reledmac
Typeset scholarly editions with ETEX*

Maieul Rouquettef
based on the original 1edmac by
Peter Wilson
Herries Press
which was based on the original edmac, tabmac and edstanza by

John Lavagnino, Dominik Wujastyk, Herbert Breger and Wayne Sullivan.

Abstract

The reledmac provides many tools in order to typeset scholarly editions. It is
based on the eledmac package, which was based on the ledmac package, which
was based on the edmac TgX package.

It can be used in combination with reledpar in order to typeset two texts in
parallel, like an original text and its translation in a modern language.

reledmac provides many tools and options. Normally, they are all documented
in this file. Also provided is a help folder, “examples”. The folder contains additional
examples (although not for every possible case). Examples starting with “1-” are for
basic uses, those starting with “2-” are for advanced uses.

To report bugs or request a new feature, please go to ledmac GitHub page
and click on “New Issue”: https://github.com/maieul/ledmac/issues/. You
must create an account on github.com to access my page (maieul/ledmac). GitHub
accounts are free for open-source users. You can post messages in English or in
French (preferred).

You can subscribe to the reledmac mail list at:
http://geekographie.maieul.net/146

Contents
i Introduction 11
1.1 Aim of the packagd o 11
1.2 History] 12
12
13
13

*This file (reledmac.dtx) has version number v2.15.2, last revised 2016/09/12.
Tmaieul at maieul dot net

examples/.
https://github.com/maieul/ledmac/issues/
http://geekographie.maieul.net/146

2 Contents

|l 2.4 reledmaa 14

[1.3 List of works edited with (r)(e)ledmad 14

P How the package works 14
B Compatibility warning| 14
it Optiong 15
4.1 Specific features 15

4.2 Optimizing package performancd 15

B Text lines and paragraphs numbering 16
5.1 Text lines numberina 16

5.2 Paragraphy o e e e e 16
5.2.1Basicd 16

5.2.2 Automatically producing \pstart..\pend 17

5.2.3 Content before specific \pstart and after specific \pend 18

5.2.4 Content before every \pstart and after every \pend 18

5.2.5 Numbering paragraphs (\pstart) 18

b.2.6 Languages written in RighttoLeff 18

5.2.7 Memory limitd 18

b.3 Lineation commandy 19
5.3.1 Disabling lineation) 19

5.3.2 Setting lineation startand steg 19
b.3.3 Setting lineation reseﬂ 20

5.3.4 Setting line number margin 20
5.3.5 Other Settingd o 20
b.4 Changing the line numberd 21
5.4.1 Sublineation] 21
5.4.2 Locking ineation] o o o 21

5.4.3 Setting and changing line number 21
5.4.4 Line number styld 22
5.4.5 Skipping and hidding numbey, 22

5.4.6 Execute code at each ling o v v oo i 22

b Apparatus commands 23
6.1 Terminoloéﬂ 23
b.2 Critical NOtey\ o e 23
6.21 Thelemma 23
6.2.2 Footnotea 24

p.2.3 Endnoted 24

6.2.4 Paragraph in critical apparatug 26
b.2.5 Change lemma and line numbeq 26

5.2.6 Changing the names of commands for critical apparatug. 27
b.3 Disambiguation of identical words in the apparatug 27

b.3.1 Basic us§ 27

Contents 3

6.3.2 Notes about input encoding with UTF-8 processoq 28
6.3.3 Use with \lemma command 28
6.3.4 CUStOMIZING e 30

6.4 Apparatus of Manuscripty 30
6.4.1 Marking sections of text . o 31
6.4.2 Layout of the apparatus of manuscriptd 31
b.4.3 Setting‘a 32

b.5 Familiar notes 32
6.5.1 Basic USE o 32
6.5.2 Customizingmarl 32
6.5.3 Separator for multiple footnoted 32
b.6 Changing series o o o i 33

6.6.1 Create a new seried 33
6.6.2 Delete seriea 33
b.6.3 Series ordeﬂ 33

b.7 Position of critical and familiar footnoted 33

[Critical apparatus appearanc 33

7.1 Notes arranéement in a seriea 34
7.2 Control line number printina 35
7.2.1 Print line number only at first timg 35
7.2.2 Arbitrari text before line numbeﬂ 35
7.2.3 Seﬁarator for line ranéa 35
7.2.4 Abbreviate line rangd 35

7.2.5 Disable linenumbey 36
7.2.6 Printing pstart numbey 36

7.2.7 Printing stanza number 36
7.2.8 Separator between line and subline numbery 37

7.2.9 Sﬁace around numbeﬂ 37
7.2.10 Space around line svmbo] 37

7.2.11 Space in place of numbeyq 37
7.2.12 Boxing line number and line symbo] 37
7.3 Forendnotes 38
7.4 Arbitrary code around line number] 39
7.5 Separator between the lemma and thenotd 39

7.5.1 For footnoteg 39
75.2 Forendnoted 39
F.6Fontstyld 40
7.6.1 Forlinenumber|, 40
7.6.2 For the lemma 40
7.6.3 FOr all NOtE] .« « o v o o e e 40
.7 Wrapping notes o o oo 41
7.71 Wrapping lemmag 41
7.7.2 Wrapping contenta 41

7.8 Indent of notes content| 41
7.9 Arbitrary code at the beginning of notes 41

4 Contents

7.10 Arbitrary code before insertingnotd
7 11 Options for footnotes in colUMNg o o v v o
7.11.1 Alignment
7.11.2 Size of thecolumnd
|7.1_209ti0ns for paragraphed footnotes and notes grouped by lind

7.12.1 Mark separation of noteﬂ
712.2 Ragged text
[7.13 Options for block of noted
7.13.1 Grouping notesby lind
7.13.2 Text before notea
7.13.3 Code before notea
7.13.4 Sﬁacina
7.13.5 Rula
7.13.6 Maximum height|
7.13.7 WidtH

7.14 Footnotes and the reledpar columng
7.15 Endnotes in one paragraph

E Versa

0.1 Basia ..
0.2 Define stanza indentd
0.3 Repeating stanza indenty
0.4 Manual stanza indenﬂ
0.5 Stanza breakina
0.6 Hanging symbol o v v oo e
0.7 Long verse and page breakl
0.8 Content before/after versea
9.9 Numberiné stanza
0.10 VATious tOOlY . . « . v v v o e

0.11 Notes on empty lined o o o i v i

[11 Cross referencing|
IL1Basicusd oo

11.2 Cross-referencing to a criticalnotd
11.3 Cross-referencing which return a number in any casd.
[11.3.1 Cross-referencing in order to define line number of a critical noted .

11.4 Not automatic cross-referencing.
11.5 Normal BIEX cross-referencina

11.6 References to start and end lined
11.6.1 Reference to main text lined
11.6.2 References to lines that are commented on in the apparatug

11.6.3 Settingd

50

50
50
51
51
52
52
52
52
52
53

Contents

[11.7 Compatibility with xr packagd

2 Side note
12.1 Basicd e e e e
12.2 Setting
1221 Width
12.2.2 Vertical position]
12.2.3 Distance to the main texf i
12.2.4Fontl
12.2.5 Separator between noteso

E3 Indexina
13.1 Basica

13.2 Referring to critical noted

13.3 Separator between page and line numberg
13.4 Usiné xindﬂ
13.5 Advanced settina

fia Glossary|
14.1 Prealable setting]
14.2 Commanda

[15 Tabular material

[L6 Sectioning commandsg

16.1 Sectioning commands without line numbers or critical notes
16.2 Sectioning commands with line numbering and critical note§
16.3 Optimization] o o o

[17 Quotation environments

[18 Page breaks

18.1 Control page breaking
18.2 Prevent page break inalong verses

[19 Miscellaneous

[19.1 Known and suspected limitationg
19.1.1 Non-standard eometry] o v v v i

19.1.2 floatrow package compatibilityl
19.1.3 ‘Noroom foranew]

19.1.4 Marginal noted
19.1.5 Paraéraﬁh shaﬁa
19.1.6 Paraéraﬁhed footnotea
19.1.7 Use with other Eackaéea
19.1.8 Parallel typesetting]

[Implementation overview|

55

55
55
55
55
55
56
56
56

56
56
57
57
57
58

58
58
59

59

63

64
64
64

64
65
65
65
65
65
66
66
66
67

69

Contents

[I Preliminaries 69

[1.1 Links with original edmad 69
[1.2 Package declaration 69
[1.3 Package optiond it e 70

1.4 Loadiné Eackaéea 72
[1.5 Compatibility with LuaTEﬁ 72

[1.6 Booleanflagd 72

1.7 Messaéea 73
1.8 Gobblina 79

[1.9 Miscellaneous commandg v v v vt 79

[1.10 Prepare reledpax{ 80
[1.11 Booleans provided by other optional packages which are required in any|

ASE . . . e e e e e e e e e e e e e e e e e e 81

I[II Sectioning commands 81

85

[V Line counting| 86

V.1 Choosing the system of lineation} 86

V.2 Line number margin e 88
V.3 Line number initialization and increment 89
V.4 Line number locking| 90
V.5 Line number styld 91
V.6 Line number printing 91
V.7 Line number countersand list 92
V.8 Line number locking counter] 94
V.9 Line number associated tolemmg 94
V.10 Reading the line-listfild 97
V.11 Commands within the line-listfilg 99

V.12 Writing to the line-list ﬁla 112

[VI Marking text for note 118
VL1 \edtextitself. 118

VL2 Substitute lemmd 125

V1.3 Substitute line numberd 126
V1.4 Lemma disambiguatioﬂ 127

IVII Paragraph decomposition and reassembly] 133
VIL1 Boxes, counters, \pstart and \pend 133
VIL.2 Processing one lind 138

VIL.2.1 General Process v vv v i i 138
VIL2.2 Process for ‘mormal” ling oo oo i it 139

VIL2.3 Process for line containing \eledsection command 140
VIL24Hookg 141
VIL.2.5 Sidenotes and marginal line number initialization 141

Contents 7

VIII Line and page number computation 142

[X Line number printing| 145

X Pstart number printing in side 149

XI Restoring footnotes and penalties 150

X1.1 Add insertions to the vertical lisﬂ 151

XL2 Penaltied o oo e e 153

X1.3 Printing leftovernoted 154

X1.4 Text before noted . . . o v v v v e 154

IXII Critical footnotes 155

XII.1 Fonta 155

X11.2 Individual note optiong 156

XT1.3 Notes languagd oo o e e e e e e e e 156

X11.4 General survey of the way we managenoted 157

XTL.5 General setup]. o o o 158

XIL.6 Footnotes arrangement] o 158

XI[.6.1 User level macrg 158

XI1.6.2 Normal footnotd 159

X11.6.3 Paragraphed footnoted 164

XIL6.4 Columnar footnoted o . v v v v e e e 171

11.7 Critical notes Qresentatiod 178

XI[.7.1 Fonttoolg 178

X11.7.2 Pstart number in footnotd 178

X11.7.3 Lemma printina 179

X11.7.4 Line number printing 179

X11.7.5 Footnote grouped by ling o v oo 188

XIII Familiar footnotes 189

XIIL1 Adjacent footnoted o v v vt 189

XII1.2 Regular footnotes for numbered textd 191

X113 Footnote formatd o v oo e e 193

XII1.4 Footnote arrangement] v oo 193

XI1.4.1 User level macrd vv e 193

X1II.4.2 Normal footnotea 194

X1I1.4.3 Two columns footnotea 199

X1I1.4.4 Three columns footnotea 202

XI11.4.5 Paragraphed footnotea 204

IXTIL.5 Wrapping footnote marks in hyperlink 208
XIV Code common to both critical and familiar footnote in normal arrange-|

209

XV Footnotes’ width for two columns 209

8 Contents

XVI Footnotes’ ordei|

XVII Footnotes’ ruld

XVIII Specific skip for first series of footnoteg
XVIILO.1 Overview o i v it e e e e
XVIIL0.2 User level command

X VIIIL.0.3 Internal commanda

[XIX Endnotes

XIX.1 Internal commandy
XIX.2 User level commands o oo v e e
XTX.2.1 Inserting contents to endnoted
X1X.2.2 Printing endnotes o e

XX Generate series of notes

XX.1 Test if series is S eXiSUOE . . . o« o v oo e e
XX.2 Init specific to reledparo
XX.3 For critical footnoted
XX.3.10ptiony
XX.3.2 Create inserts, needed to add notesinfootl

XX.3.3 Create commands for critical apparatus, \Afootnote, \Bf ootnoté

...................................

[XX.3.4 Set standard displayl
IXX.4 For familiar footnoted
XX.4.1 Optiona
XX.4.2 Create tools for familiar footnotes (\footnoteX)
IXX.5The endnotes o o o i i

XX.5.1 The auxiliary fild
XX.5.2 The main macra
XX.5.3 TOOLd . . o o o e
XX.5.4 Internal commandg
XX.5.5 The optiona

IXX.6 Init standards series (A.B,.C.D.E) o o o i

XXI Setting series display|
XXI.1 Chanée series ordeﬂ
XXL2 Test series ordel] o oo oo
XX1.2.1 Get the first Series o o v v v e
IXXL3 Series setting o oo
XXL.3.1 General way of working
XX1.3.2 ToOIs t0 Set OPHONS . . .+« o o o e e e e e e
XX1.3.3 Tools to generate options commandg
XX1.3.4 Oﬁtions for critical notea
XXI.3.5 Oﬁtions for familiar notea
XX1.3.6 Options for endnotes o v v v i

211

211

212
212
212
213

214
214
218
218
218

Contents

XX1.4 Hooks for a particular footnotd
X XI.5 Aliag

XXII Output routine

XXII.1 Page number managemenﬂ
X XII.2 Extra footnotes outpuil

XXI1.3 Patching standard output of commandd

I1I Cross referencin,
XII.1 Compatibility withxref]

XXIV Side notes

XXV Minipages and such|

KXVI Indexing

XXVI.1 Looking on package order,
XXVI.2 Auxiliary macros for \edindex,
XX V1.3 Code specific to \edindexin critical footnoteq

XXVI.4 Analysis of command inindexedtext|
XXVL5 Code for the formatted index o oo oo
XXVL6 Maincodd o v i it
XXVL7 Hyperlink
XX V1.8 ‘innote’ and ‘notenumber’ option of indextols packagd.

XXVII Glossaries

I?_(XVIII Versa

XXVIIL1 Hanging symbol management|
XX VIIL.2 Usiné & characteﬂ
XXVIIL3 Code cateéori settina
XXVIIL4 Stanza count and indenﬂ
XX VIIL5 Numberiné stanza
XXVIIL6 Stanza number in nota
XXVIIL.7 Main worH

XX VIIL8 Restore catcode and penaltied

XXIX Apparatus of Manuscripts

XXIX.1 User level macra
XXIX.2 Settiné macra
XXIX.3 Counters and listg
XXIX.4 Auxiliari file macroa
XXIX.5 Action macra
XXIX.6 Insertiné footnota
X XIX.7 Otheﬂ

242
243

243
243
244
246

249
262

262

270

275
275
275
276
278
278
278
280
282

283

285
285
286
286
286
288
289
289
291

10 Contents

XXX Arrays and tableg 299
XXX.1 Preamble: macro as environment 299
XXX.2 Tabular environmenty v oot 303
XXX.2.1 Disabling and restoring commandg 303
XXX.2.2 Counters; boxes and lenétha 306

XXX.2.3 Tabular typesetting 310
XXX.2.4 Environmenta 321
XXXI Quotation’s commands 322

XXXII Section’s title commands 323

XXXII.1 Commands to disable some featura 323
XXXIL2 General OVEIVIEW oo 323
XXXII.3 \beforeeledchapter command 324
XXXIL4 Auxiliary commandd 324
XXXIL5 Patching standard commands 325
XXXIL6 Main code of \eledxxx commands 330
XXXIL.7 Macros written in the auxiliary fild 333
XXXIII Page breaking or no page breaking depending of specific lines 335
XXXIV Long verse: prevents being separated by a page break| 336
IXXXV Tools for hyperref packagd 337
XXXVI Compatibility with eledmad 338
Appendix A Things to do when changing versiong 341
Appendix A.1 Migrating from edmac toledmaq 341
Appendix A.2 Migration from ledmac to eledmad 342

Appendix A.3 Migration to eledmac 1.5.1 343
Aﬁﬁendix A4 Miération to eledmac 1.12.@] 343
AEEendix A5 Miération to eledmac 17. l] 344
Appendix A.6 Migration to eledmac 1.21.0. 344

Appendix A.6.1 \Xledsetnormalparstuffand \ledsetnormalparstuffX 344

Appendix A.6.2 Endnoted 344
Appendix A.7 Migration to eledmac 1.22.0 344
Appendix A.8 Migration to eledmac 1.23.0 344
Appendix A.9 Migration from eledmac to reledmad 345

Appendix A.9.1 Risk of ‘noroom foranew]. 345

Appendix A.9.2 Multiple indices with memoid 345

Appendix A.9.3 Deprecated commands and options 345

Appendix A.9.4 \renewcommandreplaced by command 346

Appendix A.9.5 Commands the names of which have been changed . . . 346

Appendix A.9.6 Endnoteg 348

Appendix A.9.7 Z Seried 348

Appendix A.9.8 Internal commands 348

11

Appendix A.10 Migration to reledmac 2.1.0 348
Appendix A.11 Migration to reledmac 2.1.3 348
Appendix A.12 Migration to reledmac 2.3.0 348
Appendix A.13 Migration to reledmac 2.4.0 349
Appendix A.14 Migration to reledmac 2.5.0 349
Appendix A.15 Migration to reledmac 2.7.0 349
Appendix A.16 Migration to reledmac 2.7.2 349
Appendix A.17 Migration to reledmac 2.8.0 349
Appendix A.18 Migration to reledmac 2.13.]] 349
351
Index 351
398

1 Introduction

1.1 Aim of the package

The reledmac package, together with KEIEX, provides several important facilities for
formatting critical editions of texts in a traditional manner. Major features include:

« automatic stepped line numbering, by page, section or paragraph;
« sub-lineation within the main series of line numbers;

« variant readings automatically keyed to line numbers;

« caters to both prose and verse;

« multiple series of footnotes and endnotes;

« block or columnar formatting of the footnotes;

« simple tabular material may be line numbered,;

« indexing keyed to page and line numbers.

reledmac allows the scholar engaged in preparing a critical edition to focus atten-
tion wholly on the task of creating the critical text and evaluating the variant readings,
text-critical notes and testimonia. KIEX and Eledmac will take care of the formatting
and visual correlation of all the disparate types of information.

Apart from reledmac there are other EKTEX packages for typesetting critical editions.
However, the aim of reledmac is to provide an “all in one” and flexible tool in the field
of critical editions.

Any suggestions for new features are welcome.

This manual contains a general description of how to use reledmac followed by
the complete source code and its extensive documentation (in sections [l and following,

12 1 Introduction

enumerated with Roman numerals). It ends with a list of actions to do when migrating
from one version to other, a change history and an index to the source code.

You do not need to read the source code for this package in order to use it; we provide
this code primarily for reference, and many of our comments on it repeat material that
is also found in earlier sections. But no documentation, however thorough, can cover
every question that comes up and many can be answered quickly by consulting the
code. On a first reading, we suggest that you read only the general documentation in
sections [, unless you are particularly interested in the innards of reledmac.

1.2 History
1.2.1 edmac

The original version of edmac was TEXTED. TEX, written by John Lavagnino in late 1987
and early 1988 for formatting critical editions of English plays.

John passed these macros on to Dominik Wujastyk who, in September—October 1988,
added the footnote paragraphing mechanism, margin swapping and other changes to
suit his own purposes, making the style more like that traditionally used for classical
texts in Latin and Greek (e.g., the Oxford Classical Texts series). He also wrote some
extra documentation and sent the files out to several people. This version of the macros
was the first to be called edmac.

The present version was developed in the summer of 1990, with the intent of adding
necessary features, streamlining and documenting the code, and further generalizing it
to make it easily adaptable to the needs of editors in different disciplines. John did most
of the general reworking and documentation, with the financial assistance of the Divi-
sion of the Humanities and Social Sciences, California Institute of Technology. Dominik
adapted the code to the conventions of Frank Mittelbach’s doc option, and added some
documentation, multiple-column footnotes, cross-references, and crop marksd A de-
scription by John and Dominik of this version of edmac was published as ‘An overview
of edmac: a PLain TgX format for critical editions’, TUGboat 11 (1990), pp. 623-643.

From 1991 through 1994, the macros continued to evolve, and were tested at
a number of sites. We are very grateful to all the members of the (now defunct)
edmac@nailbase.ac.uk discussion group who helped us with smoothing out the bugs
and infelicities in the macros. Ron Whitney and our anonymous reviewer at the TUG
were both of great help in ironing out last-minute wrinkles, while Ron made some im-
portant suggestions which may help to make future versions of edmac even more effi-
cient. Wayne Sullivan, in particular, provided several important fixes and contributions,
including adapting the Mittelbach/Schopf ‘New Font Selection Scheme’ for use with
PraIN TgX and edmac. Another project Wayne has worked on is a DVI post-processor
which works with an edmac that has been slightly modified to output \specials. This
combination enables you to recover to some extent the text of each line as Asci code,
facilitating the creation of concordances, an index verborum, etc.

As of 1994, we were pleased to be able to say that edmac was being used for the real-
life book production of several interesting editions, such as the Latin texts of Euclid’s Ele-

This version of the macros was used to format the Sanskrit text in volume I of Metarules of Paninian
Grammar by Dominik Wujastyk (Groningen: Forsten, 1993).

1.2 History 13

ments,E an edition of the letters of Nicolaus Copernicus,E Simon Bredon’s fh‘ithmetica,E a
Latin translation by Plato of Tivoli of an Arabic astrolabe text,E a Latin translation of part
11 of the Arabic Algebraby Abt Kamil Shuja’ b. Aslam B the Latin Rithmachia of Werinher
von Tegernsee,Ia a middle-Dutch romance epic on the Crusadesf a seventeenth-century
Hungarian politico-philosophical tract an anonymous Latin compilation from Hun-
gary entitled Sermones Compilati in Studio Gererali Quingeecclesiensi in Regno Ungarie,E
the collected letters and papers of LeibnizH Theodosius’s Spherics, the German Aéoris—
mus of Sacrobosco, the Sanskrit text of the Kasikavrtti of Vamana and Jayaditya,’d and
the English texts of Thomas Middleton’s collected works.

1.2.2 1ledmac

Version 1.0 of tabmac was released by Herbert Breger in October 1996. This added the
capability for typesetting tabular material.

Version 0.01 of edstanza was released by Wayne Sullivan in June 1992, to help a
colleague with typesetting Irish verse.

In March 2003 Peter Wilson started an attempt to port edmac from TeX to LaTeX.
The starting point was edmac version 3.16 as documented on 19 July 1994 (available
from CTAN). In August 2003 the tabmac functions were added; the starting point for
these being version 1.0 of Ocober 1996. The edstanza (v0.01) functions were added in
February 2004. Sidenotes and regular footnotes in numbered text were added in April
2004. This port was called 1edmac (BIEX edmac).

Since July 2011, ledmac is maintained by Maieul Rouquette. It is increasingly pow-
erful and flexible, but it also has become increasingly divergent from the original TeX
macro.

1.2.3 eledmac

Important changes were put in version 1.0, to make 1edmac more easily extensible (see
f p. BJ). These changes can trigger small problems with the old customization. That is
why a new name was selected: eledmac (extended ledmac).

2Gerhard Brey used edmac in the production of Hubert L. L. Busard and Menso Folkerts, Robert of Chester’s
(?) Redaction of Euclid’s Elements, the so-called Adelard II Version, 2 vols., (Basel, Boston, Berlin: Birkhauser,
1992).

3Being prepared at the German Copernicus Research Institute, Munich.

4Being prepared by Menso Folkerts et al., at the Institut fiir Geschichte der Naturwissenschaften in Munich.

SRichard Lorch, Gerhard Brey et al., at the same Institute.

®Richard Lorch, ‘Abi Kamil on the Pentagon and Decagon’ in Vestigia Mathematica, ed. M. Folkerts and J.
P. Hogendijk (Amsterdam, Atlanta: Rodopi, 1993).

"Menso Folkerts, ‘Die Rithmachia des Werinher von Tegernsee’, ibid.

8Geert H. M. Claassens, De Middelnederlandse Kruisvaartromans, (Amsterdam: Schiphower en Brinkman,
1993).

Emil Hargittay, Csaky Istvan: Politica philosophiai Okoskodds-szerint valé rendes életnek példéja (1664—1674)
(Budapest: Argumentum Kiad6, 1992).

19Being produced, as was the previous book, by Gyula Mayer in Budapest.

ULeibniz, Sdmtliche Schriften und Briefe, series I, III, VI, being edited by Dr. H. Breger, Dr. N.
Gédeke and others at the Leibniz-Archiv, Niedersachsische Landesbibliothek, Hannover. (see http://www.
nlb-hannover.de/Leibniz)

12Being prepared at Poona and Lausanne Universities.

http://www.nlb-hannover.de/Leibniz
http://www.nlb-hannover.de/Leibniz

14 3 Compatibility warning

To migrate from ledmac to eledmac, please read p.B4d.

1.2.4 reledmac

eledmac has facilitated the creation of customized critical editions. However, the
changes made to allow such customization were made in a non-systematic way. Many
deprecated commands were kept and many technical ‘debts’ were accumulated, hinder-
ing the future evolution of the package.
For these reasons, Maieul Rouquette decided on a spring cleaning of the code. As
some commands name were changed, the resulting compatibility was broken (a little).
A new name was selected: reledmac (extended renewed eledmac). To migrate from

eledmac to reledmac, please read p. .

1.3 List of works edited with (r)(e)ledmac

A collaborative list of works edited with (r)(e)ledmac is available at https://www.
zotero.org/groups/critical_editions_typeset_with_edmac_ledmac_and_eledmac/
items. Please add your own edition made with (r)(e)ledmac.

2 How the package works

The reledmac package is a three-pass package like KIEX itself. Although your textual
apparatus and line numbers will be printed on the first run, it takes two more passes
through EIEX to be sure that everything is correctly placed. If you make any subsequent
changes altering the number of lines or notes, the input file may similarly require three
passes to get everything to the right place. reledmac will tell you that you need to
make more runs when it detects changes, but it does not expend the labor to check this
thoroughly. If you have problems with a line or two misnumbered at the top of a page,
try running ETEX once or twice more.

3 Compatibility warning

However, the best way to be sure that one has made the right number of runs is to use
some of BIEX’s run scripts like latexmk.

If you use other classes than \article or \book, or modify the layout with
geometry, some settings should be made to have correct height for the blocks of notes.

Please read p. b4,

A file may mix numbered and unnumbered text.

Numbered text is printed with marginal line numbers and can include footnotes and
endnotes that are referenced to those line numbers: this is how you will want to print
the text that you are editing.

Unnumbered text is not printed with line numbers, and you can’t use reledmac’s
note commands with it: this is appropriate for introductions and other material added
by the editor around the edited text.

https://www.zotero.org/groups/critical_editions_typeset_with_edmac_ledmac_and_eledmac/items
https://www.zotero.org/groups/critical_editions_typeset_with_edmac_ledmac_and_eledmac/items
https://www.zotero.org/groups/critical_editions_typeset_with_edmac_ledmac_and_eledmac/items

15

4 Options

The package can be loaded with a number of global options which are listed here. There
are two types of options: 1) options which provide specific features, and, 2) options
which optimize the package’s performance. It is advisable for you to read the relevant
parts of the handbook, before reading about the first type of option (specific features),
but you can look at the second type (package optimization) in your first reading of the
manual.

4.1 Specific features

draft underlines lemmas in the main text.

auxdir reledmac generates auxiliary files. It could be useful to store them in a specific
directory. You can set it using auxdir=(folder) option. Note the two following
point:

1. TgX is not able to create folder. You should create it yourself.

2. The option does not change the default KIfXauxiliary files (aux, .toc, ...).

eledmac-compat help to migrate from eledmac to reledmac (see
p-B49).

nopenalties must be called in some cases when using paragraphed endnotes (?? p. ??
nopbinverse prevents page break within verse environment.

noquotation by default, the quotation environment is redefined within numbered text.
You can disable this redefinition with noquotation (see [L7 p. b3).

parapparatus by default, the apparatus cannot contain paragraph breaks; this option
enables paragraphing inside the apparatus.

widthliketwocolumns set the width of the text printed in a single column to be the
same as the width of the text printed in two parallel columns with reledpar. This
is useful when alternating between normal and parallel typesetting.

xindy and xindy+hyperref select xindy as the index processor ([13.4 p. 57).

4.2 Optimizing package performance

nocritical disables tools for critical footnotes (\Afootnote, \Bfootnote etc.). If you
do not need critical footnotes, this option lets eledmac run faster. It will also
preserve room for other packages.

noeledsec disables tools for \eledsection and related commands (6.4 p. p2).

noend disables tools for endnotes (\Aendnote, \Bendnote etc.). If you do not need
endnotes, this option lets reledmac run faster. It will also preserve room for
other packages.

\beginnumbering
\endnumbering

\pstart
\pend

16 5 Text lines and paragraphs numbering

nofamiliar disables tools for familiar footnotes (\footnoteA, \footnoteB etc.). If
you do not need familiar footnotes, this option lets eledmac run faster. It will
also preserve room for other packages.

noledgroup reledmac allows use of a series of critical notes and a new series of normal
notes inside minipage and ledgroup environments (see [L p. 5d). However, such
features use up computer memory, at the expense of other processing needs. So if
you do not need this feature, use noledgroup option. This should make reledmac
faster.

series reledmac defines five levels of notes: A, B, C, D, E. Using all these levels con-
sumes memory space and processing speed. This is why, if your work does not
require the entire A-E series, you can narrow down the available number of series.
For example, if you only need A and B series, call the package with series={A,B}
option.

5 Text lines and paragraphs numbering

5.1 Text lines numbering

Each section of numbered text must be preceded by \beginnumbering and followed by
\endnumbering, as in the following example.

\beginnumbering
Text
\endnumbering

The \beginnumbering macro resets the line number to zero, reads an auxiliary file
called (jobname).nn (where (jobname) is the name of the main input file for this job,
and nn is 1 for the first numbered section, 2 for the second section, and so on), and then
creates a new version of this auxiliary file to collect information during this run. The
first instance of \beginnumbering also opens a file called (jobname) .<series>end to
receive the text of the endnotes. \endnumbering closes the (jobname).nn file.

If the line numbering of a text is to be continuous from start to end, then the whole
text will be typed between one pair of \beginnumbering and \endnumbering com-
mands. But your text will most often contain chapter or other divisions marking sections
that should be independently numbered, and these will be appropriate places to begin
new numbered sections.

reledmac has to read and store in memory a certain amount of information about
the entire section when it encounters a \beginnumbering command, so it speeds up
the processing and reduces memory use when a text is divided into a larger number of
sections (at the expense of multiplying the number of external files that are generated).

5.2 Paragraphs
5.2.1 Basics

Within a numbered section, each paragraph of numbered text must be marked using the

5.2 Paragraphs 17

\pstart and \pend commands like this:

\pstart
Paragraph of text.
\pend

Text that appears within a numbered section but is not marked with \pstart and
\pend will not be numbered.
The following example shows the proper section and paragraph markup and the kind
of output that would typically be generated:
\beginnumbering
\pstart
This is a sample paragraph, with
lines numbered automatically.
\pend

\pstart

This paragraph too has its
lines automatically numbered.
\pend

The lines of this paragraph are
not numbered.

\pstart

And here the numbering begins
again.

\pend

\endnumbering

5.2.2 Automatically producing \pstart ... \pend

\autopar You can use \autopar to avoid the nuisance of this paragraph markup and still have
every paragraph automatically numbered. The scope of the \autopar command needs

to be limited by keeping it within a group, as follows:
\begingroup
\beginnumbering
\autopar

A paragraph of numbered text.

Another paragraph of numbered
text.

\endnumbering
\endgroup

\autopar fails, however, on paragraphs that start with a { or with any other com-
mand that starts a new group before it generates any text. Such paragraphs need to

18 5 Text lines and paragraphs numbering

be started explicitly, before the new group is opened, using \indent, \noindent, or
\leavevmode, or using \pstart itself 3

5.2.3 Content before specific \pstart and after specific \pend

Both \pstart and \pend can take a optional argument in brackets. Its content will
be printed before the beginning of \pstart / after the end of \pend instead of the
argument of \AtEveryPstart / \AtEveryPend. If you need to start a \pstart with
brackets, or to add brackets after a \pend, just add a \relax between \pstart ... \pend
and the brackets.

This feature is also useful when typesetting verses (see [p. j6) or reledpar (see

p. 7.

A \noindent is automatically added before this argument.
5.2.4 Content before every \pstart and after every \pend
\AtEveryPstart You can use both \AtEveryPstart and \AtEveryPend. Their arguments will be
\AtEveryPend printed before every \pstart begins / after every \pend ends.

5.2.5 Numbering paragraphs (\pstart)

It is possible to insert a number at every \pstart command; you must use the
\numberpstarttrue \numberpstarttrue command tohave it. You can stop the numbering with \numberpstartfalse.
\numberpstartfalse You can redefine the command \thepstart to change style. You can change the value
\thepstart of the pstart number by using after \beginnumbering:

\setcounter{pstart}{value}

On each \beginnumbering the numbering restarts.

\sidepstartnumtrue With the \sidepstartnumtrue command, the number of \pstart will be printed
inside. In this case, the line number will be not printed.
\labelpstarttrue With the \labelpstarttrue command, a \1abel added just after a \pstart will

refer to the number of this pstart.

5.2.6 Languages written in Right to Left

If you use languages written right to left with LuaBIEX or XgETEX, you must switch text
direction before the \pstart command.

5.2.7 Memory limits

This paragraph is kept for history, but the problems described below should not

appear with the most recent version of ETgX.
\pausenumbering reledmac stores a lot of information about line numbers and footnotes in memory
\resumenumbering as it goes through a numbered section. But at the end of such a section, it empties its

BFor a detailed study of the reasons for this restriction, see Barbara Beeton, ‘Initiation rites’, TUGboat 12
(1991), pp. 257-258.

5.3 Lineation commands 19

memory out, so to speak. If your text has a very long numbered section it is possible
that your ETEX may reach its memory limit. There are two solutions to this.

The first solution is to get a larger KIgX with increased memory.

The second solution is to split your long section into several smaller ones. The trouble
with this is that your line numbering will start again at zero with each new section. To
avoid this problem, we provide \pausenumbering and \resumenumbering which are
just like \endnumbering ... \beginnumbering, except that they arrange for your line
numbering to continue across the break. Use \pausenumbering only between num-
bered paragraphs:

\beginnumbering
\pstart

Paragraph of text.
\pend
\pausenumbering

\resumenumbering
\pstart

Another paragraph.
\pend
\endnumbering

We have defined these commands as two macros, in case you find it necessary to
insert text between numbered sections without disturbing the line numbering. But if

you are really just using these macros to save memory, you might as well type,
\newcommand{\memorybreak}{\pausenumbering\resumenumbering}

and type \memorybreak between the
relevant \pend and \pstart.

5.3 Lineation commands
5.3.1 Disabling lineation

\numberlinefalse Line numbering can be disabled with \numberlinefalse. It can be enabled again with
\numberlinetrue \numberlinetrue.

5.3.2 Setting lineation start and step

\firstlinenum By default, reledmac numbers every 5th line. There are two counters that control
\linenumincrement this behaviour: firstlinenum and linenumincrement. They can be changed using
\firstlinenum{(num)} and \linenumincrement{(num)}. \firstlinenum speci-
fies the first line that will have a printed number, and \1inenumincrement is the dif-
ference between succesive numbered lines. For example, to start printing numbers at

the first line and to have every other line numbered:

\firstlinenum{1} \linenumincrement{2}
\firstsublinenum There are similar commands, \firstsublinenum{(num)} and \sublinenumincrement{{num)}
\sublinenumincrement for controlling sub-line numbering.

\linenumberlist You can define \linenumberlist to specify a non-uniform distribution of printed

\lineation

\linenummargin

\leftlinenum
\rightlinenum
\linenumsep

20 5 Text lines and paragraphs numbering

line numbers. For example:
\def\linenumberlist{1,2,3,5,7,11,13,17,19,23,29}

to have numbers printed on prime-numbered lines only. There must be no spaces within
the definition which consists of comma-separated integer numbers. The numbers can be
in any order but it is easier to read if you put them in numerical order. Either omitting
the definition of \1linenumberlist or following the empty definition
\def\linenumberlist{}

the standard numbering sequence is applied. The standard sequence is that specified by
the combination of the firstlinenum, linenumincrement, firstsublinenum and
linenumincrement counter values.

5.3.3 Setting lineation reset

Lines can be numbered either by page, by pstart or by section; you specify this using
the \lineation{(arg)} macro, where (arg) is either page, pstart or section.

You may only use this command at places where numbering is not in effect; you
can’t change the lineation system within a section. You can change it between sections:
they don’t all have to use the same lineation system. The package’s standard setting is
\lineation{section}. If the lineation is by pstart, the pstart number will be printed
before the line number in the notes.

5.3.4 Setting line number margin

The command \linenummargin{(location)} specifies the margin where the line (or
pstart) numbers will be printed. The permissable values for (location) are left, right,
inner, or outer: for example, \1inenummargin{inner}. The package’s default set-
ting is

\linenummargin{left}

to typeset the numbers in the left hand margin. You can change this whenever you’re
not in the middle of making a paragraph.

More precisely, the value of \linenummargin used is the value in effect at the
\pend of a numbered paragraph. Apart from an initial setting for \1inenummargin,
only change \linenummargin after a \pend, whereupon it will apply to all following
numbered paragraphs, until changed again (changing it between a \pstart and \pend
pair will apply the change to all of the current paragraph).

5.3.5 Other settings

When a marginal line number is to be printed, there are many ways to display it. You can
redefine \leftlinenum and \rightlinenum to change the way marginal line numbers
are printed in the left and right margins respectively; the initial versions print the num-
ber in font \numlabfont (described below) at a distance \1inenumsep (initially set to
one pica) from the text.

\startsub
\endsub

\startlock
\endlock

\lockdisp

\setline
\advanceline

5.4 Changing the line numbers 21

5.4 Changing the line numbers

Normally, line numbering starts at 1 for the first line of a section and increments by one
for each line thereafter. There are various common modifications of this system and the
commands described here allow you to put such modifications into effect.

5.4.1 Sublineation

You insert the \startsub and \endsub commands in your text to turn sub-lineation
on and off. For example, stage directions in plays are often numbered with sub-line
numbers: as line 10.1, 10.2, 10.3, rather than as 11, 12, and 13. Titles and headings are
sometimes numbered with sub-line numbers as well.

When sub-lineation is in effect, the line number counter is frozen and the sub-line
counter advances instead. If one of these commands appears in the middle of a line,
it doesn’t take effect until the next line; in other words, a line is counted as a line or
sub-line depending on what it started out as, even if it changes in the middle.

You can change the separator between line number and subline number or using
\Xsublinesep without any option argument (7.2.8 p. 7 or using \Xsublinesepside.
But in the second case, it will change the separator only for line number in side, not for
the footnotes.

