
The sagetex package∗

Dan Drake (ddrake@member.ams.org) and others

March 12, 2008

1 Introduction

Why should the Haskell folks have all the fun?
Literate Haskell is a popular way to mix Haskell source code and LATEX doc-

uments. (Well, actually any kind of text or document, but here we’re concerned
only with LATEX.) You can even embed Haskell code in your document that writes
part of your document for you.

The sagetex package allows you to do (roughly) the same thing with the Sage
mathematics software suite (see http://sagemath.org) and LATEX. (If you know
how to write literate Haskell: the \eval command corresponds to \sage, and the
code environment to the sageblock environment.) As a simple example, imagine
in your document you are writing about how to count license plates with three
letters and three digits. With this package, you can write something like this:

There are 26 choices for each letter, and 10 choices for
each digit, for a total of $26^3*10^3 = \sage{26^3*10^3}$
license plates.

and it will produce

There are 26 choices for each letter, and 10 choices for each digit, for
a total of 17576000 license plates.

The great thing is, you don’t have to do the multiplication. Sage does it for you.
This process mirrors one of the great aspects of LATEX: when writing a LATEX
document, you can concentrate on the logical structure of the document and trust
LATEX and its army of packages to deal with the presentation and typesetting.
Similarly, with sagetex, you can concentrate on the mathematical structure (“I
need the product of 263 and 103”) and let Sage deal with the base-10 presentation
of the number.

A less trivial, and perhaps more useful example is plotting. You can include a
plot of the sine curve without manually producing a plot, saving an EPS or PDF
file, and doing the \includegraphics business with the correct filename yourself.
If you write this:

∗This document corresponds to sagetex v1.4, dated 2008/03/12.

1

http://www.haskell.org/haskellwiki/Literate_programming
http://sagemath.org

Here is a lovely graph of the sine curve:

\sageplot{plot(sin(x), x, 0, 2*pi)}

in your LATEX file, it produces

Here is a lovely graph of the sine curve:

2 4 6

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

Again, you need only worry about the logical/mathematical structure of your
document (“I need a plot of the sine curve over the interval [0, 2π] here”), while
sagetex takes care of the gritty details of producing the file and sourcing it into
your document.

But \sageplot isn’t magic I just tried to convince you that sagetex makes
putting nice graphics into your document very easy; let me turn around and warn
you that using graphics well is not easy, and no LATEX package or Python script
will ever make it easy. What sagetex does is make it easy to use Sage to create
graphics; it doesn’t magically make your graphics good, appropriate, or useful.
(For instance, look at the sine plot above—I would say that a truly lovely plot
of the sine curve would not mark integer points on the x-axis, but rather π/2, π,
3π/2, and 2π.)

Till Tantau has some good commentary on the use of graphics in section 6 of
the pgf manual. You should always give careful thought and attention to creating
graphics for your document; I have in mind that a good workflow for using sagetex
for plotting is something like this:

1. Figure out what sort of graphic you need to communicate your ideas or
information.

2. Fiddle around in Sage until you get a graphics object and set of options that
produce the graphic you need.

3. Copy those commands and options into sagetex commands in your LATEX
document.

2

http://www.ctan.org/tex-archive/graphics/pgf/
http://www.ctan.org/tex-archive/graphics/pgf/

The sagetex package’s plotting capabilities don’t help you find those Sage com-
mands to make your lovely plot, but they do eliminate the need to muck around
with saving the result to a file, remembering the filename, including it into your
document, and so on. In section 3, we will see what what we can do with sagetex.

2 Installation

The simplest way to “install” sagetex is to copy the files sagetex.sty and
sagetex.py into the same directory as your document. This will always work,
as LATEX and Python search the current directory for files. It is also convenient
for zipping up a directory to send to a colleague who is not yet enlightened enough
to be using sagetex.

Rather than make lots of copies of those files, you can keep them in one place
and update the TEXINPUTS and PYTHONPATH environment variables appro-
priately.

Perhaps the best solution is to put the files into a directory searched by TEX and
friends, and then edit the sagetex.sty file so that the .sage files we generate
update Python’s path appropriately—look for “Python path” in sagetex.sty.
This is suitable for a system-wide installation, or if you are the kind of person
who keeps a texmf tree in your home directory.

3 Usage

Let’s begin with a rough description of how sagetex works. Naturally the very first
step is to put \usepackage{sagetex} in the preamble of your document. When
you use macros from this package and run LATEX on your file, along with the usual
zoo of auxiliary files, a .sage file is written. This is a Sage source file that uses
the Python module from this package and when you run Sage on that file, it will
produce a .sout file. That file contains LATEX code which, when you run LATEX
on your source file again, will pull in all the results of Sage’s computation.

All you really need to know is that to typeset your document, you need to run
LATEX, then run Sage, then run LATEX again.

Also keep in mind that everything you send to Sage is done within one Sage
session. This means you can define variables and reuse them throughout your
LATEX document; if you tell Sage that foo is 12, then anytime afterwards you can
use foo in your Sage code and Sage will remember that it’s 12—just like in a
regular Sage session.

Now that you know that, let’s describe what macros sagetex provides and
how to use them. If you are the sort of person who can’t be bothered to read
documentation until something goes wrong, you can also just look through the
example.tex file included with this package.1

1Then again, if you’re such a person, you’re probably not reading this, and are already fiddling
with example.tex. . .

3

3.1 Inline Sage

\sage{〈Sage code〉}\sage

takes whatever Sage code you give it, runs Sage’s latex function on it, and puts
the result into your document.

