
The rubikrotation package

RWD Nickalls (dick@nickalls.org)
A Syropoulos (asyropoulos@yahoo.com)

This file describes version 4.0 (2017/03/03)
www.ctan.org/pkg/rubik

Abstract

The rubikrotation package is a dynamic extension for the rubikcube
package (both are part of the Rubik ‘bundle’). This package provides the
\RubikRotation command which processes a sequence of Rubik rotation
moves on-the-fly (using the Perl script rubikrotation.pl), and returns the
new Rubik cube state (configuration). The rubikrotation package also
provides commands for saving the cube state to a file (\SaveRubikState),
and for displaying any errors (\ShowRubikErrors).

{(

Rm’ U’

)
4, [y’], [x]

}
3

Contents

1 Introduction 3

2 Requirements 3

3 Installation 3
3.1 Generating the files . 3
3.2 Placing the files . 4

4 Usage 5
4.1 Enabling the TEX ‘shell’ facility . 5
4.2 Configuration-file . 6

5 Commands 7
5.1 RubikRotation . 7

5.1.1 Examples . 8
5.1.2 Sequence strings . 9

1

5.1.3 Sequences as macros . 10
5.1.4 Arguments in square brackets 11
5.1.5 Groups . 12
5.1.6 Random rotations . 13

5.2 SaveRubikState . 13
5.3 CheckRubikState . 14
5.4 ShowRubikErrors . 14

6 Files generated 15

7 General overview 15

8 References 17

9 Change history 17

10 The code 18
10.1 Package heading . 18
10.2 Some useful commands . 19
10.3 Configuration file . 20
10.4 Clean file rubikstateNEW.dat . 20
10.5 rubikstateERRORS.dat . 21
10.6 Setting up file-access for new files 21
10.7 Saving the Rubik state . 21
10.8 SaveRubikState command . 22
10.9 RubikRotation command . 23
10.10ShowRubikErrors command . 24
10.11CheckRubikState command . 24

2

1 Introduction

The rubikrotation package is a dynamic extension to the rubikcube package.
It consists of a style option (rubikrotation.sty), a Perl script (rubikrotation.pl).

The primary role of the rubikrotation package is to implement a sequence
of Rubik rotation moves on-the-fly using the \RubikRotation command. Conse-
quently the rubikrotation package requires access to the TEX write18 facility,
which is enabled by using the --shell-escape command-line switch. This allows
command-line control of the Perl script, which is really the ‘engine’ of this package.

The rubikrotation package has been road-tested on a Microsoft platform
(MiKTeX and Strawberry Perl 1), on a Linux platform (Debian v8.2.0, TEXLive
2016, and Perl v5.20.2), and on a Solaris platform (OpenIndiana).

The following commands are made available by rubikrotation.sty:

\RubikRotation[]{}

\SaveRubikState

\CheckRubikState

\ShowRubikErrors

\SequenceName

\SequenceInfo

\SequenceShort

\SequenceLong

2 Requirements

The rubikrotation package requires the TikZ and the rubikcube packages.

3 Installation

3.1 Generating the files

Place the file rubikrotation.zip into a temporary directory, and unzip it. This
will generate the following files:

rubikrotation.ins

rubikrotation.dtx

rubikrotation.pdf --this document

rubikrotation.pl --Perl script

rubikrotationPL.pdf --documentation of rubikrotation.pl

rubikrotation.1 --manual file for rubikrotation.pl (‘man’ file)

rubikrot-doc-figA.pdf

rubikrot-doc-figB.pdf

rubikrot-doc-figC.pdf

rubikrot-doc-figD.pdf

1‘Strawberry Perl’ (http://strawberryperl.com) is a free Perl environment for MS Windows,
designed to be as close as possible to the Perl environment of Unix/Linux systems.

3

The main package documentation is the file rubikrotation.pdf. The documen-
tation of the Perl program rubikrotation.pl is the file rubikrotationPL.pdf

The style option rubikrotation.sty is generated by running (pdf)LATEX on
the file rubikrotation.ins as follows:

pdflatex rubikrotation.ins

The documentation file (rubikrotation.pdf) is then generated using the follow-
ing sequence of steps 2:

pdflatex rubikrotation.dtx

pdflatex rubikrotation.dtx

makeindex -s gind.ist rubikrotation

makeindex -s gglo.ist -o rubikrotation.gls rubikrotation.glo

pdflatex rubikrotation.dtx

pdflatex rubikrotation.dtx

3.2 Placing the files

Place the files either in a working directory, or where your system will find them,
e.g., in your /texmf-local/ directory tree. For example, on a Linux platform
with a standard TEX Directory Structure (TDS), then:

*.sty → /usr/local/texlive/texmf-local/tex/latex/rubik/

*.cfg → /usr/local/texlive/texmf-local/tex/latex/rubik/

*.pdf → /usr/local/texlive/texmf-local/doc/rubik/

*.pl → /usr/local/texlive/texmf-local/scripts/rubik/

perl script: Make the perl script executable (chmod +x rubikrotation.pl),
and then rename the file as ‘rubikrotation’ (i.e., with no file extension), and then
place the executable script into your current TeXLive binary directory, e.g., /

user/local/texlive/YYYY/bin/i386-linux.
Sometimes the setting up of a simple one or two-line plain-text configuration-

file may be useful or even necessary, depending on your system (see Section 4.2 be-
low). Such a file (if one exists) will automatically be read by rubikrotation.sty

providing the file is named rubikrotation.cfg.

the ‘man’ file: On a Linux platform this manual file (rubikrotation.1) would
be typically located in the directory /usr/share/man/man1.

file database: Finally, (depending on your system) update the TEX file
database. For example, on a Linux platform this is achieved using the texhash

command.

quick test: To test that your system can now run the perl script, just type at
the command-line

rubikrotation -h

2Since the documentation includes a complicated indexing system as well as an index and
hyperef links (the package hypdoc is used), then a lot of pdflatex runs are required. Prior to the
first run it is a good idea to delete any relevant .toc, .aux, .out files.

4

which should generate something like the following:

This is rubikrotation version 4.0

Usage: rubikrotation [-h] -i <input file> [-o <out file>]

where,

[-h] gives this help listing

[-i] creates specified input file

[-o] creates specified output file

For documentation see: rubikrotation.pdf,

rubikrotationPL.pdf and rubikcube.pdf

4 Usage

Load the packages rubikcube.sty, rubikrotation.sty and rubikpatterns.sty

in the TEX file preamble after loading the TikZ package (all the Rubik packages
require the TikZ package); for example, as follows:

\usepackage{tikz}

\usepackage{rubikcube,rubikrotation,rubikpatterns}

and run (pdf)LATEX using the --shell-escape command-line option (see the fol-
lowing section).

4.1 Enabling the TEX ‘shell’ facility

In order to access the TEX \write18 syntax (so we can access system com-
mands, and hence run the Perl script), it is necessary to invoke the LATEX engine
(e.g., (pdf)LATEX or LuaLATEX) using the --shell-escape command-line option;
for example:

pdflatex --shell-escape filename.tex

In practice, it is probably most convenient to run this command via a bash/batch
file. For example, on a Linux platform the following bash file will run the file,
show any errors, and open the pdf using AcrobatReader.

pdflatex --shell-escape filename.tex

echo "...checking error file"

grep ERROR ./rubikstateERRORS.dat

acroread filename.pdf &

If the LATEX engine is LuaLATEX, e.g.,

lualatex --shell-escape filename.tex

then rubikrotation.sty will automatically load the recently developed shellesc
package in order to facilitate system access to Perl (see Section 10.1). See LATEX
News, issue 24, Feb 2016 for further details of the shellesc package. Consequently,
if you intend to use LuaLATEX then you will need to ensure your system has access
to the shellesc package (it can always be downloaded from CTAN directly).

