
The Scanpages Package

Michael Sharpe

April 24, 2014

1 Brie�y

This package is intended for production of documents based on scanned material in any format accept-

able to pdflatex as a graphic inclusion—eg, pdf, png, jpg. For me, the format has been useful when try-

ing to archive pre-TEX documents without converting them to LATEX source documents but inputting the

scanned pages one by one and adding indexing, hyperlinks, a table of contents (You’ll have to do this using

\addcontentsline{toc}..., and if using hyperref, youmay need to add \phantomsection immediately

before \addcontentsline), footnotes, marginal notes and the like. What makes scanned documents both-

ersome is the irregularities introduced by the scanning process. Pages are sometimes skewed and often

o�set horizontally and/or vertically from one another so each page will potentially need adjustments. The

methods of this package are of two types. First, the package scanpages.sty contains macros to make it

more convenient to perform those adjustments and add adornments. Second, some kind of script is very

useful for making the relevant part of the tex source, if you are handling more than a few pages of scanned

material. For this, there are two almost equivalent scripts included to automate this process as much as

possible, one written in python, the other in AppleScript. (The letter may be installed in TEXShop’s macro

menu for completely self-contained usage.)

2 The LATEX package

Starting with a scanned document, you need to measure four dimensions governed by the region you wish

to import, and decide on a magni�cation factor to apply. The region to import from the scan should ideally

be a bit larger (10pt is a good starting value) than the area typically containing all the data, and perhaps

excluding original page numbers. The four critical dimensions are:

• The x and y coordinates llx, lly of the lower left corner of the image region relative to the lower

left corner of the page;

• the width w of the image region;

• the height h of the image region.

The package is called using these items as options to the package.

\usepackage[scale=.9,llx=8cm,lly=12cm,w=3.5in,h=3.5in]{scanpages}

It is not an error to omit one or more of these values, as default values will be substituted:

• llx and lly default to 1in.

1

• scale defaults to 1.0.

• w defaults to 400pt.

• h defaults to 600pt.

The package creates then a destination box centered horizontally and vertically in the page and runs

\includegraphics with appropriate values whenever it sees entries like

\scanpage[rot=-1,page=1,dx=20,dy=15]{scan-0}

%\index{}

%\put(450,250){Is this assertion correct?}

\endpicture

\newpage

which it interprets as follows:

• rot is an angle of rotation (degrees) in the mathematically positive sense (counter-clockwise) about

the center. You may �nd it easier to enter tanrot=0.175, the tangent of the rotation, as this is more

easily estimated from the picture.

• page=1 selects the �rst page of the �le scan-0.pdf. This option may be omitted if the �le contains

only one page.

• dx nudges the resulting picture to the right by 20bp, and similarly for dy. (Actually, dx nudges the

viewport to the left by 20bp/scale.) If no unit is provided, bp is assumed.

• Any material following the \scanpage line and before \endpicture can be used for index entries,

table of contents entries, footnotes and the like. As the action is all taking place within a LATEX

picture environment, each visible item must be placed in an instruction of the form

\put(x,y){...}

where x and y are the purely numeric coordinates with implied unit 1bp, which matches that re-

quired for dimensions in \includegraphics. For example, \put(10,20){Text and x} makes

an L-R box (no line breaks) from the content Text and x with reference point at is left baseline

and translates that reference point to (10,20), which is 10bp to the right and 20bp above the lower

left corner of the picture. You may also use other LATEX constructs in place of an L-R box—aminipage,

a parbox, a makebox or a graphic.

The page it produces contains, in addition to the scan material and other embellishments, a superimposed

grid with unit 1bp and a black box marking the edge of outline of the destination box. After all adjustments

are complete, the grid may be suppressed by adding the option nogrid to the package option list.

2.1 Resetting the initial choices

The options you chose when loading the package may be changed in the middle of a document. Just

insert

\initviewport{<scale>,<llx>,<lly>,<w>,<h>}

to change your initial choice of options. Eg,

\initviewport{.95,3cm,4cm,8cm,12cm}

2

will in e�ect make scale=.95, llx=3cm, lly=4cm, w=8cm and h=12cm.

3 Making a source entry for each page

Making more than a few entries by copy and paste, updating the indices, is quite boring, and I don’t see

how to manage this in TEX, hence the need for the external scripts. The scripts operate on a �le containing

a small template that can generate what you need. I create a block of text like this:

%Repetitions=100

%Variables={NNN,0:1+1,1:2+-2,2:[-200+300],3:1+1(3)}

%%Begin page NNN0

%\scanpage[rot=0,dx=NNN2,dy=0,page=NNN0]{pic}

%%\index{}

%\endpicture

%\newpage

The %Repetitions= line describes themaximum value of a counter starting at 1 that controls the iteration.

