
rubikrotation package v3.0 (Sept 2015) www.ctan.org/pkg/rubik examples.tex 1

Rubikrotation examples 1

note: Since the \RubikRotation command calls the perl script rubikrotation.pl this .tex file
needs to be run using the --shell-escape command-line switch, as follows:

latex --shell-escape example-tex

If you forget to use the command-line switch, the file will run OK, but the cubes will remain in the
initial ‘solved’ configuration. The tikz package must be loaded before the two rubik.. packages.

Example 1

In Figure 1 we show the so-called “sixspot” configuration, generated from a solved cube using the
rotation sequence U, D′, R, L′, F, B′, U, D′ (see the website of Reid at www.cflmath.edu/~reid/

Rubik/patterns.html).

Figure 1: The so-called ‘sixspot’ configuration (Reid).

Creating a macro to hold a rotation sequence greatly facilitates their use, as follows:

\newcommand{\sixspot}{[sixspot],U,Dp,R,Lp,F,Bp,U,Dp}

We can now process this sequence using its macro name as an argument for the \RubikRotation

command. The code used for the above Figure uses the \ShowCube{}{}{} command for which #1

is the minipage width, #2 is the tikzpicture scale factor (0–1), and #3 is a Rubik \Draw.. command
(see rubikrotation documentation for details).

\usepackage{tikz,rubikcube,rubikrotation}

\thispagestyle{empty} %% disables pagenumbers

...

\begin{figure}[hbt]

\centering

\RubikCubeSolved

\RubikRotation{\sixspot}

\ShowCube{7cm}{0.7}{\DrawRubikCubeFlat}

\caption{...}

\end{figure}

Note that running the ‘sixspot’ sequence 3 times returns the cube to its original ‘solved’ state (it is a
so-called ‘order 3’ sequence). The command for processing it three times is \RubikRotation[3]{\sixspot}.

1These examples are part of the rubikrotation package, and assume some familiarity with the Rubik bundle
documentation rubikcube.pdf and rubikrotation.pdf.

rubikrotation package v3.0 (Sept 2015) www.ctan.org/pkg/rubik examples.tex 2

Example 2

In this example we demonstrate the use of the \ShowRubikErrors command, which places a copy
of the Perl output file rubikstateERRORS.dat underneath the graphic so you can see a list of all
the errors, if any (in this example we have introduced a few errors—wrong minipage width, typos
and some animals—into the rotation sequence). It is important to note that the \ShowRubikErrors
command must be placed after the TikZ picture environment (i.e., in this case after the \ShowCube

command). Note that full details of all errors are also included in the .log file.

%% rubikstateERRORS.dat

%% ---(RR.sty v3.0): comments output by Perl script

** ERROR: rotation,[sixspot],U,Dp,R,Lp,F,Bp,U,Dpppp,cat,dog

** ERROR: [Dpppp] in RubikRotation{}

** ERROR: [cat] in RubikRotation{}

** ERROR: [dog] in RubikRotation{}

Figure 2: The same ‘sixspot’ sequence of rotations as shown in
Example 1, but now with some errors (wrong minipage-width, ty-
pos & animals !) in the rotation sequence (it should be just
U,Dp,R,Lp,F,Bp,U,Dp).

In this example we have used the F version of the \ShowCube command (\ShowCubeF) which places
an fbox around the image so you can see the extent of any white space etc. This reveals that
the set minipage-width (4.5cm) in the \ShowCubeF command—see code below—is too narrow: it
should be 7cm (10 × 0.7) to just include the whole image. Once fixed, we can remove the F from
the \ShowCubeF command. Note also that only ‘\Draw...’ commands really need to be inside the
TikZ picture environment (i.e., inside the \ShowCube command). The above figure was generated
by the following code.