5

4.2 Configuration-file

A plain-text configuration-file with the name rubikrotation.cfg (if one exists)
will automatically be read by rubikrotation.sty. The rubikrotation pack-
age’s facility to use a configuration-file allows the user to change not only (a) the
filename of the Perl script (rubikrotation.pl), but also (b) the command-line
code used by rubikrotation.sty for calling the Perl script. This sort of fine-
tuning can be very useful, and sometimes may even be necessary (depending on
your system) for running the Perl script.

For example, on some systems it maybe preferable to use a different path,
file-name and/or a different command-line code to call the script. Such a
configuration-file can also facilitate testing a new Perl script having a different
name and location.

The configuration-file is essentially a convenient software vehicle for feeding\rubikperlname

\rubikperlcmd additional LATEX code to the style option rubikrotation.sty, and hence al-
lows the contents of some commands to be easily adjusted and/or fine-tuned.
For the rubikrotation package there are two particular macros we may wish
to adjust. The first is that holding the filename of the Perl script, namely
\rubikperlname. The second is that holding the command-line call, namely
\rubikperlcmd. The default definitions in rubikrotation.sty (which assume
the Perl script is executable), are as follows: (they are detailed in Section 10.2)

\newcommand{\rubikperlname}{rubikrotation}

\newcommand{\rubikperlcmd}{\rubikperlname\space%

-i rubikstate.dat -o rubikstateNEW.dat}

Note the need here (in the second macro) to use \space on the end of
(\rubikperlname) in order to force a following space—i.e., before the first
command-line argument. The following examples illustrate how the configuration-
file may be used.

example 1: Suppose we wish to test out a slightly modified Perl script with
the working (executable) name rubikrotationR77. In this case we simply create,
in the local working directory, a plain-text configuration-file (it must be named
exactly rubikrotation.cfg) and contains just the following line:

\renewcommand{\rubikperlname}{rubikrotationR77}

example 2: Alternatively, suppose we wish to test out a new Perl script
with the (non-executable) name rubikrotationR55.pl. Now, in this particu-
lar case we will need to run the script using a slightly different command, namely,
perl rubikrotationR55.pl ..., and consequently we need to implement both
these changes (of name and command) in the configuration-file, as follows:

\renewcommand{\rubikperlname}{rubikrotationR55.pl}

\renewcommand{\rubikperlcmd}{perl \rubikperlname\space\%

-i rubikstate.dat -o rubikstateNEW.dat}

Remember to make sure the PATH associated with the command is also correct.

6

placing the configuration-file: The simplest arrangement is just to include
the .cfg file in the working directory. Alternatively, the .cfg file could be placed
in the /texmf-local/ directory tree (say, in /usr/local/texlive/texmf-local/

tex/latex/rubik/), but in this case one would then have to be careful to specify
the correct PATH for everything in order to enable your system to find all the
various components etc.

Note that you can, of course, have several .cfg files, since the system will read
only one such file (the first one it finds starting with the current working directory).
Consequently, it may be useful to have one .cfg file in your /texmf-local/ dir
(for running the standard Rubik package), and another (different) .cfg file in your
‘test’ directory.

5 Commands

The only ‘Rubik bundle’ commands which must be used inside a TikZ picture en-
vironment are the \Draw... commands (these are all provided by the rubikcube
package), although most commands can be placed inside a TikZ environment if
you wish.

However, using commands which influence the Rubik colour state (e.g., the
\RubikRotation command) outside the tikzpicture, minipage or figure envi-
ronments generally offers maximum flexibility, since the effects of such commands
when used inside these environments remain ‘local’ to the environment, and are
not therefore accessible outside that particular environment (see also Section 4.1
in the rubikcube documentation).

Conversely, the only rubikrotation command which should not be used in-
side a TikZ environment is the \ShowRubikErrors command (see the notes on
this command below).

5.1 \RubikRotation command

The \RubikRotation[〈integer〉]{〈comma-separated sequence〉} command pro-\RubikRotation

cesses a sequence of rotation codes, and returns the final state. The inverse
sequence can also be implemented (see Inverse below).

The first (optional) argument [〈integer〉] of the \RubikRotation command is
the number of times the whole command itself should be repeated; for example as
follows: \RubikRotation[2]{...}.

The second (mandatory) argument consists of a comma-separated sequence of
rotation codes, e.g., U, D2, which may be encoded as a macro. In addition, there
may be additional comma-separated macros and optional [name], ‘repeat blocks’
and ‘info blocks’ (see below). The general structure of the second argument is
as follows: \RubikRotation{[name],...,\macro,...,(repeat)n,...,<info>}.
These elements are now described in detail.

Square brackets: This is an optional ‘sequence name’ facility. The contents
of square brackets are not processed as rotations, and can therefore be used as a
‘name’ of the sequence, e.g., [CrossSeq], or as a tag, to be visible in the log file.

7

The contents must not include commas, but can have other separators, e.g., spaces,
semicolons etc. Importantly, the contents of the first square bracket will be desig-
nated the sequence name and will be held as the macro \SequenceName. Square
brackets can also be used in repeat blocks (see below). Square brackets must be
separated by a comma from adjacent codes.

Repeat block: This is an optional comma-separated sequence of rotation
codes which is to be repeated a specified number of times. It must be delimited
by balanced curved brackets, and an optional terminal integer n (repeat number)
can be used. For example, (F,B3)2, where the ‘2’ indicates that the rotation
sequence F,B3 is to be processed twice. If the repeat number is omitted then
n = 1 is assumed. Repeat blocks must be separated by a comma from adjacent
codes, and can include balanced square brackets (see below).

Info block: This is an optional block of meta information, and must be
delimited by balanced angle-brackets <..>. An info-block typically carries infor-
mation regarding the sequence itself; typically, something like <(20f*) //C2(a)>.
If an infoblock includes the keyword ‘inverse’ then the program will implement the
inverse sequence of rotations (see below). An info-block must be separated by a
comma from the adjacent codes. The contents of all info blocks will be held
collectively as the macro \SequenceInfo.

Inverse sequence: The (mathematically) inverse sequence of the given se-
quence can be implemented by including the keyword ‘inverse’ (or INVERSE) in
an infoblock, as follows \RubikRotation{<inverse>, ... }. The keyword can
be either in its own separate infoblock, or inside a larger infoblock. The program
simply checks for the string ‘inverse’, which can be either lower-case or upper-case.
The implemented sequence can be checked by looking at (or printing) the contents
of the macro \SequenceLong (see section on Sequence strings below). Note that
the macro \SequenceLong is also shown (expanded) in the log file.

