
The rubikrotation package

RWD Nickalls (dick@nickalls.org)
A Syropoulos (asyropoulos@yahoo.com)

This file describes version 3.0 (2015/09/25)
www.ctan.org/pkg/rubik

Abstract

The rubikrotation package is a dynamic extension for the rubikcube
package (both are part of the Rubik ‘bundle’). The package provides the
\RubikRotation command which processes a sequence of Rubik rotation
moves on-the-fly (using the Perl script rubikrotation.pl), and returns
the new Rubik cube state (configuration). The rubikrotation package
also provides a command for implementing some basic checking of the
Rubik cube state (\CheckRubikState), and one for displaying any errors
(\ShowRubikErrors).

The rubikrotation package requires access to the TEX write18 facil-
ity, which is enabled by using the --shell-escape command-line switch.
The rubikrotation package has been road-tested on a Microsoft platform
(with MiKTeX and Strawberry Perl), on a Linux platform (Mandriva using
TEXLive), and on a Solaris platform (OpenIndiana).

{(

M U′

)
4, [y

′], [x]
}
3

Contents

1 Introduction 2

2 Requirements 3

3 Installation 3
3.1 Generating the files . 3
3.2 Placing the files . 4

1

4 Usage 5
4.1 Enabling the TEX ‘shell’ facility . 5
4.2 Test file . 5
4.3 Configuration-file . 6

5 Commands 7
5.1 RubikRotation command . 7

5.1.1 Sequences as macros . 8
5.1.2 Arguments prefixed with *, [,] 8
5.1.3 Groups . 10
5.1.4 Random rotations . 10

5.2 SaveRubikState . 11
5.3 CheckRubikState . 11
5.4 ShowRubikErrors . 12

6 Files generated 12

7 General overview 12

8 References 14

9 Change history 15

10 The code (rubikrotation.sty) 15
10.1 Package heading . 15
10.2 Some useful commands . 16
10.3 Configuration file . 17
10.4 Clean file rubikstateNEW.dat . 17
10.5 rubikstateERRORS.dat . 17
10.6 Setting up file-access for new files 18
10.7 Saving the Rubik state . 18
10.8 SaveRubikState command . 19
10.9 RubikRotation command . 19
10.10ShowRubikErrors command . 20
10.11CheckRubikState command . 21

1 Introduction

The rubikrotation package is a dynamic extension to the rubikcube package.
It consists of a style option (rubikrotation.sty), a Perl script (rubikrotation.pl)
and some examples.

The primary role of the rubikrotation package is to implement a sequence
of Rubik rotation moves on-the-fly using the \RubikRotation command. Con-
sequently, this package requires the use of the --shell-escape switch to allow
command-line control of the Perl script, which is really the ‘engine’ of this package.

2

The rubikrotation package has been road-tested on a Microsoft platform
(with MiKTeX and Strawberry Perl 1), on a Linux platform (Mandriva using
TEXLive), and on a Solaris platform (OpenIndiana).

The following commands are made available by rubikrotation.sty:

\RubikRotation[]{}

\SaveRubikState

\CheckRubikState

\ShowRubikErrors

2 Requirements

The rubikrotation package requires the TikZ and the rubikcube packages.

3 Installation

3.1 Generating the files

Place the file rubikrotation.zip into a temporary directory, and unzip it. This
will generate the following files:

rubikrotation.ins

rubikrotation.dtx

rubikrotation.pdf --this document

rubikrotation.pl --Perl script

rubikrotationPL.pdf --documentation of rubikrotation.pl

rubikrotation.1 --the man file

Rubikrot-doc-figA.pdf

Rubikrot-doc-figB.pdf

Rubikrot-doc-figC.pdf

Rubikrot-doc-figD.pdf

examples.tex

examples.pdf

examples.sh

examples.bat

Note that the package includes an ‘examples’ file (examples.tex) as well as
associated .sh (Linux) and .bat (Microsoft) batch files which can be used
to facilitate processing the file. The main package documentation is the file
rubikrotation.pdf.

The style option rubikrotation.sty is generated by running (pdf)LATEX on
the file rubikrotation.ins as follows:

pdflatex rubikrotation.ins

1‘Strawberry Perl’ (http://strawberryperl.com) is a free Perl environment for MS Windows,
designed to be as close as possible to the Perl environment of Unix/Linux systems.

3

The documentation file (rubikrotation.pdf) is then generated using the follow-
ing sequence of steps 2:

pdflatex rubikrotation.dtx

pdflatex rubikrotation.dtx

makeindex -s gind.ist rubikrotation

makeindex -s gglo.ist -o rubikrotation.gls rubikrotation.glo

pdflatex rubikrotation.dtx

pdflatex rubikrotation.dtx

3.2 Placing the files

Place the files either in a working directory, or where your system will find them,
e.g., in your /texmf-local/ directory tree. For example, on a Linux platform
with a standard TEX Directory Structure (TDS), then:

*.sty → /usr/local/texlive/texmf-local/tex/latex/rubik/

*.cfg → /usr/local/texlive/texmf-local/tex/latex/rubik/

*.pdf → /usr/local/texlive/texmf-local/doc/rubik/

*.pl → /usr/local/texlive/texmf-local/scripts/rubik/

perl script: Make the perl script executable (chmod +x rubikrotation.pl),
and then rename the file as ‘rubikrotation’ (i.e., with no file extension), and then
place the executable script into your current TeXLive binary directory, e.g., /

user/local/texlive/YYYY/bin/i386-linux.
Sometimes the setting up of a simple one or two-line plain-text configuration-

file may be useful or even necessary, depending on your system (see Section 4.3 be-
low). Such a file (if one exists) will automatically be read by rubikrotation.sty

providing the file is named rubikrotation.cfg.

the ‘man’ file: On a Linux platform this file (rubikrotation.1) would be
typically located in the directory /usr/share/man/man1.

file database: Finally, (depending on your system) update the TEX file
database. For example, on a Linux platform this is achieved using the texhash

command.

quick test: To test that your system can now run the perl script, just type at
the command-line

rubikrotation -h

which should generate something like the following:

This is rubikrotation version 3.0

Usage: rubikrotation [-h] -i <input file> [-o <out file>]

where,

[-h] gives this help listing

2Since the documentation includes a complicated indexing system as well a pdf index and
hyperef links (the package hypdoc is used), then a lot of pdflatex runs are required. Prior to the
first run it is a good idea to delete any relevant .toc, .aux, .out files.