5.4.2 Locking lineation

The \startlock command, used in running text, locks the line number at its current
value, until you insert \endlock. It can tell for itself whether you are in a patch of line
or sub-line numbering. One use for line-number locking is in printing poetry: there
the line numbers should be those of verse lines rather than of printed lines, even when
a verse line requires several printed lines. But in this case you may use the \stanza
mechanism, see [p. id.

When line-number locking is used, several printed lines may have the same line
number, and you have to specify whether you want the number attached to the first
printed line or the last, or whether you just want the number printed by them all, as-
suming that the settings of the previous parameters requires the display of a line number
for this line. You specify your preference using \lockdisp{(arg)}; its argument is a
word, either first, last, or all. The package initially sets this as \1lockdisp{first}.

5.4.3 Setting and changing line number

In some cases you may want to modify the line numbers that are automatically cal-
culated: if you are printing only fragments of a work but want to print line num-
bers appropriate to a complete version, for example. The \setline{(num)} and
\advanceline{(num)} commands may be used to change the current line’s number
(or the sub-line number, if sub-lineation is currently on). They change both the marginal
line numbers and the line numbers passed to the notes. \setline takes one argument,
the value to which you want the line number set; it must be 0 or greater. \advanceline
takes one argument, an amount that should be added to the current line number; it may
be positive or negative.

\setlinenum

\linenumberstyle
\sublinenumberstyle

\skipnumbering

\hidenumbering

\hidenumberingonleftpage

\dolinehook
\doinsidelinehook

22 5 Text lines and paragraphs numbering

The \setline and \advanceline macros should only be used within a \pstart...\pend
group. The \setlinenum{(num)} command can be used outside such a group, for ex-
ample between a \pend and a \pstart. It sets the line number to (num). It has no
effect if used within a \pstart...\pend group.

5.4.4 Line number style

Line numbers are normally printed as arabic numbers. You can use \linenumberstyle{(style)}
to change the numbering style. (style) must be one of:

Alph Uppercase letters (A ... Z).

alph Lowercase letters (a ... z).

arabic Arabic numerals (1, 2, ...)

Roman Uppercase Roman numerals (I, II, ...)
roman Lowercase Roman numerals (i, i, ...)

Note that with the Alph or alph styles, ‘numbers’ must be between 1 and 26 inclusive.
Similarly \sublinenumberstyle{(style)} can be used to change the numbering
style of sub-line numbers, which is normally arabic numerals.

5.4.5 Skipping and hidding number

When inserted into a numbered line the macro \skipnumbering causes the numbering
of that particular line to be skipped; that is, the line number is unchanged and no line
number will be printed. Note that if you use it in \stanza, you must call it at the
beginning of the verse.

When inserted into a numbered line, the macro \hidenumbering causes the num-
ber for that particular line to be hidden; namely, no line number will print. Note that if
you use it in \stanza, you must call it at the beginning of the verse.

\hidenumberingonleftpage is like hidenumbering, but is applied only on left
page. \hidenumberingonrightpage is applied on right page. They can be useful if
the position of the line number is depending of the position of the page, but the position
of marginal note is fixed.

5.4.6 Execute code at each line

reledmac provides an advanced feature for users. The argument passed to \dolinehook{{arg)}
will be executed before slicing a new line in the paragraph. The argument passed to
\doinsidelinehook{(arg)} will be executed before printing a new line. In many

cases, the latter is more useful than the former. The file examples/2-line numbers in header.tex
provides an example for printing the first and last line numbers of a page in the header.

examples/2-line_numbers_in_header.tex

\edtext

23

6 Apparatus commands

6.1 Terminology

We call “critical notes” notes which refer to both a lemma, that is a part of text and a
line number. Critical notes are subdivided in critical footnotes and critical endnotes.
We call “familiar notes” notes which refer to a footnote mark in the main text.
reledmac manages many series of notes of each category. A series of notes is iden-
tified by an uppercase letter. When the series letter is at the beginning of a command
name, it refers to a critical footnote. When the series letter is at the end of a command
name, it refers to a familiar footnote.
So:

« \Afootnote is a critical footnote of the series A.
« \Bendnote is a critical endnote of the series B.

« \footnoteC is a familiar footnote of the series C.

6.2 Critical notes
6.2.1 The lemma

Within numbered paragraphs, all footnotes and endnotes are generated by the \edtext
macro:

\edtext{(lemma)}{{commands)}

The (lemma) argument is the lemma in the main text: \edtext both prints this as
part of the text, and makes it available to the (commands) you specify to generate notes.

For example:
I am happy :

I saw my friend \edtext{Smith}{
\Afootnote{Jones C, D.}}
on Tuesday.

1 Tam happy : I saw my friend Smith on
2 Tuesday.

ﬂ Smith] Jones C, D.

The lemma Smith is printed as part of this sentence in the text, and is also made
available to the footnote that specifies a variant, Jones C, D. The footnote macro is
supplied with the line number at which the lemma appears in the main text.

The (lemma) may contain further \edtext commands. Nesting makes it possible to
print an explanatory note on a long passage together with notes on variants for individ-
ual words within the passage. For example:

I am happy : \edtext{I saw my friend 1 Iam happy : I saw my friend Smith on
\edtext{Smith}{\Afootnote{Jones 2 Tuesday.
C, D.}} on Tuesday.}{
\Bfootnote{The date was [l Smith] Jones C, D.
July 16, 1954.%}

fl-@ 1 saw my friend Smith on Tuesday.] The
date was July 16, 1954.

\Afootnote
\Bfootnote
\Cfootnote
\Dfootnote
\Efootnote

\Aendnote
\Bendnote
\Cendnote
\Dendnote
\Eendnote

24 6 Apparatus commands

However, \edtext cannot handle overlapping but unnested notes—for example, one
note covering lines 10-15, and another covering 12-18; an \edtext that starts in the
(lemma) argument of another \edtext must end there, too. (The \1emma and \1inenum
commands may be used to generate overlapping notes if necessary.)

6.2.2 Footnotes

The second argument of the \edtext macro, {commands), may contain a series of sub-
sidiary commands that generate various kinds of notes.

Five separate series of the footnotes are maintained; each macro takes one argument
like \Afootnote{(text)}. When all of the six are used, the A notes appear in a layer
just below the main text, followed by the rest in turn, down to the E notes at the bottom.
These are the main macros that you will use to construct the critical apparatus of your
text.

If you need more series of critical notes, please look at p.B3.

An optional argument can be added before the text of the footnote. Its value is a
comma-separated list of options. The available options are:

« fulllines to disable \Xtwolines and \Xmorethantwolines features for this

note (cf. p. B3).

+ nonum disables line numbering for this note. A horizontal blank space is added
instead. You can use \Xinplaceoflemmaseparator to set it (7.5.1 p. B9).

« nosep to disable the lemma separator for this note.

« linerangesep=(c) to change to (c) the separator between start line and end line
for this particular note.

Example: \Afootnote [nonum] {(text)}.

6.2.3 Endnotes

Inserting endnotes The package also maintains five separate series of endnotes.

If you do not need the endnotes facility, you should use noend option when loading
reledmac.

The mechanism is similar to the one for footnotes: each macro takes one or more
optional arguments and one single argument, like:
\Aendnote [(option)] {(text)}.

(option) can contain a comma-separated list of values. Allowed values are:

o fulllines to disable \Xendtwolines and \Xendmorethantwolines features

for this particular note (cf. p. B9).

« nonum to disable line number for this particular note.

« nosep to disable the lemma separator for this particular note. A horizontal blank
space is added instead. You can use \Xendinplaceoflemmaseparator to set it

{53 p. kd).

6.2 Critical notes 25

+ linerangesep={c) to change to (c) the separator between start line and end line
for this particular note.

\doendnotes Printing endnotes Normally, endnotes are not printed: you must use the \doendnotes{(s)},
where (s) is the letter of the series to be printed. Put this command where you want the
corresponding set of endnotes printed. In this case, all the endnotes of the (s) series are
printed, for all numbered sections.

\doendnotesbysection However, you may want to print the endnotes of one given series covering the first
numbered section, then the endnotes of another given series covering the first numbered
section, then the endnotes of the first given series covering the second numbered section,
then the endnotes of the second given series covering the second numbered section, and
so forth. In this case, use \doendnotesbysection{(s)}. For each value of (s), the first
call of the command will print the notes for the first series, the second call will print the
notes for the second series etc. For example, do:

\section{Endnotes}

\subsection{First text}
\doendnotesbysection{A}
\doendnotesbysection{B}
\subsection{Second text}
\doendnotesbysection{A}
\doendnotesbysection{B}

Note that by default inside endnotes no separator is used between the lemma and the
content. However you can use the \Xendlemmaseparator macro to define one (f.5.7
p. BY.

As endnotes may be printed at any point in the document they always start with the
page number where they are called.

toendnotes Code between endnotes Sometimes, it is useful to insert content between endnotes
Xtoendnotes of the same series: for example to separate endnotes of different sections of the same
text. In this case, you could use inside numbered text the command:
\toendnotes [(series)] {(content)} where (series) is a comma-separated list of the se-
ries of endnotes where (content) must be inserted. If (series) is empty, then {content) is
inserted to all the series.
For example:

\toendnotes{\section{Section's title}}

Alternatively, you can use \Xtoendnotes{(content)}, where “X” must be replaced
by a series letter.

Remember that the endnotes are temporarily stored in an auxiliary file. That means
in general you want to write the (content) in the auxiliary file without expanding it, that
is without interpreting TgX content.

\lemma

\linenum

26 6 Apparatus commands

However, in some case, you may want to write once—expandedE version of the
(content), that is the version where the commands are expanded on the first level. This
can be, for example, to get a counter value. Use the starred version in this case. For
example:

\Atoendnotes*{\string\section{Letter 1 (chap. \thechapter)}}

6.2.4 Paragraph in critical apparatus

By default, no paragraph can be made in the notes of the critical apparatus. You can
allow it by adding the options parapparatus when loading the package :

\usepackage [parapparatus] {eledmac}

Note that you cannot use paragraphs (e.g. blank lines or \par) inside of notes, when
they are set to paragraph arrangement!

6.2.5 Change lemma and line number

If you want to change the lemma that gets passed to the notes, you can do this by
using \lemma{{alternative)} within the second argument to \edtext and before the
note commands. The most common use of this command is to abbreviate the lemma
that’s printed in the notes. For example:

I am happy :

\edtext{I saw my friend
\edtext{Smith}{\Afootnote{Jones
C, D.}} on Tuesday.}

{\lemma{I \dots\ Tuesday.}

\Bfootnote{The date was

July 16, 1954.%} R —
¥ [[-B 1... Tuesday.] The date was July 16, 1954.

I am happy : I saw my friend Smith on
Tuesday.

Smith] Jones C, D.

You can use \1linenum{(arg)} to change the line numbers passed to the notes. {(arg)
actually consist of seven parameters: the page, line, and sub-line number for the start of
the lemma; the same three numbers for the end of the lemma; and the font specifier for
the lemma. As the argument to \1linenum, you specify those seven parameters in that
order, separated by vertical bars (the | character). Le.

A\linenum{ (start page) | (s. line) | (s. sub-L)|(end p.)|{e. L) |{e. sub-L)|(font)|>}
However, you can retain the value computed by reledmac for any number by simply
omitting it; and you can omit a sequence of vertical bars at the end of the argument.
For example, \1linenum{| | |23} changes only the ending page number of the current
lemma.

This command does not change the marginal line numbers in any way; it just changes
the numbers passed to the notes. Its use comes in situations that \edtext has trouble
dealing with for whatever reason. If you need notes for overlapping passages that aren’t

14The expansion mechanism’ of TgXis a quite complex problem, but fundamental. We have no place to
explain it fully here. Read introduction to TgXto understand well.

\sameword

6.3 Disambiguation of identical words in the apparatus 27

nested, for instance, you can use \lemma and \linenum to generate such notes despite
the limitations of \edtext. If the (lemma) argument to \edtext is extremely long,
you may run out of memory; here again you can specify a note with an abbreviated
lemma using \lemma and \linenum. The numbers used in \1linenum need not be en-
tered manually; you can use the ‘x—" symbolic cross-referencing commands below ([L1]
p. B0) to compute them automatically.

Similarly, being able to manually change the lemma’s font specifier in the notes
might be important if you were using multiple scripts or languages. The form of the
font specifier is three separate codes separated by / characters, giving the family, series,
and shape codes as defined within NFSS.

6.2.6 Changing the names of commands for critical apparatus

The commands for generating the apparatus have been given rather bland names, be-
cause editors in different fields have widely divergent notions of what sort of notes are
required, where they should be printed, and what they should be called. But this does
not mean you have to type \Afootnote when you would rather type something you
find more meaningful, like \variant.

We recommend that you create a series of such aliases and use them instead of the
names chosen here; all you have to do is put commands of this form at the start of your

file:H

\newcommandx{\variant}[2] [1,usedefault]{\Afootnote [#1]{#2}}
\newcommandx{\explanatory}[2] [1,usedefault] {\Bfootnote [#1]{#2}}
\newcommand{\trivial}[1]{\Aendnote{#1}}
\newcommandx{\testimonia} [2] [1,usedefault]{\Cfootnote [#1]{#2}}

6.3 Disambiguation of identical words in the apparatus

Sometimes, the same word occurs twice (or more) in the same line. reledmac provides
tools to disambiguate references in the critical notes. The lemma will be followed by a
reference number if a given word occurs more that once in the same line.

6.3.1 Basic use

To use this tool, you have to mark every occurrence of the potentially ambiguous term
with the \sameword command:

Lupus \sameword{aut} canis \edtext{\sameword{aut}}{\Afootnote{et}} felix

In this example, aut will be followed, in the critical note, by the exponent 2 if it is
printed in the same line as the first aut, but it will not if it is printed in a different line.
The number is printed only after the second run.

15We use \newcommand and \newcommandx instead of classical \1et command because the edtabular en-
vironments have to modify the notes definition, and we need to use the newest definition of notes. Read the
handbook of xargs to know more about \newcommandx.

28 6 Apparatus commands

6.3.2 Notes about input encoding with UTF-8 processor

If you use UTF-8 processor, like XgifIEX or LuaSIEX, there should not be any glitches.
However, pay attention to how characters are encoded. Similar-looking characters may
be represented differently in unicode numbering.

For instance, in Greek, “¢” has two possible unicode numbers:

. GREEK SMALL LETTER ALPHA (U+03B1) + COMBINING GREEK YPOGE-
GRAMMENI (U+0345)

« GREEK SMALL LETTER ALPHA WITH YPOGEGRAMMENI (U+1FB3)

Which unicode number you use depends, many times, on your keyboard configura-
tion (the computer-input system).

Inside reledmac, the \sameword command considers these two unicodes (code po-
sitions) as different characters. If you use only one unicode number consistently, the
distinction will probably make no difference to how your text looks, but \sameword
will process the text inaccurately, based on the unicode numbers. To prevent this, do
the following:

+ If you use XgETEX, add this line in your preamble: \XeTeXinputnormalization 1.

« If you use LuaBIgX, use the uninormalize package of Michal Hoftich! with the
buffer option set to true.

With these tools, X4IEX / LuaTeX will dynamicaly normalize unicode input when
reading the file. Consequently, you will have no problems with the \sameword com-
mand.

6.3.3 Use with \1lemma command

If you use the \lemma command, reledmac cannot know to which occurence of
\sameword in the first argument of \edtext a word marked with \sameword in \1emma
should refer.

For example in the following example:

some thing
\edtext{\sameword{sw}
and other \sameword{sw}
and again \sameword{sw}
it is all}%
{\lemma{\sameword{sw} \ldots all}\Afootnote{critical notel}}.%

reledmac cannot know if the “sw” in \lemma refers to the word after “thing”, after
“other”, or after “again”.

Consequently, you must tell reledmac to which instance of \sameword you are
referring in the first argument of \edtext:

https://github.com/michal-h21/uninormalize.

https://github.com/michal-h21/uninormalize

6.3 Disambiguation of identical words in the apparatus 29

« In the content of \lemma, use \sameword with no optional argument.

« In the first argument of \edtext, use \sameword with the optional argument
[(X)]. (X) is the depth of the \edtext where the \lemma is used. So if the
\lemma is called in a \edtext inside another \edtext, (X) is equal to 2. If the
\lemma is called in a \edtext “of first level”, (X) is equal to 1. If the lemma is
called in both 1 and 2 \edtext depth, (X) is 1, 2. If that word is referenced in the
lemma of every \edtext depth, (X) can also be set to inlemma.

Note that only words that are actually referenced in a \lemma need the optional ar-
gument. Therefore, the first \sameword in the example above should have “1” as its
optional argument, to be referenced correctly in the lemma.

Note also that the (X) does not refer to the level where the \sameword occurs, but
to the level of the \1emma that refers to that \sameword. For example:

\edtext{some \edtext{\sameword[1]{word}}{\Afootnote{om. M}}
and other \sameword{word}
and again a \sameword{word}
it is alll}Y%
}\lemma{some \sameword{word} \ldots all}\Afootnote{critical note}}.%

Here the \sameword occurs in an \edtext oflevel 2, but since it is referenced by \1emma
on level 1, it has “1” in the optional argument.

In the following example figure, each framed box represents an \edtext level. Each
number is an occurrence of \sameword. After a framed box, the text in superscript
represents the content of \lemma for that \edtext level. The text in subscript at the
right of a number represents the content of the optional argument of \sameword.

linlemma 32 -3 4 51 o

The \sameword number 3 is called in a \1emma related to an \edtext of level 2. It
must be marked by “2”.

The \sameword number 5 is called in a \1emma related to \edtext of level 1. It must
be marked by “1”.

The \sameword number 1 is called in two \lemmas: one related to a \edtext of
level 1, the other related to \edtext of level 2. It must be marked by “1,2”. However, as
\lemma is called only in level 1 and 2, “1,2” could replaced by “inlemma”.

The \sameword number 2 is in the first argument of a \edtext of level 3, but it has
no \lemma-command, so there is no need to mark it.

Here, the corresponding code:

\showwordrank

30 6 Apparatus commands

\edtext{/
\edtext{V,
\sameword[inlemma] {A} (1)
\edtext{Y
\sameword{A} (2)
Y
{%
\Afootnote{level~3}%
Y
\sameword [2]{A} (3)
1Y
o 1 A(1) A@2) AB) A@)AG)
\lemma{¥% —_—
\sameword{A}Y, Al A%] level 1
\ldots’ Al.A3] level 2
;;ameword{A}% A2 (2)] level 3
\Afootnote{level~2}/
Y
\sameword{A} (4)
\sameword[1]{A} (5)
jyA
{%
\lemma{\sameword{A}\1ldots\sameword{A}}’,
\Afootnote{level~1}},
}

6.3.4 Customizing

You can redefine the \showwordrank macro to change the way the number is printed.
The default value is

\newcommand{\showwordrank} [2] {%
#1#2J
}

6.4 Apparatus of Manuscripts

The critical notes mostly refer to textual variants between manuscripts which contain
the text to be edited. It may so happen that the manuscripts only contain parts of the text.
Depending on one’s wishes, reledmac can generate lists of relevant manuscripts for any
delimited portion of text. Such lists are referred to as “apparatuses of manuscripts”.

To produce an apparatus of manuscripts with reledmac, you have to insert specific
commands that are used to mark the sections for which only part of the manuscripts
are relevant. These commands will be processed, and after the second TgX run, cor-
responding apparatuses of manuscripts will be inserted in the first (viz. ’A’ series) level
of footnotes.

\msdata

\stopmsdata

6.4 Apparatus of Manuscripts 31

As the insertion of this apparatus can change the page breaks, you may have to run
TEX two or more times. We strongly recommend to use tools like latexmk to do that.

6.4.1 Marking sections of text

\msdata{(text)} must be inserted at the point where a section for which only part of
the manuscripts are relevant starts. (fext) can be any arbitrary text, viz. a list of the
manuscripts that are used for the section that starts. The command must be attached
right at the point where the section starts, with no space, like so:

\msdata{ABC}Lorem ipsum

Which means that the section of text starting by “Lorem ipsum” is witnessed by manu-
scripts A, B and C.

\stopmsdata must be inserted at the point where the section of text previously
marked by \msdata ends. The command must be attached right to the end of the sec-
tion, with no space. As \stopmsdata is a BKIEX argumentless macro, it will gobble the
following space. To keep that space, you have to either append a backslash followed by
a space or {} to \stopmsdata, like so:

\msdata{ABC}Lorem ipsum dolor

[.]
amet\stopmsdata{} \msdata{ABCD}sic transit [..]

Which means that the part of text containing “Lorem ipsum dolor ... amet” is witnessed
by manuscripts A, B and C, while the part of text starting by “sic transit” is witnessed
by manuscripts A, B, C and D.

\stopmsdata is also automatically inserted by \msdata.

Note that in most cases, any \stopmsdata is followed by \msdata. However, as
these two command are usually separated by a space, it may happen that a line break
be automatically inserted between them. This is why it is advised to always insert
\stopmsdata, even if \msdata inserts it in case it is forgotten.

6.4.2 Layout of the apparatus of manuscripts

On every page, the apparatus of manuscripts marks the corresponding section with
starting and ending line numbers. However, the following rules will be applied:

« If the section does not start on the current page, the starting line number will be
the line number of the first line on the page.

« If the section does not stop on the current page, the ending line number will be
the line number of the last line on the page.

« If the section neither starts nor ends on the current page, no line number will be
printed. The same is true in case both \msdata is called at the very beginning of
the page and \endmsdata is called at the very end of the page.

32 6 Apparatus commands

6.4.3 Settings

As the apparatus of manuscripts technically consists of first-level critical notes CA’ se-
ries), any setting available for critical notes can be applied (ff p. B3). However, the fol-
lowing additional commands are available.

\setmsdataseries The series used by default for the apparatus of manuscripts is series A. However, you
can change it with \setmsdataseries{(series)}.
\setmsdatalabel As the apparatus of manuscripts consists of regular critical footnotes, a lemma is as-

sociated to them. By default, itis “Ms””. You can change it using \setmsdatalabel{(ixt)}.

6.5 Familiar notes
6.5.1 Basic use

\footnoteA As well as the standard BIgX footnotes generated via \footnote, the package also pro-

\footnoteB vides five series of additional footnotes called \footnoteA through \footnoteE. These

\footnoteC have the familiar marker in the text, and the marked text at the foot of the page can be

\footnoteD formated using any of the styles described for the critical footnotes. Note that the ‘reg-

\footnoteE ular’ footnotes have the series letter at the end of the macro name whereas the critical
footnotes have the series letter at the start of the name.

6.5.2 Customizing mark

\thefootnoteA Each series uses a set of macros for styling the marks. The mark numbering scheme of

\bodyfootmarkA series A is defined by the \thefootnoteA macro; the default is:

\footfootmarkA \renewcommand*{\thefootnoteA}{\arabic{footnoteAl}}
The appearance of the mark in the text is controlled by \bodyfootmarkA which is de-
fined as:
\newcommand*{\bodyfootmarkA}{%

\hbox{\textsuperscript{\normalfont\@nameuse{@thefnmarkA}}}}
The command \footfootmarkA controls the appearance of the mark at the start of the
footnote text. It is defined as:
\newcommand*{\footfootmarkA}{\textsuperscript{\@nameuse{@thefnmarkA}}}
There are similar command triples for the other series.

6.5.3 Separator for multiple footnotes

The footmisc package [Fai03] by Robin Fairbairns has an option whereby sequential
footnote marks in the text can be separated by commas®* like so. As a convenience
reledmac provides this automatically.

\multfootsep \multfootsep is used as the separator between footnote markers. Its default defi-
nition is:
\providecommand*{\multfootsep}{\normalfont,}
and can be changed if necessary.

\seriesatbegin
\seriesatend

\fnpos
\mpfnpos

6.6 Changing series 33

6.6 Changing series
6.6.1 Create a new series

If you need more than five series of critical footnotes, you can create extra series, using
\newseries command. For example, to create F and G series \newseries{G,H}.

6.6.2 Delete series

As the number of series which are defined increases, reledmac gets slower. If you do
not need all of the six standard series (A-E), you can load the package with the series
option. For example if you need only series A and B, use:

\usepackage [series={A,B}]{eledmac}

6.6.3 Series order

The default series order is the one called with the series option of the package, or, if
this option is not used, A, B, C, D, E. Series order determines footnotes order.

However in some specific cases, you need to change the series order at some point
inside the document. You can use \seriesatbegin{(s)} to pull up a given series (s)
to the beginning, or \seriesatend{(s)} to push it down to the end.

6.7 Position of critical and familiar footnotes

There is a historical incoherence in (r) (e)ledmac. The familiar footnotes are before
the critical footnotes in a normal page, but after in a minipage or in a ledgroup. However,
it is possible to change the relative position of both types of footnotes. If you want to
have familiar footnotes after critical footnotes in a normal page, use:

\fnpos{critical-familiar}

Or, if you want a minipage or ledgroup to have critical footnotes after familiar footnotes,
use:

\mpfnpos{familiar-critical}

7 Critical apparatus appearance

Some commands can be used to change the display of the footnotes. All can have an
optional argument [(s)], which is the letter of the series — or a list of letters separated
by comma — depending on which option is applied. If the optional argument is omitted
or empty, the setting will apply to the entire series.

When a length, noted (I), is used, it can be stretchable: a plus b minus c. The
final length m is calculated by EIEX to have: a —c < m < a+b. If you use some relative
unitﬂ, it will be relative to font size of the footnote, except for commands concerning

7Like em which is the width of an ‘m’ in a given font.

\Xarrangement
\arrangementX

34 7 Critical apparatus appearance

the place kept by the notes — including blank space.

Some commands are boolean, indicating when an option is enabled. If you want
to disable the option after enabling it, you must use [false] as the second optional
argument. For example:

+ \XX[A] [false] to disable the XX’ option for the series A.
« \XX[] [false] to disable it for all series.
There is also name convention:
» Names prefixed by X are for setting of critical footnotes.
» Names prefixed by Xend are for setting of critical endnotes.

» Names suffixed by X are for setting of familiar footnotes.

7.1 Notes arrangement in a series

By default, all footnotes are formatted as a series of separate paragraphs in one column.
Three other formats are also available for notes.

Use \Xarrangement [(s)]{(a)} to change the arrangement of the (s) series of crit-
ical footnotes and \arrangementX [(s)]1{(a)} to change the arrangement of the (s) se-
ries of familiar footnotes.

The value of (a) can be one of the following

+ paragraph formats all of the footnotes of a series as a single paragraph; if you
use this arrangement, you are strongly encouraged to read p. bd.

+ twocol formats them as separate paragraphs, but in two columns;
« threecol, in three columns.
+ normal, restore normal arrangement.

You should set up the page layout parameters, and in particular the \baselineskip
of the footnotes, before you call this macro because its action depends on these; too much
or too little space will be allotted for the notes on the page if these macros use the wrong
values.

Note that you cannot use paragraphs (e.g. blank lines or \par) or line breaks (\break
or \linebreak or \newline etc.) inside of notes, when they are set to paragraph
arrangement!

The notes arrangement must be called after having defined the document geometry
setting. If you must change geometry setting inside your document, do not forget to call
note arrangement again.

\hsize has been set for the pages that use this series of notes; otherwise TgX will
try to put too many or too few of these notes on each page. If you need to change
the \hsize within the document, call the arrangement macro again afterwards to take
account of the new value.

\Xnumberonlyfirstinline

1umberonlyfirstintwolines

\Xsymlinenum

{endnumberonlyfirstinline
1umberonlyfirstintwolines
\Xendsymlinenum

\Xbeforenumber

\Xlinerangeseparator
\Xendlinerangeseparator

\Xtwolines
\Xmorethantwolines

7.2 Control line number printing 35

7.2 Control line number printing
7.2.1 Print line number only at first time

By default, the line number is printed in every note. If you want to print it only the
first time for a given line number (i.e., one time for line 1, one time for line 2, etc.), you
can use \Xnumberonlyfirstinline[(s)].

Suppose you have a lemma on line 2 and a lemma between line 2 and line 3.
With \Xnumberonlyfirstinline, the second lemma is considered to be on the same
line as the first lemma. But if you use both \Xnumberonlyfirstinline[(s)] and
\Xnumberonlyfirstintwolines[(s)], a distinction is made.

For setting a particular symbol in place of the line number, you can use \Xsymlinenum [(s)]{(symbol)}
in combination with \Xnumberonlyfirstinline[(s)]. From the second lemma of the
same line, the symbol will be used instead of the line number. Note that any command
called in (symbol) must be robust. Use \robustify to robustify a non-robust command.

For endnotes, \Xendnumberonlyfirstinline; \Xendnumberonlyfirstintwolines
and \Xendsymlinenum are the equivalents of
\Xnumberonlyfirstinline; \Xnumberonlyfirstintwolines and \Xsymlinenum.

7.2.2 Arbitrary text before line number

\Xbeforenumber [(s)]{(txt)} allow to insert (¢xt) before the line number, only when
the line number is printed, so taking into accout \Xnumberonlyfirstinline and sim-
ilar.

7.2.3 Separator for line range

By default, the separator between the begin line and the end line in a lines’ range is an en-

dash in a normal font (\textnormal{--}). You can change it for critical footnotes with
\Xlinerangeseparator [(s)]{(text)}, and with \Xendlinerangeseparator [(s)]{(text)}
for critical endnotes.

7.2.4 Abbreviate line range

If a lemma is printed on two subsequent lines, reledmac will print the first and the last
line numbers. Instead of this, it is also possible to print an abbreviation which stands
for “line 1 and subsequent line(s)”.

To achieve this, use \Xtwolines [(s)]{(text)} and \Xmorethantwolines [(s)]{(text)}.
The (text) argument of \Xtwolines will be printed if the lemma is on two lines, and
the (text) argument of \Xmorethantwolines will be printed if the lemma is on three
or more lines. For example:

\Xtwolines{sq.}
\Xmorethantwolines{sqq.?}

will print “1sq” for a lemma which falls on lines 1-2 and “1sqq.” for a lemma which falls
on lines 1-4.

\Xtwolinesonlyinsamepage

\Xendtwolines
\Xendmorethantwolines
\Xendtwolinesbutnotmore

\Xnonumber

\Xendnonumber

\Xpstart

\Xpstarteverytime

\Xonlypstart

\Xstanza

\Xstanzaseparator

36 7 Critical apparatus appearance

If you use \Xtwolines without setting \Xmorethantwolines, the (text) argument
of \Xtwolines will be used for lemmas which fall on three or more lines.

However, if you want to use a short form (when the lemma overlaps two lines, but
not more than two), use \Xtwolinesbutnotmore [(series)].

When you use lineation by page, the final page number, if different from the ini-
tial page number, will not be printed, because the final page number is included in the
\Xendtwolines symbol.

However, you can force print the final page number with
\Xtwolinesonlyinsamepage [(series)].

You can disable \Xtwolines and related for a specific note by using the ‘[fulllines]*
argument in the note macro cf. p.B4.

For endnotes, use these macros: \Xendtwolines; \Xendmorethantwolines;
\Xendtwolinesbutnotmore;

\Xendtwolinesonlyinsamepage instead of \Xtwolines; \Xmorethantwolines;
\Xtwolinesbutnotmore; \Xtwolinesonlyinsamepage.

7.2.5 Disable line number

You can use \Xnonumber [(s)] if you do not want to have the line number in a footnote.
\Xendnonumber [(s)] is the same for endnote.

7.2.6 Printing pstart number

You can use \Xpstart [(s)] if you want to print the pstart number in the footnote,
before the line and subline number. Note that when you change the lineation system,
the option is automatically switched :

« If you use lineation by pstart, the option is enabled.
« If you use lineation by section or by page, the option is disabled.

By default, the pstart number is printed only in the part of text where you have
called \numberpstarttrue. We don’t know why you would like to print the pstart
number in the notes and not in the main text. However, if you want to do it, you can call
\Xpstarteverytime[(s)]. In this case, the pstart number will be printed every time
in footnote.

In combination with \Xpstart, you can use \Xonlypstart [(s)] if you want to
print only the pstart number in the footnote, and not the line and subline number.

7.2.7 Printing stanza number

You can use \Xstanza[(s)] if you want to print the stanza number in the footnote,
before the line and subline number.
Of course the stanza number is printed only when you use \numberstanza

When using \Xstanza, you can use \Xstanzaseparator [(s)]{(text)} to print
(text) after the stanza number. Default value is empty.

7.2 Control line number printing 37

7.2.8 Separator between line and subline numbers

\Xsublinesep \Xsublinesep[(s)]{(txt)} changes the separator between line and subline in foot-
notes.
Employed without optional argument, it also change separator in side num-
ber.
\Xendsublinesep \Xendsublinesep [(s)]{(¢xt)} does the same thing for endnotes.
However, it does not change anything for the separator in side number. Use
\Xsublinesep without optional argument or \Xsublinesepside{(txt)} to do it.
The default value is \textnormal{.}.

7.2.9 Space around number

\Xbeforenumber With \Xbeforenumber [(s)]{(l)}, you can add some space before the line number in a
footnote. If the line number is not printed, the space is not either. The default value is

0 pt.
\Xafternumber With \Xafternumber [(s)]1{(l)} you can add some space after the line number in a
footnote. If the line number is not printed, the space is not either. The default value is
0.5 em.
\Xendbeforenumber \Xendbeforenumber and \Xendafterenumber are the equivalents of \Xbeforenumber
Xendafterenumber and \afterenumber for endnotes.
\Xnonbreakableafternumber By default, the space defined by \Xaf ternumber is breakable. With \Xnonbreakableafternumber [(s)]

it becomes nonbreakable.

7.2.10 Space around line symbol

\Xbeforesymlinenum With \Xbeforesymlinenum[(s)]{(l)} you can add some space before the line symbol
in a footnote. The default value is value set by \Xbeforenumber.

\Xaftersymlinenum With \Xaftersymlinenum[(s)]{({l)} you can add some space after the line symbol
in a footnote. The default value is value set by \Xafternumber.
\Xendbeforesymlinenum \Xendbeforesymlinenum and \Xendaftersymlinenum are the equivalents of

\Xendaftersymlinenum \Xbeforesymlinenum and \Xaftersymlinenum for the endnotes.

7.2.11 Space in place of number

\Xinplaceofnumber Ifnonumber or symbolic line number is printed, you can add a space, with \Xinplaceofnumber [{s)]1{(])}.
The default value is 1 em.
\Xendinplaceofnumber \Xendinplaceofnumber [(s)]1{(l)} is the same, for critical endnotes.

7.2.12 Boxing line number and line symbol

\Xboxlinenum It could be useful to put the line number inside a fixed box: the content of the note
will be printed after this box. You can use \Xboxlinenum[(s)1{(l)} to do that. To
subsequently disable this feature, use \Xbox1linenum with length equal to 0 pt. One use
of this feature is to print line number in a column, and the note in an other column:

\Xhangindent{lem}
\Xafternumber{Oem}

\Xboxsymlinenum
\Xendboxsymlinenum

\Xboxlinenumalign

\Xendboxlinenum
\Xendboxlinenumalign
\Xendboxstartlinenumalign
\Xendboxendlinenumalign

\Xendbeforepagenumber

\Xendafterpagenumber
\Xendlineprefixsingle

\Xendlineprefixmore

38 7 Critical apparatus appearance

\Xboxlinenum{lem}

\Xboxsymlinenum[(s)]{(l)} is the same as \Xbox1linenum but for the line number
symbol.

\Xendboxsymlinenum[(s)]{(l)} is the same as \Xboxsymlinenum but for end-
notes.

If you put line number in box, it will be aligned left inside the box. However, you can
change it using \Xboxlinenumalign [(s)]{(text)} where (text) can be the following:

L to align left (default value);
R to align right;
C to center.

When using \Xboxlinenum, reledmac put all the line number description in the
same box. That is, the same box will contain: the start line number, the dash, and either
the end line number or the range symbol (like ££ .). However, it is possible to box them
in two different boxes.

« \Xboxstartlinenum[(s)]{(l)} will box the start line number in a box of length
(). The content will be put at the right of the box.

+ \Xboxendlinenum[(s)]{(l)} will box the dash plus the end line number or the
range symbol in a box of length (I). The content will be put at the left of the box.

With these two commands, it is possible to horizontaly align the dash of line number
when using critical notes, to obtain something like:

1
12-23
24ff.

\Xendboxlinenum[(s)]1{(])}, \Xendboxlinenumalign [(s)]{(text)}, \Xendboxstartlinenum[(s)]{(
\Xendboxendlinenum[(s)]{(l)} are the same as, respectively, \Xboxlinenum and
\Xboxlinenumalign, \Xboxstartlinenum, \Xboxendlinenum except in endnotes.

7.3 For endnotes

\Xendbeforepagenumber [(s)]{(text)} defines the text before the page number in end-
notes. Default value is p. (“p” followed by a dot).
\Xendafterpagenumber [(s)]{(text)} defines the text after the page number in
endnotes. Default valueis) (open parenthesis followed by a single space). \Xendlineprefixsingle [(s)]
defines the text before the line number in endnotes, when there is only one line. Default
value is empty. \Xendlineprefixmore[(s)]{(text)} defines the text before the line
number in endnotes, when there is more than one line. Default value is empty. If you
don’t define it, use the value defined by \Xendlineprefixsingle.

\Xendbhooklinenumber

\Xendahooklinenumber

\Xendbhookinplaceofnumber

\Xendahookinplaceofnumber

\Xlemmaseparator

\Xbeforelemmaseparator

\Xafterlemmaseparator

\Xnolemmaseparator

\Xinplaceoflemmaseparator

\Xendlemmaseparator

\Xendbeforelemmaseparator

\Xendafterlemmaseparator

7.4 Arbitrary code around line number 39

7.4 Arbitrary code around line number

\Xendbhooklinenumber [(s)]1{(code)} is used to execute code before line number in
endnotes. The code is executed before the \Xendbeforelinenumber space and before
the \Xendnotenumfont font setting.

\Xendahooklinenumber [(s)]1{(code)} is used to execute code after line number in
endnotes. The code is executed after the \Xendafternumber space.

\Xendbhookinplaceofnumber [(s)]{(code)} is used to execute code before space
or symbol which replace line number in endnotes. The code is executed before the
\Xendbeforesymlinenum space and before the \Xendnotenumfont font setting.

\Xendahookinplaceofnumber [(s)]{(code)} is used to execute code after space
or symbol which replace line number in endnotes. The code is executed after the
\Xendaftersymlinenum space.

7.5 Separator between the lemma and the note
7.5.1 For footnotes

By default, in a footnote, the separator between the lemma and the note is a right bracket
(\rbracket)d. You can use \Xlemmaseparator [(s)]{(Xlemmaseparator)} to change
it. The optional argument can be used to specify the series in which it is used. Note that
there is a non-breakable space between the lemma and the separator, but a breakable
space between the separator and the following text.

Using \Xbeforelemmaseparator [{s)]1{(l)} you can add some space between
lemma and separator. If your lemma separator is empty, this space won’t be printed.
The default value is 0 em.

Using \Xafterlemmaseparator [(s)]{(l)} you can add some space between sep-
arator and note. If your lemma separator is empty, this space will not be printed. The
default value is 0.5 em.

You can suppress the lemma separator, using \Xnolemmaseparator [(s)], which is
simply a alias of \Xlemmaseparator [(s)]{}.