5.1.1 Examples

Some examples of the use of the \RubikRotation command are as follows; the
commas are important and brackets must be balanced and not nested:

\RubikRotation[2]{x,R2,U}

\RubikRotation{\sixspot}

\RubikRotation{<inverse>,[myseqB],U,D,L,R2,(M,U)3,D2}

\RubikRotation{[K32466],U,F,U2,F,L2,B,U2,F,Lp,Rp,F2,D,R2,U2,L2,B,Fp,

L,F2,D,<(20f*) //Oh{I}>}

Inverse sequence
Inverting a sequence involves (a) reversing the order, and (b) inverting each

element. Thus, the inverse of the sequence (Up,D,L2,Rp) is (R,Lp,Lp,Dp,U).
But (Lp,Lp) ≡ L2, and so the inverse of (Up,D,L2,Rp) would generally be ex-
pressed as (R,L2,Dp,U). However, since the macro \SequenceLong records the
individual elements as they are processed, when a sequence is inverted nota-
tional compressions such as Lp,Lp → L2 are not made. For example, process-
ing the command \RubikRotation{<inverse>,Up,D,L2,Rp} results in the macro
\SequenceLong being displayed in the subsequent rubikstateNEW.dat file as

8

\renewcommand\SequenceLong{R,Lp,Lp,Dp,U}%

A more extensive example is given at the end of Section 5.1.2.

Repetitions
Repetitions can be achieved in various ways. First, all the rotations in the

second argument can be repeated multiple times, say n times, by using the op-
tional [n] argument of the \RubikRotation[]{} command; i.e., the whole of the
mandatory argument of the \RubikRotation command is then executed n times.

Second, a sub-sequence of rotations can be repeated within the main argument
multiple times, by delimiting such groups with curved brackets and a trailing
integer (i.e., in a repeat-block), as described above. If no integer is given, then
n = 1 is assumed, and hence curved brackets can also be used simply to highlight
particular sequences. For example, the following five commands are equivalent:

\RubikRotation[3]{x,R2,U}

\RubikRotation{(x,R2,U)3}

\RubikRotation{(x,R2,U)2,x,R2,U}

\RubikRotation{x,R2,U,x,R2,U,x,R2,U}

\RubikRotation{(x,R2,U),(x,R2,U),(x,R2,U)}

Macros
Note also that macros representing a rotation sequence can also appear as part

of the main argument. So, extending the previous example, if we were to define
\newcommand{\ShortSeq}{x,R2,U}, then the following three commands would
also be equivalent to the five previous ones:

\RubikRotation[3]{\ShortSeq}

\RubikRotation{(\ShortSeq)3}

\RubikRotation{(x,R2,U),\ShortSeq,\ShortSeq}

Process overview
The \RubikRotation command results in LATEX first writing the current

Rubik state to a text file (rubikstate.dat), and then calling the Perl script
rubikrotation.pl. The Perl script then reads the current Rubik state from
the (rubikstate.dat) file, performs all the rotations, and then writes the new
Rubik state, and the four \Sequence... macros (see below), and any error mes-
sages, all to the file rubikstateNEW.dat, which is then input on-the-fly by the
.tex file. This new Rubik state can then be used either as the input for another
\RubikRotation command, or used to generate a graphic image of the cube. The
\Sequence... macros can then be used for typesetting the sequence of rotations
in various formats.

5.1.2 Sequence strings

The sequence of rotation codes used as the main argument for the \RubikRotation\SequenceName

\SequenceInfo

\SequenceShort

\SequenceLong

command is also returned in the form of four macros, namely \SequenceName

(contains the ‘name’ of the sequence if a [name] exists), \SequenceInfo (contains

9

any sequence meta data in ‘info-blocks’), \SequenceShort (contains the original
sequence of rotation codes), and \SequenceLong (contains the expanded or ‘Long’
form of the original sequence—i.e., in which any ‘short’ rotation codes (e.g., R2,
L3) in the original sequence have been expanded into their separate codes—e.g., R,
R, L, L, L etc.).

For example, if we wanted to see the effect of the sequence associated with the
‘SixTs’ cube configuration [SixTs],F2,R2,U2,Fp,B,D2,L2,F,B,<(14q*,14f*)>

on a solved Rubik cube (where ‘SixTs’ is the ‘name’ of the sequence), we could
use the following commands:

\RubikCubeSolved % sets up the colours for a solved cube state

\RubikRotation{[SixTs],F2,R2,U2,Fp,B,D2,L2,F,B,<(14q*,14f*)>}

\ShowCube{2.8cm}{0.7}{\DrawRubikCubeRU}

Note (a) contents of a square bracket [..] are not processed as rotations, (b) the
contents of the first square bracket in a sequence is taken to be the ‘name’ of the
sequence (see Section 5.1.4 for more details). In this example the four \Sequence..
macros described above would now hold the following strings:

\SequenceName = SixTs
\SequenceInfo = (14q*,14f*)
\SequenceShort = [SixTs],F2,R2,U2,Fp,B,D2,L2,F,B
\SequenceLong = F,F,R,R,U,U,Fp,B,D,D,L,L,F,B

As another example, we now show how to implement the inverse of the above
SixTs sequence, by including the key word ‘inverse’ in an infoblock, and, more
conveniently, using the macro \sixts from the rubikpatterns package, as fol-
lows:

\RubikRotation{<inverse>,\sixts}

In this case, the log file would then show the associated \Sequence.. macros as
follows:

...SequenceName = SixTs

...SequenceInfo = inverse; (14q*; 9f*)

...SequenceShort = [SixTs],F2,R2,U2,Fp,B,D2,L2,F,B

...SequenceLong = Bp,Fp,Lp,Lp,Dp,Dp,Bp,F,Up,Up,Rp,Rp,Fp,Fp

showing that the macro \SequenceShort holds the \sixts sequence, while the
macro \SequenceLong holds the inverse sequence which was actually implemented.

For further details regarding the use of these \Sequence.. macros for type-
setting the various components of a sequence, and why the \SequenceLong com-
mand is particularly useful, see Section 10 in the rubikcube documentation (the
\ShowSequence command).

5.1.3 Sequences as macros

Macros which are arguments of the TEX \write command are expanded on writing
(Eijkhout 1992, § 30.2.3, p. 238)[see refs Section 8]. Consequently we are able to

10

use a sequence-defining macro as an argument for the \RubikRotation command.
In fact this is very convenient, since it allows one to store lots of different rotation
sequences by name alone. Note that rubikpatterns.sty (part of the Rubik
bundle) is a collection/database of many such well-known named sequences.

For example, by installing the rubikpatterns package we are able to use the
name ‘sixspot’ for a macro denoting the rotation sequence which generates the well
known ‘sixspot’ configuration (see the ‘patterns’ page on the Reid website)[see refs
Section 8]. The ‘sixspot’ sequence is defined as follows:

\newcommand{\sixspot}{U,Dp,R,Lp,F,Bp,U,Dp,<(8q*, 8f*)>}

Armed with the \sixspot macro we are now able to generate the graphic (sixspot
cube) very easily using the following code—this time we demonstrate the use
of the more convenient \ShowCube command (which includes the tikzpicture

environment):

\usepackage{rubikcube,rubikrotation}

\usepackage{rubikpatterns}

...

\RubikCubeSolved

\RubikRotation{\sixspot}

\ShowCube{3cm}{0.7}{\DrawRubikCubeRU}

Providing such macros (when used as arguments) are comma separated (as the
rotation codes must be), then the \RubikRotation command can accommodate
both rotation codes and macros; for example, \RubikRotation{x,y,\sixspot,x}.