4

[-i] creates specified input file

[-o] creates specified output file

For documentation see: rubikrotation.pdf,

rubikrotationPL.pdf and rubikcube.pdf

4 Usage

Load the packages rubikcube.sty and rubikrotation.sty in the TEX file pream-
ble after loading the TikZ package (both Rubik packages require the TikZ pack-
age), for example, as follows:

\usepackage{tikz}

\usepackage{rubikcube,rubikrotation}

and run (pdf)LATEX using the --shell-escape command-line switch (see the fol-
lowing section).

4.1 Enabling the TEX ‘shell’ facility

In order to enable the TEX ‘write18’ facility (so it can run the Perl script) it is
necessary to invoke (pdf)LATEX using the --shell-escape switch as follows:

pdflatex --shell-escape filename.tex

In practice, it is probably most convenient to run this command via a bash/batch
file. For example, on a Linux platform the following bash file will run the file,
show any errors, and open the pdf using AcrobatReader.

pdflatex --shell-escape filename.tex

echo "...checking error file"

grep ERROR ./rubikstateERRORS.dat

acroread filename.pdf &

4.2 Test file

An example tex file (which demonstrates the use of some of the package commands)
is included in the package, namely:

example-rot.tex (shows 8 worked examples)

This file needs to be run using --shell-escape switch; for example:

pdflatex --shell-escape example-rot.tex

Batch files (.sh for Linux, and .bat for Microsoft) are also provided to facilitate
running the ‘example’ file. For example, on a Linux platform one would run a
bash file as follows:

bash example-rot.sh

If processing this file gives unexpected results (e.g., the cubes appear not to have
experienced any rotations) check-out the associated log file to see if the operating
system had any difficulties finding files etc.

5

4.3 Configuration-file

A plain-text configuration-file with the name rubikrotation.cfg (if one exists)
will automatically be read by rubikrotation.sty. The rubikrotation pack-
age’s facility to use a configuration-file allows the user to change not only (a) the
filename of the Perl script (rubikrotation.pl), but also (b) the command-line
code used by rubikrotation.sty for calling the Perl script. This sort of fine-
tuning can be very useful, and sometimes may even be necessary (depending on
your system) for running the Perl script.

For example, on some systems it maybe preferable to use a different path,
file-name and/or a different command-line code to call the script. Such a
configuration-file can also facilitate testing a new Perl script having a different
name and location.

The configuration-file is essentially a convenient software vehicle for feeding\rubikperlname

\rubikperlcmd additional LATEX code to the style option rubikrotation.sty, and hence al-
lows the contents of some commands to be easily adjusted and/or fine-tuned.
For the rubikrotation package there are two particular commands we may
wish to adjust. The first is that defining the filename of the Perl script, namely
\rubikperlname. The second is that defining the command-line call, namely
\rubikperlcmd. The default definitions in rubikrotation.sty (which assume
the Perl script is executable), are as follows: (they are detailed in Section 10.2)

\newcommand{\rubikperlname}{rubikrotation}

\newcommand{\rubikperlcmd}{\rubikperlname\space%

-i rubikstate.dat -o rubikstateNEW.dat}

Note the need here to use the \space command on the end of the backslash com-
mand (\rubikperlname) in order to force a following space—i.e., before the first
command-line argument. The following examples illustrate how the configuration-
file may be used.

example 1: Suppose we wish to test out a slightly modified Perl script
with the working (executable) name rubikrotationR77. In this case we sim-
ply create, in the local working directory, a plain-text configuration-file (called
rubikrotation.cfg) which contains just the following line:

\renewcommand{\rubikperlname}{rubikrotationR77}

example 2: Alternatively, suppose we wish to test out a new Perl script
with the (non-executable) name rubikrotationR55.pl. Now, in this particu-
lar case we will need to run the script using a slightly different command, namely,
perl rubikrotationR55.pl ..., and consequently we need to implement both
these changes in the configuration-file, as follows:

\renewcommand{\rubikperlname}{rubikrotationR55.pl}

\renewcommand{\rubikperlcmd}{perl \rubikperlname\space\%

-i rubikstate.dat -o rubikstateNEW.dat}

placing the configuration-file: The simplest arrangement is just to include
the .cfg file in the working ‘test’ directory. Alternatively, the .cfg file could be

6

placed in the /texmf-local/ directory tree (say, in /usr/local/texlive/texmf-

local/tex/latex/rubik/), but in this case one would then have to be careful to
specify the correct PATH for everything in order to enable your system to find all
the various components etc.

Note that you can, of course, have several .cfg files, since the system will read
only one such file (the first one it finds starting with the current working directory).
Consequently, it may be useful to have one .cfg file in your /texmf-local/ dir
(for running the standard Rubik package), and another (different) .cfg file in your
‘test’ directory.

5 Commands

The only ‘Rubik bundle’ commands which must be used inside a TikZ picture en-
vironment are the \Draw... commands (these are all provided by the rubikcube
package), although most commands can be placed inside a TikZ environment if
you wish.

However, using commands which influence the Rubik colour state (e.g., the
\RubikRotation command) outside the tikzpicture, minipage or figure envi-
ronments generally offers maximum flexibility, since the effects of such commands
when used inside these environments remain ‘local’ to the environment, and are
not therefore accessable outside that particular environment (see also Section 4.1
in the rubikcube documentation).

Conversely, the only rubikrotation command which should not be used in-
side a TikZ environment is the \ShowRubikErrors command (see the notes on
this command below).

5.1 \RubikRotation command

The \RubikRotation[〈integer〉]{〈comma separated sequence〉} command pro-\RubikRotation

cesses a comma separated sequence of rotations, and returns the final state. The
optional [〈integer〉] argument specifies the number of times the command should
be repeated.