For example, if you do \sage{matrix([[1, 2], [3,4]])^2}, then that macro
will get replaced by

\left(\begin{array}{rr}
7 & 10 \\
15 & 22
\end{array}\right)

in your document—that LATEX code is exactly exactly what you get from doing

latex(matrix([[1, 2], [3,4]])^2)

in Sage.
Note that since LATEX will do macro expansion on whatever you give to \sage,

you can mix LATEX variables and Sage variables! If you have defined the Sage
variable foo to be 12 (using, say, the sageblock environment), then you can do
something like this:

The prime factorization of the current page plus foo is
$\sage{factor(foo + \thepage)}$.

Here, I’ll do just that right now: the prime factorization of the current page plus
12 is 24.

The \sage command doesn’t automatically use math mode for its output, so
be sure to use dollar signs or a displayed math environment as appropriate.

If you are doing modular arithmetic or string formatting and need a percent\percent

sign in a call to \sage (or \sageplot), you can use \percent. Using a bare
percent sign won’t work because LATEX will think you’re starting a comment and
get confused; prefixing the percent sign with a backslash won’t work because then
“\%” will be written to the .sage file and Sage will get confused. The \percent
macro makes everyone happy.

Note that using \percent inside the verbatim-like environments described in
subsection 3.3 isn’t necessary; a literal “%” inside such an environment will get
written, uh, verbatim to the .sage file.

3.2 Graphics and plotting

\sageplot[〈ltx opts〉][〈fmt〉]{〈graphics obj 〉, 〈keyword args〉}\sageplot

plots the given Sage graphics object and runs an \includegraphics command to
put it into your document. It does not have to actually be a plot of a function; it
can be any Sage graphics object. The options are described in Table 1.

This setup allows you to control both the Sage side of things, and the LATEX
side. For instance, the command

4

Option Description
〈ltx options〉 Any text here is passed directly into the op-

tional arguments (between the square brackets) of
an \includegraphics command. If not specified,
“width=.75\textwidth” will be used.

〈fmt〉 You can optionally specify a file extension here; Sage
will then try to save the graphics object to a file with
extension fmt. If not specified, sagetex will save to
EPS and PDF files.

〈graphics obj 〉 A Sage object on which you can call .save() with a
graphics filename.

〈keyword args〉 Any keyword arguments you put here will all be put
into the call to .save().

Table 1: Explanation of options for the \sageplot command.

\sageplot[angle=30, width=5cm]{plot(sin(x), 0, pi), axes=False,
chocolate=True}

will run the following command in Sage:

sage: plot(sin(x), 0, pi).save(filename=autogen, axes=False,
chocolate=True)

Then, in your LATEX file, the following command will be issued automatically:

\includegraphics[angle=30, width=5cm]{autogen}

You can specify a file format if you like. This must be the second optional
argument, so you must use empty brackets if you’re not passing anything to
\includegraphics:

\sageplot[][png]{plot(sin(x), x, 0, pi)}

The filename is automatically generated, and unless you specify a format, both
EPS and PDF files will be generated. This allows you to freely switch between
using, say, a DVI viewer (many of which have support for automatic reloading,
source specials and make the writing process easier) and creating PDFs for posting
on the web or emailing to colleagues.

If you ask for, say, a PNG file, keep in mind that ordinary latex and DVI
files have no support for DVI files; sagetex detects this and will warn you that it
cannot find a suitable file if using latex. If you use pdflatex, there will be no
problems because PDF files can include PNG graphics.

When sagetex cannot find a graphics file, it inserts this into your document:

??

5

That’s supposed to resemble the image-not-found graphics used by web browsers
and use the traditional “??” that LATEX uses to indicate missing references.

You needn’t worry about the filenames; they are automatically generated and
will be put into the directory sage-plots-for-filename.tex. You can safely
delete that directory anytime; if sagetex can’t find the files, it will warn you to
run Sage to regenerate them.

WARNING! When you run Sage on your .sage file, all files in the
sage-plots-for-filename.tex directory will be deleted! Do not put any files
into that directory that you do not want to get automatically deleted.

3.2.1 3D plotting

Right now there is, to put it nicely, a bit of tension between the sort of graphics
formats supported by latex and pdflatex, and the graphics formats supported
by Sage’s 3D plotting systems.2 LATEX is happiest, and produces the best output,
with EPS and PDF files, which are vector formats. Tachyon, Sage’s 3D plotting
system, produces bitmap formats like BMP and PNG.

Because of this, when producing 3D plots with \sageplot, you must specify
a file format. The PNG format is compressed and lossless and is by far the best
choice, so use that whenever possible. (Right now, it is always possible.) If you
do not specify a file format, or specify one that Tachyon does not understand, it
will produce files in the Targa format with an incorrect extension and LATEX (both
latex and pdflatex) will be profoundly confused. Don’t do that.

Since latex does not support PNGs, when using 3D plotting (and therefore a
bitmap format like PNG), sagetex will always issue a warning about incompatible
graphics if you use latex, provided you’ve processed the .sage file and the PNG
file exists. (Running pdflatex on the same file will work, since PDF files can
include PNG files.)

The imagemagick option As a response to the above issue, the sagetex package
has one option: imagemagick. If you specify this option in the preamble of your
document with the usual “\usepackage[imagemagick]{sagetex}”, then when
you are compiling your document using latex, any \sageplot command which
requests a non-default format will cause the sagetex Python script to convert the
resulting file to EPS using the Imagemagick convert utility. It does this by exe-
cuting “convert filename.EXT filename.eps” in a subshell. It doesn’t add any
options, check to see if the convert command exists or belongs to Imagemagick—it
just runs the command.