With \Xinplaceoflemmaseparator [(s)]{(l)} you can add a space if no lemma
separator is printed. The default value is 1 em.

7.5.2 For endnotes

By default, there is no separator inside endnotes between the lemma and the content of
the note. You can use \Xendlemmaseparator [(s)] {(Xendlemmaseparator)} to change
this. The optional argument can be used to specify the series in which it is used. A
common value of (Xendlemmaseparator) is \rbracket.

Note that there is a non-breakable space between the lemma and the separator, but
a breakable space between the separator and the following text.

Using \Xendbeforelemmaseparator [(s)]1{(l)} you can add some space between
the lemma and the separator. If your lemma separator is empty, this space won’t be
printed. The default value is 0 em.

Using \Xendafterlemmaseparator [(s)]1{(l)} you can add some space between

8For polyglossia, when the lemma is RTL, the bracket automatically switches to a left bracket.

\Xendinplaceoflemmaseparator

\Xnotenumfont

\Xendnotenumfont

\notenumfontX

\Xlemmadisablefontselection

\Xendlemmadisablefontselection

\Xlemmafont
\Xendlemmafont

\Xnotefontsize

\notefontsizeX

\Xendnotefontsize

40 7 Critical apparatus appearance

the separator and the content of the note. If your lemma separator is empty, this space
won’t be printed. The default value is 0.5 em.

With \Xendinplaceoflemmaseparator [(s)]{(l)} you can add some space if you
chose to remove the lemma separator. The default value is 0.5 em.

7.6 Font style
7.6.1 For line number

\Xnotenumfont [(s)]{{command)} is used to change the font style for line numbers
in critical footnotes ; (command) must be one (or more) switching command, like
\bfseries.

\Xendnotenumfont [(s)]{(command)} is used to change the font style for line
numbers in critical footnotes. (command) must be one (or more) switching command,
like \bfseries.

\notenumfontX [(s)]{{command)} is used to change the font style for note num-
bers in familiar footnotes. (command) must be one (or more) switching command, like
\bfseries.

7.6.2 For the lemma

By default, font of the lemma in footnote is the same as font of the lemma in the main
text. For example, if the lemma is in italic in the main text, it is also in italic in note.
The \Xlemmadisablefontselection[(s)] command allows to disable it for a specific
series.

By default, font of the lemma in endnote is the same as font of the lemma in the main
text. For example, if the lemma is in italic in the main text, it is also in italic in note. The
command allows \Xendlemmadisablefontselection[(s)] to disable it for a specific
series.

Use \Xlemmafont [(s)]1{(cmd)} to apply a TgX font command to the lemma. For
example, to have boldface lemma:

\Xlemmafont{\bfseries}

\Xendlemmafont [(s)]{(cmd)} is the same for endnotes.

7.6.3 For all notes

\Xnotefontsize [(s)]{(command)} is used to define the font size of critical footnotes
of the series. The default value is \footnotesize. The (command) must not be a size
in pt, but a standard BIEX size, like \small.

\notefontsizeX [(s)]{(command)} is used to define the font size of familiar foot-
notes of the series. The default value is \footnotesize. The (command) must not be
a size in pt, but a standard ETEX size, like \small.

\Xendnotefontsize [{s)]1{(l)} is used to define the font size of end critical foot-
notes of the series. The default value is \footnotesize. The (command) must not be
a size in pt, but a standard ETgX size, like \small.

\Xwraplemma

\Xwrapendlemma

\Xwrapcontent

\Xendwrapcontent
\wrapcontentX

\Xparindent
\parindentX

\Xhangindent

\hangindentX

\Xendhangindent

\Xbhooknote
\bhooknoteX
\Xendbhooknote

7.7 Wrapping notes 41

7.7 Wrapping notes
7.7.1 Wrapping lemmas

\Xwraplemma [(s)]{(cmd)} is used to wrap, in the footnote, the lemma in a KIX com-
mand. For example, with the bidi package, to ensure having a lemma written right to
left, use \Xwraplemma{\RL}.

\Xendwraplemma [(s)]{{cmd)} is the same for endnotes.

7.7.2 Wrapping contents

\Xwrapcontent [(s)]{({cmd)} is used to wrap the footnote contents — excluding the
lemma — in a BlEXcommand.

For example, if the language of your note is not the same as the language of
the lemma, use \Xwrapcontent{\foreignlanguage{(language)}} (with babel) or
\Xwrapcontent{\text(language)} (for babel).

\Xendwrapcontent [(s)]1{(cmd)} is the same for endnotes.

\wrapcontentX[(s)]{(cmd)} is the same for critical footnotes.

7.8 Indent of notes content

By default, reledmac does not add indentation before the paragraphs inside critical
footnotes. Use \Xparindent [{s)] to enable indentation.

By default, reledmac does not add indentation before the paragraphs inside familiar
footnotes. Use \parindentX[(s)] to enable indentation.

For critical notes NOT paragraphed you can define an indent with \Xhangindent [(s)]{(])},
which will be applied in the second line of notes. It can help to make distinction between
a new note and a break in a note. The default value is 0 pt.

For familiar notes NOT paragraphed you can define an indentation with \hangindentX [{s)]1{(l)},
which will be applied in the second line of notes. It can help to make a distinction be-
tween a new note and a break in a note.

For critical endnotes NOT paragraphed you can define an indentation with \Xendhangindent [(s)]{(l)},
which will be applied in the second line of notes. It can help to make a distinction be-
tween a new note and a break in a note.

7.9 Arbitrary code at the beginning of notes

The three next commands add arbitrary code at the beginning of notes. As the name’s
space is local to the notes, you can use it to redefine some style inside the notes. For
example, if you don’t want the pstart number to be in bold, use :

\Xbhooknote{\renewcommand{\thepstart}{\arabic{pstart}.}}

\Xbhooknote [(s)]1{(code)} is to be used at the beginning of the critical footnotes.
\bhooknoteX[(s)]{(code)} is to be used at the beginning of the familiar footnotes.
\Xendbhooknote [(s)]{(code)} is to be used at the beginning of the endnotes.

\Xbeforeinserting
beforeinsertingX

\Xcolalign
\colalignX

\Xhsizetwocol
\Xhsizethreecol
\hsizetwocolX

\hsizethreecolX

42 7 Critical apparatus appearance

7.10 Arbitrary code before inserting note

\Xbeforeinsertingl[(s)]{(code)} and \beforeinsertingX[(s)]1{(code)} are very
technical commands.

They allow one to add any arbitrary code just before the footnotes are added in the
list of footnotes. The main use is to insert text direction code. For example, if you
edit right-to-left text with bidi, but want your critical footnote be left-to-right, use
\Xbeforeinserting\LTR. You should also use \Xwraplemma to ensure your lemmas
are right-to-left in a left-to-right paragraph (7.7.1 p. [¢1).

Note that the changes are local to the footnote.

7.11 Options for footnotes in columns

7.11.1 Alignment

By default, text in footnotes of two or three columns are flush left and without hy-
phenation. However, you can change this with \Xcolalign[(s)]{{code)} for critical
footnotes, and \colalignX [{s)]{(code)} for familiar footnotes.

<code> must be one of the following command:

\justifying to have text justified, as usual with BIEX. You can also let <code> empty.

\raggedright to have text left aligned, but without hyphenation. That is the default
reledmac setting.

\RaggedRight to have text left aligned with hyphenation (requires ragged?2e).
\raggedleft to have text right aligned, but without hyphenation.
\RaggedLeft to have text right aligned with hyphenation (requires ragged?2e).
\centering to have text centered, but without hyphenation.

\Centering to have text centered with hyphenation (requires ragged?2e).

7.11.2 Size of the columns

For the following four macros, be careful that the columns are made from right to left.
\Xhsizetwocol [(s)]{(l)} is used to change width of a column when critical notes
are displaying in two columns. Default value is .45 \hsize.
\Xhsizethreecol[{s)]1{(l)} is used to change width of a column when critical
notes are displaying in three columns. Default value is .3 \hsize.
\hsizetwocolX[(s)]1{(l)} is used to change width of a column when familiar notes
are displaying in two columns. Default value is .45 \hsize.
\hsizethreecolX [(s)]1{(l)} is used to change width of a column when familiar
notes are displaying in three columns. Default value is .3 \hsize.

7.12 Options for paragraphed footnotes and notes grouped by line 43

7.12 Options for paragraphed footnotes and notes grouped by
line
7.12.1 Mark separation of notes

\Xafternote You can add some horizontal space after a note by using \Xafternote [{s)]1{(l)} (for
\afternoteX critical footnotes) or \afternoteX [(s)]1{(l)} (for familiar footnotes). The default value
is lem plus.4em minus.4em.
\Xparafootsep For paragraphed footnotes (see below), you can choose the separator between each
\parafootsepX note by using \Xparafootsep [(s)]{(text)} for critical notes and \parafootsepX for
familiar notes. A common separator is the double pipe (||), which you can set by using
\Xparafootsep{\parallel}.
Note that if the symbol defined by \Xsymlinenum must be used at the beginning of
a note, the \Xparafootsep / \parafootsepX is not used before this note.

7.12.2 Ragged text

\Xragged Text in paragraphed critical notes is justified, but you can use \Xragged [(s)]1{L} if you
want it to be ragged left (i.e., right justified), or \Xragged [(s)]1{R} if you want it to be
ragged right (i.e., left justified).

\raggedX Text in paragraphed footnotes is justified, but you can use \raggedX [(s)1{L} if you
want it to be ragged left, or \raggedX [(s)]1{R} if you want it to be ragged right.

7.13 Options for block of notes
7.13.1 Grouping notes by line

Xgroupbyline If you do not use \Xarrangement{paragraph}, you may want to group all the crit-
ical footnotes related to the same line in the same paragraph. In this case, use
\Xgroupbyline [(series)].

In many cases, you might like to use it in combination with \Xnumberonlyfirstinline
[21p.B3).
Note that the \Xafternote and \Xparafootsep settings are used to determine
sroupbylineseparetwolines space and content between footnotes (7.14 p. 3). Suppose you have two notes on line 1
which overlap lines 1 and 2. This last note will be printed, if you use \Xgroupbyline
in the same group as the previous one. In the case you want that note to be distinct, you
must use both \Xgroupbyline and \Xgroupbylineseparetwolines [(s)].
In many cases, you might like to use it in combination with \Xnumberonlyfirstintwolines

[#.2.1p.B3)
7.13.2 Text before notes

\Xtxtbeforenotes You can add text before critical notes with \Xtxtbeforenotes[(s)]{(text)}.

7.13.3 Code before notes

\Xbhookgroup While \Xtxtbeforenotes is for typesetting code before notes, \Xbhookgroup and
\bhookgroupX

44 7 Critical apparatus appearance

\bhookgroupX (respectively for critical and familiar) are for executing code before a
groups of notes, between the rules and the printing of the notes.

7.13.4 Spacing

\Xbeforenotes Youcan change the vertical space before the rule of the critical notes with \Xbeforenotes [{s)1{{l)}.
The default value is 1.2em plus .6em minus .6em.
Be careful, the standard EIEX footnote rule used by reledmac decreases by
3pt. This 3pt decrease is not changed by this command.
\beforenotesX You can change the vertical space printed before the rule of the familiar notes with
\beforenotesX [(s)1{(l)}. The default value is 1.2em plus .6em minus .6em.
Be careful, the standard EIEX footnote rule, which is used by reledmac, de-
creases 3pt. These 3pt are not changed by this command.

\Xprenotes You can set the space before the first series of critical notes printed on each page and
set a different amount of space for each subsequent series on the page. You can do it
with \Xprenotes{(l)}. The default value is Opt. You can disable this feature by setting
the length to Opt.

\prenotesX You can set the space before the first printed (in a page) series of familiar notes to be
different from the space before other series. The default value is Opt. You can do this
with \prenotesX{(l)}. You can disable this feature by setting the length to Opt.

7.13.5 Rule

\Xafterrule You can change the vertical space printed after the rule of the critical notes with
\Xafterrule[(s)]{(l)}. The default value is Opt.
Be careful, the standard BIEX footnote rule, which is used by reledmac, adds
2.6pt. These 2.6pt are not changed by this command.
\afterruleX You can change the vertical space printed after the rule of the familiar notes with
\afterruleX [(s)]1{(])}. The default value is Opt.
Be careful, the standard ETgX footnote rule, which is used by reledmac, adds
2.6pt. These 2.6pt are not changed by this command.

7.13.6 Maximum height

\Xmaxhnotes By default, one series of critical notes can take up to 80% of \vsize, before being bro-
ken to the next page. If you want to change the size use \Xmaxhnotes[(s)]1{(])}.
Be careful : the length can’t be flexible, and is relative to the the current font.
For example, if you want the note to take, at most, 33% of the text height, do
\Xmaxhnotes{.33\textheight}.

\maxhnotesX \maxhnotesX [(s)]1{()} is the same as previous, but for familiar footnotes.

Note that in many cases, you should call these commands in the begin of the docu-

ment, because the \vsize in the preamble is not the same as \vsize after the preamble.
That why we recommend to you to add in your preamble

\AtBeginDocument{
\maxhnotesX{0.8\textheight}
\Xmaxhnotes{0.8\textheight}

7.14 Footnotes and the reledpar columns 45

Be careful with the two previous commands. Actually, for technical purposes, one
paragraphed note is considered as one block. Consequently, it cannot be broken between
two pages, even if you used these commands. The debug is in the todolist.

7.13.7 Width

\Xwidth \Xwidth[(s)]1{(])} sets the total width of critical footnotes. \widthX [{s)]{(l)} does
\widthX the same for familiar footnotes.
(I) can be a length expression, parsable with \dimexpr. For example:

\Xwidth{\columnwidth+\marginparsep+\ledrsnotewidth}
\widthX{\columnwidth+\marginparsep+\ledrsnotewidth}

Note that changes the with of the block of notes. If you want to change the width of
each column when typesetting notes in columns, use \Xhsizetwocol, \Xhsizethreecol,
\hsizetwocolX, \hsizethreecolX, see p.- B

7.14 Footnotes and the reledpar columns

{noteswidthliketwocolumns If you use reledpar \columns macro, you can call :

10teswidthliketwocolumnsX o .
« \Xnoteswidthliketwocolumns [(s)] to create critical notes with a two-column

size width.
« \noteswidthliketwocolumnsX [(s)] to create familiar notes with a two-column

size width.

7.15 Endnotes in one paragraph

\Xendparagraph By default, any new endnote starts a new paragraph. Use \Xendparagraph[(s)] to
have all end notes of one given series set in one paragraph.

\Xendafternote You can add some space after a endnote series by using \Xendafternote [{s)]1{(])}.
The default value is 1em plus.4em minus.4em.
\Xendsep You can choose the separator between each note by \Xendsep [(s)] {(text)}. A com-

mon separator is the double pipe (||), which you can set by using \Xendsep{\parallel}.

8 Fonts

One of the most important features of the appearance of the notes, and indeed of your
whole document, will be the fonts used. We will first describe the commands that give
you control over the use of fonts in the different structural elements of the document, es-
pecially within the notes, and then in subsequent sections specify how these commands
are used.

\numlabfont

\select@lemmafont

\stanza

\&

\stanzaindentbase

\setstanzaindents

46 9 Verse

For those who are setting up for a large job, here is a list of the complete set of
reledmac macros relating to fonts that are intended for manipulation by the user:
\endashchar, \fullstop, \numlabfont, and \rbracket.

Line numbers for the main text are usually printed in a smaller font in the margin.
The \numlabfont macro is provided as a standard name for that font: it is initially
defined as
\newcommand{\numlabfont}{\normalfont\scriptsize}

You might wish to use a different font if, for example, you preferred to have these line
numbers printed using old-style numerals.

We will briefly discuss \select@lemmafont here because it is important to know
about it now, although it is not one of the macros you would expect to change in the
course of a simple job. Hence it is ‘protected’ by having the @-sign in its name.

When you use the \edtext macro to mark a word in your text as a lemma, that word
will normally be printed again in your apparatus. If the word in the text happens to be
in a font such as italic or bold you would probably expect it to appear in the apparatus in
the same font. This becomes an absolute necessity if the font is actually a different script,
such as Arabic or Cyrillic. \select@lemmafont does the work of decoding reledmac’s
data about the fonts used to print the lemma in the main text and calling up those fonts
for printing the lemma in the note.

\select@lemmafont is a macro that takes one long argument—the cluster of line
numbers passed to the note commands. This cluster ends with a code indicating what
fonts were in use at the start of the lemma. \select@lemmafont selects the appropriate
font for the note using that font specifier.

reledmac uses \select@lemmafont in a standard footnote format macro called
\normalfootfmt. The footnote formats for each of the layers A to E are \1et equal to
\normalfootfmt. So all the layers of the footnotes are formatted in the same way.

9 Verse

9.1 Basic

Use \stanza at the start of a stanza. Each line in a stanza is ended by an ampersand (&),
and the stanza itself is ended by putting \& at the end of the last line.

9.2 Define stanza indents

Lines within a stanza may be indented. The indents are integer multiples of the length
\stanzaindentbase, whose default value is 20pt.

In order to use the stanza macros, one must set the indentation values. First the
value of \stanzaindentbase should be set, unless the default value 20pt is desired.
Every stanza line indentation is a multiple of this.

To specify these multiples one invokes, for example
\setstanzaindents{3,1,2,1,2}.

\stanzaindent
\stanzaindentx*

9.3 Repeating stanza indents 47

The numerical entries must be whole numbers, 0 or greater, separated by commas
without embedded spaces. The first entry gives the hanging indentation to be used if
the stanza line requires more than one print line.

If it is known that each stanza line will fit in one print line, then this first entry should
be 0; TgX does less work in this case, but no harm ensues if the hanging indentation is
not 0 but is never used.

If you want the hanging verse to be flush right, you can use \sethanginsymbol:
see p. p.4 p. k8.

Enumeration is by stanza lines, not by print lines. In the above example the lines are
indented one unit, two units, one unit, two units, with 3 units of hanging indentation in
case a stanza line is too long to fit on one print line.

9.3 Repeating stanza indents

Since version 0.13, if the indentation is repeated every n verses of the stanza, you can
define only the n first indentations, and indicate that they are repeated, defining the
value of the stanzaindentsrepetition counter at n. For example:

\setstanzaindents{5,1,0}
\setcounter{stanzaindentsrepetition}{2}

is like

\setstanzaindents{5,1,0,1,0,1,0,1,0,1,0}

Be careful: the feature is changed in eledmac 1.5.1. See p-B43.

If you don’t use the stanzaindentsrepetition counter, make sure you have at
least one more numerical entry in \setstanzavalues than the number of lines in the
stanza.

If you want to disable this feature again, just put the counter to 0:

\setcounter{stanzaindentsrepetition}{0}

The macros make no restriction on the number of lines in a stanza. Stanza indentation
values (and penalty values) obey TEgX’s grouping conventions, so if one stanza among
several has a different structure, its indentations (penalties) may be set within a group;
the prior values will be restored when the group ends.

9.4 Manual stanza indent

You can set the indent of some specific verse by calling \stanzaindent{(value)} at the
beginning of the verse, before any other character. In this case, the indent defined by
\setstanzaindents for this verse is skipped, and {(value)} is used instead.

If you use the mechanism of indent repetition, the next verse will be printed as it
should be even if the current verse would have its normal indent value. In other words,
using \stanzaindent in a verse does not shift the indent repetition.

\setstanzapenalties

\sethangingsymbol

48 9 Verse

However, if you want to shift the indent repetition, so the next verse has the indent
normally used for the current verse, use \stanzaindent* instead of \stanzaindent.

9.5 Stanza breaking

When the stanzas run over several pages, it is often desirable that page breaks should
arise between certain lines in the stanza, so a facility for including penalties after stanza
lines is provided. If you are satisfied with the page breaks, you need not set the penalty
values.

The command
\setstanzapenalties{1,5000,10100,5000,0}
results in a penalty of 5000 being placed after the first and third lines of the stanza, and
a penalty of —100 after the second.

The first entry “1” is a control value. If it is zero, then no penalties are passed on
to TgX, which is the default. Values between 0 and 10000 are penalty values; values
between 10001 and 20000 have 10000 subtracted and the result is given as a negative
penalty. The mechanism used for indentations and penalties requires unsigned values
less than 32768. No penalty is placed after the last line, so the final ,0 in then example
above could be omitted. A penalty of 10000 will prevent a page break; such a penalty is
included automatically where there is stanza hanging indentation. A penalty of —10000
(corresponding to the entry value 20000 in this context) forces a page break. Values in
between act as suggestions as to the desirability of a page break at a given line. There is
a subtle interaction between penalties and glue, so it may take some adjustment of skips
and penalties to achieve the best results.

9.6 Hanging symbol

It is possible to insert a symbol in each line of hanging verse, as in French typog-
raphy; for example, the opening bracket ‘. To insert it in reledmac, use macro
\sethangingsymbol{(h)} with this code. In the example of French typography, do

\sethangingsymbol{[\,}

You can also use it to force hanging verse to be flush right:

\sethangingsymbol{\protect\hfill}

9.7 Long verse and page break

If you want to prevent page breaks inside long verses, use the option nopbinverse when
loading package, or use \lednopbinversetrue. Read p. b4 for further details.
9.8 Content before/after verses

It is possible to add content, like a subtitle or a spacing, before or after verse:

\numberstanzatrue
\numberstanzafalse

thestanza

\stanzanumwrapper

\ampersand

\flagstanza

9.9 Numbering stanza 49

« The \stanza command can take an optional argument (in brackets). Its content
will be printed before the stanza.

Use \AtEveryStanza{(arg)} to automatically add content at the begining of
stanza.

+ & can be replaced by \newverse with two optional arguments (in brackets). The
first will be printed after the current verse, the second before the next verse.

Use \AtEveryPend{(arg)} to automatically add content after verses (including
the final one) and \AtEveryPstart{(arg)} to automatically add content before
verses (including the first one).

« \& can take an optional argument (in brackets). Its content will be printed after
the stanza.

Use \AtEveryStopStanza to automatically add content at the end of stanzas.

9.9 Numbering stanza

If you want to automatically number stanzas, use \numberstanzatrue. In this case,
the line number will restart at each \stanza.

If you want to disable this feature again, use \numberstanzafalse.

You can use this feature in combination with \Xstanza (7.2.7 p. B6).

. You can redefine \thestanza to change the aspect of stanza number. Default value
is:

\renewcommand{\thestanza}{%
\textbf{\arabic{stanzal}}}
}

You can change the value of the stanza counter with the usual commands of BIEX.
You can redefine \stanzanumwrapper in order to modify the way the stanza num-
ber is inserted in the flow of text. Default value is:

\newcommand{\stanzanumwrapper} [1]{%
\flagstanza{#1}/,

9.10 Various tools

If you need to print an & symbol in a stanza, use the \ampersand macro, not \& which
will end the stanza.

Putting \flagstanza[{len)]{(text)} at the start of a line in a stanza (or else-
where) will typeset (text) at a distance (len) before the line. The default (len) is
\stanzaindentbase.

50 11 Cross referencing

9.11 Notes on empty lines

Since v2.3.0 of reledmac, empty lines when typesetting verses no longer produce new
paragraphs, and consequently, do not insert vertical spaces. Use optional argument of
\stanza or \newverse to insert vertical space (0.4 p. 8).

10 Grouping

In aminipage environment KIgX changes \footnote numbering from arabic to alpha-
betic and puts the footnotes at the end of the minipage.
minipage You can put numbered text with critical footnotes in a minipage and the footnotes
are set at the end of the minipage.
You can also put familiar footnotes (see section p.3) in a minipage but unlike with
\footnote the numbering scheme is unaltered.
ledgroup Minipages, of course, are not broken across pages. Footnotes in a ledgroup envi-
ronment are typeset at the end of the environment, as with minipages, but the environ-
ment includes normal page breaks. The environment makes no change to the textwidth
so it appears as normal text; it just might be that footnotes appear in the middle of a
page, with text above and below.
ledgroupsized The ledgroupsized environment is similar to ledroup except that you must spec-
ify a width for the environment, as with a minipage.
\begin{ledgroupsized} [{pos)]{{width)}.
The required (width) argument is the text width for the environment. The optional
(pos) argument is for positioning numbered text within the normal textwidth. It may
be one of the characters:

1 (left) numbered text is flush left with respect to the normal textwidth. This is the
default.

¢ (center) numbered text is in the center of the textwidth.
r (right) numbered text is flush right with respect to the normal textwidth.

Note that normal text, footnotes, and so forth are all flush left.
\begin{ledgroupsized}{\textwidth} is effectively the same as \begin{ledgroup}

11 Cross referencing
The package provides a simple cross-referencing facility that allows you to mark places

in the text with labels, and generate page and line number references to those places
elsewhere using those labels.

11.1 Basic use

\edlabel First you place a label in the text using the command \edlabel{(lab)}. (lab) can be

\edpageref
\edlineref
\sublineref
\pstartref

\xpageref
\xlineref
\xsublineref
\xpstartref

11.2 Cross-referencing to a critical note 51

almost anything you like, including letters, numbers, punctuation, or a combination—
anything but spaces; you might type \edlabel{toves-3}, for example.E

Elsewhere in the text, either before or after the \edlabel, you can refer to its lo-
cation via \edpageref{(lab)}, or \edlineref{(lab)} will produce, respectively, the
page, line, sub-line and pstart on which the \edlabel{(lab)} command occurred.

Note that the \edlineref command insert the side flag after the line number.

An \edlabel command may appear in the main text, or in the first argument of
\edtext, but not in the apparatus itself. But \edpageref, \edlineref, \sublineref,
\pstartref commands can also be used in the apparatus to refer to \edlabels in the
text.

The \edlabel command works by writing macros to KIgX . aux file. You will need
to process your document through ETEX twice in order for the references to be resolved.

You will be warned if you use \edlabel{fool} and foo has been used as a label
before. The ref commands will return references to the last place in the file marked with
this label. You will also be warned if a reference is made to an undefined label. (This
will also happen the first time you process a document after adding a new \edlabel
command: the auxiliary file will not have been updated yet.)

11.2 Cross-referencing to a critical note

If you want to refer to a word which is a lemma word, the \edlabel command should
be in the first argument of \edtext command.

If you want to refer to the content of a a \Xfootnote, the line and subline number
printed will be the start line.

If you want to refer to starting and ending lines, you should use \appref and related

tools (11.6.9 p. p3).

11.3 Cross-referencing which return a number in any case

Where #1 stands for the reference.

However, there are situations in which you will want reledmac to return a number
without displaying any warning messages about undefined labels or the like: if you want
to use the reference in a context where KIEX is looking for a number, such a warning
will lead to a complaint that the number is missing. This is the case for references used
within the argument to \1linenum, for example (see p. R6).

For this situation, four variants of the reference commands, with the x prefix, are
supplied: \xpageref, \xlineref, \xsublineref and \xpstartref. They have these
limitations:

« They will not tell you if the label is undefined.

« They must be preceded in the file by at least one of the four other cross-reference
commands—e.g., a \edlabel{foo} command, even if you never refer to that
label—since those commands can all do the necessary processing of the . aux file,
and the \x. .. ones cannot.

More precisely, you should stick to characters in the TiX categories of “letter” and “other”.

\xxref

\edmakelabel

\label
\ref
\pageref

\edlabelS
\edlabelE

\edlabelSE

\SEref

52 11 Cross referencing

« When hyperref is loaded, the hyperref link will not be added. (Indeed, it is not
a limitation, but a feature.)

« With reledpar, the \xlineref does not insert the right side flag, in order to
obtain a line number. Use \xflagref to obtain the side flag, depending of your
flag.

11.3.1 Cross-referencing in order to define line number of a critical note

The macros \xxref and \edmakelabel let you manipulate numbers and labels in ways
which you may find helpful in tricky situations.

The \xxref{(lab1)}{(lab2)} command generates a reference to a sequence of lines,
for use in the second argument of \edtext. It takes two arguments, both of which are
labels: e.g., \xxref{mouse}{elephant}.

It automatically calls \1inenum (q.v., p. B6 above) and sets the beginning page,
line and subline numbers to those of the place where \edlabel{mouse} was placed,
and the ending numbers to those where \edlabel{elephant} occurs.

11.4 Not automatic cross-referencing

Sometimes the \edlabel command cannot be used to specify exactly the page and line
desired—for example, if you want to refer to a page and line number in another volume of
your edition. In such cases, you can use the \edmakelabel{(lab)}{(numbers)} macro
so that you can ‘roll your own’ label.

For example, if you type ‘\edmakelabel{elephant}{10]25|0} you will cre-
ate a new label, and a later call to \edpageref{elephant} would print ‘10’ and
\lineref{elephant} would print ‘25°. The sub-line number here is zero. It is usu-
ally best to collect your \edmakelabel statements near the top of your document, so
that you can see them at a glance.

11.5 Normal ETEX cross-referencing

The normal \label, \ref and \pageref macros may be used within numbered text,
and operate in the familiar fashion.

11.6 References to start and end lines
11.6.1 Reference to main text lines

Many times, you may want to make a cross-reference to a passage that is defined by a
start line and an end line. reledmac provides specific tools for this scenario.

Use \edlabelS{(label)} to mark the start line of the passage.

Use \edlabelE{(label)} to mark the end the end line of the passage. These two
commands just create to label which are named (label) : start and (label) : end.

Use \edlabelSE{(label)} to mark just one location in the text. Contrary to a clas-
sical \edlabel, the (label) could be use with \SEref and \SErefwithpage.

The main utility is to use them with three other commands. \SEref{(label)} will

11.6 References to start and end lines 53

make a cross-reference printed as a reference in critical footnotes.

\SErefwithpage \SErefwithpage will make a cross-reference printed as a reference in critical end-
notes.
\SErefonlypage \SErefonlypage will make a cross-reference printed only with page number.

11.6.2 References to lines that are commented on in the apparatus

You may want to make a cross-reference to a passage that is referred to by \edtext.
reledmac provides specific tools for this scenario.

\applabel If you use \applabel{(label)} inside the second argument of a \edtext, reledmac
will add a \edlabel at the beginning and end of the marked passage. The label at the
beginning of the passage will have the title (label) : start, while the label at the end
will have the title (label) : end.

If you use \linenum (.2.5 p. B6) to refer to these labels, reledmac will use your line
settings to refer to the passage.
\appref You can also use \appref{(label)} and \apprefwithpage{(label)} to refer to these
\apprefwithpage lines. The first one will print the lines as they are printed in the critical footnotes, while
the second will print the lines as they are printed in endnotes.

11.6.3 Settings

\setapprefprefixsingle Specific to these tools If you use \apprefprefixsingle{(prefix)}, (prefix) will be
\setapprefprefixmore printed before the line numbers of a \appref-reference. If you use \apprefpref ixmore{(prefix)},
(prefix) will be printed before the line numbers, if you refer to more than one line.
For example, you may use:

\setapprefprefixsingle{line~}
\setapprefprefixmore{lines~}

Note that if you have not used \setapprefprefixmore is empty, argument of
\setapprefprefixsingle will used in any case.

\setSErefprefixsingle \setSErefprefixsingle and \setSErefprefixmore are similar for \SEref
setSErefprefixmore command.
SErefonlypageprefixsingle Use \setSErefonlypageprefixsingle{(prefix)} to set the page prefix for \SErefonlypage

stSErefonlypageprefixmore when there is only one page. Use \setSErefonlypageprefixmore{(prefix)} to set it
when there is more than one page. For example:

\setSErefonlypageprefixsingle{p.~}
\setSErefonlypageprefixmore{pp.~1}

Note that if you do not use \setSErefonlypageprefixmore, the value of \setSErefonlypageprefixsingle
is used instead.
Also note that \setSErefonlypageprefixsingle is only a shortcut for \XendbeforepagenumberSErefonlyr
(see p-54). So if you use \Xendbeforepagenumber without any optional ar-
gument, it will override this setting.

54 11 Cross referencing

Linked to setting of critical endnotes and footnotes Some commands who set the
appearance of line numbers in critical footnotes also set the appearance of line numbers
in \appref and \SEref if you call them without the optional series argument.

These commandes are the following:

« \Xlineflag (for reledpar), enabled by default.
« \Xlinerangeseparator

+ \Xmorethantwolines

+ \Xsublinesep

+ \Xtwolines

« \Xtwolinesbutnotmore

« \Xtwolinesonlyinsamepage

If you want to make settings specific to \appref or \SEref, just call them with an
optional argument containing a comma-separated list of command names (for example
appref ,SEref) or with a suffix equal to the command name (for example appref).

The same principle is available for \apprefwithpage, \SErefwithpage and \SErefonlypage
with the following commands:

« \Xendafterpagenumber (not for \SErefonlypage)
+ \Xendbeforepagenumber

« \Xendlineflag (for reledpar), enabled by default.
+ \Xendlineprefixmore

+ \Xendlineprefixsingle

+ \Xendlinerangeseparator

» \Xendmorethantwolines

+ \Xendsublinesep

+ \Xendtwolines

+ \Xendtwolinesbutnotmore

+ \Xendtwolinesonlyinsamepage

For one specific command When calling \appref and \SEref, you can use as a
first optional argument, in brackets ([1), any optional argument which can be used for

critical footnotes (6.2.9 p. R4).

When calling \apprefwithpage, \SErefwithpage or \SErefonlypage you can
use as a first optional argument, in brackets ([]), any optional argument which can be

used for critical endnotes (6.2.3 p. B4).

\ledinnernote
\ledouternote

\ledleftnote
\ledrightnote
\ledsidenote
\sidenotemargin

\ledlsnotewidth
\ledrsnotewidth

\rightnoteupfalse
\leftnoteupfalse

11.7 Compatibility with xr package 55

11.7 Compatibility with xr package

The \externaldocument command of the \xr package allows making cross-references
from an external document, with the standard EIgX commands \label and \ref (and
related).

To use it with the reledmac cross-reference commands (i.e. \edlabel and related),
you must do the following:

1. Load the xr package.
2. Load the reledmac package.

3. Use the \externaldocument document command.

12 Side notes

12.1 Basics

The \marginpar command does not work in numbered text. Instead, the package pro-
vides for non-floating sidenotes in either margin.

\ledinnernote{(text)} will put (text) into the inner margin level with where the
command was issued. Similarly, \1edouternote{(text)} puts (text) in the outer mar-
gin.

\ledsidenote{(text)} will put (text) into the margin specified by the current
setting of \sidenotemargin{(location)}. The permissible value for (location) is one
out of the list 1eft, right, inner, or outer, for example \sidenotemargin{outer}.
The package’s default setting is
\sidenotemargin{right}
to typeset \ledsidenotes in the right hand margin. This is the opposite of the
default margin for line numbers. The style for a \ledsidenote follows that for a
\ledleftnote or a \ledrightnote depending on the margin it is put in.

If two note commands for the same side are called in the same line, they will be
appended and separated by a comma.

12.2 Setting
12.2.1 Width

The left sidenote text is put into a box of width \ledlsnotewidth and the right
text into a box of width \ledrsnotewidth. These are initially set to the value of
\marginparwidth.

12.2.2 Vertical position

By default, sidenotes are placed to align with the last line of the note to which it refers.
If you want they to be placed to align with the first line of the note to which it refers,
use \leftnoteupfalse (for left note) and/or \rightnoteupfalse (for right note).

\ledlsnotesep
\ledrsnotesep

\ledlsnotefontsetup
\ledrsnotefontsetup

\setsidenotesep

\edindex

56 13 Indexing

12.2.3 Distance to the main text

The texts are put a distance \ledlsnotesep (or \ledrsnotesep) into the left (or right)
margin. These lengths are initially set to the value of \1inenumsep.

12.2.4 Font
These macros specify how the sidenote texts are to be typeset. The initial definitions are:

\newcommand*{\ledlsnotefontsetup}{\raggedleft\footnotesizel}), left
\newcommand*{\ledrsnotefontsetup}{\raggedright\footnotesizel}’, right

These can of course be changed to suit.

12.2.5 Separator between notes

If you have two or more sidenotes for the same line, they are separated by a comma. But
if you want to change this separator, you can use \setsidenotesep{(sep)}.

13 Indexing

13.1 Basics

KX provides the \index{(item)} command for specifying that {item) and the current
page number should be added to the raw index (idx) file. The \edindex{(item)} macro
can be used in numbered text to specify that (item) and the current page & linenumber
should be added to the raw index file.

Note that the file . idx will contain the right reference only after the third run, be-
cause of the internal indexing mechanism of reledmac. That means you must first run
(Xe/Lua)KIgXthree times, then run makeindex, and then finally run (Xe/Lua)ETEX again,
in order to get an index with the right page numbers.

If the imakeidx or indextools package is used then the macro takes an optional
argument, which is the name of a raw index file. For example \edindex [line] {item}
will use 1ine.idx as the raw file instead of \ jobname. idx.

The minimal version of imakeidx package to be used is the version 1.3a uploaded
on CTAN on 2013/07/11.

Be careful with the order of package loading and index declaration. You must use
this order:

1. Load imakeidx or indextools.
2. Load reledmac.

3. Declare the index with the macro \makeindex of imakeidx and indextools.

\pagelinesep

13.2 Referring to critical notes 57

13.2 Referring to critical notes

If you want to refer to a word inside an \edtext{(lemma)}{(app)} command, \edindex
should be defined inside the first argument, e.g.,

The \edtext{creature\edlabel{elephant} was quite
unafraid}{\Afootnote{0Of the mouse, that is.}}

If you add \edindex inside some \Xfootnote command, it will refer to that note,
and a suffix n will be appended to the reference. You can redefine this suffix by redefining
the command \ledinnotemark. Its actual definition is:

\newcommand{\ledinnotemark}[1] {#1\emph{n}}

13.3 Separator between page and line numbers

The page & linenumber combination is written as page\pagelinesep line, where
the default definition is \newcommand{\pagelinesep}{-} so that an item on page 3,
line 5 will be noted as being at 3-5. You can renew \pagelinesep to get a different
separator.

- is the default separator used by the MAKEINDEX program.
Consequently, if you want to use an other \pagelinesep, éou have to configure
your .ist index style file. For example if you use : as separator=.

page_compositor ":"
delim_r ":"

Read the MAKEINDEX program’s handbook about the . ist file.

13.4 Using xindy

Should you decide to use xindy instead of makeindex to transform your .idx files
into . ind files, you must use some specific configuration file (. xdy) so that xindy can
understand eledmac reference syntax of which the scheme is:
pagenumber-linenumber

An example of such a file is provided in the “examples” folder. Read the xindy hand-
book to learn how to use it &

This file also provides, with an explanation, the settings that are needed to put
reledmac lines numbers in parenthesis, in order to make a better distinction between
line numbers and page ranges.

In any case, you must load reledmac with the xindy option, in order to generate a
.xdy file which is specific to your document. This file is needed by the .xdy example file
which is in the “examples” folder. Its default name is reledmac-markup-attr.xdy, but
you can change it by using your own as an argument of the xindy+hyperref option.

2For further detail, you can read http://tex.stackexchange.com/a/32783/7712.
210r, for people who read French, read http://geekographie.maieul .net/174.

examples/.
examples/.
http://tex.stackexchange.com/a/32783/7712
http://geekographie.maieul.net/174

\edindexlab

58 14 Glossary

If you chose to use both xindy and the hyperref package, you must do three more
things:

1. Use xindy+hyperref option when loading the reledmac package. When you
run (Xe/Lua)BIEXwith this option, a . xdy configuration file will be generated with
all the settings needed to allow internal hyperlinking in each index entry which
is created by \edindex.