For example, if we wanted to see the effect of the rotations R, R, L, U, D on
a solved Rubik cube, we could use the following commands.

\RubikCubeSolved % sets up the colours for a solved cube state

\RubikRotation{R2,L,U,D}

\begin{tikzpicture}[scale=0.7]

\DrawRubikCubeRU

\end{tikzpicture}%

The \RubikRotation command results in LATEX first writing the current Ru-
bik state to a text file (rubikstate.dat), and then calling the Perl script
rubikrotation.pl. The Perl script then reads the current Rubik state from
the (rubikstate.dat) file, performs all the rotations, and then writes the new
Rubik state (and any error messages) to the file rubikstateNEW.dat, which is

7

then input on-the-fly by the LATEX file. This new Rubik state can then either used
as the input for another \RubikRotation, or used to generate a graphic image of
the cube.

A given rotation sequence can be repeated multiple times, say n times, by
using the optional [n]. For example, the following two commands are equivalent:

\RubikRotation[3]{x,R,U}

\RubikRotation{x,R,U,x,R,U,x,R,U}

5.1.1 Sequences as macros

Macros which are arguments of the TEX \write command are expanded on writing
(Eijkhout 1992, § 30.2.3, p. 238)[see refs Section 8]. Consequently we are able to
use a sequence-defining macro as an argument for the \RubikRotation command.
In fact this is very convenient, since it allows one to store lots of different rotation
sequences by name alone.

For example, we can use the name ‘sixspot’ for a macro denoting the rotation
sequence which generates the well known ‘sixspot’ configuration (see the ‘patterns’
page on the Reid website)[see refs Section 8], as follows:

\newcommand{\sixspot}{U,Dp,R,Lp,F,Bp,U,Dp}

With this new \sixspot command we are now able to generate the graphic
(sixspot cube) very easily using the following code—this time we demonstrate the
use of the more convenient \ShowCube command (which includes the tikzpicture
environment):

\RubikCubeSolved

\RubikRotation{\sixspot}

\ShowCube{3cm}{0.7}{\DrawRubikCubeRU}

Providing such macros (when used as arguments) are comma separated (as the
rotation codes must be), then the \RubikRotation command can accommodate
both rotation codes and macros; for example, \RubikRotation{x,y,\sixspot,x}.

5.1.2 Arguments prefixed with *, [,]

If any of the comma separated arguments is prefixed with either *, [or] they are
interpreted as an inactive ‘string’, and not as a rotation. This feature therefore
allows a string argument to be used as a label, which can be very useful.

For example, we can use this facility to label the ‘sixspot’ configuration men-
tioned above, as follows:

\RubikRotation{[sixspot],U,Dp,R,Lp,F,Bp,U,Dp}

8

In practice, it is quite useful to go one step further and include the [] label feature
in the \sixspot command, as follows,

\newcommand{\sixspot}{[sixspot],U,Dp,R,Lp,F,Bp,U,Dp}

since this has the great advantage of making the label-name visible in the log
file. For example, the following command, which uses the rotations x, x and y to
initially rotate the ‘solved’ cube before applying the ‘sixspot’ sequence of rotations,

\RubikRotation{x2,y,\sixspot}

will then be represented in the log file as

...command=rotation,x2,y,[sixspot],U,Dp,R,Lp,F,Bp,U,Dp

...arguments passed to ‘rotation’ sub = x2 y [sixspot] U Dp R Lp F ...

...rotation x OK (= rrR + rrSr + rrLp)

...rotation x OK (= rrR + rrSr + rrLp)

...rotation y OK (= rrU + rrSu + rrDp)

...[sixspot] is a label OK

...rotation U OK

...rotation Dp OK

...rotation R OK

...rotation Lp OK

...rotation F OK

...rotation Bp OK

...rotation U OK

...rotation Dp OK

In this way, several named rotation sequences can be easily distinguished in the log
file from adjacent rotation sequences. This feature is also useful when typesetting
a sequence of rotation codes, since the first element will then appear in the form
[name], obviating the need to typeset the name of the sequence separately.

To this end, the ForEachX macro—from the forarray package—can be very
useful. For example, this macro is central to the following example macro for
typesetting a rotation sequence using the Rubik \rr command:

\def\x{\thislevelitem}

\def\xcount{\thislevelcount}

\newcommand{\showseq}[1]{%

\ForEachX{,}{%

\ifthenelse{\xcount=1}{\texttt{\x}}{,\ \rr{\x}}%

}{#1}.

}

Now, for a sequence defined as \newcommand{\myseq}{[myseq],U,D,Lwp,R},
then the command \showseq{\myseq} will result in the following output:

[myseq], U, D, Lwp, R.

Note that we are able to typeset the name [myseq] differently from the remaining
sequence since the counter \xcount allows us to locate the first item. However,

9

this macro as it stands needs further development in order to handle sequence
elements with a terminal digit (e.g., R2)—the macro will need to first expand this
to R, R if the Rubik commands are to be used.

5.1.3 Groups

The \RubikRotation command is a convenient tool for illustrating how Rubik
rotations and sequences of rotations are elements of groups and subgroups. For ex-
ample, using the rubikrotation package it is easy to show that three cycles of the
‘sixspot’ sequence return the Rubik cube to its original state. More formally this
is equivalent to (\sixspot)3 ≡ 0, and can be nicely illustrated by implementing
the following pseudocode:

\RubikCubeSolved . \RubikRotation[3]{\sixspot} = \RubikCubeSolved

→ → →

5.1.4 Random rotations

The \RubikRotation command can also be used to scramble the cube using a
random sequence of rotations. If the first argument is the lowercase word ‘random’
and the second argument is an integer n, (1 ≤ n ≤ 200), then a random sequence
of n rotations will be performed; otherwise a default value of 50 is used (for
example, if the second argument is not an integer). If n > 200 then the currently
set maximum value n = 200 will be used.

As a safety feature the maximum n can be changed only by editing the set
value of the Perl variable $maxn in the Perl script rubikrotation.pl, where (see
line 583) we currently have

my $maxn=200;

For example, the following commands will scramble a solved cube using a
sequence of 120 random rotations, and display the state in the form of a semi-flat
cube.