The resulting EPS files are not very high quality, but they will work. This
option is not intended to produce good graphics, but to allow you to see your
graphics when you use latex and DVI files while writing your document.

2We use a typewriter font here to indicate the binaries which produce DVI and PDF files,
respectively, as opposed to “LATEX” which refers to the entire typesetting system.

6

But that’s not good enough! The \sageplot command tries to be both
flexible and easy to use, but if you are just not happy with it, you can always
do things manually: inside a sagesilent environment (see the next section) you
could do

your special commands
x = your graphics object
x.save(filename=myspecialfile.ext, options, etc)

and then, in your source file, do your own \includegraphics command. The
sagetex package gives you full access to Sage and Python and doesn’t turn off
anything in LATEX, so you can always do things manually.

3.3 Verbatim-like environments

The sagetex package provides several environments for typesetting and executing
Sage code.

Any text between \begin{sageblock} and \end{sageblock} will be typesetsageblock

into your file, and also written into the .sage file for execution. This means you
can do something like this:

\begin{sageblock}
var(’x’)
f = sin(x) - 1
g = log(x)
h = diff(f(x) * g(x), x)

\end{sageblock}

and then anytime later write in your source file

We have $h(2) = \sage{h(2)}$, where h is the derivative of
the product of f and g.

and the \sage call will get correctly replaced by sin (1)−1. You can use any Sage or
Python commands inside a sageblock; all the commands get sent directly to Sage.

This environment is like sageblock, but it does not typeset any of the code;sagesilent

it just writes it to the .sage file. This is useful if you have to do some setup in
Sage that is not interesting or relevant to the document you are writing.

This environment is the opposite of the one above: whatever you type willsageverbatim

be typeset, but not written into the .sage file. This allows you to typeset psue-
docode, code that will fail, or take too much time to execute, or whatever.

Logically, we now need an environment that neither typesets nor executes yourcomment

Sage code. . . but the verbatim package, which is always loaded when using sage-
tex, provides such an environment: comment. Another way to do this is to put

7

stuff between \iffalse and \fi.

There is one final bit to our verbatim-like environments: the indentation. The\sagetexindent

sagetex package defines a length \sagetexindent, which controls how much the
Sage code is indented when typeset. You can change this length however you like
with \setlength: do \setlength{\sagetexindent}{6ex} or whatever.

4 Other notes

Here are some other notes on using sagetex.

Using Beamer The beamer package does not play nicely with verbatim-like
environments. To use code block environments in a beamer presentation, do:

\begin{frame}[fragile]
\begin{sageblock}
sage stuff
more stuff \end{sageblock}
\end{frame}

For some reason, beamer inserts an extra line break at the end of the environment;
if you put the \end{sageblock} on the same line as the last line of your code, it
works properly.

Thanks to Franco Saliola for reporting this.

Plotting from Mathematica, Maple, etc. Sage can use Mathematica,
Maple, and friends and can tell them to do plotting, but since it cannot get those
plots into a Sage graphics object, you cannot use \sageplot to use such graphics.
You’ll need to use the method described in “But that’s not good enough!” (page 7)
with some additional bits to get the directory right—otherwise your file will get
saved to someplace in a hidden directory.

For Mathematica, you can do something like this inside a sagesilent or
sageblock environment:

mathematica(’plot = commands to make your plot’)
mathematica(’Export["%s/graphicsfile.eps", plot]’ % os.getcwd())

then put \includegraphics[opts]{graphicsfile} in your file.
For Maple, you’ll need something like

maple(’plotsetup(ps, plotoutput=‘%s/graphicsfile.eps‘, \
plotoptions=‘whatever‘);’ % os.getcwd())

maple(’plot(function, x=1..whatever);’)

and then \includegraphics as necessary.
These interfaces, especially when plotting, can be finicky. The above com-

mands are just meant to be a starting point.

8

5 Implementation

There are two pieces to this package: a LATEX style file, and a Python module.
They are mutually interdependent, so it makes sense to document them both here.

5.1 The style file

All macros and counters intended for use internal to this package begin with “ST@”.
Let’s begin by loading some packages. The key bits of sageblock and friends

are stol—um, adapted from the verbatim package manual. So grab the verbatim
package.
1 \RequirePackage{verbatim}

Unsurprisingly, the \sageplot command works poorly without graphics support.
2 \RequirePackage{graphicx}

The makecmds package gives us a \provideenvironment which we need, and we
use ifpdf and ifthen in \sageplot so we know what kind of files to look for.
3 \RequirePackage{makecmds}

4 \RequirePackage{ifpdf}

5 \RequirePackage{ifthen}

Next set up the counters and the default indent.
6 \newcounter{ST@inline}

7 \newcounter{ST@plot}

8 \setcounter{ST@inline}{0}

9 \setcounter{ST@plot}{0}

10 \newlength{\sagetexindent}

11 \setlength{\sagetexindent}{5ex}

\ST@epsim By default, we don’t use ImageMagick to create EPS files when a non-default
format is specified.
12 \newcommand{\ST@epsim}{False}

The expansion of that macro gets put into a Python function call, so it works to
have it be one of the strings “True” or “False”.

Declare the imagemagick option and process it:
13 \DeclareOption{imagemagick}{\renewcommand{\ST@epsim}{True}}

14 \ProcessOptions\relax

The \relax is a little incantation suggested by the “LATEX 2ε for class and package
writers” manual, section 4.7.