2. Use hyperindex=false option when loading hyperref.

3. Uncomment — by removing the semicolons at the beginning of the relevant lines —
some lines in the <code>.xdy</code> file provided in the “examples” folder in
order to restore internal links in the index to be used by the standard index com-
mand 2.

13.5 Advanced setting

The \edindex process uses a \label and \ref mechanism to get the correct line num-
ber. It automatically generates labels of the form \label{\edindexlab N}, where N
is a number, and the default definition of \edindexlab is:
\newcommand*{\edindexlab}{$&}

in the hopes that this will not be used by any other labels (\edindex’s labels are like
\label{$&27}). You can change \edindexlab to something else if you need to.

14 Glossary

reledmac provides mechanism to make glossaries with the glossaries package, refer-
ing not to the page, but to the page and line.

14.1 Prealable setting

The standard compositor between page and line number in reledmac is a dash, while
glossaries use, in standard, a dot. Consequently, you must:

« Orset. glossaries:
\glsSetCompositor{-}

+ Or set reledmac:
\renewcommand{\pagelinesep}{-}
In this case, the above will have consequences for your use of \edindex and you

should set your . ist file (3.3 p. p7).

22These are the recommended lines to provide the best possible compatibility between hyperref and xindy,
even without using reledmac.

examples/.

14.2 Commands 59

14.2 Commands

The \gls, \G1s, and related commands of glossaries packages have a prefixed version
with ed, which refers to the page line. The argument are the same as for the standard
commands. So for example:

\edgls [{options)]{{label)} [{insert)]

15 Tabular material

ETEX’s normal tabular and array environments cannot be used where line number-
ing is being done; more precisely, they can be used but with odd results, so don’t use
them. However, reledmac provides some simple tabulation environments that can be
line numbered. The environments can also be used in normal unnumbered text.
edarrayl There are six environments; the edarray* environments are for math and edtabularx*
edarrayc for text entries. The final 1, c, or r in the environment names indicate that the entries
edarrayr will be flushleft (1), centered (c) or flushright (r). There is no means of specifying dif-
edtabularl ferent formats for each column, nor for specifying a fixed width for a column. The

edtabularc environments are centered with respect to the surrounding text.
edtabularr \begin{edtabularc}

1&2&3\\ .) 3
m Zng ch h a bb ccc
\end{edtabularc} AAA BB C

Entries in the environments are the same as for the normal array and tabular
environments but there must be no ending \\ at the end of the last row. There must be
the same number of column designators (the &) in each row. There is no equivalent to any
line drawing commands (such as \hline). However, unlike the normal environments,
the ed. . . environments can cross page breaks.

Macros like \edtext can be used as part of an entry.

For example:

\beginnumbering

\pstart

\begin{edtabularl}

\textbf{\Large I} & wish I was a little bug\edindex{bug} &
\textbf{\Large I} & eat my peas with honey\edindex{honey} \\
& With whiskers \edtext{round}{\Afootnote{around}} my tummy &
& I've done it all my life. \\

& I'd climb into a honey\edindex{honey} pot &

& It makes the peas taste funny \\

& And get my tummy gummy.\edindex{gummy} &

& But it keeps them on the knife.

\end{edtabularr}

\pend

\endnumbering

produces the following parallel pair of verses.

\edtabcolsep
\spreadmath
\spreadtext

\edrowfill

60 15 Tabular material

1 I wish I was a little bug I eat my peas with honey

2 With whiskers round my tummy I've done it all my life.

3 I'd climb into a honey pot It makes the peas taste funny
4 And get my tummy gummy. But it keeps them on the knife.

The distance between the columns is controlled by the length \edtabcolsep.

\spreadmath{(math)} typesets {(math)} but the {(math)} has no effect on the
calculation of column widths. \spreadtext{(text)} is the analagous command for use
in edtabular environments.

\begin{edarrayl}
1&2 & 3 & 4\\
& \spreadmath{F+G+C} & & \\ L2 3 4
a & bb & ccc & dddd F+G+C
\end{edarrayl} a bb ccc dddd

The macro \edrowfill{(start)}{(end)}{(fill)} fills columns number (start) to
(end) inclusive with (fill). The (fill) argument can be any horizontal ‘fill’. For exam-
ple \hrulefill or \upbracefill.

Note that every row must have the same number of columns, even if some would
not appear to be necessary.

The \edrowfill macro can be used in both tabular and array environments. The
typeset appearance of the following code is shown below.

\begin{edtabularr}
1 & 2 &3 &4 & 5\\
Q & & fd & h & quwertziohg \\
v & wptz & x &y & vb \\
g & nnn & \edrowfill{3}{5}{\upbracefill} & & \\
\edrowfill{1}{3}{\downbracefill} & & & pq & dgh \\
k & & 1 & co & ghweropjklmnbvcxys \\
1 & 2 & 3 & \edrowfill{4}{5}{\hrulefill} &
\end{tabularr}

1 2 3 4 5

Q fd h qwertziohg

v wptz x vy vb

g nnn

k 1 co ghweropjklmnbvcxys

1 2 3

You can also define your own ‘fill’. For example:

\newcommand*{\upbracketfill}{}
\vrule height 4pt depth Opt\hrulefill\vrule height 4pt depth Opt}

is a fill like \upbracefill except it has the appearance of a (horizontal) bracket instead
of a brace. It can be used like this:

61

\begin{edarrayc}
1 &2 & 3 & 41\\
a & \edrowfill{2}{3}{\upbracketfill} & & d \\
A& B & C & D
\end{edarrayc}
1 2 3 4
a L d
A B C D
\edatleft \edatleft [({math)]{(symbol)}{(halfheight)} typesets the math (symbol) as \left{(symbol)}

\edatright with the optional (math) centered before it. The (symbol) is twice (halfheight) tall. The
\edatright macro is similar and it typesets \right{(symbol)} with (math) centered
after it.

\begin{edarrayc}
&1 &2&3& \\
&4 &58&6& \\

\edatleft[left =]{\{}{1.5\baselineskip}
&7 &8&9&

\edatright [= right]{)}{1.5\baselineskip}

\end{edarrayc}
1 2 3
left=< 4 5 6 | =right
7 8 9
\edbeforetab \edbeforetab{(text)}{(entry)}, where (entry) is an entry in the leftmost column,

\edaftertab typesets (text) left justified before the (entry). Similarly \edaftertab{(entry)}{(text)},
where (entry) is an entry in the rightmost column, typesets (text) right justified after
the (entry).

For example:

\begin{edarrayl}
A &1 &2 &3\\
\edbeforetab{Before}{B} & 1 & 3 & 6 \\
C & 1 & 4 & \edaftertab{8}{After} \\
D &$1&5¢&0
\end{edarrayl}
Before

After

SAQwe
—_ ==
U W N
O 00 O W

62 16 Sectioning commands

\edvertline The macro \edvertline{(height)} draws a vertical line {height) high (contrast this
\edvertdots with \edatright where the size argument is half the desired height).

\begin{edarrayr}

akb&C&d &\\
veEw&x&y &\\
mé&n&o&p &\\

k& &L & cvb & \edvertline{4pc}
\end{edarrayr}

a b C d
vow X y
m n o P
k L cvb

The \edvertdots macro is similar to \edvertline except that it produces a vertical
dotted instead of a solid line.

16 Sectioning commands

16.1 Sectioning commands without line numbers or critical notes

The standard sectioning commands (\chapter, \section etc.) can be used inside num-
bered text. In this case, you must call them as an optional argument of \pstart (5.2.3

p. [L9):

\pstart[\section{section}]
Pstart content.
\pend

The line which contains them will not be numbered, and you cannot add critical notes
inside.

16.2 Sectioning commands with line numbering and critical notes
You have to use the following commands:

« \eledchapter [(text)]{(critical text)},

« \eledchapterx,

« \eledsectionl[(text)]{(critical text)},

« \eledsectionx,

« \eledsubsection [(text)]{{critical text)},

« \eledsubsectionk,

\noeledsec

16.3 Optimization 63

+ \eledsubsubsection[(text)]{{critical text)},
+ \eledsubsubsectionx.

These are equivalent to the KIEX commands. Each individual command must be called
alone in a \pstart ... \pend:

\pstart
\eledsection*{xxxx\ledsidenote{section}}
\pend

\pstart
\eledsubsection*{xxxx\ledsidenote{sub}}
\pend

\pstart

normal text

\pend

After the first run, you will see only the text. This is normal. After the second run, you
will see the formatting. Finally, with the third run, you will see the table of contents.

For technical reasons, the page break before \elechapter cannot be added auto-
matically. You have to insert it manually via \beforeeledchapter, which must be
called outside of a numbered section.

16.3 Optimization

If you are not going to have any \eledxxx commands, then load reledmac with
\noeledsec option. That will suppress the generation of unneeded .eledsec files,
save memory, and make reledmac run faster.

17 Quotation environments

The quotation and quote environments can be used so that the same definition/note
appears both inside and outside a numbered section. The typographical consequences
will resemble the outside numbered sections, based on the styles of the book class. How-
ever, if you use a package that redefines these environments, these redefinitions won’t
be available inside the numbered section. You must open any quotation environments
inside a \pstart ... \pend block, not outside. A quotation environment MUST NOT be
opened immediately after a \pstart and MUST NOT be closed immediately before a
\pend.

In some cases, you do not want these environments to be redefined in numbered
sections. You can load the package with the option noquotation to prevent this redef-
inition.

64 19 Miscellaneous

18 Page breaks

18.1 Control page breaking

reledmac and reledpar break pages automatically. However, you may sometimes
\ledpb want to either force page breaks, or prevent them. The packages provide two macros:

\lednopb
» \ledpb adds a page break.

« \lednopb prevents a page break, by adding one line to the current page if needed.

These commands have effect only at the second run.

These two commands take effect at the beginning of line in which they are called.
For example, if you call \1edpb at 1. 444, then 1. 443 will be at the p. n, and the 1. 444

\ledpbsetting at the p. n + 1. However, you can change the behavior and decide they will have effect

after the end of the line, adding \ledpbsetting{after} at the beginning of your file
(better: in your preamble). With the previous example, 1. 444 will be on p. n and L. 445
will be onp. n + 1.

If you are using reledpar to typeset parallel pages, you must use \lednopb on both
sides in the two corresponding lines. This is especially important when you are using
stanzas; otherwise, the pages will be out of sync.

18.2 Prevent page break in a long verses

\lednopbinversetrue You can also decide to prevent page breaks between two lines of a long verse. To do
this, use nopbinverse when loading package, or add \lednopbinversetrue in the
beginning of your file (better: in your preamble).

This feature works only with verse of 2 lines and no more. It works on the third run,
or on the fourth run if using reledpar. By default, when a long verse runs between
two pages, a page break will be placed at the beginning of the verse. However, if you
have added \1edpbsetting{after}, the page break will be placed at the end of the long
verse and the page containing the long verse will have one extra line.

19 Miscellaneous

\extensionchars When the package assembles the name of the auxiliary file for a section, it prefixes
\extensionchars to the section number. This is initially defined to be empty, but you
can add some characters to help distinguish these files if you like; what you use is likely
to be system-dependent. If, for example, you said \renewcommand{\extensionchars}{!},
then you would get temporary files called jobname. !1, jobname. !2, etc.

\ifledfinal The package can take options. The option ‘final’, which is the default is for final
typesetting; this sets \ifledfinal to TRUE. The other option, ‘draft’, may be useful
during earlier stages and sets \ifledfinal to FALSE.

\showlemma The lemma within the text is printed via \showlemma{lemma}. Normally, or with
the ‘final’ option, the definition of \showlemma is:
\newcommand*{\showlemma}[1]{#1}
s0 it just produces its argument. With the ‘draft’ option it is defined as

19.1 Known and suspected limitations 65

\newcommand*{\showlemma} [1] {\textit{#1}}
so that its argument is typeset in an italic font, which may make it easier to check that
all lemmas have been treated.

If you would prefer some other style, you could put something like this in the pream-

ble:

\ifledfinal\else
\renewcommand{\showlemma} [1]{\textbf{#1}}/ or simply ...[1]{#1}
\fi

19.1 Known and suspected limitations
19.1.1 Non-standard geometry

If you use classes other than article or book, or if you use the geometry package, you
should use maxhnotesX and/or \Xmaxhnotes as explained in p. B4 in order to
prevent footnotes from overlapping the bottom margin.

19.1.2 floatrow package compatibility

The floatrow package must be loaded before the reledmac.

19.1.3 ‘No room for a new’

Sometimes, especially when using reledmac with other packages, you could obtain
warning messages such ‘no room for a new count’ or ‘no room for a new write’.

In order to prevent such problems, the first thing is to use the options to optimize
reledmac. For example, if you need only two series of notes, use the series={A,B}
option. Read p. b3 in order to know which are the available options.

However, if with these options you still have such messages, here are some tricks.

’no room for a new count’ is often caused by biblatex being used at the same time.
Load reledmac (and reledpar) before biblatex.

’no room for a new write’ can be caused by multiple indexes. In this case, use
indextools of imakeidx with the splitindex option, in order to obtain only
one . idx file. If that does not solve your problem, you can use morewrites pack-
age. That should solve the problem, but ETgX will be slower.

If after reading and applying these advices you have still problem, contact us with a
minimal working example.
19.1.4 Marginal notes

In general, reledmac’s system for adding marginal line numbers breaks anything that
makes direct use of the KIEX insert system, which includes marginpars, footnotes and
floats.

66 19 Miscellaneous

However, you can use both \footnote and the familiar footnote series notes in
numbered text. A \marginpar in numbered text will throw away its contents and send
a warning message to the terminal and log file, but will do no harm.

19.1.5 Paragraph shape

\parshape cannot be used within numbered text, except in a very restricted way.
\ballast KIEX is a three-pass system, but even after a document has been processed three
times, there are some tricky situations in which the page breaks decided by TgX never
settle down. At each successive run, reledmac may oscillate between two different sets
of page decisions. To stop this happening, should it arise, Wayne Sullivan suggested the
inclusion of the quantity \ballast. The amount of \ballast will be subtracted from
the penalties which apply to the page breaks calculated on the previous run through TgX,
thus reinforcing these breaks. So if you find your page breaks oscillating, insert
\setcounter{ballast}{100}
or some such figure, and with any luck the page breaks will settle down. Luckily, this
problem does not crop up at all often.

19.1.6 Paragraphed footnotes

The restriction on explicit line-breaking in paragraphed footnotes, mentioned on [.1]

p. B4, and described in more detail on p. 167, really is a nuisance if that is some-

thing you need to do. There are some possible solutions, described by Michael Downes,

but this area remains unsatisfactory.

If you use more than one series of paragraphed notes, it may happen, in some partic-
ular cases, that only the footnote rule, with no accompanying footnotes, be printed. In
this case use reledmac package option nopenalties which should solve the problem,
but also may produce widow or orphan lines. For the time being, we have no solution
of this problem.

\footfudgefiddle For paragraphed footnotes TgX has to estimate the amount of space required. If it
underestimates this then the notes may get too long and run off the bottom of the text
block. \footfudgefiddle can be increased from its default 64 (say, to 68) to increase
the estimate. You have to use \renewcommand for this, like:
\renewcommand{\footfudgefiddle}{68}

Note that you must call it before \Xarrangement{paragraph}or \arrangementX{paragraph}.
Any settings to ‘geometry’ must be made before \Xarrangement / \arrangementX.
Finally, in many cases you should use \Xmaxhnotes and / or \maxhnotesX (7.13.4

p. B4), in order to define the maximum height relative to \textheight and not to

\vsize, because the \vsize value is not the same inside and outside of the preamble.

19.1.7 Use with other packages

Because of reledmac’s complexity, it may not play well with other packages. In
particular reledmac is sensitive to commands in the arguments to the \edtext and
*footnote macros (this is discussed in more detail in section [V], and in particular the
discussion about \no@expands and \morenoexpands). You will have to see what works
or doesn’t work in your particular case.

\morenoexpands

19.1 Known and suspected limitations 67

You can define the macro \morenoexpands to modify macros that you call within
\edtext. Because of the way reledmac numbers the lines the arguments to \edtext
can be processed more than once and in some cases a macro should only be processed
once. One example is the \colorbox macro from the color package, which you might
use like this:

. \edtext{\colorbox{mycolor}{lemma}}{\Afootnote{...\colorbox...}}

If you actually try this2 you will find BIgX whinging ‘Missing { inserted’, and then
things start to fall apart. The trick in this case is to specify either:

\newcommand{\morenoexpands}{\let\colorbox=0}

or

\makeatletter
\newcommand{\morenoexpands}{\let\colorbox\@secondoftwo}
\makeatother

(\@secondoftwo is an internal KIEX macro that takes two arguments and throws away
the first one.) The first incantation lets color show in both the main text and footnotes
whereas the second one shows color in the main text but kills it in the lemma and foot-
notes. On the other hand if you use \textcolor instead, like

. \edtext{\textcolor{mycolor}{lemma}}{\Afootnote{...\textcolor...}}

there is no need to fiddle with \morenoexpands as the color will naturally be displayed
in both the text and footnotes. To kill the color in the lemma and footnotes, though, you
can do:

\makeatletter
\newcommand{\morenoexpands}{\let\textcolor\@secondoftwo}
\makeatother

It took Peter Wilson a little while to discover all this. If you run into this sort of problem
you may have to spend some time experimenting before hitting on a solution.

If you want to use the option bottom of the footmisc package, you must load this
package before the reledmac package.

19.1.8 Parallel typesetting

Peter Wilson has developed the ledpar package as an extension to ledmac specifi-
cally for parallel typesetting of critical texts. This also cooperates with the babel /
polyglossia packages for typesetting in multiple languages. reledpar is the succes-
sor of the primitive ledpar package.

ZReported by Dirk-Jan Dekker in the CTT thread ‘Incompatibility of “color” package’ on 2003/08/28.

68 19 Miscellaneous

Peter Wilson also developed the ledarab package for handling parallel Arabic text
in critical editions. However, this package is not maintened by Maieul Rouquette. You
should use the capabilities of a modern TeX processor, like Xe(La)TeX

69

I Implementation overview

We present the reledmac code in roughly the order in which it is used during a run of
TgX. The order is exactly that in which it is read when you load The Eledmac package,
because the same file is used to generate this manual and to generate the KIgX package
file.

Most of what follows consists of macro definitions, but there are some commands
that are executed immediately—especially at the start of the code. The documentation
generally describes the code from the point of view of what happens when the macros
are executed, though. As each macro is introduced, its name is printed in the margin.

After package options, we begin with the commands you use to start and stop line
numbering in a section of text (Section [). Next comes the machinery for writing and
reading the auxiliary file for each section that helps us count lines, and for creating list
macros encoding the information from that file (Section M); this auxiliary file will be
read at the start of each section, to create those list macros, and a new version of the file
will be started to collect information from the body of the section.

Next are commands for marking sections of the text for footnotes (Section 1), fol-
lowed by the macros that take each paragraph apart, attach the line numbers and in-
sertions, and send the result to the vertical list (Section VII). The footnote commands
(Section [XIJ) and output routine (Section XXIJ) finish the main part of the processing;
cross-referencing (Section XXIII) and endnotes (Section XIX) complete the story.

In what follows, macros with an @ in their name are more internal to the workings
of reledmac than those made up just of ordinary letters, just as in PLAIN TgX (see The
TeXbook, p.344). You are meant to be able to make free with ordinary macros, but the
‘@’ ones should be treated with more respect, and changed only if you are pretty sure
of what you are doing.

II Preliminaries

II.1 Links with original edmac
Generally, these are the modifications to the original. edmac code:

« Replace as many \def’s by \newcommand’s as possible to avoid overwriting ETgX
macros.

« Replace user-level TgX counts by BIEX counters.

Use the KIgX font handling mechanisms.

Use ETEX messaging and file facilities.

II.2 Package declaration

Announce the name and version of the package, which is targetted for LaTeX2e.

\ifledfinal
\ifnocritical@
\if@noeled@sec

\ifnoend@
\ifnofamiliar@
\ifnoledgroup®

\ifparapparatus@
\ifnoquotation®@
\iflednopbinverse
\ifparledgroup
\ifwidthliketwocolumns
\ifxindy@
\ifxindyhyperref@
\ifeledmaccompat@

6

3

10

11

70 II Preliminaries

%<xcode>

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{reledmac}[2016/09/12 v2.15.2 typeset critical editions]/
)2

II.3 Package options

Use this to remember which option is used, set and execute the options with final as the
default. We use xkeyval in order to manage options with argument.

\RequirePackage{xkeyval}
A

The parledgroup option is for reledpar. However, it has consequence on reledmac
internal command. So we need to define the boolean now.

\newif\ifparledgroup
P2

And now, the options of reledmac.

\DeclareOptionX{series}[A,B,C,D,E]{\xdef\default@series{#1}}
\ExecuteOptionsX{series}/

> \newif\if@noeled@sec,

\DeclareOptionX{noeledsec}{\@noeled@sectrue}

\newif\ifnocritical@J,

. \DeclareOptionX{nocritical}{\nocritical@true},

\newif\ifnofamiliar@J,

» \DeclareOptionX{nofamiliar}{\nofamiliar@truel,

\newif\ifnoledgroup@y,

. \DeclareOptionX{noledgroup}{\noledgroup@truel}y

Yh

\newif\ifnoend@y,

\DeclareOptionX{noend}{’
\let\1@dend@open\@gobble,
\let\1l@dend@close\relax/,

\global\let\l@dend@stuff=\relax,

\noend@true’,

» \newif\ifnoquotation@

\DeclareOptionX{noquotation}{\noquotation@true}

s \newif\ifledfinal

 \DeclareOptionX{final}{\ledfinaltrue}

' \DeclareOptionX{draft}{\ledfinalfalse}

\ExecuteOptionsX{final}

IL.3 Package options 71

\newif\ifparapparatus®

i \DeclareOptionX{parapparatus}{\parapparatus@true}

; \newif\iflednopbinverse

\DeclareOptionX{nopbinverse}{\lednopbinversetrue}

\newif\ifwidthliketwocolumnsy,
\DeclareOptionX{widthliketwocolumns}{\widthliketwocolumnstruel}/,

\newif\ifcontinuousnumberingwithcolumns
\DeclareOptionX{continuousnumberingwithcolumns}{\
continuousnumberingwithcolumnstruel},

> \newif\ifxindy®@

N

55 \DeclareOptionX{xindy}[eledmac-markup-attr.xdy]{/

\AtBeginDocument{\immediate\openout\eledmac@xindyQout=#11}J,
\newwrite\eledmac@xindy@out/,

\xindy@true/,

\gdef\eledmacmarkuplocrefdepth{:depth 1}/
\AtEndDocument{\immediate\closeout\eledmac@xindy@outl}/,

A

: \newif\ifxindyhyperref@
> \DeclareOptionX{xindy+hyperref}{/

\xindyhyperref@true,
Y

; \newif\ifeledmaccompat@/,

\DeclareOptionX{eledmac-compat}{/
\eledmaccompat@true,

Y

\DeclareOptionX{nopenalties}{/

\AtBeginDocument{\let\add@penalties\relax}/

; \def\1l@auxdir{}/,

\DeclareOptionX{auxdir}{’
\xdef\1l@auxdir{#1/}/

s Yh
7 h

80

h

We use the starred form of \ProcessOptionsX which executes options in the order
listed in the source file: class options, then listed package options, so a package option
can override a class option with the same name. This was suggested by Dan Luecking
in the ctt thread Class/package option processing, on 27 February 2004.

\ProcessOptionsX*\relax

\ifl@dmemoir

\if@ledgroup

\ifl@imakeidx

72 I Preliminaries

II.4 Loading packages

Loading package xargs to declare commands with optional arguments. Etoolbox is
also used to make code clearer - for example, in dynamic command names (which can re-
place \csname etc.). Use suffix to declare commands with a starred version, xstring
to work with strings, ifluatex and ifxetex to test if LuaTgX or X{IX is running, and
ragged2e to manage ragged justification for paragraphed notes.

\RequirePackage{xargs}

. \RequirePackage{etoolbox}

; \@ifl@t@r\fmtversion{2015/10/01}

{3
{\RequirePackage{etex}’
\csname reserveinserts\endcsname{32}/,

7}
s \RequirePackage{suffix}

» \RequirePackage{xstring}

\RequirePackage{ifluatex}
\RequirePackage{ragged2e}

. \RequirePackage{ifxetex}/
s b

“ \fi
7 %

II.5 Compatibility with LuaTgX

Here, we enable some primitives for LuaTEX.

\ifx\directlua\undefined\else/,
\directlua{tex.enableprimitives("",{"textdir","pardir","bodydir"})}

I.6 Boolean flags
Define a flag for if the memoir class has been used.

\newif\ifl@dmemoir

s \@ifclassloaded{memoir}{\1@dmemoirtrue}{\1@dmemoirfalse}

h

Flag set to true inside a ledgroup environment.

» \newif\if@ledgroup/,
5

Define a flag for if the imakeidx package has been used.

\newif\ifl@imakeidx

s \@ifpackageloaded{imakeidx}{\1@imakeidxtrue}{}/False is the default value

106

h

II'7 Messages 73

\ifl@indextools Define a flag for if the indextools package has been used.

107 \newif\ifl@indextoolsy,

s \@ifpackageloaded{indextools}{/

109 \1l@indextoolstrueY,

110 \1l@imakeidxtruey,

1 \let\imki@wrindexentry\indtlQwrindexentry’,

v HYk
113 %

False is the default value. We consider indextools as a variant of imakeidx.
That is why we set \ifl@imakeidx to true. We also let \imki@wrindexentry to
\indtl@wrindexentry.

\if@RTL The \if@RTL is defined by the bidi package, which is sometimes loaded by polyglossia.
But we define it as well if the bidi package is not loaded.

1 \ifdef{\ifORTL}{}{\newif\ifORTL}
115 o/o

\if@firstlineofpage \if@firstlineofpage issetto TRUE atthe firstline of every page. \if@firstlineofpageR
is for the right side.

s \newif\if@firstlineofpage/,
7 \newif\if@firstlineofpageR/
118 %

II.7 Messages

All the messages are grouped here as macros. This saves TgX’s memory when the same
message is repeated and also lets them be edited easily.

\reledmac@warning Write a warning message.

19 \newcommand{\reledmac@warning}[1] {\PackageWarning{reledmac}{#1}}
A

\reledmac@error Write an error message

121 \newcommand{\reledmac@error}[2] {\PackageError{reledmac}{#1}{#2}}
122 0/0

\led@err@NumberingStarted: \newcommand*{\led@err@NumberingStarted}{/
d@err@NumberingNotStarted.: \reledmac@error{Numbering has already been started}{\@ehc}}
umberingShouldHaveStarteds \newcommand*{\led@err@NumberingNotStarted}{’
s \reledmac@error{Numbering was not started}{\@ehcl}}
17 \newcommand*{\led@err@NumberingShouldHaveStarted}{/
25 \reledmac@error{Numbering should already have been started}{\@ehc}}
120 %

\led@err@edtextoutsidepstarts:

\led@mess@NotesChanged:;

\led@mess@SectionContinued:

14

144

\led@err@LineationInNumbered:s

\led@warn@BadLineation:
\led@warn@BadLinenummargins
\led@warn@BadLockdisps:
\led@warn@BadSublockdisps’

53

\led@warn@NoLineFiless

\led@warn@LineFileObsoletes

162

163

h

74

\newcommand*{\led@err@edtextoutsidepstart}{/,

\reledmac@error{\string\edtext\space outside numbered paragraph (\..pstart

\pend) }{\@ehc}}’

%

\newcommand*{\led@mess@NotesChanged}{/

\typeout{reledmac reminder: }J

\typeout{ The number of the footnotes in this section
has changed since the last run.})

\typeout{ You will need to run LaTeX two more times
before the footnote placement}

\typeout{ and line numbering in this section are
correct.}}

\newcommand*{\led@mess@SectionContinued} [1]{/
\message{Section #1 (continuing the previous section)}}

h

\newcommand*{\led@err@LineationInNumbered}{’,
\reledmac@error{You can't use \string\lineation\space within
a numbered section}{\@ehcl}}

\newcommand*{\led@warn@BadLineation}{/

\reledmac@warning{Bad \string\lineation\space argument}}
\newcommand*{\led@warn@BadLinenummargin}{’

\reledmac@warning{Bad \string\linenummargin\space argument}}
\newcommand*{\led@warn@BadLockdisp}{/

\reledmac@warning{Bad \string\lockdisp\space argument}}
\newcommand*{\led@warn@BadSublockdisp}{’%

\reledmac@warning{Bad \string\sublockdisp\space argumentl}}
A

\newcommand*{\led@warn@NoLineFile} [1]{/,
\reledmac@warning{Can't find line-list file #1}}

\newcommand*{\led@warn@lbsolete} [1]{/

\reledmac@warning{Line-1list file #1 was obsolete. We have not read it.

Please run LaTeX again.}}

h

II Preliminaries

arn@BadAdvancelineSublines:
d@warn@BadAdvancelinelLiness

166

\led@warn@BadSetlinen
\led@warn@BadSetlinenum
173

174

175

led@err@PstartNotNumbered:
\led@err@PstartInPstart
\led@err@PendNotNumbered:
\led@err@PendNoPstart”
ed@err@AutoparNotNumbered®
rr@NumberingWithoutPstart”

182

\led@warn@BadActiond
195

196

\led@warn@DuplicatelLabels
ppLabelOutSecondArgEdtexti:
\led@warn@RefUndefineds»
\led@warn@RefUndefined"

201

202

II'7 Messages

\newcommand*{\led@warn@BadAdvancelineSubline}{’,
\reledmac@warning{\string\advanceline\space produced a sub-line
number less than zero.l}}
\newcommand*{\led@warn@BadAdvancelineLine}{/,
\reledmac@warning{\string\advanceline\space produced a line
number less than zero.l}}

\newcommand*{\led@warn@BadSetline}{’
\reledmac@warning{Bad \string\setline\space argument}}
\newcommand*{\led@warn@BadSetlinenum}{’
\reledmac@warning{Bad \string\setlinenum\space argument}}

h

\newcommand*{\led@err@PstartNotNumbered}{/
\reledmac@error{\string\pstart\space must be used within a
numbered section %
(\string\..beginnumbering\string\endnumbering) }{\@ehcl}}/
\newcommand*{\led@err@PstartInPstart}{/
\reledmac@error{\string\pstart\space encountered while another
\string\pstart\space was in effect}{\@ehcl}}

; \newcommand*{\led@err@PendNotNumbered}{’,

\reledmac@error{\string\pend\space must be used within a
numbered section}{\@ehcl}}
\newcommand*{\led@err@PendNoPstart}{J
\reledmac@error{\string\pend\space must follow a \string\pstart}{\@ehc}}

s \newcommand*{\led@err@AutoparNotNumbered}{/,

\reledmac@error{\string\autopar\space must be used within a
numbered section}{\@ehc}}

i \newcommand*{\led@err@NumberingWithoutPstart}{J,

\reledmac@error{\string\beginnumbering. . .\string\endnumbering\space
without \string\pstart}{\@ehc}}
A

\newcommand*{\led@warn@BadAction}{’

\reledmac@warning{Bad action code, value \next@action.l}}

h

\newcommand*{\led@warn@DuplicateLabel} [1]{/
\reledmac@warning{Duplicate definition of label “#1'\@gobblel,
\@latex@warning@no@line{Label “#1' multiply defined}/

Y

\newcommand*{\led@warn@AppLabelOutSecondArgEdtext} [1]{/
\reledmac@warning{\string\applabel\space outside of the second argument

of an \string\edtext\space “#1' on page \the\pageno.l}}/

\led@warn@NoMarginparsis

217

\led@warn@BadSidenotemargin:m

221

\led@warn@NoIndexFile:

\led@warn@SeriesStillExist»s

226

297

\led@err@ManySidenotes:
\led@err@ManyLeftnotess
\led@err@ManyRightnotes:

76 II Preliminaries

\newcommand*{\led@warn@RefUndefined} [1]{’
\G@refundefinedtruey,
\reledmac@warning{Reference “#1' on page \the\pageno\space undefined.’
Using ~000'.}/
\@latex@warning{Reference “#1' undefined\on®@line}/,

Yh

» \newcommand*{\led@warn@pairRefUndefined} [1]{’

\G@refundefinedtruey,
\reledmac@warning{Reference “#1l:start' and/or “#1:end' on page \the\
pageno\space undefined.
Using ~77'.}%
\@latex@warning{Reference “#1:start' and/or “#l:end' undefined\on@linelJ,

}

s

\newcommand*{\led@warn@NoMarginpars}{/

\reledmac@warning{You can't use \string\marginpar\space in numbered text
1
b

\newcommand*{\led@warn@BadSidenotemargin}{’
\reledmac@warning{Bad \string\sidenotemmargin\space argument}}

pA

\newcommand*{\led@warn@NoIndexFile} [1]1{%
\reledmac@warning{Undefined index file #1}}
A

\newcommand{\led@warn@SeriesStillExist}[1]{/
\reledmac@warning{Series #1 is still existing !}/

Y

A

\newcommand{\led@err@ManySidenotes}{/,
\ifledRcol@}
\reledmac@warning{\itemcount@\space sidenotes on line \the\line®@numR\
space p. \the\page@numR}
\else/,
\reledmac@warning{\itemcount@\space sidenotes on line \the\line®@num\
space p. \the\page@num}/,
\£i,

s Yh

236

23

\newcommand{\led@err@ManyLeftnotes}{/,
\ifledRcol@},

\led@err@TooManyColumnss:
\led@err@UnequalColumnss:
\led@err@LowStartColumnss

\led@err@HighEndColummns!
\led@err@ReverseColumns®

256

endnotesQoutsidenumberings:

264

Y

II'7 Messages 77

\reledmac@warning{\itemcount@\space leftnotes on line \the\line®@numR\
space p. \the\page@numR}
\else/,
\reledmac@warning{\itemcount@\space leftnotes on line \the\line®@num\
space p. \the\page@num}J,
\£iJ

\newcommand{\led@err@ManyRightnotes}{/
\ifledRcol@},
\reledmac@warning{\itemcount@\space rightnotes on line \the\line@numR\
space p. \the\page@numR},
\else/,
\reledmac@warning{\itemcount@\space rightnotes on line \the\line@num\
space p. \the\page@num}J,
\£iJ,

A

h

\newcommand*{\led@err@TooManyColumns}{7,

\reledmac@error{Too many columns}{\@ehc}}
\newcommand*{\led@err@UnequalColumns}{7,

\reledmac@error{Number of columns is not equal to the number

in the previous row (or \protect\\ \space forgotten?)}{\

Q@ehc}}
\newcommand*{\led@err@LowStartColumn}{/,

\reledmac@error{Start column is too low}{\@ehcl}}

s \newcommand*{\led@err@HighEndColumn}{7

\reledmac@error{End column is too high}{\@ehc}}
\newcommand*{\led@err@ReverseColumns}{/,
\reledmac@error{Start column is greater than end column}{\@ehcl}}

2 h

\newcommand{\led@err@toendnotes@outsidenumbering}{’
\reledmac@error{\string\toendnotes\space and related commands must be
called inside a numbered texte (\string\..beginnumbering\string\endnumbering

) }{\@ehc}/,

265 T

h

\newcommand{\led@err@EdtextWithoutFootnote}{/
\reledmac@error{edtext without Xfootnote. Check syntaxis}{\@ehc}/

o Yh

h

Jled@err@FootnoteNotInSecondArgEdtext

\led@error@ImakeidxAfterEledmacss

276

\led@error@IndextoolsAfterEledmacy

)8

281

282

\led@error@fail@patch@@makecols;

284
285

286

\led@error@fail@patch@@reinsertss

\led@error@fail@patch@endminipages

78 II Preliminaries

\newcommand{\led@errQ@FootnoteNotInSecondArgEdtext} [1]{/
\reledmac@error{#1ifootnote outside of the second argument of an edtext.

Check syntax}{\@ehcl}/

Yh

A

\newcommand{\led@error@ImakeidxAfterEledmac}{’
\reledmac@error{Imakeidx must be loaded before reledmac.}{\@ehcl}/

i

A

\newcommand{\led@error@IndextoolsAfterEledmac}{’,
\reledmac@error{Indextools must be loaded before reledmac.}{\@ehc}/

}

A

\newcommand{\led@error@fail@patch@@makecol}{/

\reledmac@error{Fail to patch \string\@makecol\space command.}{\@ehc}/
Yh
b

\newcommand{\led@error@fail@patch@@reinserts}{/,
\reledmac@error{Fail to patch \string\@reinserts\space command.}{\@ehc}/

> Yh

h

\newcommand{\led@error@fail@patch@@doclearpage}{’
\reledmac@error{Fail to patch \string\@doclearpage\space command.}{\@ehc}
A
Y
A

\newcommand{\led@error@fail@patch@@iiiminipage}{’
\reledmac@error{Fail to patch \string\@iiiminipage\space command.}{\@ehc}

\newcommand{\led@error@fail@patch@endminipage}{/

\reledmac@error{Fail to patch \string\endminipage\space command.}{\@ehc}/,
Y

2 o

warning@hsizeX@deprecatedo

warning@Xhsize@deprecatedr

308

warning@msdatawithoutstopu

312

ning@preXnotes@deprecated:
316
317

318

\@gobblethree:
\@gobblefoun:
\@gobblefive:

\showlemma

I8 Gobbling 79

\newcommand{\led@warning@hsizeX@deprecated}{’

\reledmac@warning{\string\hsizeX\space command deprecated, use \string\
widthX\space instead.}/,

s Yh
o

\newcommand{\led@warning@Xhsize@deprecated}{/,

\reledmac@warning{\string\Xhsize\space command deprecated, use \string\
Xwidth\space instead.}/

o Yh

h

\newcommand{\led@warning@msdatawithoutstop}{’

\reledmac@warning{\string\msdata\space without corresponding \string\
stopmsdatal}’,

s Yh

h

\newcommand{\led@warning@preXnotes@deprecated}{’
\reledmac@warning@preXnotes@deprecated/,

Y

P2

II.8 Gobbling

Here, we define some commands which gobble their arguments.

\providecommand*{\@gobblethreel} [3]{}
\providecommand*{\@gobblefour} [4]{}
\providecommand*{\@gobblefive} [6]{}

> h

I1.9 Miscellaneous commands

\showlemma{(lemma)} typesets the lemma text in the body. It depends on the option.

»» \ifledfinal

\newcommand*{\showlemmal} [1] {#1}

5 \else

329

\newcommand*{\showlemma} [1]{\underline{#1}}
\fi

h

\linenumberlist

\@l@dtempcnta
\@l@dtempcntb

\ifl@dpairing

\ifl@dpaging

\ifl@dprintingpages
\ifl@dprintingcolumns
\ifpstertedL
\l@dnumpstartsga

34

\ifledRcol
\ifledRcol@

\ifnumberingR

348

80 II Preliminaries

The code for the \1inenumberlist mechanism was given to Peter Wilson by Wayne
Sullivan on 2004/02/11.
Initialize it as \empty.