\RubikCubeSolved%

\RubikRotation{random,120}%

\ShowCube{5.5cm}{0.5}{\DrawRubikCubeFlat}

10

Note that in this particular example (above), only the \Draw.. command is
inside the TikZ picture environment (i.e., inside the \ShowCube command). Note
also that when Rubik commands are outside a TikZ picture environment, they
should have a trailing % to stop additional white space being included.

The randomisation procedure is as follows: all the possible rotations are first
allocated a different cardinal number (positive integer) and collected into an array.
Then a sequence of n randomised numbers is generated and mapped to the array
to generate the associated sequence of random rotations. The sequence used is
detailed in the .log file.

5.2 \SaveRubikState command

The command \SaveRubikState{〈filename〉} saves the state (configuration) of\SaveRubikState

the Rubik cube to the file {〈filename〉} in the standard \RubikFace... format so
that it can be read by LATEX. Consequently such a file can then be input so it can
be drawn or processed in the usual way. The output file is ‘closed’ immediately
following the ‘write’ in order to allow it to be available for input later by the same
file if required.

For example, the following commands would save the so-called ‘sixspot’ con-
figuration (generated by the rotations U, Dp, R, Lp, F, Bp, U, Dp) to the file
sixspot.tex.

\RubikCubeSolved%

\RubikRotation{*sixspot,U,Dp,R,Lp,F,Bp,U,Dp}%

\SaveRubikState{sixspot.tex}%

The form of the file sixspot.tex will then be as follows—the filename (commented
out) is automatically written to the top of the file for convenience.

% filename: sixspot.tex

\RubikFaceUp{O}{O}{O}{O}{W}{O}{O}{O}{O}%

\RubikFaceDown{R}{R}{R}{R}{Y}{R}{R}{R}{R}%

\RubikFaceLeft{Y}{Y}{Y}{Y}{B}{Y}{Y}{Y}{Y}%

\RubikFaceRight{W}{W}{W}{W}{G}{W}{W}{W}{W}%

\RubikFaceFront{G}{G}{G}{G}{O}{G}{G}{G}{G}%

\RubikFaceBack{B}{B}{B}{B}{R}{B}{B}{B}{B}%

We can therefore access and draw this configuration later, when required, simply
by inputting the file as follows:

\input{sixspot.tex}

\ShowCube{7cm}{0.7}{\DrawRubikCubeFlat}

5.3 \CheckRubikState command

Since it is easy to inadvertently define an invalid Rubik cube (e.g., enter an invalid\CheckRubikState

number of, say, yellow facelets), this command checks the current colour state of
all the cubies of a 3x3x3 Rubik cube, and shows the number of facelets of each

11

colour. An ERROR: code is issued if the number of facelets having a given colour
exceeds 6. The results are written to the the .log file, and displayed under the
graphic if the \ShowRubikErrors command is used.

One can check the current Rubik state (for errors) by issuing the command

\CheckRubikState%

Note that such a check is implemented automatically with each \RubikRotation

command.

5.4 \ShowRubikErrors command

Any errors which arise can be made visible using the command \ShowRubikErrors.\ShowRubikErrors

This command places a copy of the ‘error’ file (rubikstateERRORS.dat) under-
neath the graphic image so you can see any errors if there are any—all this detail
can also be found in the .log file.

Consequently, this command must be placed after a TikZ picture environment—
it cannot be used inside a TikZ environment. In fact this command is probably
best placed at the end of the document (if there are several such environments),
where it will reveal all rotation errors generated while processing the whole docu-
ment. Once the document is free of errors this command can be removed or just
commented out. Run the test file example-rot.tex to see an example of the use
of this command.

6 Files generated

Whenever the \RubikRotation or \CheckRubikState commands are used, three
small temporary plain-text files for holding data are generated as follows (they are
refreshed with each LATEX run, and are not actively deleted).

• LATEX writes Rubik state data to the file rubikstate.dat.

• The Perl script rubikrotation.pl reads the file rubikstate.dat and then
writes the new rubik state to the file rubikstateNEW.dat.

• The Perl script rubikrotation.pl also writes error data to the file
rubikstateERRORS.dat. A copy of this file is displayed under the graphic
image when the command \ShowRubikErrors is used after the TikZ picture
environment.

7 General overview

When LATEX processes rubikrotation.sty the following steps are implemented.

1. A check is made to see if fancyvrb.sty is loaded: if not then this package
is loaded if it is available (this package is required for inputting the file
rubikstateERRORS.dat).

12

2. A check is made to see if a configuration-file (rubikrotation.cfg) exists:
if so then this file is input.

3. The text file rubikstateNEW.dat is overwritten (if it exists): otherwise the
file is created (this prevents an ‘old’ file being used by LATEX).

4. The plain-text file rubikstateERRORS.dat is created. This file collects error
messages generated by the Perl script.

When a \RubikRotation command is processed it first writes the cur-
rent colour configuration of each face (the ‘rubik state’) to the temporary
file rubikstate.dat (to be read by the Perl script rubikrotation.pl). The
\RubikRotation command also appends the keyword ‘checkrubik’ as well
as a copy of the string of Rubik rotations. It then calls the Perl script
rubikrotation.pl.

For example, if we use the command \RubikCubeSolved followed by the com-
mand \RubikRotation[2]{U,D,L,R}, then the associated rubikstate.dat file
would be as follows:

% filename: rubikstate.dat

up,W,W,W,W,W,W,W,W,W

down,Y,Y,Y,Y,Y,Y,Y,Y,Y

left,B,B,B,B,B,B,B,B,B

right,G,G,G,G,G,G,G,G,G

front,O,O,O,O,O,O,O,O,O

back,R,R,R,R,R,R,R,R,R

checkstate

rotation,U,D,L,R

rotation,U,D,L,R

Note that the \RubikRotation option [2] results in the line rotation,U,D,L,R

being written twice to the rubikstate.dat file, as shown above.
Alternatively, if we used the command \RubikRotation{random, 45} then

the last line written to the file would be the string ‘rotation,random,45’, as
follows:

% filename: rubikstate.dat

up,W,W,W,W,W,W,W,W,W

down,Y,Y,Y,Y,Y,Y,Y,Y,Y

left,B,B,B,B,B,B,B,B,B

right,G,G,G,G,G,G,G,G,G

front,O,O,O,O,O,O,O,O,O

back,R,R,R,R,R,R,R,R,R

checkstate

rotation,random,45

A \CheckRubikState command triggers the same sequence of events except no
‘rotation’ line is written.