It’s time to deal with files. Open the .sage file:
15 \newwrite\ST@sf

16 \immediate\openout\ST@sf=\jobname.sage

\ST@wsf We will write a lot of stuff to that file, so make a convenient abbreviation, then
use it to put the initial commands into the .sage file. If you know what directory
sagetex.py will be kept in, delete the \iffalse and \fi lines in the generated

9

style file (don’t do it in the .dtx file) and change the directory appropriately. This
is useful if you have a texmf tree in your home directory or are installing sagetex
system-wide; then you don’t need to copy sagetex.py into the same directory as
your document.
17 \newcommand{\ST@wsf}[1]{\immediate\write\ST@sf{#1}}

18 \iffalse

19 %% To get .sage files to automatically change the Python path to find

20 %% sagetex.py, delete the \iffalse and \fi lines surrounding this and

21 %% change the directory below to where sagetex.py can be found.

22 \ST@wsf{import sys}

23 \ST@wsf{sys.path.insert(0, ’directory with sagetex.py’)}

24 \fi

25 \ST@wsf{import sagetex}

26 \ST@wsf{sagetex.openout(’\jobname’)}

Pull in the .sout file if it exists, or do nothing if it doesn’t. I suppose we could do
this inside an AtBeginDocument but I don’t see any particular reason to do that.
It will work whenever we load it.
27 \InputIfFileExists{\jobname.sout}{}{}

Now let’s define the cool stuff.

\sage This macro combines \ref, \label, and Sage all at once. First, we use Sage to
get a LATEX representation of whatever you give this function. The Sage script
writes a \newlabel line into the .sout file, and we read the output using the \ref
command. Usually, \ref pulls in a section or theorem number, but it will pull in
arbitrary text just as well.

The first thing it does it write its argument into the .sage file, along with
a counter so we can produce a unique label. We wrap a try/except around the
function call so that we can provide a more helpful error message in case something
goes wrong. (In particular, we can tell the user which line of the .tex file contains
the offending code.)
28 \newcommand{\sage}[1]{%

29 \ST@wsf{try:}%

30 \ST@wsf{ sagetex.inline(\theST@inline, #1)}%

31 \ST@wsf{except:}%

32 \ST@wsf{ sagetex.goboom(\the\inputlineno)}%

Our use of \newlabel and \ref seems awfully clever until you load the hyperref
package, which gleefully tries to hyperlink the hell out of everything. This is great
until it hits one of our special \newlabels and gets deeply confused. Fortunately
the hyperref folks are willing to accomodate people like us, and give us a NoHyper
environment.
33 \begin{NoHyper}\ref{@sagelabel\theST@inline}\end{NoHyper}%

Now check to see if the label has already been defined. (The internal implementa-
tion of labels in LATEX involves defining a function “r@@labelname”.) If it hasn’t,
we set a flag so that we can tell the user to run Sage on the .sage file at the end
of the run. Finally, step the counter.

10

34 \@ifundefined{r@@sagelabel\theST@inline}{\gdef\ST@rerun{x}}{}%

35 \stepcounter{ST@inline}}

The user might load the hyperref package after this one (indeed, the hyperref
documentation insists that it be loaded last) or not at all—so when we hit the
beginning of the document, provide a dummy NoHyper environment if one hasn’t
been defined by the hyperref package.
36 \AtBeginDocument{\provideenvironment{NoHyper}{}{}}

\percent A macro that inserts a percent sign. This is more-or-less stolen from the Docstrip
manual; there they change the catcode inside a group and use gdef, but here we
try to be more LATEXy and use \newcommand.
37 \catcode‘\%=12

38 \newcommand{\percent}{%}

39 \catcode‘\%=14

\ST@plotdir A little abbreviation for the plot directory. We don’t use \graphicspath because
it’s apparently slow—also, since we know right where our plots are going, no need
to have LATEX looking for them.
40 \newcommand{\ST@plotdir}{sage-plots-for-\jobname.tex}

\sageplot This function is similar to \sage. The neat thing that we take advantage of is that
commas aren’t special for arguments to LATEX commands, so it’s easy to capture
a bunch of keyword arguments that get passed right into a Python function.

This macro has two optional arguments, which can’t be defined using LATEX’s
\newcommand; we use Scott Pakin’s brilliant newcommand package to create this
macro; the options I fed to his script were similar to this:

MACRO sageplot OPT[#1={width}] OPT[#2={notprovided}] #3

Observe that we are using a Python script to write LATEX code which writes Python
code which writes LATEX code. Crazy!

Here’s the wrapper command which does whatever magic we need to get two
optional arguments.
41 \newcommand{\sageplot}[1][width=.75\textwidth]{%

42 \@ifnextchar[{\ST@sageplot[#1]}{\ST@sageplot[#1][notprovided]}%]

43 }

That percent sign followed by a square bracket seems necessary; I have no idea
why.

The first optional argument #1 will get shoved right into the optional argument
for \includegraphics, so the user has easy control over the LATEX aspects of the
plotting. We define a default size of 3/4 the textwidth, which seems reasonable.
(Perhaps a future version of sagetex will allow the user to specify in the package
options a set of default options to be used throughout.) The second optional
argument #2 is the file format and allows us to tell what files to look for. It
defaults to “notprovided”, which tells the Python module to create EPS and PDF
files. Everything in #3 gets put into the Python function call, so the user can put
in keyword arguments there which get interpreted correctly by Python.