5.1.4 Arguments in square brackets

The contents of a square bracket are not processed as rotations, but are simply
interpreted as an inactive ‘string’. This feature therefore allows the contents to
be used as a label, which can be very useful. Note the contents of square brackets
must not include commas, but spaces and semicolons are allowed.

For example, we can use this facility to ‘name’ the ‘SixSpot’ configuration
mentioned above, as follows:

\RubikRotation{[SixSpot],U,Dp,R,Lp,F,Bp,U,Dp}

In practice, it is quite useful to go one step further and include the [] label-name
feature in the \sixspot command, as follows,

\newcommand{\sixspot}{[SixSpot],U,Dp,R,Lp,F,Bp,U,Dp}

Note that using the [name] facility has the great advantage of making the label-
name visible in the log-file. For example, the following command, which uses the
rotations x2, and y to rotate the Rubik cube after applying the ‘sixspot’ sequence
of rotations:

\RubikRotation{\sixspot,x2,y}

11

will then be represented in the log file as

...dataline = rotation,[SixSpot],U,Dp,R,Lp,F,Bp,U,Dp,<(8q*; 8f*)>,x2,y

...[SixSpot] is a label OK

...rotation U, OK

...rotation Dp, OK

...rotation R, OK

...rotation Lp, OK

...rotation F, OK

...rotation Bp, OK

...rotation U, OK

...rotation Dp, OK

...Expanding x2 ...

...rotation x, OK (= x = R + Sr + Lp)

...rotation x, OK (= x = R + Sr + Lp)

...rotation y, OK (= y = U + Su + Dp)

...writing new Rubik state to file rubikstateNEW.dat

...SequenceName = SixSpot

...SequenceInfo = (8q*; 8f*)

...SequenceShort = [SixSpot],U,Dp,R,Lp,F,Bp,U,Dp,x2,y

...SequenceLong = U,Dp,R,Lp,F,Bp,U,Dp,x,x,y

Note that the \sixspot macro, as held in the rubikpatterns package, includes
a terminal infoblock holding the ‘SequenceInfo’ as indicated in the above example.

Also, note that the square bracket feature allows for several named rotation
sequences to be easily distinguished in the log file from adjacent rotation sequences.
This feature is also useful when typesetting a sequence of rotation codes, since the
first element will then appear in the form [name], obviating the need to typeset
the name of the sequence separately.

See also the \ShowSequence command (in the rubikcube package) for a con-
venient way of displaying a sequence of rotations in various formats.

5.1.5 Groups

The \RubikRotation command is a convenient tool for illustrating how Rubik
rotations and sequences of rotations are elements of groups and subgroups. For ex-
ample, using the rubikrotation package it is easy to show that three cycles of the
‘sixspot’ sequence return the Rubik cube to its original state. More formally this
is equivalent to (\sixspot)3 ≡ e 3, and can be nicely illustrated by implementing
the following pseudocode:

\RubikCubeSolved . \RubikRotation[3]{\sixspot} = \RubikCubeSolved

→ → →

3e is the ‘identity’ element

12

5.1.6 Random rotations

The \RubikRotation command can also be used to scramble the cube using a
random sequence of rotations. If the first argument is the lower-case word ‘random’
and the second argument is an integer n, (1 ≤ n ≤ 200), then a random sequence
of n rotations will be performed; otherwise a default value of 50 is used (for
example, if the second argument is not an integer). If n > 200 then the currently
set maximum value n = 200 will be used.

As a safety feature the maximum n can be changed only by editing the set value
of the Perl variable $maxn in the Perl script rubikrotation.pl, where we currently
have (see the ‘random’ subroutine in the document rubikrotationPL.pdf)

my $maxn=200;

For example, the following commands scramble a solved cube using a sequence
of 120 random rotations, and display the state in the form of a semi-flat (SF) cube.

\RubikCubeSolved%

\RubikRotation{random,120}%

\ShowCube{5.5cm}{0.5}{\DrawRubikCubeSF}

Note that in this particular example (above), only the \Draw.. command is
inside the TikZ picture environment (i.e., inside the \ShowCube command). Note
also that when Rubik commands are outside a TikZ picture environment, they
should have a trailing % to stop additional white space being included.

The randomisation procedure is as follows: all the possible rotations are first
allocated a different cardinal number (positive integer) and collected into an array.
Then a sequence of n randomised numbers is generated and mapped to the array
to generate the associated sequence of random rotations. The sequence used is
detailed in the .log file.

5.2 \SaveRubikState command

The command \SaveRubikState{〈filename〉} saves the state (configuration) of\SaveRubikState

the Rubik cube to the file {〈filename〉} in the standard \RubikFace... format so
that it can be read by LATEX. Consequently such a file can then be input so it can
be drawn or processed in the usual way. The output file is ‘closed’ immediately
following the ‘write’ in order to allow it to be available for input later by the same
file if required.

For example, the following commands would save the so-called ‘sixspot’ con-
figuration (generated by the rotations U, Dp, R, Lp, F, Bp, U, Dp) to the file
sixspot.tex.

13

\RubikCubeSolved%

\RubikRotation{U,Dp,R,Lp,F,Bp,U,Dp}%

\SaveRubikState{sixspot.tex}%

The form of the file sixspot.tex will then be as follows—the filename (commented
out) is automatically written to the top of the file for convenience.

% filename: sixspot.tex

\RubikFaceUp{O}{O}{O}{O}{W}{O}{O}{O}{O}%

\RubikFaceDown{R}{R}{R}{R}{Y}{R}{R}{R}{R}%

\RubikFaceLeft{Y}{Y}{Y}{Y}{B}{Y}{Y}{Y}{Y}%

\RubikFaceRight{W}{W}{W}{W}{G}{W}{W}{W}{W}%

\RubikFaceFront{G}{G}{G}{G}{O}{G}{G}{G}{G}%

\RubikFaceBack{B}{B}{B}{B}{R}{B}{B}{B}{B}%

We can therefore access and draw this configuration in a Semi-Flat format later,
when required, simply by inputting the file as follows:

\input{sixspot.tex}

\ShowCube{7cm}{0.7}{\DrawRubikCubeSF}

5.3 \CheckRubikState command

Since it is easy to inadvertently define an invalid Rubik cube (e.g., enter an invalid\CheckRubikState

number of, say, yellow facelets), this command simply checks the current colour
state of all the cubies of a 3x3x3 Rubik cube, and shows the number of facelets of
each colour. An ERROR: code is issued if the number of facelets having a given
colour exceeds 6. The results are written to the the .log file, and displayed under
the graphic if the \ShowRubikErrors command is used.

One can check the current Rubik state (for errors) by issuing the command

\CheckRubikState%

Note (1) that such a check is implemented automatically with each \RubikRotation

command, and (2) this is actually only a very superficial check—simply counting
the number of cubies of each colour.

5.4 \ShowRubikErrors command

Any errors which arise can be made visible using the command \ShowRubikErrors.\ShowRubikErrors

This command places a copy of the ‘error’ file (rubikstateERRORS.dat) under-
neath the graphic image so you can see any errors if there are any—all this detail
can also be found in the .log file.

Consequently, this command must be placed after a TikZ picture environment—
it cannot be used inside a TikZ environment. In fact this command is probably
best placed at the end of the document (if there are several such environments),
where it will reveal all rotation errors generated while processing the whole docu-
ment. Once the document is free of errors this command can be removed or just
commented out. Run the test file example-rot.tex to see an example of the use
of this command.