The action of the Perl script rubikrotation.pl is controlled by the keywords
(first argument of each line) associated with each line of the file rubikstate.dat.

13

When control passes to Perl, the script rubikrotation.pl starts by loading the
current rubikstate (prompted by the keywords up, down, left, right, front,
back, in the file rubikstate.dat). Next the Perl script performs some basic
checks (prompted by the key word checkstate), and then it processes the se-
quence of Rubik rotations (prompted by the keyword rotation). If, instead, the
second argument of the ‘rotation’ string is the keyword ‘random’, and provided
this is followed by a valid integer, say n, then the Perl script performs a sequence
of n random rotations. Finally, the Perl script writes the final ‘rubikstate’ to
the text file rubikstateNEW.dat. All error messages are written to the text file
rubikstateERRORS.dat and also to the LATEX log file.

Control then reverts to LATEX which then inputs the file rubikstateNEW.dat.
If there are more \RubikRotation commands then this cycle repeats accordingly.
Eventually a \Draw... command of some form is reached and the final rubikstate
is drawn in a TikZ picture environment.

If the TikZ picture environment is followed by a \ShowRubikErrors command,
then a ‘verbatim’ copy of the rubikstateERRORS.dat file is displayed immediately
under the graphic. Once the graphic is error-free, then the \ShowRubikErrors

command can be removed or commented out.
Note that if a bash file is used to coordinate the process then it is often

convenient to use the linux grep utility to alert the user to any run-time errors,
by using grep to scan the rubikstateERRORS.dat file at the end of the run; for
example, as follows:

pdflatex --shell-escape myfile.tex

echo "...checking error file"

grep ERROR ./rubikstateERRORS.dat

8 References

• Abrahams PW, Berry K and Hargreaves KA (1990). TEX for the impatient
(Addison-Wesley Publishing Company), page 292.
Available from: http://www.ctan.org/pkg/impatient
[re: \rubikpercentchar and \@comment in Section 10.2]

• Eijkhout V (1992). TEX by topic: a TEXnician’s reference. (Addison-Wesley
Publishing Company), pages 232 & 238.
Available from: https://bitbucket.org/VictorEijkhout/tex-by-topic/
[re: \string in Section 10.8] [re: \write in Section 5.1.1]

• Feuersänger C (2015). Notes on programming in TEX.
(revision: 1.12.1-32-gc90572c; 2015/07/29)
http://pgfplots.sourceforge.net/TeX-programming-notes.pdf

[re: loop macros in Section 10.9]

• Nickalls RWD and Syropoulos A (2015). The rubikcube package.
http://www.ctan.org/pkg/rubik,

14

http://www.ctan.org/pkg/impatient
https://bitbucket.org/VictorEijkhout/tex-by-topic/
http://pgfplots.sourceforge.net/TeX-programming-notes.pdf
http://www.ctan.org/pkg/rubik

• Reid M. Patterns. http://www.cflmath.com/Rubik/patterns.html
[re: sequences as macros; in Section 5.1.1]

9 Change history

• Version 3.0 (25 September 2015)

— The \RubikRotation command now actions multiple instances of its
argument as determined by an optional ‘repeat’ [〈integer〉]. For exam-
ple the command \RubikRotation[3]{R,x} is equivalent to the command
\RubikRotation{R,x,R,x,R,x} (see Sections 5.1 and 10.9).

— If a comma separated element used as an argument for the \RubkRotation
command is prefixed with either a * or [or] character then it is not actioned
as a rotation (see Section 5.1.2).

— The Perl script rubikrotation.pl now has command-line switches, in-
cluding -h to show some ‘help’ and ‘usage’ information (see Section 3.2).

— A ‘man’ file for the Perl script rubikrotation.pl is now included in the
package.

— The Perl script rubikrotation.pl now uses as input and output file-
names those specified in the command-line of the CALLing program. This
now allows the script rubikrotation.pl to be used as a stand-alone tool
(see the rubikrotation ‘man’ file for details).

— The documentation for the Perl script rubikrotation.pl is in the ac-
companying file rubikrotationPL.pdf.

— Fixed typos, index and minor errors in the documentation.

• Version 2.0 (5 February, 2014)

— First release.

10 The code (rubikrotation.sty)

In the following, the term ‘Perl script’ denotes the script rubikrotation.pl. Use-
ful information regarding the TEX \write command is given in Eijkhout (1992),
§ 30.2.3 (page 238). For the means of including a ‘%’ character in the token list of
\write see Abrahams et. al (1990).

10.1 Package heading

1 〈*rubikrotation〉
2 \def\RRfileversion{3.0}%

3 \def\RRfiledate{2015/09/25}%

4 \NeedsTeXFormat{LaTeX2e}

5 \ProvidesPackage{rubikrotation}[\RRfiledate\space (v\RRfileversion)]

15

http://www.cflmath.com/Rubik/patterns.html

The package requires rubikcube.sty. However rubikcube.sty is not automat-
ically loaded (for the moment at least) since this makes it difficult to errorcheck
new versions.

6 \@ifpackageloaded{rubikcube}{}{%

7 \typeout{---rubikrotation requires the rubikcube package.}%

8 }%

The rubikrotation package requires access to the fancyvrb package for the
\VerbatimInput{} command which we use for inputting and displaying the error
file (see Section 10.10).

9 \@ifpackageloaded{fancyvrb}{}{%

10 \typeout{---rubikrotation requires the fancyvrb package%

11 for VerbatimInput{} command.}%

12 \RequirePackage{fancyvrb}}

10.2 Some useful commands

\rubikrotation First we create a suitable logo

13 \newcommand{\rubikrotation}{\textsc{rubikrotation}}

14 \newcommand{\Rubikrotation}{\textsc{Rubikrotation}}

\@print We need a simple print command to facilitate writing output to a file.