11

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=graphicspath
http://tug.ctan.org/tex-archive/support/newcommand/

DVI or PDF?

Format provided?

STig EPS

no

IM option set?

Warn that DVI +
PNG = bad

no

STig EPS

yes

yes

DVI

Format provided?

STig PDF

no

STig #2

yes

PDF

Figure 1: The logic tree that \sageplot uses to decide whether to run
\includegraphics or to yell at the user. “Format” is the #2 argument to
\sageplot, “STig ext” means a call to \ST@inclgrfx with “ext” as the second
argument, and “IM” is Imagemagick.

\ST@sageplot Let’s see the real code here. We write a couple lines to the .sage file, including
a counter, input line number, and all of the mandatory argument; all this is
wrapped in another try/except. Note that the \write gobbles up line endings, so
the sageplot bits below get written to the .sage file as one line.
44 \def\ST@sageplot[#1][#2]#3{%

45 \ST@wsf{try:}%

46 \ST@wsf{ sagetex.initplot(’\jobname’)}%

47 \ST@wsf{ sagetex.plot(\theST@plot, #3, format=’#2’, epsmagick=\ST@epsim)}%

48 \ST@wsf{except:}%

49 \ST@wsf{ sagetex.goboom(\the\inputlineno)}%

Now we include the appropriate graphics file. Because the user might be producing
DVI or PDF files, and have supplied a file format or not, and so on, the logic we
follow is a bit complicated. Figure 1 shows what we do; for completeness, we show
what \ST@inclgrfx does in Figure 2. This entire complicated business is intended
to avoid doing an \includegraphics command on a file that doesn’t exist, and
to issue warnings appropriate to the situation.

If we are creating a PDF, we check to see if the user asked for a different
format, and use that if necessary:
50 \ifpdf

51 \ifthenelse{\equal{#2}{notprovided}}%

52 {\ST@inclgrfx{#1}{pdf}}%

53 {\ST@inclgrfx{#1}{#2}}%

Otherwise, we are creating a DVI file, which only supports EPS. If the user pro-
vided a format anyway, don’t include the file (since it won’t work) and warn the
user about this. (Unless the file doesn’t exist, in which case we do the same thing
that \ST@inclgrfx does.)

12

54 \else

55 \ifthenelse{\equal{#2}{notprovided}}%

56 {\ST@inclgrfx{#1}{eps}}%

If a format is provided, we check to see if we’re using the imagemagick option. If
so, try to include an EPS file anyway.
57 {\ifthenelse{\equal{\ST@epsim}{True}}

58 {\ST@inclgrfx{#1}{eps}}%

If we’re not using the imagemagick option, we’re going to issue some sort of warn-
ing, depending on whether the file exists yet or not.
59 {\IfFileExists{\ST@plotdir/plot-\theST@plot.#2}%

60 {\framebox[2cm]{\rule[-1cm]{0cm}{2cm}\textbf{??}}%

61 \PackageWarning{sagetex}{Graphics file

62 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space

63 cannot be used with DVI output. Use pdflatex or create an EPS

64 file. Plot command is}}%

65 {\framebox[2cm]{\rule[-1cm]{0cm}{2cm}\textbf{??}}%

66 \PackageWarning{sagetex}{Graphics file

67 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space

68 does not exist}%

69 \gdef\ST@rerun{x}}}}%

70 \fi

Finally, step the counter and we’re done.
71 \stepcounter{ST@plot}}

\ST@inclgrfx This command includes the requested graphics file (#2 is the extension) with the
requested options (#1) if the file exists. Note that it just needs to know the
extension, since we use a counter for the filename.
72 \newcommand{\ST@inclgrfx}[2]{%

73 \IfFileExists{\ST@plotdir/plot-\theST@plot.#2}%

74 {\includegraphics[#1]{\ST@plotdir/plot-\theST@plot.#2}}%

If the file doesn’t exist, we insert a little box to indicate it wasn’t found, issue a
warning that we didn’t find a graphics file, then set a flag that, at the end of the
run, tells the user to run Sage again.
75 {\framebox[2cm]{\rule[-1cm]{0cm}{2cm}\textbf{??}}%

76 \PackageWarning{sagetex}{Graphics file

77 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space does not

78 exist}%

79 \gdef\ST@rerun{x}}}

Figure 2 makes this a bit clearer.

\ST@beginsfbl This is “begin .sage file block”, an internal-use abbreviation that sets things up
when we start writing a chunk of Sage code to the .sage file. It begins with
some TEX magic that fixes spacing, then puts the start of a try/except block in
the .sage file—this not only allows the user to indent code without Sage/Python
complaining about indentation, but lets us tell the user where things went wrong.

13

Does EXT file exist?

Warn user to
rerun Sage

no

Use includegraphics

yes

Figure 2: The logic used by the \ST@inclgrfx command.