14

6 Files generated

Whenever the \RubikRotation or \CheckRubikState commands are used, three
small temporary plain-text files for holding data are generated as follows (they are
refreshed with each LATEX run, and are not actively deleted).

• LATEX writes Rubik state data to the file rubikstate.dat.

• The Perl script rubikrotation.pl reads the file rubikstate.dat and then
writes the new rubik state to the file rubikstateNEW.dat.

• The Perl script rubikrotation.pl also writes error data to the file
rubikstateERRORS.dat. A copy of this file is displayed under the graphic
image when the command \ShowRubikErrors is used after the TikZ picture
environment.

7 General overview

When LATEX processes rubikrotation.sty the following steps are implemented.

1. A check is made to see if fancyvrb.sty is loaded: if not then this package
is loaded (this package supplies the command \VerbatimInput which is
required for inputting the file rubikstateERRORS.dat in verbatim form).

2. A check is made to see if a configuration-file (rubikrotation.cfg) exists:
if so then this file is input.

3. The text file rubikstateNEW.dat is overwritten (if it exists), otherwise the
file is created (this prevents an ‘old’ version of the file being used by LATEX).

4. The plain-text file rubikstateERRORS.dat is created. This file collects error
messages generated by the Perl script.

When a \RubikRotation command is processed it first writes the cur-
rent colour configuration of each face (the ‘rubik state’) to the temporary
file rubikstate.dat (this will be read by the Perl script rubikrotation.pl).
The \RubikRotation command also appends the keyword ‘checkrubik’ as well
as a copy of the string of Rubik rotations. It then calls the Perl script
rubikrotation.pl.

For example, if we use the command \RubikCubeSolved followed by the com-
mand \RubikRotation[2]{U,D,L,R}, then the associated rubikstate.dat file
will be written as follows:

% filename: rubikstate.dat

up,W,W,W,W,W,W,W,W,W

down,Y,Y,Y,Y,Y,Y,Y,Y,Y

left,B,B,B,B,B,B,B,B,B

right,G,G,G,G,G,G,G,G,G

front,O,O,O,O,O,O,O,O,O

15

back,R,R,R,R,R,R,R,R,R

checkstate

rotation,U,D,L,R

rotation,U,D,L,R

Note that the \RubikRotation option [2] results in the string “rotation,U,D,L,R”
being written twice to the rubikstate.dat file, as shown above.

Alternatively, if we used the command \RubikRotation{random, 45} then
the last line written to the file would be the string “rotation,random,45”, as
follows:

% filename: rubikstate.dat

up,W,W,W,W,W,W,W,W,W

down,Y,Y,Y,Y,Y,Y,Y,Y,Y

left,B,B,B,B,B,B,B,B,B

right,G,G,G,G,G,G,G,G,G

front,O,O,O,O,O,O,O,O,O

back,R,R,R,R,R,R,R,R,R

checkstate

rotation,random,45

A \CheckRubikState command triggers the same sequence of events except that
no “rotation,....” line is written.

The action of the Perl script rubikrotation.pl is controlled by the keywords
(first argument of each line) associated with each line of the file rubikstate.dat.
When control passes to Perl, the script rubikrotation.pl starts by loading
the current rubikstate (prompted by the keywords ‘up’, ‘down’, ‘left’, ‘right’,
‘front’, ‘back’), and performing a syntax check—significant syntax errors at this
stage will cause the program to issue appropriate error messages and then termi-
nate cleanly. Next, the Perl script performs some basic cube checks (prompted
by the key word ‘checkstate’), and then the program processes the sequence of
Rubik rotations (prompted by the keyword ‘rotation’). If, instead, the second
argument of the ‘rotation,...’ string is the keyword ‘random’, and provided
this is followed by a valid integer, say n, then the Perl script performs a se-
quence of n random rotations. Finally, the Perl script writes the final rubikstate
to the text file rubikstateNEW.dat. All error messages are written to the text file
rubikstateERRORS.dat and also to the LATEX log-file.

Control then reverts to LATEX which then inputs the file rubikstateNEW.dat.
If there are more \RubikRotation commands (in the .tex file) then this cycle
repeats accordingly. Eventually a \Draw... command is reached (in the .tex

file) and the final rubikstate is drawn in a TikZ picture environment.
If the TikZ picture environment is followed by a \ShowRubikErrors command,

then a ‘verbatim’ copy of the rubikstateERRORS.dat file is displayed immediately
under the graphic. Once the graphic is error-free, then the \ShowRubikErrors

command can be removed or commented out.
Note that if a bash file is used to coordinate the process then it is often

convenient to use the linux grep utility to alert the user to any run-time errors,
by using grep to scan the rubikstateERRORS.dat file at the end of the run; for
example, as follows:

16

pdflatex --shell-escape myfile.tex

echo "...checking error file"

grep ERROR ./rubikstateERRORS.dat

8 References

• Abrahams PW, Berry K and Hargreaves KA (1990). TEX for the impatient
(Addison-Wesley Publishing Company), page 292.
Available from: http://www.ctan.org/pkg/impatient
[re: \rubikpercentchar and \@comment in Section 10.2]

• Eijkhout V (1992). TEX by topic: a TEXnician’s reference. (Addison-Wesley
Publishing Company), pages 232 & 238.
Available from: https://bitbucket.org/VictorEijkhout/tex-by-topic/
[re: \string in Section 10.8] [re: \write in Section 5.1.3]

• Feuersänger C (2015). Notes on programming in TEX.
(revision: 1.12.1-32-gc90572c; 2015/07/29)
http://pgfplots.sourceforge.net/TeX-programming-notes.pdf

[re: loop macros in Section 10.9]

• Kociemba website (Kociemba H). http://www.kociemba.org/cube.htm

• Nickalls RWD and Syropoulos A (2015). The rubikcube package, v3.0.
http://www.ctan.org/pkg/rubik,

• Randelshofer website (Randelshofer W). http://www.randelshofer.ch/

rubik/ [re: sequences and supersetENG notation]

• Reid website (Reid M). Patterns. http://www.cflmath.com/Rubik/

patterns.html [re: sequences as macros; in Section 5.1.3]

• Tellechea C and Segletes SB (2016). The listofitems package, v1.2
http://www.ctan.org/pkg/listofitems

9 Change history

• Version 4.0 (March 2017)

— The \RubikRotation command has been enhanced to allow its argu-
ment to include so-called repeat-blocks (rotation-sequences which can be re-
peated multiple times), and info-blocks for holding sequence metadata (see
Section 5.1). Syntax checking of the \RubikRotation argument is much
improved (see rubikrotationPL.pdf for details of the Perl script).

— Four new macros which hold derived data (see Section 5.1).

17

http://www.ctan.org/pkg/impatient
https://bitbucket.org/VictorEijkhout/tex-by-topic/
http://pgfplots.sourceforge.net/TeX-programming-notes.pdf
http://www.kociemba.org/cube.htm
http://www.ctan.org/pkg/rubik
http://www.randelshofer.ch/rubik/
http://www.randelshofer.ch/rubik/
http://www.cflmath.com/Rubik/patterns.html
http://www.cflmath.com/Rubik/patterns.html
http://www.ctan.org/pkg/listofitems

\SequenceName

\SequenceInfo

\SequenceShort

\SequenceLong

— Better syntax checking of the \RubikRotation argument by the Perl
program rubikrotation.pl.

