rm Macro \rmfamily
text-sf Macro \sffamily
text-tt Macro \ttfamily

\sffamily

Some text

\sisetup{
detect-family,
detect-display-math = true

}
\[x = \SI{1.2e3}{\kilogram\kelvin\candela} \]
More text
\sisetup{detect-display-math = false}
\[y = \SI{3}{\metre\second\mole} \]
Some text
x=12x10°kgKed

More text

y =3msmol

5.3 Font settings

The relationship between font family detected and font family used for output is not
fixed. The font detected by the package in the surrounding material does not have to
match that used for output (Table 13).

The mode option determines whether siunitx uses math or text mode when printing
output. The choices are math and text. When using math mode, text is printed using a
math font whereas in text mode a text font is used. The extent to which this is visually
obvious depends on the fonts in use in the document. This manual uses old style
(lower-case) figures in text mode to highlight the differences. This option has no effect
if the detect-mode switch is true.

If font family detection is inactive, Siunitx uses the font family stored in either
math-rm or text-rm for output. The choice of math or text depends on the mode setting.
If font family detection is active, siunitx may be using a sans serif or monospaced font
for output. In math mode, these are stored in math-sf and math-tt, and for text mode
in text-sf and text-tt. Notice that the detected and output font families can differ.

environments. Simply using \displaystyle will not make otherwise in line math be detected as display
math.

19

color

input-digits
input-decimal-markers
input-signs
input-exponent-markers

input-symbols
input-ignore

\sisetup{detect-family}’

1234 \num{1234} \\

1234 { \sffamily \num{1234} } \\

99m \SI{99}{\metre} \\

99 m \sisetup{math-rm = \mathtt}}
\SI{99}{\metre}

The colour of printed output can be set using the color option. When no colour
is given, printing follows the surrounding text. In contrast, when a specific colour is
given, it is used irrespective of the surroundings. As there are a number of different
colour models available, it is left to user to load color or a more powerful colour package
such as xcolor.

\color{red}

Some text \\
\SI{4}{\metre\per\sievert} \\
More text \\

\SI[color = bluel{4}{\metre\per\sievert} \\
Still red here!

Some text

4mSv!

More text

4mSv1!

Still red here!

Every one of the font options can be given independently for units and number,
with the prefixes unit- and number-, respectively. This allows fine control of output.

\SI{4}{\angstrom} \\
\SI[number-color = green]{4}{\angstrom} \\
\SI[unit-color = green]{4}{\angstrom}
4A
A
4

5.4 Parsing numbers

The package uses a sophisticated parsing system to understand numbers. This allows
siunitx to carry out a range of formatting, as described later. All of the input options
take lists of literal tokens, and are summarised in Table 14.

The basic parts of a number are the digits, any sign and a separator between
the integer and decimal parts. These are stored in the input options input-digits,
input-decimal-markers and input-signs, respectively. More than one input decimal
marker can be used: it will be converted by the package to the appropriate output
marker. Numbers which include an exponent part also require a marker for the ex-
ponent: this again is taken from the range of tokens in the input-exponent-markers
option.

As well as mormal’ digits, the package will interpret symbolic ‘numbers’ (such
as \pi) correctly if they are included in the input-symbols list. Symbols are always

20

input-comparators

input-open-uncertainty
input-close-uncertainty

input-uncertainty-signs

input-complex-roots

Table 14: Options for number parsing.

Option name Type Default

input-close-uncertainty Literal)

input-comparators Literal <=>\approx\ge\geq
\gg\le\leq\1l \sim

input-complex-roots Literal ij

input-decimal-markers Literal .,

input-digits Literal 0123456789

input-exponent-markers Literal dDeE

input-ignore Literal (none)

input-open-uncertainty Literal (

input-protect-tokens Literal \approx\dots\ge\geq\gg\le
\leq\11\mp\pi\pm\sim

input-signs Literal +-\pm\mp

input-uncertainty-signs Literal \pm

input-symbols Literal \pi\dots

parse-numbers Switch true

printed in math mode. Tokens given in the input-ignore list are totally passed over
by siunitx: they will be removed from the input with no further processing.

In addition to signs, siunitx can recognise comparators, such as <. The package
will automatically carry out conversions for <<, >>, <= and >= to \11, \gg, \1le and \ge,
respectively:

<10 \num{< 10} \\
> 5m \SI{>> 5}{\metre} \\
<0.12 \num{\le 0.12}

In some fields, it is common to give the uncertainty in a number in brackets
after the main part of the number, for example ‘1.234(5)’. The opening and clos-
ing symbols used for this type of input are set as input-open-uncertainty and
input-close-uncertainty. Alternatively, the uncertainty may be given as a sep-
arate part following a sign. Which signs are valid for this operation is determined by
the input-uncertainty-signs option. As with other signs, the combination +- will
automatically be converted to \pm internally.