15 \newcommand{\@print}[1]{\immediate\write\outfile{#1}}

\@comment

\@commentone

We also require access to the ‘%’ character so we can (a) write comments to files,
including the log file, and (b) place a trailing ‘%’ in a line of code written to a file.

To achieve this we define the ‘%’ character as \rubikpercentchar (modified
from: Abrahams PW, Berry K and Hargreaves KA (1990), p 292) [see refs Sec-
tion 8], and also two ‘comment’ commands which implement it. This ‘workaround’
is necessary because TEX does not allow the use of the \% command for placing a
‘%’ character in the token list of \write. See Abrahams et. al (1990) for details.

16 {\catcode‘\%=12 \global\def\rubikpercentchar{%}}%

17 \newcommand{\@comment}{\rubikpercentchar\rubikpercentchar\space}%

18 \newcommand{\@commentone}{\rubikpercentchar}%

\rubikperlname This holds the name of the Perl script. A configuration-file (rubikrotation.cfg)
can be used to change the default name of the Perl script using a renewcommand
(see Section 4.3).

19 \newcommand{\rubikperlname}{rubikrotation}

\rubikperlcmd This holds the command-line code for calling the Perl script (assumed to be an
executable file). Note that the command-line requires a mandatory input file-
name preceded by the -i switch. An optional output filename (preceded by the
-o switch) may be used, otherwise the default output filename of rubik-OUT.dat
will be used.

Note that it is very important that this .sty file actually specifies an output
filename (for receiving data from the Perl script). This is because (a) The Perl
script rubikrotation.pl is currently configured to read its output filename as

16

an argument from the command-line (so it can be flexibly used as a stand-alone
script for processing a given Rubik state through a sequence of rotations), and
(b) rubikrotation.sty is currently configured to read its input from the file
rubikstateNEW.dat.

20 \newcommand{\rubikperlcmd}{\rubikperlname\space%

21 -i rubikstate.dat -o rubikstateNEW.dat}

Remember to use the \space command following the LATEX backslash command
in order to generate the mandatory space between it and the first command-line
argument).

A plain-text configuration-file rubikrotation.cfg can be used to change the
default command-line code using a renewcommand (see Section 4.3).

10.3 Configuration file

If a configuration file exists (rubikrotation.cfg) then input it here, i.e., after
defining the \rubikperlname and \rubikperlcmd commands and before creating
the rubikstateERRORS.dat file.

22 \typeout{---checking for config file (rubikrotation.cfg)...}

23 \IfFileExists{rubikrotation.cfg}{%

24 \input{rubikrotation.cfg}%

25 }{\typeout{---no config file available}%

26 }%

10.4 Clean file rubikstateNEW.dat

We need to clean out any existing (old) rubikstateNEW.dat file, since if the
TeX shell command-line switch is accidentally not used then the Perl script
rubikrotation.pl will not be CALLed, and hence this file will not be renewed
(i.e., an ‘old’ image may be used).

27 \typeout{---cleaning file rubikstateNEW.dat}%

28 \newwrite\outfile%

29 \immediate\openout\outfile=rubikstateNEW.dat%

30 \@print{\@comment rubikstateNEW.dat}%

31 \immediate\closeout\outfile%

10.5 rubikstateERRORS.dat

We first open the file rubikstateERRORS.dat which is used by the Perl script
rubikrotation.pl for writing its error-messages to. This file is displayed by the
command \ShowRubikErrors.

important note: this file is created fresh each time LaTeX is run, and hence
the Perl script only appends data to it during the LATEX run, so this file just
grows until either it is destroyed or recreated—this is a useful feature since the
file accumulates all error messages as the .tex file is processed. We can’t make
the Perl script create the file since the Perl script is only CALLed if we use a

17

\RubikRotation or \CheckRubikState command (which we may not !)—so it
has to be created here.

32 \typeout{---creating file rubikstateERRORS.dat}%

33 \newwrite\outfile%

34 \immediate\openout\outfile=rubikstateERRORS.dat%

35 \@print{\@comment rubikstateERRORS.dat}%

36 \@print{\@comment ---(RR.sty v\RRfileversion): comments output by Perl script}%

37 \immediate\closeout\outfile%

10.6 Setting up file-access for new files

Having set up all the primary files, we now need to set up a newwrite for all sub-
sequent file openings (e.g., for rubikstate.dat and saving to arbitrary filenames
by the \SaveRubikState command). Otherwise, we can easily exceed the LaTeX
limit of 15. From here-on TEX will use openout7 when opening and writing to
files. We will implement new openings using the command \@openstatefile (see
below).

38 \typeout{---setting up newwrite for rubikrotation.sty to use...}%

39 \newwrite\outfile%

\@openstatefile

\@closestatefile

We also need commands for easy file opening and closing for new instances of the
file rubikstate.dat etc. Note that for this we are therefore using the same outfile
number as set up by the \newwrite... above.

40 \newcommand{\@openstatefile}{\immediate\openout\outfile=rubikstate.dat}

41 \newcommand{\@closestatefile}{\immediate\closeout\outfile}

10.7 Saving the Rubik state

\@printrubikstate This internal command writes the Rubik configuration to the file rubikstate.dat,
and is used by the \RubikRotation command (see Sections 5.2 and 7). The file
rubikstate.dat is read by the Perl script, and represents the state on which
the new \RubikRotation command acts. Note that we append the key-word
checkstate to the end of the file in order to trigger the Perl script to implement
its checkstate subroutine.

The actual state is simply an ordered sequence of the faces and the colours
associated with each facelet of that face. The colour associated with a particular
facelet is held by the variable for that facelet. For example, the top-left facelet
associated with the front face is held in the variable \Flt (see Section 5.2).
Further relevant documentation is in the rubikcube package.