• Version 3.0 (25 September 2015)

— The \RubikRotation command now actions multiple instances of its
argument as determined by an optional ‘repeat’ [〈integer〉]. For exam-
ple the command \RubikRotation[3]{R,x} is equivalent to the command
\RubikRotation{R,x,R,x,R,x} (see Sections 5.1 and 10.9).

— If a comma separated element used as an argument for the \RubikRotation
command is prefixed with either a * or [or] character then it is not actioned
as a rotation (see Section 5.1.4).

— The Perl script rubikrotation.pl now has command-line switches, in-
cluding -h to show some ‘help’ and ‘usage’ information (see Section 3.2).

— A ‘man’ file (manual file) for the Perl script rubikrotation.pl is now
included in the package.

— The Perl script rubikrotation.pl now uses as input and output file-
names those specified in the command-line of the CALLing program. This
now allows the script rubikrotation.pl to be used as a stand-alone tool
(see the rubikrotation ‘man’ file for details).

— The documentation for the Perl script rubikrotation.pl is in the ac-
companying file rubikrotationPL.pdf.

— Fixed typos, index and minor errors in the documentation.

• Version 2.0 (5 February, 2014)

— First release.

10 The code (rubikrotation.sty)

In the following, the term ‘Perl script’ denotes the script rubikrotation.pl. Use-
ful information regarding the TEX \write command is given in Eijkhout (1992),
§ 30.2.3 (page 238). For the means of including a ‘%’ character in the token list of
\write see Abrahams et. al (1990).

10.1 Package heading

1 〈*rubikrotation〉
2 \def\RRfileversion{4.0}%

3 \def\RRfiledate{2017/03/03}%

4 \NeedsTeXFormat{LaTeX2e}

18

5 \ProvidesPackage{rubikrotation}[\RRfiledate\space (v\RRfileversion)]

The package requires rubikcube.sty. However rubikcube.sty is not automat-
ically loaded (for the moment at least) since this makes it difficult to errorcheck
new versions.

6 \@ifpackageloaded{rubikcube}{}{%

7 \typeout{---rubikrotation requires the rubikcube package.}%

8 }%

The rubikrotation package requires access to the fancyvrb package for the
\VerbatimInput{} command which we use for inputting and displaying the error
file (see Section 10.10).

9 \@ifpackageloaded{fancyvrb}{}{%

10 \typeout{---rubikrotation requires the fancyvrb package%

11 for VerbatimInput{} command.}%

12 \RequirePackage{fancyvrb}}

For the \write18 syntax to work with LuaTEX (so we can access system com-
mands) we require the recent shellesc package, which we load using the ifluatex
conditional (see Section 4.1).
13 \@ifpackageloaded{ifluatex}{}{%

14 \typeout{---rubikrotation requires the ifluatex package.}%

15 \RequirePackage{ifluatex}}

16 \ifluatex%

17 \@ifpackageloaded{shellesc}{}{%

18 \typeout{---rubikrotation requires the shellesc package

19 to run using Lua\LaTeX.}%

20 \RequirePackage{shellesc}}

21 \fi%

10.2 Some useful commands

\rubikrotation First we create a suitable logo

22 \newcommand{\rubikrotation}{\textsc{rubikrotation}}

23 \newcommand{\Rubikrotation}{\textsc{Rubikrotation}}

\@print We need a simple print command to facilitate writing output to a file.

24 \newcommand{\@print}[1]{\immediate\write\outfile{#1}}

\@comment

\@commentone

We also require access to the ‘%’ character so we can (a) write comments to files,
including the log file, and (b) place a trailing ‘%’ in a line of code written to a file.

To achieve this we define the ‘%’ character as \rubikpercentchar (modified
from: Abrahams PW, Berry K and Hargreaves KA (1990), p 292) [see refs Sec-
tion 8], and also two ‘comment’ commands which implement it. This ‘workaround’
is necessary because TEX does not allow the use of the \% command for placing a
‘%’ character in the token list of \write. See Abrahams et. al (1990) for details.

25 {\catcode‘\%=12 \global\def\rubikpercentchar{%}}%

26 \newcommand{\@comment}{\rubikpercentchar\rubikpercentchar\space}%

27 \newcommand{\@commentone}{\rubikpercentchar}%

19

\rubikperlname This holds the name of the Perl script. A configuration-file (rubikrotation.cfg)
can be used to change the default name of the Perl script using a renewcommand
(see Section 4.2).

28 \newcommand{\rubikperlname}{rubikrotation}

Note that here we are assuming that the script is an executable file.

\rubikperlcmd This holds the command-line code for calling the Perl script Note that the
command-line requires a mandatory input filename preceded by the -i switch.
An optional output filename (preceded by the -o switch) may be used, otherwise
the default output filename of rubik-OUT.dat will be used.

Note that it is very important that we do actually specify an output file-
name (for receiving data from the Perl script). This is because (a) The Perl
script rubikrotation.pl is currently configured to read its output filename as
an argument from the command-line (so it can be flexibly used as a stand-alone
script for processing a given Rubik state through a sequence of rotations), and
(b) rubikrotation.sty is currently configured to read its input (i.e., data gener-
ated by the Perl script) from the file rubikstateNEW.dat.

29 \newcommand{\rubikperlcmd}{\rubikperlname\space%

30 -i rubikstate.dat -o rubikstateNEW.dat}

Remember to use the \space macro following the \rubikperlname macro in order
to generate the mandatory space before the first command-line argument.

A plain-text configuration-file rubikrotation.cfg can be used to change the
default command-line code using a renewcommand (see Section 4.2).

10.3 Configuration file

If a configuration file exists (rubikrotation.cfg) then input it here, i.e., after
defining the \rubikperlname and \rubikperlcmd macros and before creating the
rubikstateERRORS.dat file.

31 \typeout{---checking for config file (rubikrotation.cfg)...}

32 \IfFileExists{rubikrotation.cfg}{%

33 \input{rubikrotation.cfg}%

34 }{\typeout{---no config file available}%

35 }%

10.4 Clean file rubikstateNEW.dat

We need to clean out any existing (old) rubikstateNEW.dat file, since if the
TeX shell command-line switch is accidentally not used then the Perl script
rubikrotation.pl will not be CALLed, and hence this file will not be renewed
(i.e., an ‘old’ image may be used).

36 \typeout{---cleaning file rubikstateNEW.dat}%

37 \newwrite\outfile%

38 \immediate\openout\outfile=rubikstateNEW.dat%

39 \@print{\@comment rubikstateNEW.dat}%

40 \immediate\closeout\outfile%

20

10.5 rubikstateERRORS.dat

We first open the file rubikstateERRORS.dat which is used by the Perl script
rubikrotation.pl for writing its error-messages to. This file is displayed by the
command \ShowRubikErrors.

important note: this file is created fresh each time LaTeX is run, and hence
the Perl script only appends data to it during the LATEX run, so this file just
grows until either it is destroyed or recreated—this is a useful feature since the
file accumulates all error messages as the .tex file is processed. We can’t make
the Perl script create the file since the Perl script is only CALLed if we use a
\RubikRotation or \CheckRubikState command (which we may not !)—so it
has to be created here.