\let\linenumberlist=\empty

.
2 o

In imitation of KIEX, we create a couple of scratch counters.

KIgX already defines \@tempcnta and \@tempcntb but Peter Wilson found in the
past that it can be dangerous to use these (for example one of the AMS packages did
something nasty to the ccaption package’s use of one of these).

; \newcount\@l@dtempcnta \newcount\@l@dtempcntb

h

II.10 Prepare reledpar

In preparation for the reledpar package, these are related to the ‘right’ text of paral-
lel texts (when \ifl@dpairing is TRUE). They are explained in the eledpar manual

s \newif\ifl@dpairing
s \newif\ifl@dpagingJ,

\newif\ifl@dprintingpages/
\newif\ifl@dprintingcolumns/,

0 \newif\ifpst@rtedL

\newcount\1l@dnumpstartsL

h

\ifledRcol is set to true in the Rightside environnement. It must be not confused
with \ifledRcol@ which is set to true when a right line is processed, in \Pages or
\Columns.

> \newif\ifledRcol

\newif\ifledRcol@
h
The \ifnumberingR flag is set to true if we’re within a right text numbered section.

\newif\ifnumberingR
YA
The \ifXnote®@ macro is set to true when we are typesetting a critical footnote.

\newif\ifXnote@y,
%

\ifindtl@innote
\ifindtl@notenumber

349

35(

\section@num

\extensionchars

IL.11 Booleans provided by other optional packages which are required in any case 81

II.11 Booleans provided by other optional packages which are re-
quired in any case

The \ifindtl@innote and \ifindtl@notenumber are required even if indextools
is not used.

\providebool{indtl@innote}/
\providebool{indtl@notenumber}y,

b

III Sectioning commands

You use \beginnumbering and \endnumbering to begin and end a line-numbered sec-
tion of the text; the pair of commands may be used as many times as you like within
one document to start and end multiple, separately line-numbered sections. KIEX will
maintain and display a ‘section number’ as a count named \section@num that counts
how many \beginnumbering and \resumenumbering commands have appeared; it
need not be related to the logical divisions of your text.

Each section will read and write an associated ‘line-list file’, containing information
used to do the numbering; the file will be called (jobname) .nn, where nn is the sec-
tion number. However, you may direct that an extra string be added before the
nn in that filename, in order to distinguish these temporary files from others: that
string is called \extensionchars. Initially it’s empty, since different operating sys-
tems have greatly varying ideas about what characters are permitted in file names.
So \renewcommand{\extensionchars}{-} gives temporary files called jobname.-1,
jobname. -2, etc.

2 \newcount\section@num
3 \section@num=0

\let\extensionchars=\empty

o,
355 fo

\ifnumbering
\numberingtrue
\numberingfalse

\beginnumbering
\initnumbering@reg

The \ifnumbering flag is set to true if we are within a numbered section (that is,
between \beginnumbering and \endnumbering). You can use \ifnumbering in your
own code to check whether you are in a numbered section, but do not change the flag’s
value.

\newif\ifnumbering

h

\beginnumbering begins a section of numbered text. When it is executed we increment
the section number, initialize our counters, send a message to your terminal, and call
macros to start the lineation machinery and endnote files.

The initializations here are trickier than they look. \1ine@list@stuff will use all
of the counters that are zeroed here when it assembles the line-list and other lists of
information about the lineation. But it will do all of this locally and within a group, and

374

82 Il Sectioning commands

when it is done the lists will remain but the counters will return to zero. Those same
counters will then be used as we process the text of this section, but the assignments
will be made globally. These initializations actually apply to both uses, though in all
other respects there should be no direct interaction between the use of these counters
and variables in the two processing steps. For parallel processing :

« zero \1@dnumpstartsL — the number of chunks to be processed.

+ set \ifpst@rtedL to FALSE.

\newcommand*{\beginnumbering}{7
\ifnumbering
\led@err@NumberingStarted
\endnumbering
\fi
\global\numberingtrue
\global\advance\section@num \@ne
\initnumbering@reg
\message{Section \the\section@num }/
\1line@list@stuff{\jobname.\extensionchars\the\section@num}y,
\1l@dend@stuff
\setcounter{pstart}{1}
\ifl@dpairing
\global\l@dnumpstartsL \z@
\global\pst@rtedLfalse
YA

The tools for section’s title commands are called:
« Define an empty list of pstart number where sectioning commands are called.

« Input auxiliary file with the description of section titles.

+ Open the same auxiliary file to write in.

\else
\begingroup
\global\@afterindenttruel,In order to retablish normal feature if the \
begingroup was not here
\initnumbering@quote
\ifwidthliketwocolumns},
\csuse{setwidthliketwocolumns@\columns@position}y,
\csuse{setpositionliketwocolumns@\columns@position}y,
\fiJ,
\fi
\gdef\eled@sections@@{}/,
\if@noeled@sec\else
\makeatletter\InputIfFileExists{\1Q@auxdir\jobname.eledsec\the\
section@uum}{}{}\makeatothery,
\immediate\openout\eled@sectioning@out=\1Qauxdir\jobname.eledsec\the\
section@num\relaxy,

\endnumbering

\fi%

\newcommand*{\initnumbering@reg}{/

\global\pst@rtedLfalse
\global\l@dnumpstartsL \z@
\global\absline@num \z@
\gdef\normal@page@break{}
\gdef\1l@prev@pb{}
\gdef\1l@prev@nopb{}
\global\line@num \z@
\global\subline@num \z@
\global\@lock \z@
\global\sub@lock \z@
\global\sublines@false
\global\let\next@page@num=\relax
\global\let\sub@change=\relax
\resetprevline®
\resetprevpage®@num
\global\stopmsdata@inserted@true/,
}

«o \def\endnumbering{/,

\ifnumbering
\global\numberingfalse
\normal@pars
\ifnum\l@dnumpstartsL=07

\led@err@NumberingWithoutPstart/,

\fif,

\ifl@dpairing
\global\pst@rtedLfalse

\else

\ifx\insertlines@list\empty\else

\global\noteschanged@true
\fi
\ifx\line@list\empty\else
\global\noteschanged@true
\fi
\fi
\ifnoteschanged®@
\led@mess@NotesChanged
\fi
\else
\led@err@NumberingNotStarted
\fi

83

\endnumbering must follow the last text for a numbered section. It takes care of no-
tifying you when changes have been noted in the input that require running the file
through again to move everything to the right place.

84 Il Sectioning commands

2 \autoparfalse

s \if@noeled@sec\else,

134 \immediate\closeout\eled@sectioning@out}
435 \fi%

s \ifl@dpairing\else

i3 \global\l@dnumpstartsL=\z@J,

138 \endgroup

139 \fi

\pausenumbering The \pausenumbering macro is just the same as \endnumbering, but with the
\resumenumbering \ifnumbering flag set to true, to show that numbering continues across the gap.E

w12 \newcommand{\pausenumbering}{J,

s \ifautopar\global\autopar@pausetrue\fi/,
i \endnumbering\global\numberingtrue}

445 %

The \resumenumbering macro is a bit more involved, but not much. It does most of
the same things as \beginnumbering, but without resetting the various counters. Note
that no check is made by \resumenumbering to ensure that \pausenumbering was
actually invoked.

s \newcommand*{\resumenumbering}{’,

w \ifnumbering

148 \ifautopar@pause\autopar\fi

149 \global\pst@rtedLtrue

450 \global\advance\section@num \@ne

451 \led@mess@SectionContinued{\the\section@num}j,

452 \1line@list@stuff{\jobname.\extensionchars\the\section@num}/,
453 \1l@dend@stuff

154 \ifl@dpairing\else,

455 \begingroup/

156 \initnumbering@quotey,

157 \ifwidthliketwocolumnsy,

158 \csuse{setwidthliketwocolumns@\columns@position}/,

159 \csuse{setpositionliketwocolumns@\columns@position}/,
160 \£iJ,

i1 \fiJ,

462 \ifcontinuousnumberingwithcolumns?,

163 \ifdefined\line@numRY,

j64 \ifnum\line@numR>\1line@numy,

165 \expandafter\setlinenum\expandafter{\the\line@numR}/,
166 \£i,

46 \ifnum\last@page@numR>\last@page@num/,

168 \global\last@page@uum=\last@page@numR/,

169 \fi

470 \fif,

24peter Wilson’s thanks to Wayne Sullivan, who suggested the idea behind these macros.

\list@create

\list@clear

5

s }

\xright@appenditem
\led@toksa
\led@toksb

> Yh

85

\fif
\else
\led@err@NumberingShouldHaveStarted
\endnumbering
\beginnumbering

\fi}

IV List macros

We will make heavy use of lists of information, which will be built up and taken apart by
the following macros; they are adapted from The TeXbook, pp. 378379, which discusses
their use in more detail.

These macros consume a large amount of the run-time of this code. We intend to
replace them in a future version, and in anticipation of doing so have defined their in-
terface in such a way that it is not sensitive to details of the underlying code.

The historical list tools of ledmac are keept, because in many cause there are more
useful than etoolbox’s lists. They allows to get and delete the first element of a list in
one operation. They also expands the items add to the list.

However, etoolbox’s lists are more useful to loop on them. Consequently, depend-
ing of what we need, we use one or either.

It could be nice to unify them to the BTEX3 list, however such migration would take
quite time with some risk of error, for a gain which will be minor.

The \list@create macro creates a new list. This macro does not do anything beyond
initializing an empty list macro.

50 \newcommand*{\1list@create}[1]1{%

\global\let#1=\empty’

h

The \list@clear macro just initializes a list to the empty list; it is no different from
\list@create in its effect, but it is in its semantic .

\newcommand*{\list@clear}[1]{/
\global\let#1=\empty/

h

\xright@appenditem expands an item and appends it to the right end of a list macro.
We want the expansion because we will often be using this to store the current value
of a counter. \xright@appenditem creates global control sequences, like \xdef, and
uses two temporary token-list registers, \@toksa and \@toksb.

86 V' Line counting

\newtoks\led@toksa \newtoks\led@toksb

s \global\led@toksa={\\}

\long\def\xright@appenditem#1\to#2{/
\global\led@toksb=\expandafter{#2}/
\xdef#2{\the\led@toksb\the\led@toksa\expandafter{#1}}/,
\global\led@toksb={}}

)2

\xleft@appenditem expands an item and appends it to the left end of a list macro; it
is otherwise identical to \xright@appenditem.

5 \long\def\xleft@appenditem#1\to#2{/,

\global\led@toksb=\expandafter{#2}/,
\xdef#2{\the\led@toksa\expandafter{#1}\the\led0toksbl}/,
\global\led@toksb={}}

>

The \gl@p macro removes the leftmost item from a list and places it in a control se-
quence. You type \gl@p\1\to\z (where \1 is the list macro, and \z receives the left
item). \1 is assumed nonempty:use \ifx\1\empty to test for an empty \1. The control
sequences created by \gl@p are all global.

\def\gl@p#1\to#2{\expandafter\glOpoff#1\gl@poff#1#2}
\long\def\gl@poff\\#1#2\gl@poff#3#4{\gdef#4{#1}\gdef#3{#2}}

502
o,
3 fo

\ifbypstart@
\bypstart@true
\bypstart@false
\ifbypage@
\bypage@true
\bypage@false

V Line counting

V.1 Choosing the system of lineation

Line number can be reset at each section (default) ; at each page ; at each pstart. Here
we define internal codes for these systems and the macros.

The \ifbypage@ and \ifbypstarta flag specifie the current lineation system:

« line-of-page: bypstart@ = false and bypage@ = true.

+ line-of-pstart: bypstart@ = true and bypage@ = false.

reledmac will use the line-of-section system unless instructed otherwise.

\newif\ifbypage®

05 \newif\ifbypstart@

The \ifbypage@R and \ifbypstart@R flag specifie the current lineation for right
side in case of using reledpar. They are now defined because they are used in some
specific code. reledpar will use the line-of-section system unless instructed otherwise.

\ifbypageQRo
\ifbypstart@Ruy

509

\lineation

Y/
A

540

541

V.1 Choosing the system of lineation 87

\newif\ifbypage®@R
\newif\ifbypstart@R
A

\lineation{{word)} is the macro you use to select the lineation system. Its argument
is a string: either page, section or pstart.

) \newcommand*{\lineation}[1]{{

h
We can’t change the lineation system inside numbering section.

\ifnumbering
\led@err@LineationInNumbered
\else

s

If the argument is page.

\def\@tempa{#1}\def\@tempb{pagel}/
\ifx\@tempa\@tempb
\global\bypage@true
\global\bypstart@false
\unless\ifnocritical@j,
\Xpstart [] [falsel’,
\fi/,

If the argument is pstart.

\else

\def\@tempb{pstart}y

\ifx\@tempa\@tempb
\global\bypage@false
\global\bypstart@true
\unless\ifnocritical@y,

\Xpstart/,

\fi,

)
532 fo

And finally, if the argument is section (default).

\else

\def\@tempb{section}

\ifx\@tempa\@tempb
\global\bypage@false
\global\bypstart@false
\unless\ifnocritical@j,

\Xpstart[] [falsel’
\£iY
YA

In other case, it is an error.

\linenummargin
\line@margin
\l@dgetline®@margin

550

553

88
\else
\led@warn@BadLineation
\fi
\fi
\fi
\fi}}
%

V.2 Line number margin

V' Line counting

\linenummargin{(word)} specify which margin line numbers are in; it takes one ar-

gument, a string, which value can be 1eft ; right; inner or outer.

The selection is recorded in the count \1line@margin: O for left, 1 for right, 2 for

outer, and 3 for inner.

\newcount\line@margin

\newcommand*{\linenummargin} [1]1{{/

\l@dgetline@margin{#1}/,
\ifnum\@l@dtempcntb>\m@ne
\ifledRcol

\global\line@marginR=\0@l@dtempcntb
\led@warn@setting@in@rightside{\linenummargin}y,

\else

\global\line@margin=\0@1@dtempcntb

\fi
\fi}}

> \newcommand*{\1@dgetline@margin} [1]{%
\def\@tempa{#1}\def\@tempb{left}/

\ifx\@tempa\@tempb
\@l@dtempcntb \z@
\else
\def\@tempb{right}/,
\ifx\@tempa\@tempb
\@l@dtempcntb \@ne
\else
\def\@tempb{outer}/
\ifx\@tempa\@tempb
\@l@dtempcntb \tw@
\else
\def\@tempb{inner}/
\ifx\@tempa\@tempb
\@l@dtempcntb \throe@
\else

\led@warn@BadLinenummargin

\@l@dtempcntb \m@ne
\fi
\fi

\c@firstlinenum
\c@linenumincrement

\c@firstsublinenum
\c@sublinenumincrement

\firstlinenum

\linenumincrement
598

\firstsublinenum

599

\sublinenumincrement
600

V.3 Line number initialization and increment 89

\fi
\fi}

V.3 Line number initialization and increment

The following counters tell reledmac which lines should be printed with line num-
bers. firstlinenum is the number of the first line in each section that gets a number;
linenumincrement is the difference between successive numbered lines. The initial
values of these counters produce labels on lines 5, 10, 15, etc. linenumincrement must
be at least 1.

\newcounter{firstlinenum}
\setcounter{firstlinenum}{5}

\newcounter{linenumincrement}
\setcounter{linenumincrement}{5}

h

The following parameters are just like firstlinenum and 1inenumincrement, but for
sub-line numbers. sublinenumincrement must be at least 1.

» \newcounter{firstsublinenum}

\setcounter{firstsublinenum}{5}
\newcounter{sublinenumincrement}
\setcounter{sublinenumincrement}{5}

These macros can be used to set the corresponding counters.

\newcommand*{\firstlinenum} [1]{’
\ifledRcol}
\setcounter{firstlinenumR}{#1}%
\led@warn@setting@in@rightside{\firstlinenum},
\elseY
\setcounter{firstlinenum}{#1}/,
\£fi%

> ¥

7 \newcommand*{\linenumincrement}[1]{%

\ifledRcol¥,
\setcounter{linenumincrementR}{#1}7
\led@warn@setting@in@rightside{\linenumincrement},
\else/,
\setcounter{linenumincrement}{#11}/
\fi%
}

5 \newcommand*{\firstsublinenum} [1]{%

90 V' Line counting

ss \ifledRcoll,

617 \setcounter{firstsublinenumR}{#1}

618 \led@warn@setting@in@rightside{\firstsublinenum}/,
a0 \elsel,

620 \setcounter{firstsublinenum}{#1}/,

o1 \fi%

22 }

o3 \newcommand*{\sublinenumincrement} [1]{%

624 \ifledRcol},

625 \setcounter{sublinenumincrementR}{#1}J,

626 \led@warn@setting@in@rightside{\sublinenumincrement}y,
6 \else/,

628 \setcounter{sublinenumincrement}{#1}/,

oo \fi%

V.4 Line number locking

\lockdisp When line locking is being used, the \lockdisp{(word)} macro specifies whether a
\lock@disp line number—if one is due to appear—should be printed on the first printed line or on
\ledgetlock@disp the last, or by all of them. Its argument is a word, either first, last, or all. Initially,
it is set to first.
\lock@disp encodes the selection: O for first, 1 for last, 2 for all.

5> \newcount\lock@disp

s+ \newcommand{\lockdisp}[1]1{{/

, \l@dgetlock@disp{#1}

¢ \ifnum\@l@dtempcntb>\m@ne

63 \global\lock@disp=\@1l@dtempcntb
638 \else

639 \led@warn@BadLockdisp

a0 \fil}}

¢ \newcommand*{\1@dgetlock@disp}[1]{
s \def\@tempa{#1}\def\@tempb{first}
o5 \ifx\@tempa\@tempb

644 \@l@dtempcntb \z@

o5 \else

646 \def\@tempb{last}/

64 \ifx\@tempa\@tempb

648 \@le@dtempcntb \@ne

649 \else

650 \def\@tempb{all}}

651 \ifx\@tempa\@tempb

652 \@l@dtempcntb \tw@

653 \else

654 \@le@dtempcntb \m@ne

655 \fi

V.5 Line number style 91

656 \fi
s \fil}

\sublockdisp The same questions about where to print the line number apply to sub-lines, and these
\sublock@disp are the analogous macros for dealing with the problem.

s0 \newcount\sublock@disp

s \newcommand{\sublockdisp} [1]{{%

« \l@dgetlock@disp{#11}/

66 \ifnum\@l@dtempcntb>\m@ne

664 \global\sublock@disp=\@l@dtempcntb
w \else

666 \led@warn@BadSublockdisp
s \fi}}

V.5 Line number style

\linenumberstyle We provide a mechanism for using different representations of the line numbers, not
\linenumrep just the normal arabic.

\linenumr@p NOTE: Inv0.7 \linenumrep and \sublinenumrep replaced the internal \1inenumr@p
\sublinenumberstyle and \sublinenumr@p.
\sublinenumrep \linenumberstyle and \sublinenumberstyle are user level macros for setting
\sublinenumr@ the number representation (\1inenumrep and \sublinenumrep) for line and sub-line
numbers.

¢ \newcommand*{\linenumberstyle}[1]{/

o1 \def\linenumrep##1{\@nameuse{@#1}{##1}}}

2 \newcommand*{\sublinenumberstyle}[1]{/

o3 \def\sublinenumrep##1{\@nameuse{@#1}{##1}}}
674 %

Initialise the number styles to arabic.

o5 \linenumberstyle{arabic}

o \let\linenumr@p\linenumrep

¢7 \sublinenumberstyle{arabic}

o5 \let\sublinenumr@p\sublinenumrep

V.6 Line number printing

\leftlinenum \leftlinenum and \rightlinenum are the macros that are called to print marginal

\rightlinenum line numbers on a page, for left- and right-hand margins respectively. They are made

\linenumsep easy to access and change, since you may want to change the styling in some way. These
\numlabfont
\ledlinenum

92 V' Line counting

standard versions illustrate the general sort of thing that will be needed; they are based
on the \leftheadline macro in The TeXbook, p.416.

Whatever these macros output gets printed in a box that will be put into the ap-
propriate margin without any space between it and the line of text. You will generally
want a kern between a line number and the text, and \1inenumsep is provided as a
standard way of storing its size. Line numbers are usually printed in a smaller font, and
\numlabfont is provided as a standard name for that font. When called, these macros
will be executed within a group, so font changes and the like will remain local.

\ledlinenum typesets the line (and subline) number.

The original \numlabfont specification is equivalent to the BIgX \scriptsize for
a 10pt document.

\newlength{\linenumsep}
\setlength{\linenumsep}{1ipc}

; \newcommand*{\numlabfont}{\normalfont\scriptsize}

\newcommand*{\ledlinenum}{/,
\bgroup/
\ifluatex/,
\textdir TLTY
\£i%
\numlabfont\linenumrep{\line®@num}y,
\ifsublines@
\ifnum\subline@num>0\relax
\unskip/
\Xsublinesep@sidey,
\sublinenumrep{\subline@num}/,
\fi
\£i%
\egroup/,
Y

\newcommand*{\leftlinenum}{’
\ledlinenum
\kern\linenumsep}

; \newcommand*{\rightlinenum}{’

\kern\linenumsep
\ledlinenum}

V.7 Line number counters and lists

Footnote references using line numbers rather than symbols can’t be generated in one
pass, because we do not know the line numbers till we ship out the pages. It would be
possible if footnotes were never keyed to more than one line; but some footnotes gloss
passages that may run for several lines, and they must be tied to the first line of the
passage glossed. And even one-line passages require two passes if we want line-per-
page numbering rather than line-per-section numbering.

\line@num

\subline@num

\ifsublines@
\sublines@true
\sublines@false

\absline@num

V.7 Line number counters and lists 93

So we run KX over the text several times, and each time save information about
page and line numbers in a ‘line-list file’ to be used during the next pass. At the start of
each section—whenever \beginnumbering is executed—the line-list file for that section
is read, and the information from it is encoded into a few list macros.

We need first to define the different line numbers that are involved in these macros,
and the associated counters.

The count \1ine®@num stores the line number that is used in marginal line numbering
and in notes: counting either by section, page or pstart, depending on your choice for
this section. This may be qualified by \subline@num.

\newcount\1line@num

. Y

The count \subline@num stores a sub-line number that qualifies \1ine@num. For ex-
ample, line 10 might have sub-line numbers 1, 2 and 3, which might be printed as lines
10.1, 10.2, 10.3.

\newcount\subline@num

A

We maintain an associated flag, \ifsublines@, to tell us whether we’re within a sub-
line range or not.

You may wonder why we do not just use the value of \subline@num to determine
this—treating anything greater than 0 as an indication that sub-lineation is on. We need
a separate flag because sub-lineation can be used together with line-number locking in
odd ways: several pieces of a logical line might be interrupted by pieces of sub-lineated
text, and those sub-line numbers should not return to zero until the next change in the
major line number. This is common in the typesetting of English Renaissance verse
drama, in which stage directions are given sub-line numbers: a single line of verse may
be interrupted by several stage directions.

> \newif\ifsublines®@

h

The count \absline@num stores the absolute number of lines since the start of the sec-
tion: that is, the number we have actually printed, no matter what numbers we attached
to them. This value is never printed on an output page, though \1ine@num will often
be equal to it. It is used internally to keep track of where notes are to appear and where
new pages start: using this value rather than \1ine®@num is a lot simpler, because it does
not depend on the lineation system in use.

\newcount\absline@num

)

We will call \absline@num numbers “absolute” numbers, and \line®@num and
\subline@num numbers “visible” numbers.

94 V' Line counting

V.8 Line number locking counter

\@lock The counts \@lock and \sub@lock tell us the state of line-number and sub-line-number
\sub@lock locking. 0 means we are not within a locked set of lines; 1 means we are at the first line
in the set; 2, at some intermediate line; and 3, at the last line.

716 \newcount\@lock
\newcount\sub@lock

5t

V.9 Line number associated to lemma

\line@list Now we can define the list macros that will be created from the line-list file. We will
\insertlines@list maintain the following lists:

\actionlines@list)
« \line@list: the page and line numbers for every lemma marked by \edtext.

There are seven pieces of information, separated by vertical bars:

\actions@list

. the starting page,

. line, and

sub-line numbers, followed by the
. ending page,

line, and

. sub-line numbers, and then the

. font specifier for the lemma.

N A W N R

These line numbers are all visible numbers. The font specifier is a set of four
codes for font encoding, family, series, and shape, separated by / characters. Thus
alemma that started on page 23, line 35 and went on until page 24, line 3 (with no
sub-line numbering), and was typeset in a normal roman font would have a line
list entry like this:

231351012413/0/0T1/cmr/m/n.

There is one item in this list for every lemma marked by \edtext, even if there
are several notes to that lemma, or no notes at all. \edtext reads the data in this
list, making it available for use in the text of notes.

+ \insertlines@list: the line numbers of lines that have footnotes or other in-
sertions. These are the absolute numbers where the corresponding lemmas begin.
This list contains one entry for every footnote in the section; one lemma may con-
tribute no footnotes or many footnotes. This list is used by \add@inserts within
\do@line, to tell it where to insert notes.

« \actionlines@list: alist of absolute line numbers at which we are to perform
special actions; these actions are specified by the \actions@list list defined
below.

« \actions@list: action codes corresponding to the line numbersin \actionlines@list.
These codes tell reledmac what action it is supposed to take at each of these lines.
One action, the page-start action, is generated behind the scenes by reledmac

V.9 Line number associated to lemma 95

itself; the others, for specifying sub-lineation, line-number locking, and line-
number alteration, are generated only by explicit commands in your input file.
The page-start and line-number-alteration actions require arguments, to specify
the new values for the page or line numbers; instead of storing those arguments in
another list, we have chosen the action-code values so that they can encode both
the action and the argument in these cases. Action codes greater than —1000 are
page-start actions, and the code value is the page number; action codes less than
—5000 specify line numbers, and the code value is a transformed version of the
line number; action codes between these two values specify other actions which
require no argument.

Here is the full list of action codes and their meanings:

Any number greater than —1000 is a page-start action: the line number associated
with it is the first line on a page, and the action number is the page number. (The
cutoff of —1000 is chosen because negative page-number values are used by some
macro packages; we assume that page-number values less than —1000 are not
common.) Page-start action codes are added to the list by the \page®action
macro, which is (indirectly) triggered by the workings of the \page@start macro;
that macro should always be called in the output routine, just before the page
contents are assembled. Eledmac calls it in \pagecontents.

The action code —1001 specifies the start of sub-lineation: meaning that, starting
with the next line, we should be advancing \subline@num at each start-of-line
command, rather than \1ine@num.

The action code —1002 specifies the end of sub-lineation. At the next start-of-
line, we should clear the sub-line counter and start advancing the line number.
The action codes for starting and ending sub-lineation are added to the list by
the \sub@action macro, as called to implement the \startsub and \endsub
macros.

The action code —1003 specifies the start of line number locking. After the number
for the current line is computed, it will remain at that value through the next line
that has an action code to end locking.

The action code —1004 specifies the end of line number locking.

The action code —1005 specifies the start of sub-line number locking. After the
number for the current sub-line is computed, it will remain at that value through
the next sub-line that has an action code to end locking.

The action code —1006 specifies the end of sub-line number locking.

The four action codes for line and sub-line number locking are added to the
list by the \do@lockon and \do@lockoff macros, as called to implement the
\startlock and \endlock macros.

An action code of —5000 or less sets the current visible line number (either the
line number or the sub-line number, whichever is currently being advanced) to
a specific positive value. The value of the code is —(5000 4 n), where n is the
value (always > 0) assigned to the current line number. Action codes of this type
are added to the list by the \set@line®@action macro, as called to implement

\page@num
\endpage@num
\endline®@num

\endsubline@num

96 V' Line counting

the \advanceline and \setline macros: this action only occurs when the user
has specified some change to the line numbers using those macros. Normally
reledmac computes the visible line numbers from the absolute line numbers with
reference to the other action codes and the settings they invoke; it does not require
an entry in the action-code list for every line.

Here are the commands to create these lists:

\list@create{\line@list}
\list@create{\insertlines@list}
\list@create{\actionlines@list}
722 \list@create{\actions@list}

A

We will need some counts while we read the line-list, for the page number and the ending
page, line, and sub-line numbers. Some of these will be used again later on, when we
are acting on the data in our list macros.

\newcount \page@num

726 \newcount\endpage@num

\newcount\endline@num
\newcount\endsubline@num

o %

\ifnoteschanged®@
\noteschanged@true
\noteschanged@false

\resetprevline®

\resetprevline@:

If the number of the footnotes in a section is different from what it was during the last
run, or if this is the very first time you’ve run KIgX, on this file, the information from
the line-list used to place the notes will be wrong, and some notes will probably be
misplaced. When this happens, we prefer to give a single error message for the whole
section rather than messages at every point where we notice the problem, because we do
not really know where in the section notes were added or removed, and the solution in
any case is simply to run KIEX two more times; there is no fix needed to the document.
The \ifnoteschanged@ flag is set if such a change in the number of notes is discovered
at any point.

\newif\ifnoteschanged@

h

Inside the apparatus, at each note, the line number is stored in a macro called
\prevlineX, where X is the letter of the current series. This macro is called when
using \Xnumberonlyfirstinline. This macro must be reset at the same time as the
line number. The \resetprevline@ does this resetting for every series.

\newcommand*{\resetprevline@}{/
\def\do##1{\global\csundef{prevline##1}}/
\dolistloop{\@series}/,

\resetprevpage@num

\resetprevpage@sy

738

\read@linelist

V.10 Reading the line-list file 97

Inside the apparatus, at each note, the page number is stored in a macro called
\prevpageX@num, where X is the letter of the current series. This macro is called when
using \Xparafootsep or \parafootsepX. This macro must be reset at the beginning
of each numbered section The \resetprevpage®@ command resets this macro for every
series.

\newcommand*{\resetprevpage@num}{J,
\def\do##1{/,
\ifcsdef{prevpage##1@num}{J,
\global\csname prevpage##10num\endcsname=\z@},
\global\csname prevpage##1@numR\endcsname=\z@J,
Y
{37
\ifcsdef{##1prevpage@num}{/
\global\csname ##1lprevpage@num\endcsname=\z@J,
\global\csname ##1lprevpage@numR\endcsname=\z@J,

Y
{37
Y
\dolistloop{\@series}/,

V.10 Reading the line-list file

\read@linelist{(file)} is the control sequence that is called by \beginnumbering
(via \1ine@list@stuff) to open and process a line-list file; its argument is the name
of the file. . First, it clear all previous line’s list.

s \newread\@inputcheck

760

Y/
A

\newcommand*{\read@linelist}[1]{%
\ifledRcol%
\list@clearing@regR/
\elseY,
\list@clearing@reg/
\£fiY,

When using reledpar, make sure that the \maxlinesinpar@list is empty (oth-
erwise things will be thrown out of kilter if there is any old stuff still hanging in there).

\list@clear{\maxlinesinpar@list}

> h

Now get the file and interpret it. When the file is there we start a new group and make
some special definitions we will need to process it. It is a sequence of TgX commands,
but they require a few special settings. We make [and] become grouping characters:
they are used that way in the line-list file, because we need to write them out one at
a time rather than in balanced pairs, and it is easier to just use something other than
real braces. @ must become a letter, since this is run in the ordinary ETEX context. We

98

V' Line counting

ignore carriage returns, since if we are in horizontal mode they can get interpreted as
spaces to be printed.

Our line, page, and line-locking counters were already zeroed by \1ine@list@stuff

if this is being called from within \beginnumbering; sub-lineation will be turned off
as well in that case. On the other hand, if this is being called from \resumenumbering,
those things should still have the values they had when \pausenumbering was exe-
cuted.

If the file is not there, we print an informative message.
Now, after these preliminaries, we start interpreting the file.

\get@linelistfile{#1}/
\ifcontinuousnumberingwithcolumns
\global\page@numR=\page@numR\relax
\global\last@page@numR=\lastOpageOnumR\relax
\global\page@num=\page@num\relax
\global\last@page@num=\last@page@num\relax
\fi
\@stopmsd/Security if last \endms{} is forgotten
\unless\ifledRcol/Get the last line of the last page
\csnumgdef{@lastabsline@forpage@\the\pageOnum}{\the\absline@num}j,
\csnumgdef{@lastline@forpage@\the\page@num}{\the\line@num}j

\else/,
\csnumgdef{@lastabsline@forpageR@\the\page@numR}{\the\absline@numR}/
\csnumgdef{@lastline@forpageR@\the\page@numR}{\the\line@numR}/,

\£iY,

\endgroup

When the reading is done, we are all through with the line-list file. All the informa-

tion we needed from it will now be encoded in our list macros.

Finally, we initialize the \next@actionline and \next®@action macros, which

specify where and what the next action to be taken is.

\ifledRcol

\global\page@numR=\m@ne

\ifx\actionlines@listR\empty
\gdef\next@actionlineR{1000000}/

\else
\gl@p\actionlines@listR\to\next@actionlineR
\gl@p\actions@listR\to\next@actionR

\fi

\else

\global\page@num=\m@ne

\ifx\actionlines@list\empty
\gdef\next@actionline{10000003}%

\else
\gl@p\actionlines@list\to\next@actionline
\gl@p\actions@list\to\next@action

\fi

\fi

\list@clearing@reg

\get@linelistfile

V.11 Commands within the line-list file 99

Clears the lists for \read@linelist

\newcommand*{\1list@clearing@reg}{J,
\list@clear{\line®@list}/,
\list@clear{\insertlines@list}/,
\list@clear{\actionlines@list}/,
\list@clear{\actions@list}/
\list@clear{\linesinpar@listL}/,
\list@clear{\linesonpage@listL}},
Y

reledmac can take advantage of the BIEX ‘safe file input’ macros to get the line-list file.

s \newcommand*{\get@linelistfile}[1]{/

\InputIfFileExists{\1Qauxdir#1}{/
\global\noteschanged@false
\begingroup

\catcode \[=1 \catcode \]=2

\makeatletter \catcode \""M=9}{/
\led@warn@NoLineFile{\1@auxdir#1}/,
\global\noteschanged@true
\begingroup}/

This version of \read@linelist creates list macros containing data for the entire
section, so they could get rather large. It would be no more difficult to read the line-list
file incrementally rather than all at once: we could read, at the start of each paragraph,
only the commands relating to that paragraph. But this would require that we have
two line-lists open at once, one for reading, one for writing, and on systems without
version numbers we would have to do some file renaming outside of BIEX for that to
work. We have retained this slower approach to avoid that sort of hacking about, but
have provided the \pausenumbering and \resumenumbering macros to help you if
you run into macro memory limitations (see p. [1§ above).

V.11 Commands within the line-list file

This section defines the commands that can appear within a line-list file. They all have
very short names because we are likely to be writing very large numbers of them out.
One macro, \@nl, is especially short, since it will be written to the line-list file once
for every line of text in a numbered section. (Another of these commands, \@lab, will

\line@list@version

\@nl
\@nl@reg

832

833

Y

100 V' Line counting

be introduced in a later section, among the cross-referencing commands it is associated
with.)

When these commands modify the various page and line counters, they deliber-
ately do not use \global. This is because we want them to affect only the counter
values within the current group when nested calls of \@ref occur. (The code assumes
throughout that the value of \globaldefs is zero.)

The macros with action in their names contain all the code that modifies the action-
code list: again, this is so that they can be turned off easily for nested calls of \@ref.

The \1ine@list@version check if the line-list file does not refers to the older com-
mands of reledmac. In this case, we stop reading the line-list file. Consequently,
\line@list@version must be the first line of a line-number file.

\newcommand{\line@list@version}[1]{/
\IfStrEq{#1}{\this@line@list@version},
{3
{\ifledRcol’,
\led@warn@Obsolete{\jobname.\extensionchars\the\section@num}/,
\else/,
\led@warn@0Obsolete{\jobname.\extensionchars\the\section@uum}y,
\fi%
\endinput/,
Y

h

\@nl does everything related to the start of a new line of numbered text.

In order to get the \setlinenum to work Peter Wilson had to slip in some new code
at the start of the macro, to get the timing of the actions correct. The problem was
that his original naive implementation of \setlinenum had a unfortunate tendency to
change the number of the last line of the preceding paragraph. The new code is sort of
based on the page number handling and \setline. It seems that a lot of fiddling with
the line number internals is required.

In November 2004 in order to accurately determine page numbers Peter Wilson
added these to the macro. It is now:

\@nl{(page counter number)}{(printed page number)}
We do not (yet) use the printed number (i.e., the \thepage) but it may come in handy
later. The macro \fix@page checks if a new page has started.

Exactly what \@nl does depends on whether right text is being processed. That’s
why many code is defined in \@nl@reg or \nl@regR.

\newcommand*{\@nl}[2]{/
\fix@page{#1}/
\ifledRcol

\@nl@regR/
\else/,

\@nle@reg,
\fi%

V.11 Commands within the line-list file 101

}

o h

i \newcommand*{\@nl@reg}{’,

\ifx\1l@dchset@num\relax \else
\advance\absline@num \@ne
\set@line@action
\let\l@dchset@num=\relax
\advance\absline@num \m@ne
\advance\line@num \m@ne

\fi

First increment the absolute line-number, and perform deferred actions relating to

page starts and sub-lines.

\advance\absline@num \@ne
\ifx\next@page@num\relax \else
\page@action
\let\next@page@num=\relax
\fi
\ifx\sub@change\relax \else
\ifnum\sub@change>\z@
\sublines@true
\else
\sublines@false
\fi
\sub@action
\let\sub@change=\relax
\fi

Fix the lock counters, if necessary. A value of 1 is advanced to 2; 3 advances to 0;

other values are unchanged.

\ifcase\@lock
\or
\@lock \tw@
\or \or
\@lock \z@
\fi
\ifcase\sub@lock
\or
\sub@lock \tw@
\or \or
\sub@lock \z@
\fi

Now advance the visible line number, unless it has been locked.

\ifsublines@
\ifnum\sub@lock<\tw@
\advance\subline@num \@ne

\last@page@num
\fix@page

889

\@pend
\@pendR
\@lopL
\@lopay

921

102 V' Line counting

\fi
\else
\ifnum\@lock<\tw@
\advance\line@num \@ne \subline@num \z@
\fi
\fi}

\fix@page basically replaces \@page. It determines whether or not a new page has
been started, based on the page values held by \@nl.

\newcount\last@page®@num
\last@page@num=-10000

. \newcommand*{\fix@page} [11{/

\ifledRcol
\ifnum #1=\last@page@numR
\else
\csnumgdef{@lastabsline@f orpageR@\the\page@numR}{\the\absline@numR}J
\csnumgdef{@lastline@forpageR@\the\page@numR}{\the\line@numR}7,
\ifbypage@R
\line@numR \z@ \subline@numR \z@
\fi
\page@numR=#1\relax
\last@page@numR=#1\relax
\def\next@page@numR{#11}/,
\fi
\else
\ifnum #1=\last@page@num
\else
\csnumgdef{@lastabsline@forpage@\the\page@num}{\the\absline@num}j,
\csnumgdef{@lastline@forpage@\the\page@uum}{\the\line@uum}y,
\ifbypage@
\line@num \z@ \subline@num \z@
\fi
\page@num=#1\relax
\last@pageO@num=#1\relax
\def\next@page@num{#1}J,
\listxadd{\normal@page@break}{\the\absline@num}
\fi
\fi}

yA

These do not do anything at this point, but will have been added to the auxiliary file(s)
if the reledpar package has been used. They are just here to stop reledmac from
moaning if the reledpar is used for one run and then not for the following one.

