
Examples of embedding Sage in LATEX

March 12, 2008

1 Inline Sage, code blocks

This is an example 2 + 2 = 4. If you raise the current year mod 100 (8) to the
power of the current day (12), you get 68719476736. Also, 2008 modulo 42 is
34.

Code block which uses a variable s to store the solutions:

var(’a,b,c’)
eqn = [a+b*c==1, b-a*c==0, a+b==5]
s = solve(eqn, a,b,c)

Solutions of eqn = [bc + a = 1, b− ac = 0, b + a = 5] :[
a =

25
√

79i + 25
6
√

79i− 34
, b =

5
√

79i + 5√
79i + 11

, c =
√

79i + 1
10

]
[
a =

25
√

79i− 25
6
√

79i + 34
, b =

5
√

79i− 5√
79i− 11

, c =
1−
√

79i

10

]
Now we evaluate the following block:

E = EllipticCurve("37a")

You can’t do assignment inside \sage macros, since Sage doesn’t know how to
typeset the output of such a thing. So you have to use a code block. The elliptic
curve E given by y2 + y = x3 − x has discriminant 37.

You can do anything in a code block that you can do in Sage and/or Python.
Here we save an elliptic curve into a file.

try:
E = load(’E2’)

except IOError:
E = EllipticCurve([1,2,3,4,5])
E.anlist(100000)
E.save(’E2’)

1

The 9999th Fourier coefficient of y2 + xy + 3y = x3 + 2x2 + 4x + 5 is −27.
The following code block doesn’t appear in the typeset file. . . but we can

refer to whatever we did in that code block: e = 7.

var(’x’)
f = log(sin(x)/x)

The Taylor Series of f is: −x2

6 −
x4

180 −
x6

2835 −
x8

37800 −
x10

467775 .

2 Plotting

Here’s a plot of the elliptic curve E.

-2 -1 1 2 3

-12.5

-10

-7.5

-5

-2.5

2.5

5

You can use variables to hold plot objects and do stuff with them.

p = plot(f, x, -5, 5)

Here’s a small plot of f from −5 to 5, which I’ve centered:

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-25

25

50

75

100

125

150

175

On second thought, use the default size of 3/4 the \textwidth and don’t
use axes:

2

Remember, you’re using Sage, and can therefore call upon any of the software
packages Sage is built out of.

f = maxima(’sin(x)^2*exp(x)’)
g = f.integrate(’x’)

Plot g(x), but don’t typeset it.
You can specify a file format and options for includegraphics. The default

is for EPS and PDF files, which are the best choice in almost all situations.
(Although see the section on 3D plotting.)

If you use regular latex to make a DVI file, you’ll see a box, beause DVI
files can’t include PNG files. If you use pdflatex that will work. See the
documentation for details.

When using \sageplot, you can pass in just about anything that Sage can
call .save() on to produce a graphics file:

3

2 4 6

50

100

150

200

4

0
1

2

3

4

5

6
7 8

9

10

11

12

13

14

15

16

17 18

19

G4 = DiGraph({1:[2,2,3,5], 2:[3,4], 3:[4], 4:[5,7], 5:[6]},\
multiedges=True)

G4plot = G4.plot(layout=’circular’)

1

2

3

4 5

6

7

Indentation and so on works fine.

s = 7
s2 = 2^s
P.<x> = GF(2)[]
M = matrix(parent(x),s2)
for i in range(s2):

p = (1+x)^i
pc = p.coeffs()
a = pc.count(1)
for j in range(a):

idx = pc.index(1)
M[i,idx+j] = pc.pop(idx)

matrixprogram = matrix_plot(M,cmap=’Greys’)

5

And here’s the picture:

0

0

25

25

50

50

75

75

100

100

125

125

127

127
0 0

25 25

50 50

75 75

100 100

127 127

2.1 3D plotting

3D plotting right now is problematic because there’s no convenient way to pro-
duce vector graphics. We can make PNGs, though, and since the sageplot
command defaults to EPS and PDF, you must specify a valid format for 3D
plotting. Sage right now (version 2.10.3) can’t produce EPS or PDF files from
plot3d objects, so if you don’t specify a valid format, things will go badly. You
can specify the “imagemagick” option, which will use the Imagemagick convert
utility to make EPS files. See the documentation for details.

Here’s the famous Sage cube graph:

G = graphs.CubeGraph(5)

6

7