41 \typeout{---creating file rubikstateERRORS.dat}%

42 \newwrite\outfile%

43 \immediate\openout\outfile=rubikstateERRORS.dat%

44 \@print{\@comment rubikstateERRORS.dat}%

45 \@print{\@comment --------------------}%

46 \immediate\closeout\outfile%

10.6 Setting up file-access for new files

Having set up all the primary files, we now need to set up a newwrite for all sub-
sequent file openings (e.g., for rubikstate.dat and saving to arbitrary filenames
by the \SaveRubikState command). Otherwise, we can easily exceed the LaTeX
limit of 15. From here-on TEX will use openout7 when opening and writing to
files. We will implement new openings using the command \@openstatefile (see
below).

47 \typeout{---setting up newwrite for rubikrotation.sty to use...}%

48 \newwrite\outfile%

\@openstatefile

\@closestatefile

We also need commands for easy file opening and closing for new instances of the
file rubikstate.dat etc. Note that for this we are therefore using the same outfile
number as set up by the \newwrite... above.

49 \newcommand{\@openstatefile}{\immediate\openout\outfile=rubikstate.dat}

50 \newcommand{\@closestatefile}{\immediate\closeout\outfile}

10.7 Saving the Rubik state

\@printrubikstate This internal command writes the Rubik configuration to the file rubikstate.dat,
and is used by the \RubikRotation command (see Sections 5.2 and 7). The file
rubikstate.dat is read by the Perl script, and represents the state on which
the new \RubikRotation command acts. Note that we append the key-word
checkstate to the end of the file in order to trigger the Perl script to implement
its checkstate subroutine.

The actual state is simply an ordered sequence of the faces and the colours
associated with each facelet of a face. The colour associated with a particular
facelet is held by the variable for that facelet. For example, the top-left facelet

21

associated with the front face is held in the variable \Flt (see Section 5.2).
Further relevant documentation is in the rubikcube package.

51 \newcommand{\@printrubikstate}{%

52 \@print{up,\Ult,\Umt,\Urt,\Ulm,\Umm,\Urm,\Ulb,\Umb,\Urb}%

53 \@print{down,\Dlt,\Dmt,\Drt,\Dlm,\Dmm,\Drm,\Dlb,\Dmb,\Drb}%

54 \@print{left,\Llt,\Lmt,\Lrt,\Llm,\Lmm,\Lrm,\Llb,\Lmb,\Lrb}%

55 \@print{right,\Rlt,\Rmt,\Rrt,\Rlm,\Rmm,\Rrm,\Rlb,\Rmb,\Rrb}%

56 \@print{front,\Flt,\Fmt,\Frt,\Flm,\Fmm,\Frm,\Flb,\Fmb,\Frb}%

57 \@print{back,\Blt,\Bmt,\Brt,\Blm,\Bmm,\Brm,\Blb,\Bmb,\Brb}%

58 \@print{checkstate}%

59 }

10.8 SaveRubikState command

\SaveRubikState The command \SaveRubikState{〈filename〉} saves the Rubik state to a named
file in the format of a Rubik command (so it can then be processed by LATEX).
Note that in order to actually write a LaTeX command to a file without a trailing
space one must prefix the command with the \string command (see Eijkhout
(1992), p 238) [see refs Section 8].

Note that this macro uses the internal commands \@comment (‘%%’), \@commentone
(‘%’) and \@print. #1 is the output filename. We use several \typeout com-
mands to write to the log file. An example of the line of code we are trying to
output to the rubikstateNEW.dat file is as follows:
\RubikFaceUp{W}{W}{G}{W}{W}{G}{B}{B}{Y}%

60 \newcommand{\SaveRubikState}[1]{%

61 \typeout{---NEW save command------------------}%

62 \typeout{---command = SaveRubikState{#1}}%

63 \typeout{---saving Rubik state data to file #1}%

64 \immediate\openout\outfile=#1%

65 \@print{\@comment filename: #1\@commentone}%

66 \@print{\string\RubikFaceUp%

67 {\Ult}{\Umt}{\Urt}{\Ulm}{\Umm}{\Urm}{\Ulb}{\Umb}{\Urb}\@commentone}%

68 \@print{\string\RubikFaceDown%

69 {\Dlt}{\Dmt}{\Drt}{\Dlm}{\Dmm}{\Drm}{\Dlb}{\Dmb}{\Drb}\@commentone}%

70 \@print{\string\RubikFaceLeft%

71 {\Llt}{\Lmt}{\Lrt}{\Llm}{\Lmm}{\Lrm}{\Llb}{\Lmb}{\Lrb}\@commentone}%

72 \@print{\string\RubikFaceRight%

73 {\Rlt}{\Rmt}{\Rrt}{\Rlm}{\Rmm}{\Rrm}{\Rlb}{\Rmb}{\Rrb}\@commentone}%

74 \@print{\string\RubikFaceFront%

75 {\Flt}{\Fmt}{\Frt}{\Flm}{\Fmm}{\Frm}{\Flb}{\Fmb}{\Frb}\@commentone}%

76 \@print{\string\RubikFaceBack%

77 {\Blt}{\Bmt}{\Brt}{\Blm}{\Bmm}{\Brm}{\Blb}{\Bmb}{\Brb}\@commentone}%

78 \immediate\closeout\outfile%

79 \typeout{---}%

80 }%

22

10.9 RubikRotation command

\RubikRotation The \RubikRotation[〈integer〉]{〈comma separated sequence〉} command (a) writes
the current Rubik state to the file rubikstate.dat, (b) writes the rotation se-
quence (either once or multiple times depending on the value of the optional integer
argument), and then (c) CALLs the Perl script rubikrotation.pl. It also writes
comments to the data file and also to the log file.

The way we allow the user to (optionally) process the main argument multiple
times is simply by writing the associated output command multiple times to the
output data-file. Consequently, we require the \RubikRotation command to allow
a square-bracket optional argument (a non-negative integer) to specify the number
of such repeats. In order to implement this optional argument facility we use two
macros (countingloop and loopcounter) detailed by Feuersänger (2015) [see refs
Section 8], as follows:

81 %% Two macros detailed by Feuersaenger (2015)

82 \long\def\@countingloop#1 in #2:#3#4{%

83 #1=#2 %

84 \@loopcounter{#1}{#3}{#4}%

85 }

86 %%--------------------------

87 \long\def\@loopcounter#1#2#3{%

88 #3%

89 \ifnum#1=#2 %

90 \let\next=\relax%

91 \else

92 \advance#1 by1 %

93 \def\next{\@loopcounter{#1}{#2}{#3}}%

94 \fi

95 \next

96 }

Having defined the above two macros we can now implement an optional argument
(a repeat number) indicating the number of times we want the command to write
the main argument to the output data file.

97 \newcommand{\RubikRotation}[2][1]{%

98 \typeout{---TeX process (rubikrotation.sty)-------}%

99 \typeout{---NEW rotation command------------------}%

100 \typeout{---command = RubikRotation[#1]{#2}}%

101 \typeout{---writing current Rubik state to file rubikstate.dat}%

102 \@openstatefile% open data file

103 \@print{\@comment filename: rubikstate.dat}%

104 \@print{\@comment written by rubikrotation.sty%

105 =v\RRfileversion\space (\RRfiledate)}%

106 \@printrubikstate%

107 %% countingloop code from Feuersaenger (2015)

108 \newcount\ourRRcounter%

109 \@countingloop{\ourRRcounter} in 1:{#1}{%

110 \immediate\write\outfile{rotation,#2}}%

111 \@closestatefile% close data file

23

112 \typeout{---CALLing Perl script (rubikrotation.pl)}%

113 \immediate\write18{\rubikperlcmd}%

114 \typeout{---inputting NEW datafile (data written by Perl script)}%

115 \input{rubikstateNEW.dat}%

116 \typeout{---}%

117 }

Note that the new \ShellEscape command implemented by the recent shellesc
package is equivalent to \immediate\write18 (see above), and so we probably
ought to use \ShellEscape instead in future (and hence load shellesc automat-
ically). At present, however, we leave the user to make sure that the shellesc
package is actually available on their system.