\RubikCubeSolved

\RubikRotation{[sixspot],U,Dp,R,Lp,F,Bp,U,Dpppp,cat,dog}

\begin{figure}[hbt]

\centering

\ShowCubeF{4.5cm}{0.7}{\DrawRubikCubeFlat}

\ShowRubikErrors

\caption{....}

\end{figure}

Even if the \ShowRubikErrors command is not used, it is always a good idea to check the file
rubikstateERRORS.dat after a LATEX run, since this file will reveal any errors.

rubikrotation package v3.0 (Sept 2015) www.ctan.org/pkg/rubik examples.tex 3

Example 3

In this example we use the \RubikRotation command to scramble a ‘solved’ Rubik cube via a
sequence of 120 random rotations, using the following command (the details of the process can be
seen in the .log file):

\RubikRotation{random,120}

In this example, we also save the final configuration (state) to a file (exampfig4.tex) using the
command \SaveRubikState{exampfig4.tex} so we can display the cube in the same state later
(see Example 4) but in a different format. Note that since we are using a random sequence, it
follows that each time this file is run not only will a visually different cube be generated, but the
same state will be shown in both Figures 3 and 4.

Figure 3: This shows a cube generated by 120 random rotations

\usepackage{tikz,rubikcube,rubikrotation}

...

\begin{figure}[hbt]

\centering

\RubikCubeSolved

\RubikRotation{random,120}

\SaveRubikState{exampfig4.tex}

\ShowCube{8.4cm}{0.7}{\DrawRubikFlat}

\caption{....}

\end{figure}

Q: How do we determine the minipage-width (8.4cm) in the \ShowCube command?
A: The object is 12 cubie squares wide (1 cm each). Since the specified TikZ scale factor is 0.7

here, then the true width of the image is 12× 0.7 = 8.4 cm. If you change the scale then the size of
the image will change, and a new width will be required to just fit the image.

Note that in this particular case (only a single image in the ‘figure’ environment), since the
\ShowCube command places the image centrally inside the minipage, the image will in fact be
centrally placed in the \textwidth provided the image is smaller than the fbox—i.e., if we used
instead a minipage-width of, say, 12 cm the image would still appear centered in the \textwidth

in this case. However, when there are several images in the ‘figure’, then the spacing may appear
strange unless each image closely fits its own minipage-width etc. It is often useful, therefore, to
check the size of the fbox (using the \ShowCubeF command).

rubikrotation package v3.0 (Sept 2015) www.ctan.org/pkg/rubik examples.tex 4

Example 4

In this example we display a cube having the same state as that shown in Figure 3. The configuration
state was saved from Figure 3 using the command \SaveRubikState{exampfig4.tex}, and then
input here using \input{exampfig4.tex}. These commands therefore allow the state of a previous
cube to be saved to a file, and then displayed again later in a different format.

Figure 4: This shows a Rubik cube in exactly the same state as the
one shown in Figure 3

\usepackage{tikz,rubikcube,rubikrotation}

...

\begin{figure}[hbt]

\centering

\input{exampfig4.tex}

\Showcube{4cm}{0.8}{\DrawRubikCubeLD}

\caption{....}

\end{figure}

rubikrotation package v3.0 (Sept 2015) www.ctan.org/pkg/rubik examples.tex 5

Example 5

Here we show a convenient way of displaying a series of small cubes showing a sequence of rotations
(U, R, F).

U R F

Figure 5: The rotations U, R, F on a solved cube.

The code for the above sequence is as follows:

\usepackage{tikz,rubikcube,rubikrotation}

...

\begin{figure}[hbt]

\centering

\RubikCubeSolved

\ShowCube{2cm}{0.5}{\DrawRubikCubeRU}

\Rubik{U}

\RubikRotation{U}\ShowCube{2cm}{0.5}{\DrawRubikCubeRU}

\Rubik{R}

\RubikRotation{R}\ShowCube{2cm}{0.5}{\DrawRubikCubeRU}

\Rubik{F}

\RubikRotation{F}\ShowCube{2cm}{0.5}{\DrawRubikCubeRU}

\caption{The rotations \rr{U}, \rr{R}, \rr{F}\ on a solved cube.}

\end{figure}

rubikrotation package v3.0 (Sept 2015) www.ctan.org/pkg/rubik examples.tex 6

Example 6

In this example we highlight the fact that commands used inside a TikZ picture environment remain
local to that environment. Note that this applies with other environments too; for example, with
both the \minipage the \figure environments. Consequently, it is generally best when drawing a
sequence of cubes to reserve the TikZ picture environment (i.e., the \ShowCube command) only for
Rubik \Draw.. commands and TikZ commands.