9.99(9) \num{9.99(9)} \\
9.99(9) \num{9.99 +- 0.09} \\
9.99(9) \num{9.99 \pm 0.09} \\
123.0(45) \num{123 +- 4.5} \\
12.3(60) \num{12.3 +- 6}

When using complex numbers in input, the complex root (i = v/—1) is indicated
by one of the tokens stored in input-complex-roots. The parser understands complex

21

input-protect-tokens

parse-numbers

round-mode
round-precision

root symbols given either before or after the associated number (but will detect any
invalid arrangement):

9.99 + 88.8i \num{9.99 + 88.8i} \\
9.99 + 88.8i \num{9.99 + i88.8}

Some symbols can be problematic under expansion in IXIEX 2¢. To allow these to
be used in input without issue, the package can protect these tokens while expanding
input. Symbols to be protected in this way should be listed in input-protect-tokens.

The parse-numbers option turns the entire parsing system on and off. The option
is made available for two reasons. First, if all of the numbers in a document are to
be reproduced ‘as given’, turning off the parser will represent a significant saving in
processing required. Second, it allows the use of arbitrary TgX code in numbers. If the
parser is turned off, the input will be printed in math mode (requiring \text to protect
any text in the number).

\num [parse-numbers = false]l{\sqrt{2}} A\
\SI[parse-numbers = false]{\sqrt{3}}{\metre}
V2

V3m

5.5 Post-processing numbers

Before typesetting numbers, various post-processing steps can be carried out. These
involve adding or removing information from the number in a systematic way; the
options are summarised in Table 15.

The siunitx package can round numerical input to a fixed number of significant
figures or decimal places. This is controlled by the round-mode option, which takes
the choices off, figures and places. When rounding is turned on, the number of
digits used (either decimal places or significant figures in the mantissa) is set using
the round-precision option. No rounding will take place if the number contains an
uncertainty component.

22

round-integer-to-decimal

Table 15: Number post-processing options.

Option name

Type Default

add-decimal-zero
add-integer-zero
explicit-sign
fixed-exponent
minimum-integer-digits
omit-uncertainty
retain-explicit-plus
retain-unity-mantissa
retain-zero-exponent
round-half

Switch true
Switch true
Literal (none)
Integer 0
Integer 0
Switch false
Switch false
Switch true
Switch false

round-integer-to-decimal Switch false

round-minimum
round-mode
round-precision
scientific-notation
zero-decimal-to-intege

Choice up
Literal 0
Choice off
Integer 2

Switch false
r Switch false

1.23456
14.23
0.12345(9)
1.235
14.230
0.12345(9)
1.23

14.2
0.123(9)

\num{1.23456} \\
\num{14.23} \\
\num{0.12345(9)} \\

\sisetup{
round-mode = places,
round-precision = 3

Y

\num{1.23456} \\
\num{14.23} \\
\num{0.12345(9)} \\
\sisetup{
round-mode
round-precision
1Y
\num{1.23456} \\
\num{14.23} \\
\num{0.12345(9)}

figures,
3

The standard settings for siunitx do not add a decimal part if none was given in the
input. The round-integer-to-decimal option can be used to allow this conversion as

part of the rounding process.

1.0
1.00

23

\num[round-mode = figures]{1} \\
\num[round-mode = places]{1} \\
\sisetup{round-integer-to-decimal}
\num[round-mode = figures]{1} \\
\num [round-mode = places]{1}

zero-decimal-to-integer

round-minimum

round-half

add-decimal-zero
add-integer-zero

It may be desirable to convert decimals to integers if the decimal part is zero. This is
set up using the zero-decimal-to-integer option.

20 \num{2.0} \\
21 \num{2.1} \\
5 \sisetup{zero-decimal-to-integer}
21 \num{2.0} \\
\num{2.1}

There are cases in which rounding will result in the number reaching zero. It may
be desirable to show such results as below a threshold value. This can be achieved by
setting round-minimum to the threshold value. There will be no effect when rounding
to a number of significant figures as it is not possible to obtain the value zero in these
cases.

\sisetup{round-mode = places}/

0.01 \num{0.0055} \\
0.00 \num{0.0045} \\
0.01 \sisetup{round-minimum = 0.01}7
< 0.01 \num{0.0055} \\

\num{0.0045}

In cases where the rounded part of a number is exactly half, there are two common
methods for ‘breaking the tie’. The choice of method is determined by the option
round-half, which recognises the choices up and even.

\sisetup{round-mode = places, round-half = upl}/
\num{0.055} \\
\num{0.045} \\
\sisetup{round-half
\num{0.055} \\
\num{0.045}

0.06

0.05

0.06

0.04

It is possible to give real (floating point) numbers as input omitting the decimal
or the integer parts of the number (for example 0.123 or 123.0). The options
add-decimal-zero and add-integer-zero allow the package to ‘fill in’ the missing
Zero.

evenl}/

\num{123.3} \\
\num{456} \\

123.0 \num{.789} \\
456 \sisetup{
0.789 add-decimal-zero = false,
123. add-integer-zero = false,
456 Y
789 \num{123.} \\

\num{456} \\

\num{. 789}

24

minimum-integer-digits Related is the minimum-integer-digits option. This applies only to the integer part
of the mantissa, and ensures that it will contain at least the specified number of digits.
This is achieved by padding with zeros if needed.

\num{123} \\

\num[minimum-integer-digits = 1]{123} \\
\num[minimum-integer-digits = 2]{123} \\
\num[minimum-integer-digits = 3]{123} \\
\num[minimum-integer-digits = 4]{123}

123