10.10 ShowRubikErrors command

\ShowRubikErrors This command inputs the file rubikstateERRORS.dat. Also made a more conve-
nient synonym = \ShowErrors.

118 \newcommand{\ShowRubikErrors}{%

119 \typeout{---ShowRubikErrors: inputting file rubikstateERRORS.dat}%

120 \VerbatimInput{rubikstateERRORS.dat}%

121 }

122 \newcommand{\ShowErrors}{\ShowRubikErrors}

10.11 CheckRubikState command

\CheckRubikState This command triggers the Perl script to implement some simple error checking
of the Rubik configuration (state). This command (a) writes the current Rubik
state to the file rubikstate.dat, and then (b) CALLs the Perl script. It also
writes comments to the data file and also to the log file..

123 \newcommand{\CheckRubikState}{%

124 \typeout{---NEW check command------------------}%

125 \typeout{---command = CheckRubikState}%

126 \typeout{---writing current Rubik state to file rubikstate.dat}%

127 \@openstatefile% opens data file

128 \@print{\@comment filename: rubikstate.dat}%

129 \@printrubikstate%

130 \@closestatefile% close data file

131 \typeout{---running Perl script (rubikrotation.pl)}%

132 \immediate\write18{\rubikperlcmd}%

133 \typeout{---inputting NEW datafile (data written by Perl script)}%

134 \input{rubikstateNEW.dat}%

135 \typeout{---}%

136 }

————————– End of this package ————————–

137 〈/rubikrotation〉

24

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\% 25
\@closestatefile . .

. 49, 111, 130
\@comment 25, 39, 44,

45, 65, 103, 104, 128
\@commentone

. . . 25, 65, 67,
69, 71, 73, 75, 77

\@countingloop . 82, 109
\@ifpackageloaded .

. 6, 9, 13, 17
\@loopcounter 84, 87, 93
\@openstatefile . . .

. 49, 102, 127
\@print 24, 39, 44, 45,

52, 53, 54, 55,
56, 57, 58, 65,
66, 68, 70, 72,
74, 76, 103, 104, 128

\@printrubikstate .
. 51, 106, 129

A
\advance 92

B
\Blb 57, 77
\Blm 57, 77
\Blt 57, 77
\Bmb 57, 77
\Bmm 57, 77
\Bmt 57, 77
\Brb 57, 77
\Brm 57, 77
\Brt 57, 77

C
\catcode 25
\CheckRubikState 14, 123
\closeout 40, 46, 50, 78

D
\def . . 2, 3, 25, 82, 87, 93

\Dlb 53, 69
\Dlm 53, 69
\Dlt 53, 69
\Dmb 53, 69
\Dmm 53, 69
\Dmt 53, 69
\Drb 53, 69
\Drm 53, 69
\Drt 53, 69

E
\else 91

F
\fi 21, 94
\Flb 56, 75
\Flm 56, 75
\Flt 56, 75
\Fmb 56, 75
\Fmm 56, 75
\Fmt 56, 75
\Frb 56, 75
\Frm 56, 75
\Frt 56, 75

G
\global 25

I
\IfFileExists 32
\ifluatex 16
\ifnum 89
\immediate 24, 38, 40,

43, 46, 49, 50,
64, 78, 110, 113, 132

\input 33, 115, 134

L
\LaTeX 19
\let 90
\Llb 54, 71
\Llm 54, 71
\Llt 54, 71
\Lmb 54, 71

\Lmm 54, 71
\Lmt 54, 71
\long 82, 87
\Lrb 54, 71
\Lrm 54, 71
\Lrt 54, 71

N
\NeedsTeXFormat 4
\newcommand . . 22, 23,

24, 26, 27, 28,
29, 49, 50, 51,
60, 97, 118, 122, 123

\newcount 108
\newwrite . . . 37, 42, 48
\next 90, 93, 95

O
\openout . 38, 43, 49, 64
\ourRRcounter . 108, 109
\outfile 24, 37, 38, 40,

42, 43, 46, 48,
49, 50, 64, 78, 110

P
\ProvidesPackage . . . 5

R
\relax 90
\RequirePackage . . .

. 12, 15, 20
\Rlb 55, 73
\Rlm 55, 73
\Rlt 55, 73
\Rmb 55, 73
\Rmm 55, 73
\Rmt 55, 73
\Rrb 55, 73
\RRfiledate . . . 3, 5, 105
\RRfileversion 2, 5, 105
\Rrm 55, 73
\Rrt 55, 73
\RubikFaceBack 76
\RubikFaceDown 68

25

\RubikFaceFront . . . 74

\RubikFaceLeft 70

\RubikFaceRight . . . 72

\RubikFaceUp 66

\rubikpercentchar .
. 25, 26, 27

\rubikperlcmd
. . . 6, 29, 113, 132

\rubikperlname 6, 28, 29

\RubikRotation . . . 7, 81

\Rubikrotation 23

\rubikrotation 22

S

\SaveRubikState . 13, 60

\SequenceInfo 9

\SequenceLong 9

\SequenceName 9
\SequenceShort 9
\ShowErrors 122
\ShowRubikErrors 14, 118
\space . . . 5, 26, 29, 105
\string 66,

68, 70, 72, 74, 76

T
\textsc 22, 23
\typeout

7, 10, 14, 18, 31,
34, 36, 41, 47,
61, 62, 63, 79,
98, 99, 100, 101,
112, 114, 116,
119, 124, 125,
126, 131, 133, 135

U

\Ulb 52, 67

\Ulm 52, 67

\Ult 52, 67

\Umb 52, 67

\Umm 52, 67

\Umt 52, 67

\Urb 52, 67

\Urm 52, 67

\Urt 52, 67

V

\VerbatimInput 120

W

\write . 24, 110, 113, 132

26

	Title
	Contents
	1 Introduction
	2 Requirements
	3 Installation
	3.1 Generating the files
	3.2 Placing the files

	4 Usage
	4.1 Enabling the TeX `shell' facility
	4.2 Configuration-file

	5 Commands
	5.1 RubikRotation
	5.1.1 Examples
	5.1.2 Sequence strings
	5.1.3 Sequences as macros
	5.1.4 Arguments in square brackets
	5.1.5 Groups
	5.1.6 Random rotations

	5.2 SaveRubikState
	5.3 CheckRubikState
	5.4 ShowRubikErrors

	6 Files generated
	7 General overview
	8 References
	9 Change history
	10 The code
	10.1 Package heading
	10.2 Some useful commands
	10.3 Configuration file
	10.4 Clean file rubikstateNEW.dat
	10.5 rubikstateERRORS.dat
	10.6 Setting up file-access for new files
	10.7 Saving the Rubik state
	10.8 SaveRubikState command
	10.9 RubikRotation command
	10.10 ShowRubikErrors command
	10.11 CheckRubikState command

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	L
	N
	O
	P
	R
	S
	T
	U
	V
	W