In this example the first cube uses the \RubikCubeSolved inside the TikZ environment. How-
ever, if we then perform the rotation R the command RubikRotation{R} results in something

quite unexpected (and obviously not correct). This is because the effect of the \RubikCubeSolved

command is not visible outside its TikZ environment, and hence the RubikRotation{R} command
has to operate on the current globally available colour state information; i.e., that following the
action of the \RubikRotation{[sixspot],....} command in the earlier Example 2 (shown in Fig-
ure 2) which was executed before, and outside the figure environment in that example, and hence
the strange form of the second cube below.

R

\usepackage{tikz,rubikcube,rubikrotation}

...

\begin{minipage}{0.4\textwidth}

\ShowCube{2cm}{0.5}{%

\RubikCubeSolved

\DrawRubikCubeRU

}

\hspace{4mm}\Rubik{R}\hspace{5mm}%

\RubikRotation{R}%

\ShowCube{2cm}{0.5}{\DrawRubikCubeRU}

\end{minipage}

If we now bring the \RubikCubeSolved command out and place it before the \ShowCube com-
mand then its ‘state’ information becomes globally accessable, and can therefore be acted upon
(& updated) by the \RubikRotation{R} command, and hence is rendered (correctly for us) by the
next \DrawRubikCubeRU command.

R

\begin{minipage}{0.4\textwidth}

\RubikCubeSolved

\ShowCube{2cm}{0.5}{\DrawRubikCubeRU}

\hspace{4mm}\Rubik{R}\hspace{5mm}%

\RubikRotation{R}%

\ShowCube{2cm}{0.5}{\DrawRubikCubeRU}

\end{minipage}

rubikrotation package v3.0 (Sept 2015) www.ctan.org/pkg/rubik examples.tex 7

Example 7

The ‘superflip’ configuration

Once you have mastered Rubik’s cube, then an interesting exercise is to generate the so-called
‘superflip’ configuration, in which all the corners are correctly solved, while all the edges are flipped.

For the impatient, the superflip sequence of 24 quarter-turn rotations (listed on Randelshofer’s
website (www.randelshofer.ch/rubik/patterns/U080.01.html) is as follows. This converts the
solved cube on the left into the configuration shown on the right.

U R R F′ R D′ L

B′

R U′ R U′ D F′ U F′ U′ D′

B

L′ F′

B′

D′ L′

Surprisingly, this sequence is actually equivalent to

{(
M U′

)
4, [y

′], [x]

}
3

=⇒

Figure 6: Two representations of the superflip configuration.

The full code for the figure above is as follows:

\usepackage{tikz,rubikcube,rubikrotation}

...

\begin{center}

\Rubik{U}\Rubik{R}\Rubik{R}\Rubik{Fp}\Rubik{R}\Rubik{Dp}\Rubik{L}\Rubik{Bp}%

\Rubik{R}\Rubik{Up}\Rubik{R}\Rubik{Up}\Rubik{D}\Rubik{Fp}\Rubik{U}\Rubik{Fp}%

\Rubik{Up}\Rubik{Dp}\Rubik{B}\Rubik{Lp}\Rubik{Fp}\Rubik{Bp}\Rubik{Dp}\Rubik{Lp}

\end{center}

\medskip

%% brace and bracket macros

\newcommand{\Rubikbracket}[1]{$\left(\mbox{#1}\right)$}

\newcommand{\Rubikbrace}[1]{$\left\{\mbox{#1}\right\}$}

{\noindent}Surprisingly, this sequence is actually equivalent to

\Rubikbrace{\Rubikbracket{\Rubik{M}\Rubik{Up}}4, \Rubik{yp}, \Rubik{x}}3

\newcommand{\superflip}{U,R2,Fp,R,Dp,L,Bp,R,Up,R,Up,D,%

Fp,U,Fp,Up,Dp,B,Lp,Fp,Bp,Dp,Lp}

\begin{figure}[hbt]

\centering

rubikrotation package v3.0 (Sept 2015) www.ctan.org/pkg/rubik examples.tex 8

\RubikCubeSolved%

\ShowCube{2cm}{0.5}{\DrawRubikCubeRU}

\hspace{5mm}\Longrightarrow\hspace{5mm}%

\RubikRotation{\superflip}%

\ShowCube{2cm}{0.5}{\DrawRubikCubeRU}

\hspace{1cm}%

\ShowCube{5cm}{0.5}{\DrawRubikCubeFlat}

\caption{...}

\end{figure}

—— END ——