The last bit is some magic from the verbatim package manual that makes LATEX
respect line breaks.
80 \newcommand{\ST@beginsfbl}{%

81 \@bsphack%

82 \ST@wsf{sagetex.blockbegin()}%

83 \ST@wsf{try:}%

84 \let\do\@makeother\dospecials\catcode‘\^^M\active}

\ST@endsfbl The companion to \ST@beginsfbl.
85 \newcommand{\ST@endsfbl}{%

86 \ST@wsf{except:}%

87 \ST@wsf{ sagetex.goboom(\the\inputlineno)}%

88 \ST@wsf{sagetex.blockend()}}

Now let’s define the “verbatim-like” environments. There are four possibilities,
corresponding to two independent choices of typesetting the code or not, and
writing to the .sage file or not.

sageblock This environment does both: it typesets your code and puts it into the .sage file
for execution by Sage.
89 \newenvironment{sageblock}{\ST@beginsfbl%

The space between \ST@wsf{ and \the is crucial! It, along with the “try:”, is
what allows the user to indent code if they like. This line sends stuff to the .sage
file.
90 \def\verbatim@processline{\ST@wsf{ \the\verbatim@line}%

Next, we typeset your code and start the verbatim environment.
91 \hspace{\sagetexindent}\the\verbatim@line\par}%

92 \verbatim}%

At the end of the environment, we put a chunk into the .sage file and stop the
verbatim environment.
93 {\ST@endsfbl\endverbatim}

sagesilent This is from the verbatim package manual. It’s just like the above, except we
don’t typeset anything.
94 \newenvironment{sagesilent}{\ST@beginsfbl%

95 \def\verbatim@processline{\ST@wsf{ \the\verbatim@line}}%

96 \verbatim@start}%

97 {\ST@endsfbl\@esphack}

14

sageverbatim The opposite of sagesilent. This is exactly the same as the verbatim environ-
ment, except that we include some indentation to be consistent with other typeset
Sage code.
98 \newenvironment{sageverbatim}{%

99 \def\verbatim@processline{\hspace{\sagetexindent}\the\verbatim@line\par}%

100 \verbatim}%

101 {\endverbatim}

Logically, we now need an environment which neither typesets nor writes code
to the .sage file. The verbatim package’s comment environment does that.

Now we deal with some end-of-file cleanup.
We tell the Sage script to write some information to the .sout file, then check

to see if ST@rerun ever got defined. If not, all the inline formulas and plots worked,
so do nothing.

102 \AtEndDocument{\ST@wsf{sagetex.endofdoc()}%

103 \@ifundefined{ST@rerun}{}%

Otherwise, we issue a warning to tell the user to run Sage on the .sage file. Part
of the reason we do this is that, by using \ref to pull in the inlines, LATEX will
complain about undefined references if you haven’t run the Sage script—and for
many LATEX users, myself included, the warning “there were undefined references”
is a signal to run LATEX again. But to fix these particular undefined references,
you need to run Sage. We also suppressed file-not-found errors for graphics files,
and need to tell the user what to do about that.

At any rate, we tell the user to run Sage if it’s necessary.
104 {\PackageWarningNoLine{sagetex}{There were undefined Sage formulas

105 and/or plots}%

106 \PackageWarningNoLine{sagetex}{Run Sage on \jobname.sage, and then run

107 LaTeX on \jobname.tex again}}}

5.2 The Python module

The style file writes things to the .sage file and reads them from the .sout file.
The Python module provides functions that help produce the .sout file from the
.sage file.

A note on Python and Docstrip There is one tiny potential source of confu-
sion when documenting Python code with Docstrip: the percent sign. If you have
a long line of Python code which includes a percent sign for string formatting and
you break the line with a backslash and begin the next line with a percent sign,
that line will not be written to the output file. This is only a problem if you begin
the line with a percent sign; there are no troubles otherwise.

On to the code:
The sagetex.py file is intended to be used as a module and doesn’t do anything

useful when called directly, so if someone does that, warn them. We do this right

15

away so that we print this and exit before trying to import any Sage modules;
that way, this error message gets printed whether you run the script with Sage or
with Python.

108 import sys

109 if __name__ == "__main__":

110 print("""This file is part of the SageTeX package.

111 It is not meant to be called directly.

112

113 This file will be used by Sage scripts generated from a LaTeX document

114 using the sagetex package. Keep it somewhere where Sage and Python can

115 find it and it will automatically be imported.""")

116 sys.exit()

We start with some imports and definitions of our global variables. This is a
relatively specialized use of Sage, so using global variables isn’t a bad idea. Plus I
think when we import this module, they will all stay inside the sagetex namespace
anyway.

117 from sage.misc.latex import latex

118 import os

119 import os.path

120 import hashlib

121 import traceback

122 import subprocess

123 import shutil

124 initplot_done = False

125 dirname = None

126 filename = ""

progress This function justs prints stuff. It allows us to not print a linebreak, so you can
get “start...” (little time spent processing) “end” on one line.

127 def progress(t,linebreak=True):

128 if linebreak:

129 print(t)

130 else:

131 sys.stdout.write(t)

openout This function opens a .sout.tmp file and writes all our output to that. Then,
when we’re done, we move that to .sout. The “autogenerated” line is basically
the same as the lines that get put at the top of preparsed Sage files; we are
automatically generating a file with Sage, so it seems reasonable to add it.

132 def openout(f):

133 global filename

134 filename = f

135 global _file_

136 _file_ = open(f + ’.sout.tmp’, ’w’)

137 s = ’% This file was *autogenerated* from the file ’ + \

138 os.path.splitext(filename)[0] + ’.sage.\n’

139 _file_.write(s)

140 progress(’Processing Sage code for %s.tex...’ % filename)

16

initplot We only want to create the plots directory if the user actually plots something.
This function creates the directory and sets the initplot_done flag after doing
so. We make a directory based on the LATEX file being processed so that if there
are multiple .tex files in a directory, we don’t overwrite plots from another file.

141 def initplot(f):

142 global initplot_done

143 if not initplot_done:

144 progress(’Initializing plots directory’)

145 global dirname

We hard-code the .tex extension, which is fine in the overwhelming majority of
cases, although it does cause minor confusion when building the documentation. If
it turns out lots of people use, say, a ltx extension or whatever, I think we could
find out the correct extension, but it would involve a lot of irritating mucking
around.