The line %Variables= line is less obvious. The fragment {NNN,0:1+1,1:2+-2,2:[-200+300],3:1+1(3)}

means that variables are named NNN0, NNN1, NNN2, NNN3. Variable NNN0 is initially 1, increments by 1

and so takes successive values 1,2,...,100. Variable NNN1 is initially 2 and increments by -2, while vari-

able NNN2 alternates between -200 for odd counter values and 300 for even counter values. Variable NNN3

takes the same value as NNN0 but prints in a �eld of length 3, padding as necessary on the left with 0’s so

it substitutes successively 001,002,...,099,100. (Note that commas, colons and plus signs are simply

separators and have no arithmetic signi�cance.) Running the script on this �le will append 100 copies, the

�rst two lines omitted, and with one % stripped and variables replaced by their successive values. The �rst

two resulting items appearing as

%Begin page 1

\scanpage[rot=0,dx=-200,dy=0,page=1]{pic}

%\index{}

\endpicture

\newpage

%Begin page 2

\scanpage[rot=0,dx=300,dy=0,page=2]{pic}

%\index{}

\endpicture

\newpage

(The variable NNN1was createdwith descriptor 1:2+-2, has initial value 2, decreasing by 2 at each iteration,

but was never used.)

Alternating variables can be useful with a scan taken from a two-sided document, where o�sets may

be quite di�erent for odd and even pages. Note too that where variables that increment must be integer

valued, alternating variables can be alphanumeric. For example, the descriptor 2:[odd+even]would work

as expected.

Two other special forms are available.

3

• Scanning software often places each scanned page in a separate �le with names like scan-001.jpg,

scan-002.jpg. To cover this case you need an integer variable padded to three places, which could

be produced by the descriptor of the form 4:1+1(3) and a pattern like:

%Repetitions=100

%Variables={NNN,0:1+1,1:2+-2,2:[-200+300],4:1+1(3)}

%%Begin page NNN0

%\scanpage[rot=0,dx=NNN2,dy=0]{scan-NNN4}

%%\index{}

%\endpicture

%\newpage

• If you are scanning two-sided material, you may end up with odd and even pages each saved in

sequences of �les like odd-0001.jpg, odd-0002.jpg, ... ,even-0001.jpg, even-0002.jpg, ... and

in this case it is handy to use a descriptor that “goes up by halves” to give the sequence 0001, 0001,

0002, 0002,.... The descriptor to use is like 3:2+1/2(4), which starts an internal counter at 2,

increments it by 1 at each step, and prints half its value, truncated to an integer, and padded to length

4. (If the (4) had been omitted, there would have been no padding.) So the pattern to replicate would

be like:

%Repetitions=100

%Variables={NNN,0:1+1,1:[20+40],2:[odd+even],3:2+1/2(4)}

%%Begin page NNN0

%\scanpage[rot=0,dx=NNN1,dy=0]{NNN2-NNN3}

%%\index{}

%\endpicture

%\newpage

4 Di�erences between the scripts

The AppleScript is meant to work within TeXShop after installation in the TeXShop Macros Menu—see

instructions below. It works on the selected part of the �le, and its output is placed in the same �le, which

can be part of a larger document. The python script is meant to run from the command line on a �le

containing just the pattern text, and produces output in the same �le, which can then be copied than into

your working .tex document. Eg, if you copied the script into a directory on your PATH and made it

executable

replicate.py myfile.txt

would read input from andwrite output to myfile.txt. (The script has been tested with python 2.7.4 un-

der MacOS 10.9.2. It should work without modi�cation under Linux but may require some minor changes

in Windows using a python from activestate.com.) The two scripts give the same output provided you

use variable names that are identical in case to those the one in the %Variables= line. (In the examples

above, this was always NNN.) The python script is case sensitive, but the AppleScript is not—it will act on

any variant like nnn0 or NnN1 as well.

4

4.1 Installation in TeXShop’s Macros Menu

Select TEXShop’s Macros Menu and choose the top item—Open Macro Editor Then, from the same

menu, choose the second item—Add macros from file ...—and navigate to replicate.plist in this dis-

tribution. When you choose that �le, the AppleScript will be installed under the name Replicate in the

Macros Menu.

5