\newcommand*{\@pend} [1]{}
\newcommand*{\@pendR} [1] {}

V.11 Commands within the line-list file 103

. \newcommand*{\@lopL}[1]{}

; \newcommand*{\@lopR}[1]{}

\sub@on
\sub@off

958

A

The \sub@on and \sub@of f macros turn sub-lineation on and off: but not directly, since
such changes do not really take effect until the next line of text. Instead they set a flag
that notifies \@n1 of the necessary action.

+ \newcommand*{\sub@on}{\ifsublines@

\let\sub@change=\relax
\else

\def\sub@change{1}/,
\fi}

1 \newcommand*{\sub@off}{\ifsublines@

\def\sub@change{-1}/
\else

\let\sub@change=\relax
\fi}

The \@adv{(num)} macro advances the current visible line number by the amount spec-
ified as its argument. This is used to implement \advanceline.

\newcommand*{\@adv}[1]{/
\ifsublines@
\ifledRcol
\advance\subline@numR by #1\relax
\ifnum\subline@numR<\z@
\led@warn@BadAdvancelineSubline
\subline@numR \z@
\fi
\else
\advance\subline@num by #1\relax
\ifnum\subline@num<\z@
\led@warn@BadAdvancelineSubline
\subline@num \z@
\fi
\fi
\else
\ifledRcol
\advance\line@numR by #1\relax
\ifnum\line@numR<\z@
\led@warn@BadAdvancelineLine
\line@numR \z@
\fi
\else
\advance\line@num by #1\relax

104 V' Line counting

963 \ifnum\line@num<\z@

964 \led@warn@BadAdvancelineLine
965 \line@num \z@

966 \fi

967 \fl

968 \fi

969 \set@line@action}

\@set The \@set{(num)} macro sets the current visible line number to the value specified as
its argument. This is used to implement \setline.

o3 \newcommand*{\@set} [1]{%

974 \ifledRcol

075 \ifsublines@

976 \subline@numR=#1\relax
977 \else

078 \line@numR=#1\relax
979 \fi

980 \set@line@action

981 \else

982 \ifsublines@

983 \subline@num=#1\relax
o84 \else

985 \line@num=#1\relax

056 \fi

o8 \set@line@action

o \fi}

\ledeset The \1@d@set{(num)} macro sets the line number for the next \pstart to the value
\l@dchset@num specified as its argument. This is used to implement \setlinenum.
\1@dchset@numn is a flag to the \@n1? macro. If it is not \relax then a linenumber
change is to be done.

90 \newcommand*{\1@d@set}[1]{%
993 \ifledRcol

994 \line@numR=#1\relax

995 \advance\line@numR \@ne
996 \def\1l@dchset@num{#1}
99 \else

998 \line@num=#1\relax

999 \advance\line@num \@ne
1000 \def\l@dchset@num{#1}
oo \fi}

002 \let\1l@dchset@num\relax

1004

\pageQ@action

1005

1006

\sub@action

1037
1038
1039
1040

1041

V.11 Commands within the line-list file 105

\page@action adds an entry to the action-code list to change the page number.

\newcommand*{\page@action}{/

\ifledRcol
\xright@appenditem{\the\absline@numR}\to\actionlines@listR
\xright@appenditem{\next@page@numR}\to\actions@listR

\else
\xright@appenditem{\the\absline@num}\to\actionlines@list
\xright@appenditem{\next@page@num}\to\actions@list

\fi}

A

\set@line®@action adds an entry to the action-code list to change the visible line num-
ber.

\newcommand*{\set@line@action}{’,

\ifledRcol
\xright@appenditem{\the\absline@numR}\to\actionlines@listR
\ifsublines@

\@l@dtempcnta=-\subline@numR
\else

\@l@dtempcnta=-\1line@numR
\fi

\advance\@l@dtempcnta by -5000\relax

\xright@appenditem{\the\@l@dtempcnta}\to\actions@listR
\else

\xright@appenditem{\the\absline@num}\to\actionlines@list

\ifsublines@
\@l@dtempcnta=-\subline@num
\else
\@l@dtempcnta=-\1ine@num
\fi

\advance\@l@dtempcnta by -5000\relax
\xright@appenditem{\the\@l@dtempcnta}\to\actions@list
\fi}
)

\sub@action adds an entry to the action-code list to turn sub-lineation on or off, ac-
cording to the current value of the \ifsublinesQ flag.

\newcommand*{\sub@action}{/,
\ifledRcol
\xright@appenditem{\the\absline@numR}\to\actionlines@listR
\ifsublines@

106 V' Line counting

1042 \xright@appenditem{-1001}\to\actions@listR
1043 \else

1044 \xright@appenditem{-1002}\to\actions@listR
1045 \fi

s \else

104 \xright@appenditem{\the\absline@num}\to\actionlines@list
1048 \ifsublines@

1049 \xright@appenditem{-1001}\to\actions@list
1050 \else

1051 \xright@appenditem{-1002}\to\actions@list
1052 \fi

s \fi}

1054 %

\lock@on \lock@on adds an entry to the action-code list to turn line number locking on. The
\do@lockon current setting of the sub-lineation flag tells us whether this applies to line numbers or
\do@lockonL sub-line numbers.

Adding commands to the action list is slow, and it is very often the case that a lock-
on command is immediately followed by a lock-off command in the line-list file, and
therefore really does nothing. We use a look-ahead scheme here to detect such pairs,
and add nothing to the line-list in those cases.

1055 \newcommand*{\lock@on}{\futurelet\next\do@lockon}

1057 \newcommand*{\do@lockon}{%

1058 \ifx\next\lock@Qoff

1059 \global\let\lock@off=\skip@lockoff
1060 \else

1061 \ifledRcol

1062 \do@lockonR

1063 \else

1064 \do@lockonL

1065 \fl

e \fil}

e \newcommand*{\do@lockonL}{/

wo \xright@appenditem{\the\absline@num}\to\actionlines@list
w1 \ifsublines@

1072 \xright@appenditem{-1005}\to\actions@list
1073 \ifnum\sub@lock=\z@

1074 \sub@lock \@ne

1075 \else

1076 \ifnum\sub@lock=\three

10 \sub@lock \@ne

1078 \fl

1079 \fi

1080 \else

1081 \xright@appenditem{-1003}\to\actions@list

V.11 Commands within the line-list file 107

1082 \ifnum\@lock=\z@

1083 \@lock \@ne

1084 \else

1085 \ifnum\@lock=\thr@@
1086 \@lock \@ne

108 \fi

1088 \fi

s \fi}

1090

1091 %

\lock@off \lock@off adds an entry to the action-code list to turn line number locking off.

\do@lockoff
\do@lockof £t~ \newcommand*{\do@lockoffL}{%

o5 \xright@appenditem{\the\absline@num}\to\actionlines@list
\SkiPQIOCkOfﬁw \ifsublines@

1095 \xright@appenditem{-1006}\to\actions@list

109 \ifnum\sub@lock=\tw@

1097 \sub@lock \thr@e@

1098 \else

1099 \sub@lock \z@

1100 \fi

1101 \else

1102 \xright@appenditem{-1004}\to\actions@list

1103 \ifnum\@lock=\tw@

1104 \@lOCk \thr@@

1105 \else

1106 \@lock \z@

1107 \fi

1108 \fi}

1109

o \newcommand*{\do@lockoff}{/

1 \ifledRcol

1112 \dO@lOCkOffR

1113 \else

e \do@lockoffL

1115 \f i}

e \newcommand*{\skip@lockoff}{\global\let\lock@off=\do@lockoff}

117 \global\let\lock@off=\do@lockoff

1o

\n¢num These macros implement the \skipnumbering command. They use action code 1007.

120 \newcommand*{\n@num}{Y,

1121 \ifledRCOl%

1122 \xright@appenditem{\the\absline@numR}\to\actionlines@listR
1123 \xright@appenditem{-1007}\to\actions@listR

1124 \else%

108 V' Line counting

1125 \xright@appenditem{\the\absline@num}\to\actionlines@list
1126 \xright@appenditem{-1007}\to\actions@list/

n \£ij

1128 }%

130

\n@num@stanza This macro implements the \skipnumbering for stanza command. It uses action code
1008.

s \newcommand*{\n@num@stanza}{/

1132 \ifledRcol/,

1133 \xright@appenditem{\the\absline@numR}\to\actionlines@listR/
134 \xright@appenditem{-1008}\to\actions@listR/

s \elsel,

136 \xright@appenditem{\the\absline@num}\to\actionlines@list/
1137 \xright@appenditem{-1008}\to\actions@list,

1138 \fio/o

1139 }

1140 %

\ifl@dhidenumber \hidenumbering hidesnumber in margin. It usesaction code 1009. \hidenumberingonleftpage
\hidenumbering and \hidenumberingonrightpage ara variant, using action code only conditionnaly
\hidenumberingonleftpage
\hidenumberingonrighhPage: \newif\ifl@dhidenumber

2 \newcommand*{\hidenumbering}{

1143 \ifledRcol%

1144 \write\linenum@outR{\string\hide@num}/,

s \elsel,

1146 \write\linenum@out{\string\hide@num}/,

ng \f£i%

1148 }%

o \newcommand*{\hide@num}{’,

115 \ifledRcol,
\xright@appenditem{\the\absline@numR}\to\actionlines@listR/,
1152 \xright@appenditem{-1009}\to\actions@listR/,

\elsey,
\xright@appenditem{\the\absline@num}\to\actionlines@list/J/

1155 \xright@appenditem{-1009}\to\actions@list,

nse \£i%

115 }

55 \newcommand*{\hidenumberingonleftpage}{/

s \ifledRcol,

1160 \write\linenum@outR{\string\hide@num@left}/

s \elsel

1162 \write\linenum@out{\string\hide@num@left}’,

nes \£i%

nes 1%

V.11 Commands within the line-list file 109

e \newcommand*{\hide@num@left}{’

ne \ifledRcol,

168 \ifodd\page@numR\else’,

169 \xright@appenditem{\the\absline@numR}\to\actionlines@listR/
1170 \xright@appenditem{-1009}\to\actions@listR/,

7 \£i

1172 \else/,

173 \ifodd\page@num\else/,

174 \xright@appenditem{\the\absline@num}\to\actionlines@list/
175 \xright@appenditem{-1009}\to\actions@list,

1176 \fi%

nr o \£il}

ws I

1179

nso \newcommand*{\hidenumberingonrightpagel}{/

1181 \ifledRcol%

1182 \write\linenum@outR{\string\hide@num@rightl}y,
1183 \else%

1184 \write\linenum@out{\string\hide@num@right}y,
1185 \fi%

nss

155 \newcommand*{\hide@num@right}{’

1189 \ifledRcol%

1190 \ifodd\page@numR/,

1191 \xright@appenditem{\the\absline@numR}\to\actionlines@listR/
1192 \xright@appenditem{-1009}\to\actions@listR/,

1193 \f i%

1194 \else%

1195 \ifodd\page®@num/,

119 \xright@appenditem{\the\absline@num}\to\actionlines@list%/
1197 \xright@appenditem{-1009}\to\actions@list,

1198 \f i%

1199 \fi%

1200 }h

1202 o

\eref \@ref marks the start of a passage, for creation of a footnote reference. It takes two
\insert@count arguments:

« #1, the number of entries to add to \insertlines@list for this reference. This
value, here and within \edtext, which computes it and writes it to the line-list
file, will be stored in the count \insert@count.

1200 \newcount\insert@count

L)
1204 /o

« #2, a sequence of other line-list-file commands, executed to determine the ending
line-number. (This may also include other \@ref commands, corresponding to

\dummyQ@ref

110 V' Line counting

uses of \edtext within the first argument of another instance of \edtext.)

When nesting of \@ref commands does occur, it is necessary to temporarily redefine
\@ref within \@ref, so that we are only doing one of these at a time.

s \newcommand*{\dummy@ref} [2] {#2}
o

The first thing \@ref (i.e. \@refQreg) itself does is to add the specified number of items
to the \insertlines@list list.

7 \newcommand*{\@ref}[2]{%

\ifledRcolY,
\@ref@regR{#1}{#2}/,
\else,
\@refOreg{#1}{#2}/,
\£iJ,

s Yh

\newcommand*{\@ref@reg}[2]{/
\global\insert@count=#1\relax
\global\advance\@edtext@level by 17
\loop\ifnum\insert@count>\z@
\xright@appenditem{\the\absline@num}\to\insertlines@list
\global\advance\insert@count \m@ne
\repeat
P2

Next, process the second argument to determine the page and line numbers for the
end of this lemma. We temporarily equate \@ref to a different macro that just executes
its argument, so that nested \@ref commands are just skipped this time. Some other
macros need to be temporarily redefined to suppress their action.

\begingroup
\let\@ref=\dummyQref
\let\@lopL\@gobble
\let\page@action=\relax
\let\sub@action=\relax
\let\set@line@action=\relax
\let\@lab=\relax
\let\@lemma=\relax,
\let\@sw\@gobblethree’,

#2

\global\endpage@uum=\page@num

\global\endline@num=\1ine@num

\global\endsubline@num=\subline@num
\endgroup

o o

Now store all the information about the location of the lemma’s start and end in
\line@list.

\@ref@reg@parse

h

V.11 Commands within the line-list file 111

\xright@appenditem/,
{\the\page@num|\the\line@num|7
\ifsublines@ \the\subline®@num \else O\fil|7
\the\endpage@num|\the\endline@num|7
\ifsublines@ \the\endsubline@num \else O\fi}\to\line@list

>

And now, call \@ref@reg@parsearg, which can be also called by \@ref@later
\@ref@reg@parse{#2}/,

Decrease edtext level counter.

\global\advance\@edtext@level by -1

s }
7

The \@ref@reg@parsearg command parses the second argument of a \@ref or the
unique argument of \@ref@later written in the auxiliary fill.

First, create a list which stores every second argument of each \@sw in this lemma,
at this level. Also set the boolean about the use of lemma in this edtext level to false.

\newcommand{\@ref@reg@parse} [1]{/
\expandafter\list@create\expandafter{\csname sw@list@edtext@tmp@\the\
Qedtext@level\endcsnamel}y,
\providebool{lemmacommand@\the\Qedtext@levell},
\boolfalse{lemmacommand@\the\@edtext@levell},

o,
52 Jo

Execute the second argument of \@ref again, to perform for real all the commands
within it.

#17,
h

Now, we store the list of \@sw of this current \edtext as an element of the global list
of list of \@sw for a \edtext depth.

\ifnum\@edtext@level>0Y,
\def\create@this@edtext@level{\expandafter\list@create\expandafter{\
csname sw@list@edtext@\the\@edtext@level\endcsname}l},
\ifcsundef{sw@list@edtext@\the\Qedtext@level}{\create@this@edtext@level
H3¥%
\letcs{\@tmp}{sw@list@edtext@\the\C@edtext@levell/,
\letcs{\@tmpp}{sw@list@edtext@tmp@\the\@edtext@levell}
\xright@appenditem{\expandonce\Q@tmpp}\to\@tmpY
\global\cslet{sw@list@edtext@\the\Qedtext@level}{\@tmpl}/
\fif

\refQreg@later

\linenum@out

12

127

\iffirst@linenum@out®@
\first@linenum@out@true
\first@linenum@out@false

\this@line@list@version

112 V' Line counting

This macro is stored in the auxiliary file when using \edtextlater. It is used only to
get the correct value for the \sameword tools.

\newcommand{\@ref@later}[1]{/
\global\advance\@edtext@level by \@ne/,
\ifledRcolY,

\@ref@reg@parseR{#1}/,
\else,
\@ref@reg@parse{#1}/,
\fif,
\global\advance\@edtext@level by -\@neJ,

s T

V.12 Writing to the line-list file

We have now defined all the counters, lists, and commands involved in reading the line-
list file at the start of a section. Now we will cover the commands that reledmac uses
within the text of a section to write commands out to the line-list.

The file will be opened on output stream \1inenum@out.

\newwrite\linenum@out

h

Once any file is opened on this stream, we keep it open forever, or else switch to another
file that we keep open. The reason is that we want the output routine to write the page
number for every page to this file; otherwise we would have to write it at the start of
every line. But it is not very easy for the output routine to tell whether an output stream
is open or not. There is no way to test the status of a particular output stream directly,
and the asynchronous nature of output routines makes the status hard to determine by
other means.

We can manage pretty well by means of the \iffirst@linenum@out®@ flag; its in-
elegant name suggests the nature of the problem that made its creation necessary. It is
set to be true before any \1inenum@out file is opened. When such a file is opened for
the first time, it is done using \immediate, so that it will at once be safe for the output
routine to write to it; we then set this flag to false.

o \newif\iffirst@linenum@out@

\first@linenum@out@true

h

The commands allowed in the line-list file and their arguments can change between two
version of reledmac. The \this@line@list@version command is upgraded when
it happens. It is written in the file list. If we process a line-list file which used a older
version, that means the commands used inside are deprecated, and we can’t use them.

» \newcommand{\this@line@list@version}{5}/
23 h

\line@list@stuff

\new@line

1310

7 %

V.12 Writing to the line-list file 113

The \1ine@list@stuff{(file)} macro, which is called by \beginnumbering, performs
all the line-list operations needed at the start of a section. Its argument is the name of
the line-list file.

\newcommand*{\line@list@stuff}[1]1{%

5 h

First, use the commands of the previous section to interpret the line-list file from the
last run.

\read@linelist{#1}%

Now close the current output line-list file, if any, and open a new one. The first
time we open a line-list file for output, we do it using \immediate, and clear the
\iffirst@linenum@outQ flag.

\iffirst@linenum@out®@
\immediate\closeout\linenum@outy,
\global\first@linenum@out@false,
\immediate\openout\linenum@out=\1Qauxdir#1\relax,
\immediate\write\linenum@out{\string\line@list@version{\
this@line@list@version}}/
\ifledpaging/
\immediate\write\linenum@out{\string\@par@sync@option{\
@par@this@sync@optionl}}
\£if,

\else

7

If we get here, then this is not the first line-list we have seen, so we do not open or close
the files immediately.

\if@minipage
\leavevmode/,
\£if,
\closeout\linenum@outy,
\openout\linenum@out=\1Qauxdir#1\relax,
\write\linenum@out{\string\line@list@version{\this@line@list@version}}

A
\ifledpaging/
\write\linenum@out{\string\@par@sync@option{\@par@this@sync@option}}
A
\£if,
\fi}
A

The \new@line macro sends the \@nl command to the line-list file, to mark the start of
a new text line, and its page number.

\newcommand*{\new@line}{%

\if@noneed@Footnote

\flag@start
\flag@end

114 V' Line counting

\IfStrEq{\led@pb@setting}{after},
{\xifinlist{\the\absline@num}{\1@prev@nopb}/
{\xifinlist{\the\absline@num}{\normal@page@break},
{\numgdef{\@next@page}{\c@page+\Cnely
\write\linenum@out{\string\@nl [\@next@page] [\@next@pagel }’,
Y
{\write\linenum@out{\string\@nl [\the\c@page] [\thepagel }}/
Y
{\write\linenum@out{\string\@nl [\the\c@pagel [\thepagel}}}/
{3
\IfStrEq{\led@pb@setting}{before}’
{\numdef{\next@absline}{\the\absline@num+\@ne}y,
\xifinlist{\next@absline}{\1@prev@nopbl}/
{\xifinlist{\the\absline@num}{\normal@page@break},
{\numgdef{\nc@page}{\c@page+\@nel/,
\write\linenum@out{\string\@nl [\nc@page] [\nc@pagel}’,
Y
{\write\linenum@out{\string\@nl [\the\c@page] [\thepage] }}/
Y
{\write\linenum@out{\string\@nl [\the\c@page] [\thepagel}}’
Y
{3
\IfStrEqCase{\led@pb@setting}{{before}{\relax}{after}{\relax}}[\write\
linenum@out{\string\@nl [\the\c@page] [\thepagel }17
}

o h

\if@noneed@Footnote is a boolean to check if we have to print a error message when
a \edtext is called without any critical notes.

We enclose a lemma marked by \edtext in \flag@start and \flag@end: these send
the \@ref command to the line-list file. \edtext is responsible for setting the value of
\insert@count appropriately; it actually gets done by the various footnote macros.

\newif\if@noneed@Footnotey,

\newcommand*{\flag@start}{/
\ifledRcolY,
\edef\next{\write\linenum@outR{’
\string\@ref [\the\insert@countR] [}}%
\next/,
\ifnum\insert@countR<1Y%
\if@noneed@Footnote\else),
\led@err@EdtextWithoutFootnote),
\fiY,
\fi%
\else/,
\edef\next{\write\linenum@out{’
\string\@ref [\the\insert@count] [}}/

\flag@start@later
\flag@end@later

\startsub
\endsub

369

V.12 Writing to the line-list file 115

\next?
\ifnum\insert@count<19,
\if@noneed@Footnote\else),
\led@err@EdtextWithoutFootnote}
\fiY,
\£fi%
\fi}%

o \newcommand*{\flag@end}{/,

\ifledRcol
\write\linenum@outR{]}/
\else/,
\write\linenum@out{]}/
\fi}V

\flag@start@later and \flag@end@later: these send the\@ref@later to the line-
list file command to the line-list file

\newcommand*{\flag@start@later}{J,
\ifledRcol,
\write\linenum@outR{\string\Q@ref@later [}/
\else/,
\write\linenum@out{\string\@ref@later [}/
\£if,

75 h

\newcommand{\flag@end@later}{/
\ifledRcolY,
\write\linenum@outR{]}/
\else/,
\write\linenum@out{]}J
\fi%

N

h

\startsub and \endsub turn sub-lineation on and off, by writing appropriate instruc-
tions to the line-list file. When sub-lineation is in effect, the line number counter is
frozen and the sub-line counter advances instead. If one of these commands appears in
the middle of a line, it does not take effect until the next line; in other words, a line is
counted as a line or sub-line depending on what it started out as, even if that changes in
the middle.

We tinker with \1lastskip because a command of either sort really needs to be at-
tached to the last word preceding the change, not the first word that follows the change.
This is because sub-lineation will often turn on and off in mid-line—stage directions, for
example, often are mixed with dialogue in that way—and when a line is mixed we want
to label it using the system that was in effect at its start. But when sub-lineation begins
at the very start of a line we have a problem, if we don’t put in this code.

116 V' Line counting

550 \newcommand*{\startsub}{\dimenO\lastskip

57 \1fdim\dimen0>Opt \unskip \fi

s \ifledRcol \write\linenum@outR{\string\sub@on}y,
59 \else \write\linenum@out{\string\sub@on}/,
o \fi

w1 \ifdim\dimen0>Opt \hskip\dimenO \fi}

152 \def\endsub{\dimenO\lastskip

i35 \1fdim\dimen0>Opt \unskip \fi

e \ifledRcol \write\linenum@outR{\string\sub@off}/,
5 \else \write\linenum@out{\string\sub@off}/,
139 \fi

37 \ifdim\dimen0>Opt \hskip\dimenO \fi}

\advanceline You can use \advanceline{(num)} in running text to advance the current visible line-
number by a specified value, positive or negative.

w00 \newcommand*{\advanceline}[1]{\leavevmode/,

wi \ifledRcol \write\linenum@outR{\string\@adv[#1]}/
1402 \else \write\linenum@out{\string\@adv [#1]}/,
ws \fi%

1404}

1405 Y

\setline You can use \setline{(num)} in running text (i.e., within \pstart...\pend) to set the
current visible line-number to a specified positive value.

1406

1207 \newcommand*{\setline} [1]{%

s \leavevmode/,

1409 \ifnum#1<\z@

1410 \led@warn@BadSetline

1411 \else

112 \ifledRcol \write\linenum@outR{\string\@set [#1]1}/,
1413 \else \write\linenum@out{\string\@set [#1]}/,
1414 \fi

1415 \fi}

\setlinenum You can use \setlinenum{(num)} before a \pstart to set the visible line-number to
a specified positive value. It writes a \1@d@set command to the line-list file.

1418

110 \newcommand*{\setlinenum} [1] {7,
1420 \ifnum#1<\z@

1421 \led@warn@BadSetlinenum

\startlock
\endlock

\ifl@dskipnumber
\ifl@dskipversenumber
\l@dskipnumbertrue
\l@dskipnumberfalséf

\skipnumbering

1441

1459

V.12 Writing to the line-list file 117

\else
\ifledRcol \write\linenum@outR{\string\l@d@set [#1]}
\else \write\linenum@out{\string\1@d@set [#1]} \fi
\fi}

You can use \startlock or \endlock in running text to start or end line number lock-
ing at the current line. They decide whether line numbers or sub-line numbers are af-
fected, depending on the current state of the sub-lineation flags.

\newcommand*{\startlock}{/
\ifledRcol \write\linenum@outR{\string\lock@on}/,

\else \write\linenum@out{\string\lock@on}j,
\fi}

; \def\endlock{’
\ifledRcol \write\linenum@outR{\string\lock@offl}J,
\else \write\linenum@out{\string\lock@off}/,
\fi}

7 %

In numbered text \skipnumbering will suspend the numbering for that particular line.

\newif\ifl@dskipnumber
\newif\ifl@dskipversenumber?,
\newcommand*{\skipnumbering}{/
\leavevmode/,
\ifledRcol/,
\ifinstanzaj,
\write\linenum@outR{\string\nCnum@stanzalj,
\else,
\write\linenum@outR{\string\n@num}j,
\fi%
\advanceline{-1}}
\else/,
\ifinstanzal,
\write\linenum@out{\string\n@num@stanzalj,
\else/,
\write\linenum@out{\string\n@num}J,
\£i%
\advanceline{-1}%
\fi%

7 Yh

h

118 VI Marking text for notes

VI Marking text for notes

The \edtext macro is used to create all footnotes and endnotes, as well as to print the
portion of the main text to which a given note or notes is keyed. The idea is to have that
lemma appear only once in the .tex file: all instances of it in the main text and in the
notes are copied from that one appearance.

The \edtext macro takes two arguments.

\edtext{#1}{#2}

« #1 is the piece of the main text being glossed; it gets added to the main text, and
is also used as a lemma for notes to it.

« #2 is a series of subsidiary macros that generate various kinds of notes.

The \edtext macro may be used (somewhat) recursively; that is, \edtext may
be used within its own first argument. The code would be much simpler without this
feature, but nested notes will commonly be necessary: it is quite likely that we will have
an explanatory note for a long passage and notes on variants for individual words within
that passage. The situation we can’t handle is overlapping notes that are not nested: for
example, one note covering lines 10-15, and another covering 12-18. You can handle
such cases by using the \lemma and \1inenum macros within #2: they alter the copy
of the lemma and the line numbers that are passed to the notes, and hence allow you to
overcome any limitations of this system, albeit with extra effort.

The recursive operation of \edtext will fail if you try to use a copy that is called
something other than \edtext. In order to handle recursion, \edtext needs to redefine
its own definition temporarily at one point, and that does not work if the macro you are
calling is not actually named \edtext. There is no problem as long as \edtext is not
invoked in the first argument. If you want to call \edtext something else, it is best
to create instead a macro that expands to an invocation of \edtext, rather than copy-
ing \edtext and giving it a new name; otherwise you will need to add an appropriate
definition for your new macro to \morenoexpands.

Side effects of our line-numbering code make it impossible to use the usual foot-
note macros directly within a paragraph whose lines are numbered (see comments to
\do@line, p. 139). Instead, the appropriate note-generating command is ap-
pended to the list macro \inserts@list, and when \pend completes the paragraph it
inserts all the notes at the proper places.

Note that we do not provide previous-note information, although it is often wanted;
your own macros must handle that. We ca not do it correctly without keeping track
of what kind of notes have gone past: it is not just a matter of remembering the line
numbers associated with the previous invocation of \edtext, because that might have
been for a different kind of note. It is preferable for your footnote macros to store and
recall this kind of information if they need it.

VI.1 \edtext itself

The various note-generating macros might want to request that commands be executed
not at once, but in close connection with the start or end of the lemma. For example,

\end@lemmas

\dummy@edtext

\dummy@edtext@showlemma

\no@expands
\morenoexpands

VL1 \edtext itself 119

footnote numbers in the text should be connected to the end of the lemma; or, instead
of a single macro to create a note listing variants, you might want to use several macros
in series to create individual variants, which would each add information to a private
macro or token register, which in turn would be formatted and output when all of #2
for the lemma has been read.

To accomodate this, we provide a list macro to which macros may add commands that
should subsequently be executed at the end of the lemma when that lemma is added
to the text of the paragraph. A macro should add its contribution to \end@lemmas by
using \xleft@appenditem. (Anything that needs to be done at the start of the lemma
may be handled using \aftergroup, since the commands specified within \edtext’s
second argument are executed within a group that ends just before the lemma is added
to the main text.)

\end@lemnas is intended for the few things that need to be associated with the end
of the lemma, like footnote numbers. Such numbers are not implemented in the current
version, and indeed no use is currently made of \end@lemmas or of the \aftergroup
trick. The general approach would be to define a macro to be used within the second
argument of \edtext that would add the appropriate command to \end@lemmas.

Commands that are added to this list should always take care not to do anything that
adds possible line-breaks to the output; otherwise line numbering could be thrown off.

o \list@create{\end@lemmas}

b

We now need to define a number of macros that allow us to weed out nested instances
of \edtext, and other problematic macros, from our lemma. This is similar to what we
did in reading the line-list file using \dummy@ref and various redefinitions—and that is
because nested \edtexts macros create nested \@ref entries in the line-list file.

. \newcommand{\dummy@edtext} [2] {#1}
s

Some time, we want to obtain only the first argument of \edtext, while also wrapping
it in \showlemma. For example, when printing a \eledsection.

\newcommand{\dummy@edtext@showlemma} [2] {\showlemma{#1}}/,

)

We are going to need another macro that takes one argument and ignores it entirely.
This is supplied by the BIEX \@gobble{(arg)}.

We need to turn off macro expansion for certain sorts of macros we are likely to see
within the lemma and within the notes.

The first class is font-changing macros. We suppress expansion for them by letting
them become equal to zero B This is done because we want to pass into our notes the

%Since ‘control sequences equivalent to characters are not expandable’—The TeXbook, answer to Exercise
20.14.

1466

1476

1477

120 VI Marking text for notes

generic commands to change to roman or whatever, and not their expansions that will
ask for a particular style at a specified size. The notes may well be in a smaller font, so
the command should be expanded later, when the note’s environment is in effect.

A second sort to turn off includes a few of the accent macros. Most are not a problem:
an accent that is expanded to an \accent command may be harder to read but it works
just the same. The ones that cause problems are: those that use alignments—TgX seems to
get confused about the difference between alignment parameters and macro parameters;
those that use temporary control sequences; and those that look carefully at what the
current font is.

(The \copyright macro defined in PraIn TgX has this sort of problem as well, but
is not used enough to bother with. That macro, and any other that causes trouble, will
get by all right if you put a \protect in front of it in your file.)

We also need to eliminate all reledmac macros like \edlabel and \setline that
write things to auxiliary files: that writing should be done only once. And we make
\edtext itself, if it appears within its own argument, do nothing but copy its first ar-
gument.

Finally, we execute \morenoexpands. The version of \morenoexpands defined
here does nothing; but you may define a version of your own when you need to add
more expansion suppressions as needed with your macros. That makes it possible to
make such additions without needing to copy or modify the standard reledmac code.
If you define your own \morenoexpands, you must be very careful about spaces: if the
macro adds any spaces to the text when it runs, extra space will appear in the main text
when \edtext is used.

The \new@series command also adds \let\footnote(X)\@gobble to the end of
the \no@expands macro for the series (X).

(A related problem, not addressed by these two macros, is that of characters whose
category code are changed by any of the macros used in the arguments to \edtext.
Since the category codes are set when the arguments are scanned, macros that depend
on changing them will not work. We have most often encountered this with characters
that are made ‘active’ within text in some, but not all, of the languages used within
the document. One way around the problem, if it takes this form, is to ensure that
those characters are always active. Within languages that make no special use of them,
their associated control sequences should simply return the proper character. A simpler
solution is to avoid active characters, using LuaTEX or XgETEX.)

\newcommand*{\no@expands}{/,
\let\select@@lemmafont=0Y
\let\startsub=\relax \let\endsub=\relax
\let\startlock=\relax \let\endlock=\relax
\let\edlabel=\@gobble
\let\setline=\@gobble \let\advanceline=\@gobble
\let\sameword\sameword@inedtext/,
\let\edtext=\dummyQedtext
\1l@dtabnoexpands
\morenoexpands}

\let\morenoexpands=\relax

\theedtext

\edtext

1489

1490

1498

h

VL1 \edtext itself 121

Now, we define an empty \@tag command. It will be redefine by \edtext: its value is
the first argument. It will be used by the \Xfootnote commands.

s \newcommand{\@tag}{}

h

This counter is increased by 1 at each level of \edtext.

1 \newcount\@edtext@levely,
. \@edtext@level=0Y
o Y%

This boolean is set to TRUE before reading the second argument of a \edtext. It is
tested on some macro which must be executed only inside a second argument.

\newif\if@edtext@secondargQ/,
h

The edtext counter is increased at each \edtext command. It is used to add to insert
hyperlinks between a notes and the lemma.

% \newcounter{edtext}

\renewcommand{\theedtext}{edtxt@\arabic{edtext}}/
%
When executed, \edtext first ensures that we are in horizontal mode.

\newcommand{\edtext}[2]{\leavevmode/,
%

Then, check if we are in a numbered paragraph (\pstart...\pend)..

\ifnumberedpar@/,

Y.
2 %

we increment the \@edtext@level TgX counter to know in which level of \edtext we
are.

\global\advance\Q@edtext@level by 17
h

We also increase the edtext KIEX counter to insert hypertarget if the hyperref package
is loaded.

\stepcounter{edtext}’

Y/
9% fo

By default, we do not use \lemma

\global\@lemmacommand@falsey,

15

\Qtag

10

122 VI Marking text for notes

\begingroup’,
A

We get the next series of samewords data in the list of samewords data for the current
edtext level. We push them inside \sw@inthisedtext.

\ifledRcol,

\ifcsvoid{sw@list@edtextR@\the\Qedtext@levell}/,
{\global\let\sw@inthisedtext\emptyl}/
{\expandafter\gl@p\csname sw@list@edtextRO@\the\Qedtext@level\

endcsname\to\sw@inthisedtext}/
\else/,

\ifcsvoid{sw@list@edtext@\the\Qedtext@levell},
{\global\let\sw@inthisedtext\empty}/
{\expandafter\gl@p\csname sw@list@edtext@\the\Qedtext@level\

endcsname\to\sw@inthisedtext}/,

\fi%
7

Our normal lemma is just argument #1; but that argument could have further invoca-
tions of \edtext within it. We get a copy of the lemma without any \edtext macros
within it by temporarily redefining \edtext to just copy its first argument and ignore
the other, and then expand #1 into \@tag, our lemma.

This is done within a group that starts here, in order to get the original \edtext
restored; within this group we have also turned off the expansion of those control se-
quences commonly found within text that can cause trouble for us.

\global\renewcommand{\@tag}{’
\no@expands #17
Yh

Prepare more data for the benefit of note-generating macros: the line references and
font specifier for this lemma go to \1@d@nums.

\set@line/,

\insert@count will be altered by the note-generating macros: it counts the number of
deferred footnotes or other insertions generated by this instance of \edtext. If we are
in a right column (reledpar), we use \insert@countR instead of \insert@count.

\ifledRcol \globall\insert@countR \z@J
\else \globallinsert@count \z@ \fiJ,

o h

Now process the note-generating macros in argument #2 (i.e., \Afootnote, \lemna,
etc.). \ignorespaces is here to skip over any spaces that might appear at the start
of #2; otherwise they wind up in the main text. Footnote and other macros that are
used within #2 should all end with \ignorespaces as well, to skip any spaces between
macros when several are used in series.

o,
> o

535
0
536 Jo

VL1 \edtext itself 123

\@edtext@secondarg@true/,

\ignorespaces #2\relax,

\Q@edtext@secondarg@false),
A

With polyglossia, you must track whether the language reads left to right (English)
or right to left (Arabic).

\@ifundefined{xpg@main@language}{/if not polyglossia
\flag@start}/
{\ifO@RTL\flag@end\else\flag@start\fiJ,

Y

We write in the numbered file wether the current \edtext has a \lemma in the the
second argument.

\if@lemmacommand@,
\ifledRcolY,
\write\linenum@outR{\string\@lemmaly,
\else
\write\linenum@out{\string\@lemma},
\£fi%
\fi%

Finally, we are ready to admit the first argument into the current paragraph.

It is important that we generate and output all the notes for this chunk of text before
putting the text into the paragraph: notes that are referenced by line number should
generally be tied to the start of the passage they gloss, not the end. That should all
be done within the expansion of #2 above, or in \aftergroup commands within that
expansion.

\endgroup/,
\ifdef{\hypertarget}/
{4
\csedef{thisedtext@\the\@edtext@level}{\theedtext}/We need one
macro by level, as #1 can contain new \edtext
\Hy@raisedlink@left{\hypertarget{\csuse{thisedtext@\the\
Qedtext@levell}:start}{}}/
\showlemma{#1}/,
\Hy@raisedlink{\hypertarget{\csuse{thisedtext@\the\Qedtext@level}:
end}{}1}
Y
%
\showlemma{#1}/,
Y

Finally, we add any insertions that are associated with the end of the lemma. Foot-
notes that are identified by symbols rather than by where the lemma begins in the main
text need to be done here, and not above.

124 VI Marking text for notes

1549 \ifx\end@lemmas\empty \else

1550 \gl@p\end@lemmas\to\x@lemma,

1551 \x@lemmaJ,

1552 \global\let\x@lemma=\relax/,

1553 \f:i.%1

1554 \@ifundefined{xpg@main@language}{/if not polyglossia

1555 \flag@end}/

1556 {\ifO@RTL\flag@start\else\flag@end\fi), With polyglossia, you must
track whether the language reads left to right (English) or right to left
(Arabic) .

1557 }%

1558 %

We switch some flags to false.
« The one that checks having footnotes inside a \edtext.

« The one that says we are inside a \edtext. In fact, it is not a flag, but a counter
which is increased to 1 in each leavel of \edtext.

« The one that says we are inside a \@lemma.

1559 \global\@noneed@Footnotefalse,

1560 \global\advance\@edtext@level by -17,
1561 \global\@lemmacommand@false,

1562 %

We also reset \@beforeinsertofthisedtext

1563 \global\let\@beforeinsertofthisedtext\relaxy,

If we are outside of a numbered paragraph, we send an error message and print the first
argument.

1565

\else/,
is6c \showlemma{#1} (\textbf{\textsc{Edtext outside numbered paragraph}})\
led@err@edtextoutsidepstarty

\£i,

1568 tth
1569
1570

1571

\@beforeinsertofthisedtext \@beforeinsertofthisedtext isan internal macro. reledmac or reledpar can add
in this macro any content required to be executed before doing any \insert related to
a \edtext. Its content is \1et equal to \relax at the end of every \edtext.