146 dirname = ’sage-plots-for-’ + f + ’.tex’

147 if os.path.isdir(dirname):

148 shutil.rmtree(dirname)

149 os.mkdir(dirname)

150 initplot_done = True

inline This function works with \sage from the style file to put Sage output into your
LATEX file. Usually, when you use \label, it writes a line such as

\newlabel{labelname}{{section number}{page number}}

to the .aux file. When you use the hyperref package, there are more fields in the
second argument, but the first two are the same. The \ref command just pulls
in what’s in the first field, so we can hijack this mechanism for our own nefarious
purposes. The function writes a \newlabel line with a label made from a counter
and the text from running Sage on s.

We print out the line number so if something goes wrong, the user can more
easily track down the offending \sage command in the source file.

That’s a lot of explanation for a very short function:
151 def inline(counter, s):

152 progress(’Inline formula %s’ % counter)

153 _file_.write(’\\newlabel{@sagelabel’ + str(counter) + ’}{{’ + \

154 latex(s) + ’}{}{}{}{}}\n’)

We are using five fields, just like hyperref does, because that works whether
or not hyperref is loaded. Using two fields, as in plain LATEX, doesn’t work if
hyperref is loaded.

blockbegin

blockend

This function and its companion used to write stuff to the .sout file, but now
they just update the user on our progress evaluating a code block.

155 def blockbegin():

156 progress(’Code block begin...’, False)

157 def blockend():

158 progress(’end’)

17

plot I hope it’s obvious that this function does plotting. As mentioned in the \sageplot
code, we’re taking advantage of two things: first, that LATEX doesn’t treat commas
and spaces in macro arguments specially, and second, that Python (and Sage
plotting functions) has nice support for keyword arguments. The #3 argument to
\sageplot becomes p and **kwargs below.

159 def plot(counter, p, format=’notprovided’, epsmagick=False, **kwargs):

160 global dirname

161 progress(’Plot %s’ % counter)

If the user says nothing about file formats, we default to producing PDF and
EPS. This allows the user to transparently switch between using a DVI previewer
(which usually automatically updates when the DVI changes, and has support for
source specials, which makes the writing process easier) and making PDFs.

162 if format == ’notprovided’:

163 formats = [’eps’, ’pdf’]

164 else:

165 formats = [format]

166 for fmt in formats:

167 plotfilename = os.path.join(dirname, ’plot-%s.%s’ % (counter, fmt))

168 #print(’ plotting %s with args %s’ % (plotfilename, kwargs))

169 p.save(filename=plotfilename, **kwargs)

If the user provides a format and specifies the imagemagick option, we try to
convert the newly-created file into EPS format.

170 if format != ’notprovided’ and epsmagick is True:

171 print(’Calling Imagemagick to convert plot-%s.%s to EPS’ % \

172 (counter, format))

173 toeps(counter, format)

toeps This function calls the Imagmagick utility convert to, well, convert something into
EPS format. This gets called when the user has requested the “imagemagick”
option to the sagetex style file and is making a graphic file with a nondefault
extension.

174 def toeps(counter, ext):

175 global dirname

176 subprocess.check_call([’convert’,\

177 ’%s/plot-%s.%s’ % (dirname, counter, ext), \

178 ’%s/plot-%s.eps’ % (dirname, counter)])

We are blindly assuming that the convert command exists and will do the con-
version for us; the check_call function raises an exception which, since all these
calls get wrapped in try/excepts in the .sage file, should result in a reasonable
error message if something strange happens.

goboom When a chunk of Sage code blows up, this function bears the bad news to the
user. Normally in Python the traceback is good enough for this, but in this case,
we start with a .sage file (which is autogenerated) which autogenerates a .py
file—and the tracebacks the user sees refer to that file, whose line numbers are
basically useless. We want to tell them where in the LATEX file things went bad,

18

so we do that, give them the traceback, and exit after removing the .sout.tmp
file.

179 def goboom(line):

180 global filename

181 print(’\n**** Error in Sage code on line %s of %s.tex! Traceback\

182 follows.’ % (line, filename))

183 traceback.print_exc()

184 print(’\n**** Running Sage on %s.sage failed! Fix %s.tex and try\

185 again.’ % (filename, filename))

186 os.remove(filename + ’.sout.tmp’)

187 sys.exit(1)

endofdoc When we’re done processing, we have a couple little cleanup tasks. We want to put
the MD5 sm of the .sage file that produced the .sout file we’re about to write
into the .sout file, so that external programs that build LATEX documents can tell
if they need to call Sage to update the .sout file. But there is a problem: we write
line numbers to the .sage file so that we can provide useful error messages—but
that means that adding, say, a line break to your source file will change the MD5
sum, and your program will think it needs to rerun Sage even though none of the
actual calls to Sage have changed.

How do we include line numbers for our error messages but still allow a program
to discover a “genuine” change to the .sage file?