42 \newcommand{\@printrubikstate}{%

43 \@print{up,\Ult,\Umt,\Urt,\Ulm,\Umm,\Urm,\Ulb,\Umb,\Urb}%

44 \@print{down,\Dlt,\Dmt,\Drt,\Dlm,\Dmm,\Drm,\Dlb,\Dmb,\Drb}%

45 \@print{left,\Llt,\Lmt,\Lrt,\Llm,\Lmm,\Lrm,\Llb,\Lmb,\Lrb}%

46 \@print{right,\Rlt,\Rmt,\Rrt,\Rlm,\Rmm,\Rrm,\Rlb,\Rmb,\Rrb}%

47 \@print{front,\Flt,\Fmt,\Frt,\Flm,\Fmm,\Frm,\Flb,\Fmb,\Frb}%

48 \@print{back,\Blt,\Bmt,\Brt,\Blm,\Bmm,\Brm,\Blb,\Bmb,\Brb}%

49 \@print{checkstate}%

18

50 }

10.8 SaveRubikState command

\SaveRubikState The command \SaveRubikState{〈filename〉} saves the Rubik state to a named
file in the format of a Rubik command (so it can then be processed by LATEX).
Note that in order to actually write a LaTeX command to a file without a trailing
space one must prefix the command with the \string command (see Eijkhout
(1992), p 238) [see refs Section 8].

Note that this macro uses the internal commands \@comment (‘%%’), \@commentone
(‘%’) and \@print. #1 is the output filename. We use several \typeout com-
mands to write to the log file. An example of the line of code we are trying to
output to the rubikstateNEW.dat file is as follows:
\RubikFaceUp{W}{W}{G}{W}{W}{G}{B}{B}{Y}%

51 \newcommand{\SaveRubikState}[1]{%

52 \typeout{---NEW save command------------------}%

53 \typeout{---command = SaveRubikState{#1}}%

54 \typeout{---saving Rubik state data to file #1}%

55 \immediate\openout\outfile=#1%

56 \@print{\@comment filename: #1\@commentone}%

57 \@print{\string\RubikFaceUp%

58 {\Ult}{\Umt}{\Urt}{\Ulm}{\Umm}{\Urm}{\Ulb}{\Umb}{\Urb}\@commentone}%

59 \@print{\string\RubikFaceDown%

60 {\Dlt}{\Dmt}{\Drt}{\Dlm}{\Dmm}{\Drm}{\Dlb}{\Dmb}{\Drb}\@commentone}%

61 \@print{\string\RubikFaceLeft%

62 {\Llt}{\Lmt}{\Lrt}{\Llm}{\Lmm}{\Lrm}{\Llb}{\Lmb}{\Lrb}\@commentone}%

63 \@print{\string\RubikFaceRight%

64 {\Rlt}{\Rmt}{\Rrt}{\Rlm}{\Rmm}{\Rrm}{\Rlb}{\Rmb}{\Rrb}\@commentone}%

65 \@print{\string\RubikFaceFront%

66 {\Flt}{\Fmt}{\Frt}{\Flm}{\Fmm}{\Frm}{\Flb}{\Fmb}{\Frb}\@commentone}%

67 \@print{\string\RubikFaceBack%

68 {\Blt}{\Bmt}{\Brt}{\Blm}{\Bmm}{\Brm}{\Blb}{\Bmb}{\Brb}\@commentone}%

69 \immediate\closeout\outfile%

70 \typeout{---}%

71 }%

10.9 RubikRotation command

\RubikRotation The \RubikRotation[〈integer〉]{〈comma separated sequence〉} command (a) writes
the current Rubik state to the file rubikstate.dat, (b) writes the rotation se-
quence (either once or multiple times depending on the value of the optional integer
argument), and then (c) CALLs the Perl script rubikrotation.pl. It also writes
comments to the data file and also to the log file.

In order to allow the user to (optionally) write the main argument multiple
times to the output data-file, we require this command to allow an optional ar-
gument (a non-negative integer) to specify the number of such repeats. In order

19

to implement an optional argument facility we use two macros (countingloop and
loopcounter) detailed by Feuersänger (2015) [see refs Section 8], as follows:

72 %% Two macros detailed by Feuersaenger (2015)

73 \long\def\@countingloop#1 in #2:#3#4{%

74 #1=#2 %

75 \@loopcounter{#1}{#3}{#4}%

76 }

77 %%--------------------------

78 \long\def\@loopcounter#1#2#3{%

79 #3%

80 \ifnum#1=#2 %

81 \let\next=\relax%

82 \else

83 \advance#1 by1 %

84 \def\next{\@loopcounter{#1}{#2}{#3}}%

85 \fi

86 \next

87 }

Having defined the above two macros we can now implement an optional argument
(a repeat number) indicating the number of times we want the command to write
the main argument to the output data file.

88 \newcommand{\RubikRotation}[2][1]{%

89 \typeout{---NEW rotation command------------------}%

90 \typeout{---command = RubikRotation{#1}}%

91 \typeout{---writing current Rubik state to file rubikstate.dat}%

92 \@openstatefile% open data file

93 \@print{\@comment filename: rubikstate.dat}%

94 \@print{\@comment written by rubikrotation.sty%

95 =v\RRfileversion\space (\RRfiledate)}%

96 \@printrubikstate%

97 %% countingloop code from Feuersaenger (2015)

98 \newcount\ourRRcounter%

99 \@countingloop{\ourRRcounter} in 1:{#1}{%

100 \immediate\write\outfile{rotation,#2}}%

101 \@closestatefile% close data file

102 \typeout{---running Perl script (rubikrotation)}%

103 \immediate\write18{\rubikperlcmd}%

104 \typeout{---inputting NEW datafile (written by Perl script)}%

105 \input{rubikstateNEW.dat}%

106 \typeout{---}%

107 }

10.10 ShowRubikErrors command

\ShowRubikErrors This command inputs the file rubikstateERRORS.dat.

108 \newcommand{\ShowRubikErrors}{%

109 \typeout{---ShowRubikErrors: inputting file rubikstateERRORS.dat}%

110 \VerbatimInput{rubikstateERRORS.dat}%

20

111 }

10.11 CheckRubikState command

\CheckRubikState This command triggers the Perl script to implement some simple error checking
of the Rubik configuration (state). This command (a) writes the current Rubik
state to the file rubikstate.dat, and then (b) CALLs the Perl script. It also
writes comments to the data file and also to the log file..