572 \let\@beforeinsertofthisedtext\relax
1513 o

\ifnumberline The \ifnumberline option can be set to FALSE to disable line numbering.

\set@line

\lemma

=

VI2 Substitute lemma 125

\newif\ifnumberline

;75 \numberlinetrue

o,
576 fo

The \set@line macro is called by \edtext to put the line-reference field and font spec-
ifier for the current block of text into \1@d@nums.

One instance of \edtext may generate several notes, or it may generate none — it is
legitimate for argument #2 to \edtext to be empty. But \flag@start and \flag@end
induce the generation of a single entry in \1ine@list during the next run, and it is
vital to also remove one and only one \1ine@list entry here.

If no more lines are listed in \1ine®@list, something is wrong — probably just some
change in the input. We set all the numbers to zeros, following an old publishing con-
vention for numerical references that have not yet been resolved.

\newcommand*{\set@line}{’
\ifledRcol
\ifx\line@listR\empty
\global\noteschanged@true
\xdef\10dCnums{000|000]/000|000|000|000|\edfont@info}’,
\else
\gl@p\line@listR\to\@tempb
\xdef\1@dCnums{\@tempb | \edfont@infol}j,
\global\let\@tempb=\undefined
\fi
\else
\ifx\line@list\empty
\global\noteschanged@true
\xdef\10dCnums{000|000]/000|000|000|000|\edfont@info}/
\else
\gl@p\line@list\to\@tempb
\xdef\1@dCnums{\@tempb | \edfont@infol}y,
\global\let\@tempb=\undefined
\fi
\fi}

The macro \edfont@info returns coded information about the current font.

50 \newcommand*{\edfont@info}{\f@encoding/\f@family/\f@series/\f@shape}

o1 o

V1.2 Substitute lemma

The \lemma{(text)} macro allows you to change the lemma that is passed on to
the notes. Read about \@tag in normal \edtext macro for more details about

\sw@list@inedtext and \no@expands (VLI p. [123).

\@lemma

1610
1611

1612

\if@lemmacommand®@

1614

\linenum

\line@set

126 VI Marking text for notes

s \newcommand*{\lemma} [1]{%

\global\@lemmacommand@truey,

\global\renewcommand{\@tag}{/
\no@expands #1

Y

\ignorespaces/,

Y

o,
9 o

The \@lemma is written in the numbered file to set which \edtext has an \lemma as
second argument.

\newcommand{\@lemma}{’,
\booltrue{lemmacommand@\the\@edtext@levell}’
Y

)
3 b

This boolean is set to TRUE inside a \edtext (or \critext) when a \1lemma command
is called. That is useful for some commands which can have a different behavior if the
lemma in the note is different from the lemma in the main text.

\newif\if@lemmacommand@/,

5

V1.3 Substitute line numbers

The \linenum macro can change any or all of the page and line numbers that are passed
on to the notes.

As argument \linenum takes a set of seven parameters separated by vertical bars,
in the format used internally for \1@d@nums (see .9 p. P4): the starting page, line, and
sub-line numbers, followed by the ending page, line, and sub-line numbers, and then the
font specifier for the lemma. However, you can omit any parameters you do not want
to change, and you can omit a string of vertical bars at the end of the argument. Hence
\linenum{18|4|0[18|7|1]0%} is an invocation that changes all the parameters, but
\linenum{ |3} only changes the starting line number, and leaves the rest unaltered.

We use \\ as an internal separator for the macro parameters.

\newcommand*{\1linenum} [1]{7
\xdef\@tempa{#1|||||||\noexpand\\\1@d@nums}y,
\global\let\1@d@nums=\empty
\expandafter\line@set\@tempa|\\\ignorespaces}

P2

\linenum calls \1ine@set to do the actual work; it looks at the first number in the
argument to \1inenum, sets the corresponding value in \1@d@nums, and then calls itself
to process the next number in the \1inenum argument, if there are more numbers in
\1@d@nums to process.

VL4 Lemma disambiguation 127

620 \def\line@set#1 |#2\\#3|#4\\{/,

\gdef\@tempb{#13}/
\ifx\@tempb\empty

\1ledeadd{#3}%
\else

\1ledeadd{#1}/
\fi
\gdef\@tempb{#41}J,
\ifx\@tempb\empty\else

\1e@d@add{|}\1line@set#2\\#4\\/,

\fi}

\line@set uses \1@d@add to tack numbers or vertical bars onto the right hand end of
\led@nums.

» \newcommand{\1@d@add} [1] {\xdef\1@d@nums{\1@d@nums#1}}

o,
5

VI.4 Lemma disambiguation

The mechanism which counts the occurrence of a same word in a same line is quite
complex, because, when KIEX reads a command between a \pstart and a \pend, it
does not know yet which are the line numbers.

The general mechanism is the following:

« At the first run, each \sameword command increments an etoolbox counter
the name of which contains the argument of the \sameword commands.

« Then this counter, associated with the argument of \sameword is stored with the
\@sw command in the auxiliary file of the current reledmac section (the .1, .2...
file).

« When this auxiliary file is read at the second run, different operations are
achieved:

1. Get the rank of each \sameword in a line (relative rank) from the rank of
each \sameword in all the numbered section (absolute rank):

— For each paired \sameword argument and absolute line number, a
counter is defined. Its value corresponds to the number of times
\sameword{(argument)} is called from the beginning of the lineation
to the end of the current line. We also store the same data for the preced-
ing absolute line number, if it does not have \sameword{(argument)}.

- For each \sameword having the same argument, we subtract from its
absolute rank the number stored for the paired \sameword argument
and previous absolute line number. Consequently, we obtain the relative
rank.

128

2.

VI Marking text for notes

— See the following example which explains how, for same \sameword,
absolute ranks are transformed to relative ranks.

At line 1:
absolute rank 1 becomes relative rank 1-0 =1
1 is stored for this \sameword and line 1
At line 2:
absolute rank 2 becomes relative rank 2-1 =1
absolute rank 3 becomes relative rank 3-1 = 2
3 is stored for this \sameword and line 2
At line 3:
no \sameword for this line.
3 is stored for this \sameword and line 3
At line 4:
absolute rank 4 becomes relative rank 4-3 = 1
4 is stored for this \sameword and line 4

Create lists of lists of \sameword by depth of \edtext. That is: create a list
for \edtexts of level 1, a list for \edtexts of level 2, a list for \edtexts of
level 3 etc. For each \edtext in these lists, we store all of the relative ranks of
\saweword which are called as lemma information. That is: 1) either called
in the first argument of \sameword, or, 2) called in the \1emma macro of the
second argument of \sameword AND marked by the optional argument of
\saweword in first argument of \edtext.

For example, suppose a line with nested \edtexts which contains some
word marked by \sameword and having the following relative rank:

bar! | | foo! foo? bar? foo? ‘(A)(B) foo* bar® |(C) (D) bar* | (E)
In this example, all lemma information for \edtext is framed. The text in
parenthesis is the content of critical notes associated to the preceding frame.
As you can see, we have two level of \edtext.

The list for \edtexts of level 1is {{1,2,2,3,4,3},{5,4}}.

The list for \edtexts of level 2 is {{1,2,2,3}, {5}}.

As you can see, the mandatory argument of \sameword does not matter: we
store the rank informations for every word potentially ambiguous.

« At the second run, when a critical notes is called, we associate it to the next item
of the list associated to its \edtext level. So, in the previous example:

Critical notes (A) and (B) are associated with {1, 2,2, 3}.
Critical note (C) is associated with {1,2,2,3,4,3}.
Critical note (D) is associated with {5}.

Critical note (E) is associated with {5,4}.

« At the second run, when a critical note is printed:

The \sameword command is let \sameword@inedtext.

\get@swotxt

VL4 Lemma disambiguation 129

— At each call of this \sameword@inedtext, we step to the next element of

the list associated to the note. Let it be 7.

— For the word marked by \sameword, we calculate how many time it is called

in its line. To do it:

* We get the absolute line number of the current \sameword. This abso-
lute line number was stored with a list of relative ranks for the current
\edtext. That means, in the previous example, that if the absolute line
number of \edtext was 1, that critical notes (A) and (B) were not as-
sociated with {1, 2, 2,3} but with {(1,1),(2,1),(2,1),(3,1)}. Such a
method of knowing the absolute line number associated to a \sameword
is required because a \edtext can overlap many lines, but \sameword
can’t get it.

When reading the auxiliary file, we get the value associated to the pair
composed by the current marked word and the current absolute line
number. To this value, we subtract the value associated to the pair com-
posed by the current marked word and the previous absolute line num-
ber. Let the result be n.

- If n > 1, that means the current word appears more than once in its line. In

this case, we call \showwordrank with the word as the first argument and
r as the second argument. If the word is called only once, we just print it.

After theory, implementation.

As the argument of \sameword can contain an active character if we use inputenc with
utf8 option instead of native UTF-8 engine, we store its detokenized content in a macro
in order to allow the dynamic name of macro with \csname &

Because there is a bug with \detokenize and XfIgX when using non BMP char-
acterse], we detokenize only for non-XglgXengines. In any case, in XflEXa \csname
construction can contain UTF-8 characters without a problem, as UTF-8 characters are
not managed with category codes, but instead read directly as UTF-8 characters.

s \newcommand{\get@sw@txt}[1]{
\ifxetex),

\xdef\swO@txt{#1}

\else/,

\expandafter\xdef\expandafter\swl@txt\expandafter{\detokenize{#1}}/

\fi%

> Yh
s

The hight level macro \sameword, used by the editor.

\newcommandx{\sameword} [2] [1,usedefault] {’
\leavevmode/,
\get@swOtxt{#2}/

26See http://tex.stackexchange.com/q/244538/7712.
2Thttp://sourceforge.net/p/xetex/bugs/108/

http://tex.stackexchange.com/q/244538/7712
http://sourceforge.net/p/xetex/bugs/108/

\if@addsw«w

YH{#13}

130 VI Marking text for notes

Now, the real code. First, increment the counter corresponding to the argument.

\unless\ifledRcol/,
\csnumgdef{sw0\sw@txt}{\csuse{sw@\sw@txt}+\Onel}/

o,
50 Jo

Then, write its value to the numbered file.

\protected@urite\linenum@out{}{\string\@sw{\sw@txt}{\csuse{sw@\swltxt
#1337

.
2 o

Do the same thing if we are in the right column.

\else’,
\csnumgdef{sw@\swl@txt}{\csuse{sw@\swl@txt}+\@nel}/
\protected@urite\linenum@outR{}{\string\@sw{\sw@txt}{\csuse{sw@\swltxt

\£iY,

%

And print the word.
#2/,

59 Yh

h

A flag set to true if a \@sw relative rank must be added to the list of ranks for a specific
\edtext.

\newif\if@addsw’,

%

The command printed in the auxiliary files.

\newcommand{\@sw}[3]{/
\get@swotxt{#1}/
\unless\ifledRcol’,

5

First, define a counter which store the second argument as value for a each paired abso-
lute line number/first argument

\csxdef{sw@\sw@txt @\the\absline@num @\the\section@num}{#21}/
%

If such argument was not defined for the preceding line, define it.

\numdef{\prev@line}{\the\absline@num-1}j,
\ifcsundef{sw@\sw@txt @\prev@line @\the\section@num}{J

\csnumgdef{sw@\sw@txt @\prev@line @\the\section@num}{#2-1}J
HY

VL4 Lemma disambiguation

Then, calculate the position of the word in the line.

1675 %

131

\numdef{\the@sw}{#2-\csuse{sw@\swl@txt @\prev@line @\the\section@num}}J,

And do the same thing for the right side.

1676

16

1678

1679

1680

\else/,

3%
\fi%

1684

\csxdef{sw@\sw@txt Q@\the\absline@numR @\the\section@numR OR}{#2}/

\numdef{\prev@line}{\the\absline@numR-11}J,

\ifcsundef{sw@\sw@txt @\prev@line @\the\section@numR @R}{/
\csnumgdef{sw@\sw@txt @\prev@line @\the\section@numR Q@R}{#2-1}J
H3¥%

\numdef{\the@sw}{#2-\csuse{sw@\swl@txt @\prev@line @\the\section@numR

And now, add it to the list of \@sw for the current edtext, in all depth.

\@tempcnta=\Q@edtextOlevel
\@whilenum{\@tempcnta>0}\do{’

\ifcsdef{sw@list@edtext@tmp@\the\Q@tempcntaly,
{4
\Qaddswfalse/,
\notbool{lemmacommand@\the\@tempcntal}y
{\@addswtruel}’
{\IfStrEq{#3}{inlemma}/,
{\@addswtrue}’
{
\def\do##1{J,
\ifnumequal{##1}{\the\@tempcntal}y
{\@addswtrue\listbreakl}/,
{3
}%
\docsvlist{#3}/
Y

%

\if@addsw/,
\letcs{\@tmp}{sw@list@edtext@tmp@\the\@tempcntaly,
\ifledRcol,

\xright@appenditem{{\the@sw}{\the\absline@numR}}\to\Qtmp/,
\else/,
\xright@appenditem{{\the@sw}{\the\absline@num}}\to\@tmpy,
\£i%
\cslet{sw@list@edtext@tmp@\the\@tempcnta}{\Q@tmpl}/
\fi%
Y
{3
\advance\@tempcnta by -1

@R

\sameword@inedtext

5
726
6 fo

132 VI Marking text for notes

The command called when \sameword is called in a \edtext.

s \newcommandx{\sameword@inedtext}[2] [1,usedefault]{%

\get@swotxt{#2}/
\unless\ifledRcol@/,
%

Just a precaution.

\ifx\sw@list@inedtext\empty/
\def\the@sw{999}%
\def\this@absline{-99}%

\else’,

But in many cases, at this step, we should have some content in the list \sw@list@inedtext,
which contains the reference for \edtext.

\gl@p\sw@list@inedtext\to\@tmpY,
\edef\the@sw{\expandafter\@firstoftwo\@tmp}/
\edef\this@absline{\expandafter\@secondoftwo\@tmpl}/
\fi%
)2

First, calculate the number of occurrences of the word in the current line

\ifcsdef{sw@\sw@txt @\this@absline @\the\section@num}{/,
\numdef{\prev@line}{\this@absline-1}J,
\numdef{\sw@atthisline}{\csuse{sw@\sw@txt @\this@absline @\the\

section@num}-\csuse{sw@\sw@txt @\prev@line @\the\section®num}}/
jyA
{\numdef{\sw@atthisline}{0}}%

%

Finally, print the rank, but only if there is more than one occurrence of the word in the
current line.

\ifnumgreater{\sw@atthisline}{1}/
{\showwordrank{#2}{\the@sw}}/,
{#2}7,
%

And the same for right side.

\else/,

\ifx\sw@list@inedtext\empty’,
\def\the0sw{999}/,
\def\this@absline{-99}/

\else/,
\gl@p\sw@list@inedtext\to\@tmpY,
\edef\the@sw{\expandafter\@firstoftwo\@tmp}/
\edef\this@absline{\expandafter\@secondoftwo\@tmpl}/

\raw@text
\ifnumberedpar®@
\numberedpar@true
\numberedpar@false
\num@lines
\one@line
\par@line

133

\£i%

\ifcsdef{sw@\sw@txt @\this@absline @\the\section@numR @R}{
\numdef{\prev@line}{\this@absline-1}J,
\numdef{\sw@atthisline}{\csuse{sw@\sw@txt @\this@absline @\the\

section@uumR @R}-\csuse{sw@\sw@txt Q\prev@line @\the\section@numR @R}}/
Y
{\numdef{\sw@atthisline}{0}}/
\ifnumgreater{\sw@atthisline}{1}/
{\showwordrank{#2}{\the@sw}}/,
{#2}7,
\fi%

o Yh
761 %

Finally, the way the rank will be printed.

> \newcommand{\showwordrank} [2] {’

#1#2/
Y

,.y%

VII Paragraph decomposition and reassembly

In order to be able to count the lines of text and affix line numbers, we add an extra stage
of processing for each paragraph. We send the paragraph into a box register, rather than
straight onto the vertical list, and when the paragraph ends we slice the paragraph into
its component lines; to each line we add any notes or line numbers, add a command
to write to the line-list, and then at last send the line to the vertical list. This section
contains all the code for this processing.

VII.1 Boxes, counters, \pstart and \pend

Here are numbers and flags that are used internally in the course of the paragraph de-
composition.

When we first form the paragraph, it goes into a box register, \raw@text, instead
of onto the current vertical list. The \ifnumberedpar@ flag will be true while a para-
graph is being processed in that way. \num@lines will store the number of lines in the
paragraph when it is complete. When we chop it up into lines, each line in turn goes
into the \one@line register, and \par@line will be the number of that line within the
paragraph.

\newbox\raw@text
\newif\ifnumberedpar@

s \newcount\num@lines

\newbox\one@line

o \newcount\par@line

- %

\pstart
\AtEveryPstart
\numberpstarttrue
\numberpstartfalse
\labelpstarttrue
\labelpstartfalse
\thepstart

3
1

134 VII Paragraph decomposition and reassembly

\pstart starts the paragraph by clearing the \inserts@list list and other relevant
variables, and then arranges for the subsequent text to go into the \raw@text box.
\pstart needs to appear at the start of every paragraph that is to be numbered; the
\autopar command below may be used to insert these commands automatically.

Beware: everything that occurs between \pstart and \pend is happening within
a group; definitions must be global if you want them to survive past the end of the
paragraph.

; \newcommand{\AtEveryPstart}[1]{/

\ifstrempty{#1}/
{\xdef\at@every@pstart{}}/
{\gdef\at@every@pstart{\noindent#1}}J,

7 Y
s \xdef\at@every@pstart{}/

\newcounter{pstart}
\renewcommand{\thepstart}{{\bfseries\@arabic\c@pstart}. }

> \newif\ifnumberpstart
; \numberpstartfalse

\newif\iflabelpstart

s \labelpstartfalse
s \newcommandx*{\pstart}[1] [1]1{/

\normal@parsy,

\ifstrempty{#1}{\at@every@pstart}{\noindent#1}J,

\ifluatex/,
\edef\l@luatextextdir@L{\the\textdir}j,

\fif,

\@nobreaktrue,

\ifnumbering \elseJ,
\led@err@PstartNotNumbered/,
\beginnumberingy,

\£if,

\ifnumberedpar@y,
\led@err@PstartInPstart/,

\pend/,

\fif,

\list@clear{\inserts@list}/,

\global\let\next@insert=\empty/

\begingroup/,

\global\advance \l@dnumpstartsL\@ne

\global\setbox\raw@text=\vbox\bgroup/,
\ifautopar\else/,

\ifnumberpstarty,
\ifinstanza\else,
\ifsidepstartnum\else/,
\thepstart/,
\£if,
\fif,
\fi%

VIL1 Boxes, counters, \pstart and \pend 135

\fi%
\numberedpar@true,
\iflabelpstart\protected@edef\Q@currentlabell,
{\p@pstart\thepstart}
\fi
\1l@dzeropenaltiesy,
\ignorespacesybecause not automatically ignored if an optional argument
is used (classical TeX behavior for space after commands)

}

2 h

\pend must be used to end a numbered paragraph.

\newcommandx*{\pend} [1] [1]{\ifnumbering \else,
\led@err@PendNotNumberedy,
\£if,
\global\l@dskipversenumberfalse,
\ifnumberedpar@ \else,
\led@err@PendNoPstarty,
\fi%

o,
30 /o

We set all the usual interline penalties to zero and then immediately call \endgraf to
end the paragraph; this ensures that there will be no large interline penalties to prevent
us from slicing the paragraph into pieces. These penalties revert to the values that you
set when the group for the \vbox ends. Then we call \do@line to slice a line off the top
of the paragraph, add a line number and footnotes, and restore it to the page; we keep
doing this until there are not any more lines left.

\1l@dzeropenalties/,
\endgraf\global\num@lines=\prevgraf\egroup/,
\global\par@line=07

A

We check if lineation is by pstart: in this case, we reset line number, but only in the
second line of the pstart. We can’t reset line number at the beginning of \pstart, as
\setline is parsed at the end of previous \pend, and so, we must do it at the end of
first line of pstart.

\csnumdef{pstartline}{0}/
\loop\ifvbox\raw@text/,
\csnumdef{pstartline}{\pstartline+\@ne}J
\do@lineJ,
\ifbypstart@},
\ifnumequal{\pstartline}{1}{/
\bgroup/,
\let\leavevmode\relax/,
\setline{1}/,
\egroup/,
\resetprevline@}{}/
\£i

136 VII Paragraph decomposition and reassembly

184 \repeat/,
1848 %

Deal with any leftover notes, and then end the group that was begun in the \pstart.

o \flush@notes,
s \endgroup’
1851 \ignorespaces/,

1852 Jo
Increase pstart counter.

555 \ifnumberpstart/,

1854 \pstartnumtrue,

1855 \fi%

5o \addtocounter{pstart}{1}/
1857 %

Print the optional argument of \pend or the content printed after every \pend

wss \normal@pars,
w0 \ifstrempty{#1}{\at@every@pend}{\noindent#1}/,
1860 7

Restore standard nobreak setting and autopar setting. Normally, \if@nobreak is
equal to true only immediately after a sectioning command (read latex.ltx file). As a
\pstart...\pend structure can’t contain any sectioning command, we set \if@nobreak
to false.

51 \@nobreakfalse/,
52 \ifautopar,

1863 \autopar?,

st \fi%

1865 }

1867/

Here, two macros to insert content after every \pend, between numbered line. \AtEveryPend
is the user macro, \at@every@pend is macro set by it.

\AtEveryPendss
\at@every@pends» \newcommand{\AtEveryPend}[1]{/
wo \ifstrempty{#1}/
1871 {\xdef\at@every@pend{}}/
1872 {\gdef\at@every@pend{\noindent#13}}/
1573 }h
w1 \xdef\at@every@pend{}/,

1876

\l@dzeropenalties A macro to zero penalties for \pend or \pstart.

\autopar

VIL1 Boxes, counters, \pstart and \pend 137

577 \newcommand*{\1@dzeropenalties}{/

\brokenpenalty \z@ \clubpenalty \z@
\displaywidowpenalty \z@ \interlinepenalty \z@ \predisplaypenalty \z@
\postdisplaypenalty \z@ \widowpenalty \z@}

In most cases it is only an annoyance to have to label the paragraphs to be num-
bered with \pstart and \pend. \autopar will do that automatically, allowing you
to start a paragraph with its first word and no other preliminaries, and to end it with
a blank line or a \par command. The command should be issued within a group, af-
ter \beginnumbering has been used to start the numbering; all paragraphs within the
group will be affected.

A few situations can cause problems. One is a paragraph that begins with a begin-
group character or command: \pstart will not get invoked until after such a group
beginning is processed; as a result the character that ends the group will be mistaken
for the end of the \vbox that \pstart creates, and the rest of the paragraph will not be
numbered. Such paragraphs need to be started explicitly using \indent, \noindent, or
\leavevmode — or \pstart, since you can still include your own \pstart and \pend
commands even with \autopar on.

Prematurely ending the group within which \autopar is in effect will cause a similar
problem. You must either leave a blank line or use \par to end the last paragraph before
you end the group.

The functioning of this macro is more tricky than the usual \everypar: we do not
want anything to go onto the vertical list at all, so we have to end the paragraph, erase
any evidence that it ever existed, and start it again using \pstart. We remove the
paragraph-indentation box using \lastbox and save the width, and then skip back-
wards over the \parskip that has been added for this paragraph. Then we start again
with \pstart, restoring the indentation that we saved, and locally change \par so that
it will do our \pend for us.

s»» \newif\ifautopar

\autoparfalse

ss5 \newcommand*{\autopar}{

\ifledRcol
\ifnumberingR \else
\led@err@AutoparNotNumbered
\beginnumberingR
\fi
\else
\ifnumbering \else
\led@err@AutoparNotNumbered
\beginnumbering
\fi
\fi
\autopartrue
\everypar{\setbox0=\lastbox
\endgraf \vskip-\parskip

1900

138 VII Paragraph decomposition and reassembly

\pstart \noindent \kern\wdO \ifnumberpstart\ifinstanza\else\thepstart\
fi\fi
\let\par=\pend}/,

190 \ignorespaces}
1903 /o
\normal@pars We also define a macro which we can rely on to turn off the \autopar definitions at

various important places, if they are in force. We will want to do this within a footnotes,
for example.

w1 \newcommand*{\normal@pars}{\ifautopar\everypar{}\fi\let\par\endgraf}

1905

1906 %

\ifautopar@pause We define a boolean test switched to true at the beginning of the \pausenumbering
command if the autopar is enabled. This boolean will be tested at the beginning of
\resumenumbering to continue the autopar if neeeded.

w7 \newif\ifautopar@pause
1908
VIL.2 Processing one line
VIL.2.1 General process
\do@line The \do@line macro is called by \pend to do all the processing for a single line of text.
\1l@dunhbox@line

\newcommand*{\1@dunhbox@line} [1] {\unhbox #1}
\newcommand*{\do@line}{’
{\vbadness=10000
\splittopskip=\z@
\do@linehook
\1l@demptydQta
\global\setbox\one@line=\vsplit\raw@text to\baselineskipl}/
\unvbox\one@line \global\setbox\one@line=\lastbox
\getline@num
\IfStrEq{\led@pb@setting}{before}{\led@check@pb\led@check@opbl}{}
\ifnum\@lock>\@ne
\inserthangingsymboltrue
\else
\inserthangingsymbolfalse
\fi
\check@pb@in@verse
\ifl@dhidenumber?,
\global\l@dhidenumberfalse’,
\f@x@1@cks,
\elsey,
\affixline@numj,

\fi%

\print@line

1938

1939

1940

1941

1942

1943

1944

VIL2 Processing one line

139

Depending weither a sectioning command is called at this pstart or not we print sec-

tioning command or normal line,

\xifinlist{\the\l@dnumpstartsL}{\eled@sections@@}/,
{\print@eledsection},
{\print@line}/,
\IfStrEq{\led@pb@setting}{after}{\led@check@pb\led@check@nopb}{}
Y

7 %

VIL.2.2 Process for “normal” line
\print@line is for normal line, i. e line without sectioning command.

\def\print@lineq{
A

Insert the pstart number in side, if we are in the first line of a pstart.

\affixpstart@numj,
h

The line will be boxed, to have the good width.

\hb@xt@ \linewidth{%

%
User hook.
\do@insidelinehook},

5

Left line number

\ledldeta
h
Prepare text to be inserted before notes.
\ifefirstlineofpage,
\set@Xtxtbeforenotes,

\global\@firstlineofpagefalse,
\fi%

2

Insert footnotes made of manuscripts data.

\insert@msdata,

A

Restore marginal and footnotes.
\add@inserts/,
\add@Xgroupbyline,
\affixside@note,

h

140 VII Paragraph decomposition and reassembly

Print left notes.

1959 \1l@dlsn@te
1960 %

Boxes the line, writes information about new line in the numbered file.

1961 {\1ed11£fill\hb@xt@ \wd\one@line{\new@line},

1962 n/g

If we use LualsTEX then restore the direction.
1963 \ifluatex/,
1964 \textdir\l@luatextextdir@LY,
1965 \f i%

1966 /o
Insert, if needed, the hanging symbol.

196 \inserthangingsymbol/,
1968 %

And so, print the line.

1969 \1@dunhbox@line{\one@line}}

1970 %
Right line number
1971 \ledr1fill\l@drd@tay,
1972 Z
Print right notes.
1973 \1@drsn©te
1974 3
1975 %
And reinsert penalties (for page breaking)...
1976 \add@penaltiesy,
1077 }
1978

VIL.2.3 Process for line containing \eledsection command

\print@eledsection \print@eledsection to print sectioning command with line number. It sets the cor-
rect spacing, depending whether a sectioning command was called at previous \pstart,
calls the sectioning command, prints the normal line outside of the paper, to be able to
have critical footnotes. Because of how this prints, a vertical spacing correction is added.

w79 \def\print@eledsection{’

1980 \if@firstlineofpage’,
1981 \set@Xtxtbeforenotes),
1982 \global\@firstlineofpagefalsel

1983 \fi%

\do@linehook
\do@insidelinehook

\dolinehook
\doinsidelinehook

\l@demptyd@ta
\ledld@ta
\ledrd@ta

\l@dcsnotetext
\l@dcsnotetext@il
\l@dcsnotetext@r

2014

VIL2 Processing one line 141

\insert@msdatal,
\add@inserts/,
\add@Xgroupbyliney,
\affixside@note/,
\numdef{\temp@}{\l@dnumpstartsL-1}/
\xifinlist{\temp@}{\eled@sections@@}{\@nobreaktrue}{\@nobreakfalsel}/
\@eled@sectioningtrue,
\csuse{eled@sectioning@\the\l@dnumpstartsL}/
\@eled@sectioningfalsey,
\global\csundef{eled@sectioning@\the\l@dnumpstartsL}/,
\if@RTLY,

\hspace{-3\paperwidthl}/
{\hbox{\1@dunhbox@line{\one@line}} \new@line}j,
\elsey,

\hspace{3\paperwidthl}/,
{\new@line \hbox{\l@dunhbox@line{\one@linel}}}J
\£i,
\vskip-\baselineskip/,

VII.2.4 Hooks

Two hooks into \do@line. The first is called at the beginning of \do@line, the second
is called in the line box. The second can, for example, have a \markboth command
inside, the first ca not.

\newcommand*{\do@linehook}{}

s \newcommand*{\do@insidelinehook}{}

00s

These hight level commands just redefine the low level commands. They have to be used
be user, without \makeatletter.

007 \newcommand*{\dolinehook}[1] {\gdef\do@linehook{#1}1}/,

\newcommand*{\doinsidelinehook} [1]{\gdef\do@insidelinehook{#1}}/,

h

VIL.2.5 Sidenotes and marginal line number initialization

Nullsthe \ . . . d@ta, which may later hold line numbers. Similarly for \1@dcsnotetext,
\l@dcsnotetext@l, \1@dcsnotetext@r for the texts of the sidenotes, left and right
notes.

\newcommand*{\1@demptyd@tal}{’,
\gdef\ledldeta{}/
\gdef\ledrdeta{}/
\gdef\l@dcsnotetext@1{}/,

\1l@dlsn@te
\l@drsn@te
201

\ledl11fill
\ledrlfill

142 VIII Line and page number computation

\gdef\l@dcsnotetext@r{}/
\gdef\l@dcsnotetext{}}

Zero width boxes of the left and right side notes, together with their kerns.

» \newcommand{\1@dlsn@te}{’,

\hb@xt@ \z@{\hss\box\1@dlp@rbox\kern\ledlsnotesepl}}
\newcommand{\1@drsn@te}{’
\hb0xt@ \z@{\kern\ledrsnotesep\box\1@drp@rbox\hssl}}

These macros are called at the left (\1ed11£il1) and the right (\1ed11£ill) of each
numbered line. The initial definitions correspond to the original code for \do®@line.

»s \newcommand*{\led11fill}{\hfil}

\getline®@num

\do@ballast

26 \newcommand*{\ledrlfill}{}

h

VIII Line and page number computation

The \getline@num macro determines the page and line numbers for the line we are
about to send to the vertical list.

» \newcommand*{\getline@num}{’

\global\advance\absline@num \@ney,
\doQ@actions
\do@ballast
\ifnumberline
\ifsublines®@
\ifnum\sub@lock<\tw@
\global\advance\subline@num \@ne
\fi
\else
\ifnum\@lock<\tw@
\globalladvance\line@uum \@ne
\global\subline@num \z@
\fi
\fi
\fi

The real work in the macro above is done in \do@actions, but before we plunge into
that, let’s get \do@ballast out of the way. This macro looks to see if there is an action to

\ballast@count
\c@ballast

143

be performed on the next line, and if it is going to be a page break action, \do@ballast
decreases the count \ballast@count counter by the amount of ballast. This means,
in practice, that when \add@penalties assigns penalties at this point, TgX will be given
extra encouragement to break the page here (see p. [153).

First we set up the required counters; they are initially set to zero, and will remain so
unless you type \setcounter{ballast}{(some figure)} in your document.

7 \newcount\ballast@count

\newcounter{ballast}
\setcounter{ballast}{0}

A

And here is \do@ballast itself. It advances \absline@num within the protection of a
group to make its check for what happens on the next line.

05t \newcommand*{\do@ballast}{\global\ballast@count \z@

\do@actions
\do@actions@next

\begingroup
\advance\absline@num \@ne
\ifnum\next@actionline=\absline@num
\ifnum\next@action>-1001\relax
\globalladvance\ballast@count by -\c@ballast
\fi
\fi
\endgroup}
"

The \do®@actions macro looks at the list of actions to take at particular absolute line
numbers, and does everything that is specified for the current line.

It may call itself recursively, and to do this efficiently (using TgX’s optimization for
tail recursion), we define a control-sequence called \doQ@actions@next that is always
the last thing that \do@actions does. If there could be more actions to process for this
line, \do@actions@next is set equal to \do@actions; otherwise it is just \relax.

1 \newcommand*{\do®@actions}{/

\global\let\do@actions@next=\relax
\ifnum\absline@num<\next@actionline\else

h

First, page number changes, which will generally be the most common actions. If
we are restarting lineation on each page, this is where it happens.

\ifnum\next@action>-1001
\global\page@num=\nextQaction
\global\@firstlineofpagetrue,

\ifbypage@
\global\line@num=\z@ \global\subline@num=\zQ
\resetprevline®

\fi

\add@msdata@firstlineofpage,

144 VIII Line and page number computation

Next, we handle commands that change the line-number values. (We subtract 5001
rather than 5000 here because the line number is going to be incremented automatically
in \getline@num.)

074 \else
\ifnum\next@action<-4999
2076 \@l@dtempcnta=-\next@action
20 \advance\@l@dtempcnta by -5001

2078 \ifsublines@
\global\subline@num=\@1@dtempcnta
2080 \else
2081 \global\line@num=\@l@dtempcnta
‘ \fi

We rescale the value in \@1@dtempcnta so that we can use a case statement.

2084 \else

2085 \@l@dtempcnta=-\next@action

2086 \advance\@l@dtempcnta by -1000
208 \do@actions@fixedcode

2088 \fi

2089 \fl

Now we get information about the next action off the list, and then set \do@actions@next
so that we will call ourself recursively: the next action might also be for this line.

There is no warning if we find \actionlines@list empty, since that will always
happen near the end of the section.

“““ 1 \ifx\actionlines@list\empty

2092 \gdef\next@actionline{1000000}/,

2093 \else

“““ " \gl@p\actionlines@list\to\next@actionline
2095 \gl@p\actions@list\to\next@action

2096 \global\let\do@actions@next=\do@actions
wwwww \fi

2098 \fl

209 b

Make the recursive call, if necessary.

20 \do@actions@next}

h
102 Jo

\do®@actions@fixedcode This macro handles the fixed codes for \do@actions. It is one big case statement.

» \newcommand*{\do®@actions@fixedcode}{/
200 \ifcase\@l@dtempcnta

\or’, % 1001 = starting sublineation
2106 \global\sublines@true

2107
2108
2109
2110

2111

\affixline@num

145

\or7, % 1002 = ending sublineation
\global\sublines@false
\or?, % 1003 = starting locking number
\global\@lock=\@ne
\or, % 1004 = ending locking number

\ifnum\@lock=\tw@
\global\@lock=\thr@

\else
\global\@lock=\z@
\fi
\or, % 1005 = starting locking subnumber
\global\sub@lock=\0@ne
\or, % 1006 = ending locking subnumber

\ifnum\sub@lock=\tw@
\global\sub@lock=\thro@
\else
\global\sub@lock=\z@
\fi
\or, % 1007 = skipping numbering
\1l@dskipnumbertrue
\or, % 1008 = skipping numbering in stanza
\1l@dskipversenumbertrue/,
\or, % 1009 = hiding number
\1l@dhidenumbertrue
\or7, % 1010 = inserting msdata
\add@msdata’,
\else
\led@warn@BadAction
\fi}

IX Line number printing

\affixline@num just puts a left line number into \1@d1d@ta or a right line number
into \1@drd@ta if required.

To determine whether we need to affix a line number to this line, we compute the
following:

n = int((linenum — firstlinenum) /linenumincrement)
m = firstlinenum + (n X linenumincrement)

(where int truncates a real number to an integer). m will be equal to linenum only if
we are to paste a number on here. However, the formula breaks down for the first line
to number (and any before that), so we check that case separately: if \line@num <
\firstlinenum, we compare the two directly instead of making these calculations.

146 IX Line number printing

We compute, in the scratch counter \@l@dtempcnta, the number of the next line
that should be printed with a number (m in the above discussion), and move the current
line number into the counter \@1@dtempcntb for comparison.

First, the case when we are within a sub-line range.

» \newcommand*{\affixline@num}{’

2140

h

No number is attached if \if1@dskipnumber is TRUE (and then it is set to its normal
FALSE value). No number is attached if \ifnumberline is FALSE (the normal value is
TRUE).

\ifledgroupnotesL®@\else
\ifnumberline
\ifl@dskipnumber
\global\l@dskipnumberfalse
\else
\ifsublines@
\@l@dtempcntb=\subline@num
\ifnum\subline@num>\c@firstsublinenum
\@le@dtempcnta=\subline@num
\advance\@l@dtempcnta by-\c@firstsublinenum
\divide\@l@dtempcnta by\c@sublinenumincrement
\multiply\@l@dtempcnta by\c@sublinenumincrement
\advance\@l@dtempcnta by\c@firstsublinenum
\else
\@le@dtempcnta=\c@firstsublinenum
\fi

That takes care of computing the values for comparison, but if line number locking
is in effect we have to make a further check. If this check fails, then we disable the
line-number display by setting the counters to arbitrary but unequal values.

\ch@cksub@l@ck
Now the line number case, which works the same way.
\else
\@le@dtempcntb=\1line@num
A

Check on the \1inenumberlist If it is \empty use the standard algorithm.

\ifx\linenumberlist\empty
\ifnum\line@num>\c@firstlinenum
\@l@dtempcnta=\1line@num
\advance\@l@dtempcnta by-\c@firstlinenum
\divide\@l@dtempcnta by\c@linenumincrement
\multiply\@l@dtempcnta by\c@linenumincrement
\advance\@l@dtempcnta by\c@firstlinenum
\else

\ledld@ta
\ledrdeta

h

147

\@l@dtempcnta=\c@firstlinenum
\fi
\else

The \linenumberlist was not \empty, so here is Wayne’s numbering mechanism.
This takes place in TgX’s mouth.

\@l@dtempcnta=\1line@num
\edef\rem@inder{, \linenumberlist, \number\line@num, }/,
\edef\scOn@list{\def\noexpand\sc@n@list
####1, \number\@l@dtempcnta, ####2| {\def \noexpand\rem@inder
{####2}1}7,
\sc@n@list\expandafter\sc@u@list\rem@inder|7
\ifx\rem@inder\empty/
\advance\@l@dtempcnta\@ne
\fi
\fi

A locking check for lines, just like the version for sub-line numbers above.

\ch@ck@l@ck
\fi

The following tests are true if we need to print a line number.

\ifnum\@l@dtempcnta=\@1l@dtempcntb
\ifl@dskipversenumber\else

If we got here, we are going to print a line number; so now we need to calculate a
number that will tell us which side of the page will get the line number. We start from
\line@margin, which asks for one side always if it is less than 2; and then if the side
does depend on the page number, we simply add the page number to this side code—
because the values of \1ine@margin have been devised so that this produces a number
that is even for left-margin numbers and odd for right-margin numbers.