The answer is to only find the MD5 sum of part of the .sage file. By design,
the source file line numbers only appear in calls to goboom, so we will strip those
lines out. Basically we are doing

grep -v ’^ sagetex.goboom’ filename.sage | md5sum

(In fact, what we do below produces exactly the same sum.)
188 def endofdoc():

189 global filename

190 sagef = open(filename + ’.sage’, ’r’)

191 m = hashlib.md5()

192 for line in sagef:

193 if line[0:15] != ’ sagetex.goboom’:

194 m.update(line)

195 s = ’%’ + m.hexdigest() + ’% md5sum of .sage file (minus "goboom" \

196 lines) that produced this\n’

197 _file_.write(s)

Now, we do issue warnings to run Sage on the .sage file and an external pro-
gram might look for those to detect the need to rerun Sage, but those warnings
do not quite capture all situations. (If you’ve already produced the .sout file
and change a \sage call, no warning will be issued since all the \refs find a
\newlabel.) Anyway, I think it’s easier to grab an MD5 sum out of the end
of the file than parse the output from running latex on your file. (The regular
expression ^%[0-9a-f]{32}% will find the MD5 sum.)

Now we are done with the .sout file. Close it, rename it, and tell the user
we’re done.

19

198 _file_.close()

199 os.rename(filename + ’.sout.tmp’, filename + ’.sout’)

200 progress(’Sage processing complete. Run LaTeX on %s.tex again.’ %\

201 filename)

6 Credits and acknowledgements

According to the original README file, this system was originally done by Gon-
zalo Tornaria and Joe Wetherell. Later Harald Schilly made some improvements
and modifications. Almost all the examples in the example.tex file are from
Harald.

Dan Drake rewrote and extended the style file (there is almost zero original
code there), made significant changes to the Python module, put both files into
Docstrip format, and wrote all the documentation.

Many thanks to Jason Grout for his numerous comments, suggestions, and
feedback.

7 Copying and licenses

The source code of the sagetex package may be redistributed and/or modified
under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 2 of the License, or (at your option) any later
version. To view a copy of this license, see http://www.gnu.org/licenses/ or
send a letter to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.

The documentation of the sagetex package is licensed under the Creative Com-
mons Attribution-Noncommercial-Share Alike 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, Califor-
nia, 94105, USA.

Change History

v1.0
General: Initial version 1

v1.1
General: Wrapped user-provided

Sage code in try/except clauses;
plotting now has optional for-
mat argument. 1

v1.2
General: Imagemagick option; bet-

ter documentation 1

v1.3

\sageplot: Iron out warnings, cool
TikZ flowchart 11

v1.3.1

General: Internal variables re-
named; fixed typos 1

v1.4

General: MD5 fix, percent sign
macro, CTAN upload 1

20

http://www.gnu.org/licenses/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\% 37, 39
\@bsphack 81
\@esphack 97
\@ifnextchar 42
\@ifundefined . . 34, 103
\@makeother 84
\\ 153
\^ 84

\ 137, 153,
171, 176, 177,
181, 184, 195, 200

A
\active 84
\AtBeginDocument . . 36
\AtEndDocument 102

B
\begin 33
\blockbegin 155
\blockend 155

C
\catcode 37, 39, 84

D
\DeclareOption 13
\def 44, 90, 95, 99
\do 84
\dospecials 84

E
\else 54
\end 33
\endofdoc 188
\endverbatim . . . 93, 101
environments:

sageblock 89
sagesilent 94
sageverbatim . . . 98

\equal 51, 55, 57

F
\fi 20, 24, 70
\framebox . . . 60, 65, 75

G
\gdef 34, 69, 79
\goboom 179

H
\hspace 91, 99

I
\iffalse 18, 20
\IfFileExists . . . 59, 73
\ifpdf 50
\ifthenelse . . 51, 55, 57
\immediate 16, 17
\includegraphics . . 74
\initplot 141
\inline 151
\InputIfFileExists . 27
\inputlineno . 32, 49, 87

J
\jobname 16, 26,

27, 40, 46, 106, 107

L
\let 84

N
\n 138, 154, 181, 184, 196
\newcounter 6, 7
\newlength 10
\newwrite 15

O
\openout 16, 132

P
\PackageWarning . . .

. 61, 66, 76
\PackageWarningNoLine

. 104, 106

\par 91, 99

\percent 37

\plot 159

\ProcessOptions . . . 14

\progress 127

\provideenvironment 36

R

\ref 33

\relax 14

\renewcommand 13

\RequirePackage . . . 1–5

\rule 60, 65, 75

S

\sage 28

sageblock (environ-
ment) 89

\sageplot 41

sagesilent (environ-
ment) 94

\sagetexindent
. . . . 10, 11, 91, 99

sageverbatim (environ-
ment) 98

\setcounter 8, 9

\setlength 11

\space 62, 67, 77

\ST@beginsfbl 80, 89, 94

\ST@endsfbl . . 85, 93, 97

\ST@epsim 12, 13, 47, 57

\ST@inclgrfx
. 52, 53, 56, 58, 72

\ST@plotdir . . 40, 59,
62, 67, 73, 74, 77

\ST@rerun . . . 34, 69, 79

\ST@sageplot 42, 44

\ST@sf 15–17

\ST@wsf . . 17, 29–32,
45–49, 82, 83,
86–88, 90, 95, 102

\stepcounter 35, 71

21

T

\textbf 60, 65, 75

\textwidth 41

\thepage 62, 67, 77

\theST@inline 30, 33, 34

\theST@plot . . 47, 59,

62, 67, 73, 74, 77
\toeps 174

V
\verbatim 92, 100
\verbatim@line

. . . . 90, 91, 95, 99

\verbatim@processline

. 90, 95, 99

\verbatim@start . . . 96

W

\write 17

22

	Introduction
	Installation
	Usage
	Inline Sage
	Graphics and plotting
	3D plotting

	Verbatim-like environments

	Other notes
	Implementation
	The style file
	The Python module

	Credits and acknowledgements
	Copying and licenses