112 \newcommand{\CheckRubikState}{%

113 \typeout{---NEW check command------------------}%

114 \typeout{---command = CheckRubikState}%

115 \typeout{---writing current Rubik state to file rubikstate.dat}%

116 \@openstatefile% opens data file

117 \@print{\@comment filename: rubikstate.dat}%

118 \@printrubikstate%

119 \@closestatefile% close data file

120 \typeout{---running Perl script (rubikrotation)}%

121 \immediate\write18{\rubikperlcmd}%

122 \typeout{---inputting NEW datafile (written by Perl script)}%

123 \input{rubikstateNEW.dat}%

124 \typeout{---}%

125 }

————————– End of this package ————————–

126 〈/rubikrotation〉

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\% 16

\@closestatefile . .
. 40, 101, 119

\@comment 16, 30, 35,
36, 56, 93, 94, 117

\@commentone
. . . 16, 56, 58,
60, 62, 64, 66, 68

\@countingloop . . 73, 99

\@ifpackageloaded 6, 9

\@loopcounter 75, 78, 84

\@openstatefile . . .
. 40, 92, 116

\@print 15, 30, 35, 36,

43, 44, 45, 46,
47, 48, 49, 56,
57, 59, 61, 63,
65, 67, 93, 94, 117

\@printrubikstate .
. 42, 96, 118

A
\advance 83

B
\Blb 48, 68
\Blm 48, 68
\Blt 48, 68
\Bmb 48, 68
\Bmm 48, 68

\Bmt 48, 68

\Brb 48, 68

\Brm 48, 68

\Brt 48, 68

C

\catcode 16

\CheckRubikState 11, 112

\closeout 31, 37, 41, 69

D

\def . . 2, 3, 16, 73, 78, 84

\Dlb 44, 60

\Dlm 44, 60

\Dlt 44, 60

21

\Dmb 44, 60
\Dmm 44, 60
\Dmt 44, 60
\Drb 44, 60
\Drm 44, 60
\Drt 44, 60

E
\else 82

F
\fi 85
\Flb 47, 66
\Flm 47, 66
\Flt 47, 66
\Fmb 47, 66
\Fmm 47, 66
\Fmt 47, 66
\Frb 47, 66
\Frm 47, 66
\Frt 47, 66

G
\global 16

I
\IfFileExists 23
\ifnum 80
\immediate 15, 29, 31,

34, 37, 40, 41,
55, 69, 100, 103, 121

\input 24, 105, 123

L
\let 81
\Llb 45, 62
\Llm 45, 62
\Llt 45, 62
\Lmb 45, 62
\Lmm 45, 62
\Lmt 45, 62
\long 73, 78
\Lrb 45, 62

\Lrm 45, 62
\Lrt 45, 62

N
\NeedsTeXFormat 4
\newcommand 13,

14, 15, 17, 18,
19, 20, 40, 41,
42, 51, 88, 108, 112

\newcount 98
\newwrite . . . 28, 33, 39
\next 81, 84, 86

O
\openout . 29, 34, 40, 55
\ourRRcounter . . . 98, 99
\outfile 15, 28, 29, 31,

33, 34, 37, 39,
40, 41, 55, 69, 100

P
\ProvidesPackage . . . 5

R
\relax 81
\RequirePackage . . . 12
\Rlb 46, 64
\Rlm 46, 64
\Rlt 46, 64
\Rmb 46, 64
\Rmm 46, 64
\Rmt 46, 64
\Rrb 46, 64
\RRfiledate 3, 5, 95
\RRfileversion

. 2, 5, 36, 95
\Rrm 46, 64
\Rrt 46, 64
\RubikFaceBack 67
\RubikFaceDown 59
\RubikFaceFront . . . 65
\RubikFaceLeft 61
\RubikFaceRight . . . 63

\RubikFaceUp 57
\rubikpercentchar .

. 16, 17, 18
\rubikperlcmd

. . . 6, 20, 103, 121
\rubikperlname 6, 19, 20
\RubikRotation . . . 7, 72
\Rubikrotation 14
\rubikrotation 13

S
\SaveRubikState . 11, 51
\ShowRubikErrors 12, 108
\space 5, 17, 20, 95
\string 57,

59, 61, 63, 65, 67

T
\textsc 13, 14
\typeout 7, 10,

22, 25, 27, 32,
38, 52, 53, 54,
70, 89, 90, 91,
102, 104, 106,
109, 113, 114,
115, 120, 122, 124

U
\Ulb 43, 58
\Ulm 43, 58
\Ult 43, 58
\Umb 43, 58
\Umm 43, 58
\Umt 43, 58
\Urb 43, 58
\Urm 43, 58
\Urt 43, 58

V
\VerbatimInput 110

W
\write . 15, 100, 103, 121

22

	Contents
	1 Introduction
	2 Requirements
	3 Installation
	3.1 Generating the files
	3.2 Placing the files

	4 Usage
	4.1 Enabling the TeX `shell' facility
	4.2 Test file
	4.3 Configuration-file

	5 Commands
	5.1 RubikRotation command
	5.1.1 Sequences as macros
	5.1.2 Arguments prefixed with *, [,]
	5.1.3 Groups
	5.1.4 Random rotations

	5.2 SaveRubikState
	5.3 CheckRubikState
	5.4 ShowRubikErrors

	6 Files generated
	7 General overview
	8 References
	9 Change history
	10 The code (rubikrotation.sty)
	10.1 Package heading
	10.2 Some useful commands
	10.3 Configuration file
	10.4 Clean file rubikstateNEW.dat
	10.5 rubikstateERRORS.dat
	10.6 Setting up file-access for new files
	10.7 Saving the Rubik state
	10.8 SaveRubikState command
	10.9 RubikRotation command
	10.10 ShowRubikErrors command
	10.11 CheckRubikState command

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	L
	N
	O
	P
	R
	S
	T
	U
	V
	W