For KIEX we have to consider two column documents as well. In this case Peter
Wilson thought we need to put the numbers at the outside of the column — the left of
the first column and the right of the second. Do the twocolumn stuff before going on
with the original code.

A left line number is stored in \1@d1d@ta and a right one in \1@drd@ta.

\if@twocolumn
\if@firstcolumn
\gdef\ledldeta{\1lap{{\leftlinenum}}}/
\else
\gdef\l@drd@ta{\rlap{{\rightlinenum}}}/
\fi
\else
\@l@dtempcntb=\1line@margin

148 IX Line number printing

2199 \ifnum\@l@dtempcntb>\Cne
2200 \advance\@l@dtempcntb \page@num
2201 \fi

\ifodd\@l@dtempcntb
2203 \gdef\le@drd@ta{\rlap{{\rightlinenum}}}/
2204 \else
\gdef\ledld@ta{\1lap{{\leftlinenum}}}%
2206 \fi
\fi
2208 \fi
’ \fi

Now fix the lock counters, if necessary. A value of 1 is advanced to 2; 3 advances to
0; other values are unchanged.

2211 \f@X@l@CkS
212 \fi

2213 \fi

2214 \fi

\ch@cksub@leck These macros handle line number locking for \affixline@num. \ch@cksub@l@ck
\ch@ckeleck checks subline locking. If it fails, then we disable the line-number display by setting the
\f@x@l@cks counters to arbitrary but unequal values.

215 \newcommand*{\ch@cksub@l@ck}{%
219 \ifcase\sub@lock
222 \OI‘
2221 \ifnum\sublock@disp=\@ne
\@l@dtempcntb=\z@ \@l@dtempcnta=\@ne
\fi
\or
)23 \ifnum\sublock@disp=\tw@ \else
2226 \@l@dtempcntb=\z@ \@l@dtempcnta=\@ne
\fi
2228 \or
222 \ifnum\sublock@disp=\z@
2230 \@l@dtempcntb=\z@ \@l@dtempcnta=\@ne
2231 \fi
2232 \fi}
233

Similarly for line numbers.

25 \newcommand*{\ch@ck@l@ck}{/,

1235 \ifcase\@lock

2236 \or

2237 \ifnum\lock@disp=\@ne

149

238 \@l@dtempcntb=\z@ \@l@dtempcnta=\@ne
2239 \fi

\or

2241 \ifnum\lock@disp=\tw@ \else
2242 \@l@dtempcntb=\z@ \@l@dtempcnta=\@ne

\fi

244 \or
2245 \ifnum\lock@disp=\z@

2247 \fi

\@l@dtempcntb=\z@ \@l@dtempcnta=\@ne

2248 \fi}
240 Y

Fix the lock counters. A value of 1 is advanced to 2; 3 advances to 0; other values are
unchanged.

\newcommand*{\f@x@1l@cks}{/
\ifcase\@lock
\or
\global\@lock=\tw@

2254 \or \or

25 \fi

\global\@lock=\z@

\ifcase\sub@lock

2258 \or

\affixpstart@num
\pstartnum

\global\sub@lock=\tw@

2260 \or \or

\global\sub@lock=\z@
\fi}

X Pstart number printing in side

In side, the printing of pstart number is running like the printing of line number. There
is only some differences:

« The pstarts counter is upgrade in the \pend command. Consequently, the
\affixpstart@num command has not to upgrade it, unlike the \affixline@num
which upgrades the lines counter.

« To print the pstart number only at the beginning of a pstart, and not in every line,
aboolean test is made. The \pstartnum boolean is set to TRUE at every \pend. It
is tried in the \leftpstartnum and \rightstartnum commands. After the try,
it is set to FALSE.

\leftpstartnums

\rightstartnum

s \newif\ifsidepstartnum

\ifsidepstartnums \newcommand*{\affixpstart@num}{J

}
0 Y

150 XI Restoring footnotes and penalties

\ifsidepstartnum
\if@twocolumn
\if@firstcolumn
\gdef\l@dldeta{\1llap{{\leftpstartnum}}}’
\else
\gdef\l@drde@ta{\rlap{{\rightpstartnum}}}/
\fi
\else
\@l@dtempcntb=\1line@margin
\ifnum\@l@dtempcntb>\Cne
\advance\@l@dtempcntb \page@num

\fi
\ifodd\@l@dtempcntb
\gdef\l@drd@ta{\rlap{{\rightpstartnum}}}J
\else
\gdef\l@dld@ta{\1llap{{\leftpstartnum}}}/
\fi
\fi
\fi
\newif\ifpstartnum
20 \pstartnumtrue

; \newcommand*{\leftpstartnum}{

\ifpstartnum\thepstart
\kern\linenumsep\fi
\global\pstartnumfalse

}

\newcommand*{\rightpstartnum}{
\ifpstartnum
\kern\linenumsep
\thepstart
\fi
\global\pstartnumfalse

}

A

XI Restoring footnotes and penalties

Because of the paragraph decomposition process in order to number line, reledmac
must hack the standard way TgX works in order to manage insertion of footnotes, both
critical and familiar.

We need to call the \insert commands not when the content of \pstart...\pend
is read by TgX by when each individual line is typeset.

Consequently, when reading the content of \pstart...\pend, we store the insertion
(footnotes) in an specific reledmac’s list, and we restore them to the vertical list when

\inserts@list

\add@inserts
\add@inserts@next

2308
2309

2310

XI.1 Add insertions to the vertical list 151

printing each individual line.

XI.1 Add insertions to the vertical list

\inserts@list is the list macro that contains the inserts that we save up for one para-
graph.

\list@create{\inserts@list}
yA

\add@inserts is the penultimate macro used by \do@line; it takes insertions saved in
a list macro and sends them onto the vertical list.

It may call itself recursively, and to do this efficiently (using TgX’s optimization for
tail recursion), we define a control-sequence called \add@inserts@next that is always
the last thing that \add@inserts does. If there could be more inserts to process for this
line, \add@inserts@next is set equal to \add@inserts; otherwise it is just \relax.

\newcommand*{\add@inserts}{/
\global\let\add@inserts@next=\relax
YA

If \inserts@list is empty, there are not any more notes or insertions for this
paragraph, and we need not waste our time.

\ifx\inserts@list\empty \else

> h

The \next@insert macro records the number of the line that receives the next foot-
note or other insert; it is empty when we start out, and just after we have affixed a note
or insert.

\ifx\next@insert\empty
\ifx\insertlines@list\empty
\global\noteschanged@true
\gdef\next@insert{100000}
\else
\gl@p\insertlines@list\to\next@insert
\fi
\fi

t

1324

2328

If the next insert’s for this line, tack it on (and then erase the contents of the insert
macro, as it could be quite large). In that case, we also set \add@inserts@next so that
we will call ourself recursively: there might be another insert for this same line.

\ifnum\next@insert=\absline@num
\gl@p\inserts@list\to\@insert
\@insert
\global\let\@insert=\undefined
\global\let\next@insert=\empty
\global\let\add@inserts@next=\add@inserts
\fi

2330

\add@Xgroupbyline

152 XI Restoring footnotes and penalties

\fi
%

Make the recursive call, if necessary.

\add@inserts@next}

h

If you use \Xgroupbyline, the insertion of the critical footnotes are not made imme-
diately in \add@inserts, but the content to be inserted is stored, to be inserted in one
block. This insertion in one block is made by \add@Xgroupbyline.

\newcommand{\add@Xgroupbyline}{/,
\unless\ifnocritical@y
\def\do##1{/Looping on the series
\def\do####1{/Looping on the ##1l@forinserting command
\ifcsdef{##1Q@forinserting@####1}{/
\X@beforeinsertion{##1}/,
\if@ledgroup’
\global\setbox\@nameuse{mp##1ifootins}=\vbox/
\else,
\insert\csname ##1footins\endcsnamey,
\fi%
{4
\ifcsdef{Xhsize\csuse{series@display##1}Q@##1}/,
{\hsize \csuse{Xhsize\csuse{series@display##1}0##1}}/
¥
\if@ledgroup/,
\unvbox\@nameuse{mp##1footins}/,
\£iJ,
\X@atbegininsertion{##1}/,
\ifcsstring{series@display##1}/,
{
\Xledsetnormalparstuff{##1}/,
\rule\z@\splittopskip/
Y
{3
\csuse{##10@forinserting@####11}/,
\strut\par/,
Y
\global\csundef{##1Q@forinserting@####1}J,
Y
{3
Y
\ifcsdef{##1@forinserting}{/
\dolistcsloop{##1@forinserting}/
H3%
\global\csundef{##1@forinserting}/,
Y
\dolistloop{\@series}/,

s Yh

\add@penalties

XL2 Penalties 153

\fi%

XI1.2 Penalties

\add@penalties is the last macro used by \do@line. It adds up the club, widow, and
interline penalties, and puts a single penalty of the appropriate size back into the para-
graph; these penalties get removed by the \vsplit operation. \displaywidowpenalty
and \brokenpenalty are not restored, since we have no easy way to find out where we
should insert them.

In this code, \num@lines is the number of lines in the whole paragraph, and
\par@line is the line we are working on at the moment. The count \@1@dtempcnta
is used to calculate and accumulate the penalty; it is initially set to the value of
\ballast@count, which has been worked out in \do@ballast above (VII p. 143). Fi-
nally, the penalty is checked to see that it does not go below —10000.

7 \newcommand*{\add@penalties}{\@l@dtempcnta=\ballast@count

2386

2389

\ifnum\num@lines>\@ne
\global\advance\par@line \@ne
\ifnum\par@line=\@ne

\advance\@l@dtempcnta \clubpenalty
\fi
\@l@dtempcntb=\par@line \advance\@l@dtempcntb \@ne
\ifnum\@l@dtempcntb=\num@lines
\advance\@l@dtempcnta \widowpenalty
\fi
\ifnum\par@line<\num@lines
\advance\@l@dtempcnta \interlinepenalty
\fi
\fi
\ifnum\@l@dtempcnta=\z@
\relax
\else
\ifnum\@l@dtempcnta>-10000
\penalty\@l@dtempcnta
\else
\penalty -10000
\fi
\fi}

154 XI Restoring footnotes and penalties

XI.3 Printing leftover notes

\flush@notes The \flush@notes macro is called after the entire paragraph has been sliced up and
sent on to the vertical list. If the number of notes to this paragraph has increased since
the previous run of TgX, then there can be leftover notes that have not yet been printed.
An appropriate error message will be printed elsewhere; but it is best to go ahead and
print these notes somewhere, even if it is not in quite the right place. What we do is
dump them all out here, so that they should be printed on the same page as the last line
of the paragraph. We can hope that is not too far from the proper location, to which
they will move on the next run.

20 \newcommand*{\flush@notes}{/

205 \@xloop

2404 \ifx\inserts@list\empty \else

2405 \gl@p\inserts@list\to\@insert
2406 \@insert

240 \global\let\@insert=\undefined
205 \repeat}

a10 o

\0xloop \@xloop is a variant of the PLAIN TEX \loop macro, useful when it’s hard to construct
a positive test using the TgX \if commands—as in \flush@notes above. One types
\@xloop ... \if ... \else ... \repeat, and the action following \else is repeated
aslong as the \if testfails. (This macro will work wherever the PLain TgX \1oop is used,
too, so we could just call it \1oop; but it seems preferable not to change the definitions
of any of the standard macros.)
This variant of \loop was introduced by Alois Kabelschacht in TUGboat 8 (1987),
pp- 184-5.

21 \def\@xloop#1\repeat{/
w2 \def\body{#1\expandafter\body\fil}J,
2413 \body}

XI.4 Text before notes

\set@Xtxtbeforenotes The \set@Xtxtbeforenotes macro resetsthe Xtxtbeforesnotes@ (series)@typesetboolean
to false. Just before the first note of the (series) in a page, the Xtextbeforenotes will be
inserted.

26 \newcommand{\set@Xtxtbeforenotes}{/
41 \unless\ifnocritical@J,

a1 \def\do##1{J,

2419 \global\togglefalse{Xtxtbeforesnotes@##1Q@typeset}’
2420 Y

421 \dolistloop{\@series}/,

2422 \fi%

\insert@Xtxtbeforenotes

\select@lemmafont
\select@@lemmafont

155

s Yh

\insert@Xtxtbeforenotes{(series)}, called when inserting a note, will insert the text
before the note if it is not already inserted. For paragraphed footnotes, it will insert it
as a component of the first footnote. For other types of footnotes, it will insert it as a
regular footnote.

s \newcommand{\insert@Xtxtbeforenotes}[1]{%

\nottoggle{Xtxtbeforesnotes@#1@typeset}{/
\global\toggletrue{Xtxtbeforesnotes@#1@typesetl}’
\ifcsvoid{Xtxtbeforenotes@#1}{}{’

\ifcsstring{series@display#1}{paragraphl/,
{\noindent\csuse{Xtxtbeforenotes@#1}}/
{\expandafter\insert\csname#1footins\endcsname,

\bgroup/,
\noindent\strut\csuse{Xnotefontsize@#1}\csuse{Xtxtbeforenotes@

\egroup/,

XII Critical footnotes

The footnote macros are adapted from those in PLAIN TgX, but they differ in these re-
spects: the outer-level commands must add other commands to a list macro rather
than doing insertions immediately; there are many separate levels of the footnotes, not
just one; and there are options to reformat footnotes into paragraphs or into multiple
columns.

XII.1 Fonts

Before getting into the details of formatting the notes, we set up some font macros. It is
the notes that present the greatest challenge for our font-handling mechanism, because
we need to be able to take fragments of our main text and print them in different forms:
it is common to reduce the size, for example, without otherwise changing the fonts used.

\select@lemmafont is provided to set the right font for the lemma in a note. This
macro extracts the font specifier from the line and page number cluster, and issues the
associated font-changing command, so that the lemma is printed in its original font.

\def\select@lemmafont#1 |#2|#3|#4|#5|#6|#7|{\select@@lemmafont#7|}
\def\select@@lemmafont#1/#2/#3/#4|7,
{\fontencoding{#1}\fontfamily{#2}\fontseries{#3}\fontshape{#4}J

\footnoteoptions@

156 XII Critical footnotes

\selectfont}

XII.2 Individual note options

The \footnoteoption@ [(side)]{{options)}{(value)} changes the value of on options
of Xfootnote, to switch between true and false.

' \newcommand*{\footnoteoptions@}[3]{/

\def\do##1{%
\ifstrequal{#1}{L}{), In Leftside
\xright@appenditem{\noexpand\setkeys[mac]{#3footnoteoption}{\
unexpanded{##1}}}\to\inserts@listy,
\global\advance\insert@count \@ne’, Increment the left insert
counter.
Y
{h
\xright@appenditem{\noexpand\setkeys[mac]{#3footnoteoption}{\
unexpanded{##1}}}\to\inserts@listR/
\global\advance\insert@countR \@ne), Increment the right insert
counter insert.
Y
Y
\notblank{#2}{\docsvlist{#2}}{}), Parsing all options

XII.3 Notes language

\footnotelang@lua is called to remember the information about the direction of a
lemma when LualATEX is used.

\newcommandx*{\footnotelang@lua}[1] [1=L,usedefault]{’

\ifstrequal{#1}{L}{/

\xright@appenditem{{\csxdef{footnote@luatextextdir}{\the\textdir}}}\to\
inserts@list’Know the dir of lemma

\global\advance\insert@count \@ne,

\xright@appenditem{{\csxdef{footnote@luatexpardir}{\the\pardir}}}\to\
inserts@list/Know the dir of lemma

\global\advance\insert@count \@ne,

Y

{4

\xright@appenditem{{\csxdef{footnote@luatextextdir}{\the\textdir}}}\to\
inserts@listR/,Know the dir of lemma

\global\advance\insert@countR \@neJ,

\xright@appenditem{{\csxdef{footnote@luatexpardir}{\the\pardir}}}\to\
inserts@listR/Know the dir of lemma

\global\advance\insert@countR \@neJ,

\footnotelang@poly

XII4 General survey of the way we manage notes 157

\footnotelang@poly is called to remember the information about the language of a
lemma when polyglossia is used.

s \newcommandx*{\footnotelang@poly}[1] [1=L,usedefault]{/,

2496

\ifstrequal{#1}{L}{/
\if@RTLY,
\xright@appenditem{{\csxdef{footnote@dir}{@RTLtrue}}}\to\
inserts@list’%Know the language used in the lemma
\global\advance\insert@count \@neJ,
\else
\xright@appenditem{{\csxdef{footnote@dir}{O@RTLfalse}}}\to\
inserts@list/Know the language of lemma
\global\advance\insert@count \@ne
\£if
\xright@appenditem{{\csxdef{footnote@lang}{\expandonce\languagename}}}\
to\inserts@list)Know the language of lemma
\global\advance\insert@count \@ne,
Y
{4
\if@RTL
\xright@appenditem{{\csxdef{footnote@dir}{@RTLtrue}}}\to\
inserts@listR%Know the language of lemma
\global\advance\insert@countR \@neJ,
\else
\xright@appenditem{{\csxdef{footnote@dir}{@RTLfalse}}}\to\
inserts@listR/,Know the language of lemma
\global\advance\insert@countR \@neJ,
\fi
\xright@appenditem{{\csxdef{footnote@lang}{\expandonce\languagename}}}\
to\inserts@listR/Know the language of lemma
\global\advance\insert@countR \@ne’,
Y

XII.4 General survey of the way we manage notes

The processing of each note is done by four principal macros: the \vfootnote macro
takes the text of the footnote and does the \insert; it calls on the \footfmt macro
to select the right fonts, print the line number and lemma, and do any other format-
ting needed for that individual note. Within the output routine, the two other macros,
\footstart and \footgroup, are called; the first prints extra vertical space and a foot-
note rule, if desired; the second does any reformatting of the whole set of the footnotes
in this series for this page—such as paragraphing or division into columns—and then
sends them to the page.

\footsplitskips

\normalfootnoterule

\Xarrangement

158 XII Critical footnotes

These four macros, and the other macros and parameters shown here, are distin-
guished by the ‘series letter’ that indicates which set of the footnotes we are dealing
with—A, B, C, D, or E. The series letter always precedes the string foot in macro and
parameter names. Hence, for the A series, the four macros are called \vAfootnote,
\Afootfmt, \Afootstart, and \Afootgroup.

These macros are changed depending of the footnotes arrangement: “normal”, “para-
graphed”, “two columns” or “three columns”.

XIL.5 General setup

Some setup code that is common for a variety of the footnotes. The setup is for:
« \interlinepenalty.
« \splittopskip (skip before last part of notes that flow from one page to another).
« \splitmaxdepth.

« \floatingpenalty, that is penalty values being added when a long note flows
from one page to another. Here, we let it to 0 when we are processing paral-
lel pages in eledpar, in order to allow notes to flow from left to right pages
and vice-versa. Otherwise, we let it to \@MM, which is the standard KIEX
\floatingpenalty.

\newcommand*{\footsplitskips}{/
\interlinepenalty=\interfootnotelinepenalty
\unless\ifl@dprintingpages/,

\floatingpenalty=\@MM/,
\fif,
\splittopskip=\ht\strutbox \splitmaxdepth=\dp\strutbox
\leftskip=\z@skip \rightskip=\z@skip}

\normalfootnoterule is a standard footnote-rule macro, for use by a footstart
macro: just the same as the PLain TgX footnote rule.

\let\normalfootnoterule=\footnoterule

h

XII.6 Footnotes arrangement
XI1.6.1 User level macro

\Xarrangement [(s)]{(arrangement)} The command calls, for each series, a specific
command which set many counters and commands in order to define specific arrange-
ment.

XII.6 Footnotes arrangement 159

512 \newcommandx{\Xarrangement}[2] [1,usedefault]{/

\def\do##1{J,

\csname Xarrangement@#2\endcsname{##1}/,
Y
\ifstrempty{#1}/,

{4

\dolistloop{\@series}/,

Y

{

\docsvlist{#1}/

Y

523 Y

\Xarrangement@normal

XI1.6.2 Normal footnote

We can now define all the parameters for the series of footnotes; initially they use the
“normal” footnote formatting.

What we want to do here is to insert something like the following for each footnote
series. (This is an example, not part of the actual reledmac code.)

\skip\Afootins=12pt plusbpt minusbpt

\count\Afootins=1000

\dimen\Afootins=0.8\vsize

\let\vAfootnote=\normalvfootnote \let\Afootfmt=\normalfootfmt
\let\Afootstart=\normalfootstart \let\Afootgroup=\normalfootgroup
\let\Afootnoterule=\normalfootnoterule

(Read The TeXbook in order to understand what are the counter, skip and dimen associ-
ated to an insertion.)

Instead of repeating ourselves, we define a \Xarrangement@normal macro that
makes all these assignments for us, for any given series letter. This command is called
when people use \Xarrangement [(series)] {normal}

Now we set up the \Xarrangement@normal macro itself. It takes one argument:
the footnote series letter.

5 \newcommand*{\Xarrangement@normal} [1]{/

\csgdef{series@display#1}{normal}
\expandafter\let\csname #1lfootstart\endcsname=\normalfootstart
\expandafter\let\csname v#ifootnote\endcsname=\normalvfootnote
\expandafter\let\csname #1lfootfmt\endcsname=\normalfootfmt
\expandafter\let\csname #1lfootgroup\endcsname=\normalfootgroup
\expandafter\let\csname #1lfootnoterule\endcsname=J,
\normalfootnoterule
\count\csname #1footins\endcsname=1000
\dimen\csname #1footins\endcsname=\csuse{Xmaxhnotes@#1}
\skip\csname #1lfootins\endcsname=\csuse{Xbeforenotes@#1}/,
\advance\skip\csname #1footins\endcsname by\csuse{Xafterrule@#1}/,

2538

160 XII Critical footnotes

The reledpar provides tools in order to confine notes to one side. The mechanism is
explained in the reledpar’s handbook. For now, just retain we need to store default
value of the counter associated to the notes TgX’s inserts.

\csxdef{default@#1footins}{1000}/,Use this to confine the
side only

notes to one

\normalvfootnote

\normalvfootnote@inserted

2564

2565

2566

Now do the setup for minipage footnotes. We use as much as possible of the normal
setup as we can (so the notes will have a similar layout).

\ifnoledgroup@\else/,
\expandafter\let\csname mpv#lfootnote\endcsname=\mpnormalvfootnote
\expandafter\let\csname mp#1lfootgroup\endcsname=\mpnormalfootgroup
\count\csname mp#1footins\endcsname=1000
\dimen\csname mp#lfootins\endcsname=\csuse{Xmaxhnotes@#1}
\skip\csname mp#lfootins\endcsname=\csuse{Xbeforenotes@#1}J
\advance\skip\csname mp#ifootins\endcsname by\csuse{Xafterrule@#1}/,
\fi

We now begin a series of commands that do ‘normal’ footnote formatting: a format much
like that implemented in PLAIN TEX, in which each footnote is a separate paragraph.

\normalvfootnote takes the series letter as #1 and the entire text of the footnote
is #2. It does the \insert for this note, calling on the \footfmt macro for this note
series to format the text of the note.

\notbool{parapparatus@}{\newcommand*}{\newcommand}{\normalvfootnotel} [2]{/
\iftoggle{Xgroupbyline@#1}{/In the case we use \Xgroupbyline, the
insertion is done later, in \add@Xgroupbyline.
\prepare@Xgroupbyline{#1}{#2}{\normalvfootnote@inserted}/,
H/In the case we don't use \Xgroupbyline, the insertion is made directly
\X@beforeinsertion{#1}/,
\insert\csname #1footins\endcsname{,
\X@atbegininsertion{#1}/,
\normalvfootnote@inserted{#1}{#21}/,
Y
Y
Y

The \normalvfootnote@inserted macro is expanded to the content to be add to a
\insert for normal critical footnote.

\notbool{parapparatus@}{\newcommand*}{\newcommand}{\
normalvfootnote@inserted} [2]{/
\nottoggle{Xgroupbyline@#1}{\noindent}{}\csuse{Xbhooknote@#1}/,
\csuse{Xnotefontsize@#1}/,
\footsplitskips

\X@atbegininsertions:
2583
2584

2585

\mpnormalvfootnotes

pnormalvfootnote@insertedn
2601
2602
2603
2604

2605

XII.6 Footnotes arrangement 161

\ifl@dpairing\ifl@dpaging\else/,
\setXnoteswidthliketwocolumns@{#1}/,
\fi\fi,
\setXnotespositionliketwocolumns@{#1}/,
\spaceskip=\z@skip \xspaceskip=\z@skip/,
\csname #1footfmt\endcsname #2{#1}/,
I

\newcommand{\X@beforeinsertion}[1]{%
\if@ledgroup\else/,
\insert@Xtxtbeforenotes{#1}/,
\fi%
\csuse{Xbeforeinserting@#1}/,
Y
%

\newcommand{\X@atbegininsertion}[1]{/
\hsize=\expandafter\dimexpr\csuse{Xwidth@#1}\relax/,

}

PA

And somewhat different versions of \normalvfootnote and \normalvfootnote@inserted

for minipages.

\notbool{parapparatus@}{\newcommand*}{\newcommand}{\mpnormalvfootnote}[2]{/
\iftoggle{Xgroupbyline@#1}{/
\prepare@Xgroupbyline{#1}{#2}{\mpnormalvfootnote@inserted}’
Y

{7
\global\setbox\@nameuse{mp#1footins}/,
\vbox{/,
\unvbox\@nameuse{mp#1footins}y
\mpnormalvfootnote@inserted{#1}{#2}/
Y
Y

)

\newcommand{\mpnormalvfootnote@inserted}[2]{/
\noindent\csuse{Xbhooknote@#1}J,
\csuse{Xnotefontsize@#1}/
\hsize\columnwidth,

\@parboxrestore,
\color@begingroup/

\normalfootfmt

\normalfootstart

162 XII Critical footnotes

\csname #1footfmt\endcsname #2{#1}\color@endgroup/

n Y
s Y

\normalfootfmt is a ‘normal’ macro to take the footnote line and page number infor-
mation (see V.9 p. P4), and the desired text, and output what’s to be printed. Argument
#1 contains the line and page number information and lemma font specifier; #2 is the
lemma; #3 is the note’s text. This version is very rudimentary—it uses \printlines to
print just the range of line numbers, followed by a square bracket, the lemma, and the
note text.

\notbool{parapparatus@}{\newcommand*}{\newcommand}{\normalfootfmt} [4]{/
\nottoggle{Xgroupbyline@#4}{\Xledsetnormalparstuff{#4}}{1}/,
\hangindent=\csuse{Xhangindent@#4}/,
\everypar{\hangindent=\csuse{Xhangindent@#41}}J
\nottoggle{Xgroupbyline@#4}{\rule\z@\splittopskip}{}/
{\printlinefootnote{#1}{#4}}/

\print@lemma{#1}{#2}{#4}/
\csuse{Xwrapcontent@#4}{#3}/,
\nottoggle{Xgroupbyline@#4}{\strut\par}{}%

o Yh

\normalfootstart is a standard footnote-starting macro, called in the output routine
whenever there are footnotes of this series to be printed: it skips a bit and then draws a
rule.

Any \footstart macro must put onto the page something that takes up space ex-
actly equal to the \skip\Xfootins value for the associated series of notes. TgX makes
page computations based on that \skip value, and the output pages will suffer from
spacing problems if what you add takes up a different amount of space.

But if the skip \Xprenotes@is greater than 0 pt, it is used instead of \skip\footins
for the first printed series in one page.

The \leftskip and \rightskip values are both zeroed here. Similarly, these skips
are cancelled in the \vfootnote macros for the various types of notes. Strictly speak-
ing, this is necessary only if you are using paragraphed footnotes, but we have put it
here and in the other \vfootnote macros too so that the behavior of reledmac in this
respect is general across all footnote types. What this means is that any \1eftskip and
\rightskip you specify applies to the main text, but not the footnotes. The footnotes
continue to be of width \hsize.

w22 \newcommand*{\normalfootstart}[1]{/

)
3 b

The first series of notes printed in a page can have a specific skip before it. In order to
insert this specific skip without overlap the bottom margin of the page, Maieul Rouquette
have defined an algorithm explained in p.R13. Here is part of this algorithm, when
the block of notes are ready to be printed.

26

24

2656

XII.6 Footnotes arrangement 163

\ifdimequal{Opt}{\Xprenotes@}{}/
iV
\iftoggle{Xprenotes@}{/,
\togglefalse{Xprenotes@}/
\skip\csname #1footins\endcsname=,
\glueexpr\csuse{Xprenotes@}+\csuse{Xafterrule@#1i}\relaxy,
Y
{}%
Y
\vskip\skip\csname #1footins\endcsname/,

h

And now, the problem of left and right skip for notes. Especially when using one feature
of reledpar which allows to have the footnotes horizontal size as the size of columns
printed by \Columns. Read XV| p. 09 for the general description of the problem.

\leftskipOpt \rightskipOpt
\ifl@dpairing\else,

\hsize=\old@hsize},
\£if,
\setXnoteswidthliketwocolumns@{#1}/,
\setXnotespositionliketwocolumns@{#11}J,

%
And now, print the footnote’s rule to finish the footnote’s introduction.

\print@Xfootnoterule{#1}/

613 thh

h

\normalfootgroup is a standard footnote-grouping macro: it sends the contents of the
footnote-insert box to the output page without alteration.

s \newcommand*{\normalfootgroup}[1]{/

\csuse{Xbhookgroup®@#1}/,
\unvbox\csname #1footins\endcsname/,
\hsize=\o0ld@hsize},

Y

A somewhat different version for minipages. Note that, in this case, we do not make
distinctions between the \Xfootgroup and \Xfootstarts macros.

> \unless\ifnoledgroup®@

\newcommand*{\mpnormalfootgroup} [1]1{{
\vskip\skip\@nameuse{mp#1footins}
\ifl@dpairing\ifparledgroup/

\leavevmode\marks\parledgroup@{begin}j
\marks\parledgroup@series{#1}/
\marks\parledgroup@type{Xfootnotel}/

\Xarrangement@paragraph

164 XII Critical footnotes

\fi\fi\normalcolor’,

\ifparledgroup/

\ifl@dpairing/,

\else/,
\setXnoteswidthliketwocolumns@{#1}/,
\setXnotespositionliketwocolumns@{#1}J,
\print@Xfootnoterule{#1}//

\£i%

\else/,
\setXnoteswidthliketwocolumns@{#1}/,
\setXnotespositionliketwocolumns@{#1}J,
\print@Xfootnoterule{#1}J%

\fif,

\setlength{\parindent}{Opt}

\csuse{Xbhookgroup@#1}/,
\unvbox\csname mp#1footins\endcsname}}

s \fi
676

XI1.6.3 Paragraphed footnotes

The paragraphed-footnote option reformats all the footnotes of one series for a page into
a single paragraph; this is especially appropriate when the notes are numerous and brief.
The code is based on The TeXbook, pp.398-400, with alterations for our environment.
This algorithm uses a considerable amount of save-stack space: a TgX of ordinary size
may not be able to handle more than about 100 notes of this kind on a page.

The \Xarrangement@paragraph macro sets up everything for one series of the foot-
notes so that they will be paragraphed, it takes the series letter as argument. We include
the setting of \count\footins to 1000 for the footnote series just in case user is switch-
ing to paragraphed footnotes after having columnar ones, since they change this value
(see below).

The argument of \Xarrangement@footparagraph is the letter denoting the series
of notes to be paragraphed.

\newcommand*{\Xarrangement@paragraph} [1]{/,
\csgdef{series@display#1}{paragraph}
\expandafter\let\csname #1lfootstart\endcsname=\parafootstart
\expandafter\let\csname v#l1footnote\endcsname=\paravfootnote
\expandafter\let\csname #1footfmt\endcsname=\parafootfmt
\expandafter\let\csname #1footgroup\endcsname=\parafootgroup
\count\csname #1footins\endcsname=1000
\csxdef{default@#1footins}{1000}/Use this to confine the notes to one

side only
\dimen\csname #1footins\endcsname=\csuse{Xmaxhnotes@#1}
\skip\csname #1footins\endcsname=\csuse{Xbeforenotes@#1}/
\advance\skip\csname #1footins\endcsname by\csuse{Xafterrule@#1}/,
\para@footsetup{#1}

o b

\footfudgefiddle

\para@footsetup

\parafootstart

XII.6 Footnotes arrangement 165

And the extra setup for minipages.

\ifnoledgroup@\else
\expandafter\let\csname mpv#lfootnote\endcsname=\mpparavfootnote
\expandafter\let\csname mp#1footgroup\endcsname=\mpparafootgroup
\count\csname mp#1footins\endcsname=1000
\dimen\csname mp#1footins\endcsname=\csuse{Xmaxhnotes@#1}
\skip\csname mp#lfootins\endcsname=\csuse{Xbeforenotes@#1}/,
\advance\skip\csname mp#lfootins\endcsname by\csuse{Xafterrule@#1}J,

\fi

}

Y/

For paragraphed footnotes TgX has to estimate the amount of space required. If it un-
derestimates this then the notes may get too long and run off the bottom of the text
block. \footfudgefiddle can be increased from its default 64 (say, to 70) to increase
the estimate.

\providecommand{\footfudgefiddle}{64}

,‘,%

\footparagraph calls the \para@f ootsetup macro to calculate a special fudge factor,
which is the ratio of the \baselineskip to the \hsize. We assume that the proper
value of \baselineskip for the footnotes (normally 9 pt) has been set already. The
argument of the macro is again the note series letter.

Peter Wilson thinks that \columnwidth should be used here for KIgX not \hsize.
Peter Wilson have also included \footfudgefiddle.

» \newcommand*{\para@footsetup}[1]{{\csuse{Xbhookgroup@#1}\csuse{

Xnotefontsize@#1}
\setXnoteswidthliketwocolumns@{#1}/,
\ifcsempty{Xwidth@#1}J,
{3
{\columnwidth=\expandafter\dimexpr\csuse{Xwidth@#1}\relax}/
\dimenO=\baselineskip
\multiply\dimenO by 1024
\divide \dimenO by \columnwidth \multiply\dimenO by \footfudgefiddle\
relax
\csxdef{#1footfudgefactor}{/
\expandafter\strip@pt\dimenO }}}

\strip@pt strip the characters pt from a dimen value.

\parafootstart is the same as \normalfootstart, but we give it again to en-
sure that \rightskip and \leftskip are zeroed (this needs to be done before
\para@footgroup in the output routine). The size of paragraphed notes is calculated
using a fudge factor which in turn is based on \hsize. So the paragraph of notes needs
to be that wide.

2714

3

\paravfootnote

166 XII Critical footnotes

The argument of the macro is again the note series letter.

\newcommand*{\parafootstart}[1]{/
\rightskip=Opt \leftskip=0pt/
\nottoggle{Xparindent@#1}{\parindent=\z@}{}/

\ifdimequal{Opt}{\Xprenotes@}{}/,

{%

\iftoggle{Xprenotes@}{/
\togglefalse{Xprenotes@}/,
\skip\csname #1footins\endcsname=J,

\glueexpr\csuse{Xprenotes@}+\csuse{Xafterrule@#1}\relaxy,
Y
{3
Y

\vskip\skip\csname #1footins\endcsnameJ,
\setXnoteswidthliketwocolumns@{#1}/,
\setXnotespositionliketwocolumns@{#1}J
\print@Xfootnoterule{#1}/
\let\bidi@RTLQ@everypar\Qempty/
\noindent\leavevmode}

\paravfootnote is a version of the \vfootnote command that is used for paragraphed
notes. It gets appended to the \inserts@list list by an outer-level footnote command
like \Afootnote. The first argument is the note series letter; the second is the full text
of the printed note itself, including line numbers, lemmata, and footnote text.

The initial model for this insertion is, of course, the \insert\footins definition
in The TeXbook, p.398. There, the footnotes are first collected up in hboxes, and these
hboxes are later unpacked and stuck together into a paragraph.

However, Michael Downes has pointed out that because text in hboxes gets typeset
in restricted horizontal mode, there are some undesirable side-effects if you later want to
break such text across lines. In restricted horizontal mode, where TgX does not expect
to have to break lines, it does not insert certain items like \discretionarys. If you
later unbox these hboxes and stick them together, as the TeXbook macros do to make
these footnotes, you lose the ability to hyphenate after an explicit hyphen. This can lead
to overfull \hboxes when you would not expect to find them, and to the uninitiated it
might be very hard to see why the problem had arisen.8

Wayne Sullivan pointed out to us another subtle problem that arises from the same
cause: TgX also leaves the \language whatsit nodes out of the horizontal listE So
changes from one language to another will not invoke the proper hyphenation rules in
such footnotes. Since critical editions often do deal with several languages, especially
in a footnotes, we really ought to get this bit of code right.

To get around these problems, Wayne suggested emendations to the TeXbook ver-
sions of these macros which are broadly the same as those described by Michael: the
central idea (also suggested by Donald Knuth in a letter to Michael) is to avoid collect-
ing the text in an \hbox in the first place, but instead to collect it in a \vbox whose width

2Michael Downes, ‘Line Breaking in \unhboxed Text’, TUGboat 11 (1990), pp. 605-612.
2See The TeXbook, p. 455 (editions after January 1990).

XII.6 Footnotes arrangement 167

is (virtually) infinite. The text is therefore typeset in unrestricted horizontal mode, as
a paragraph consisting of a single long line. Later, there is an extra level of unboxing
to be done: we have to unpack the \vbox, as well as the hboxes inside it, but that is
not too hard. For details, we refer you to Michael’s article, where the issues are clearly
explained. Michael’s unboxing macro is called \Xunvxh: unvbox, extract the last line,
and unhbox it.

Doing things this way has an important consequence: as Michael pointed out, you
really can’t put an explicit line-break into a note built in a \vbox the way we are doing FJ
In other words, be very careful not to use \break, or \penalty-10000, or any equiv-
alent inside your para-footnote. If you do, most of the note will probably disappear.
You are allowed to make strong suggestions; in fact \penalty-9999 will be quite okay.
Just do not make the break mandatory. We have not applied any of Michael’s solutions
here, since we feel that the problem is exiguous, and reledmac is quite baroque enough
already. If you think you are having this problem, look up Michael’s solutions.

One more thing; we set \leftskip and \rightskip to zero. This has the effect of
neutralizing any such skips which may apply to the main text (cf. p. 163 above).
We need to do this, since \footfudgefactor is calculated on the assumption that the
notes are \hsize wide.

So, finally, here is the modified foot-paragraph code, which sets the footnote in ver-
tical mode so that language and discretionary nodes are included.

; \newcommand*{\paravfootnotel} [2]{/
\csuse{Xbeforeinserting@#1}J,
\insert\csname #1footins\endcsname
\bgroup

\csuse{Xnotefontsize@#1}

\footsplitskips

\setbox0=\vbox{\hsize=\maxdimen/,
\let\bidi@RTL@everypar\Qempty’,
\insert@Xtxtbeforenotes{#1}/,
\noindent\csuse{Xbhooknote@#1}/,
\csname #1footfmt\endcsname #2{#1}}/,

\setbox0=\hbox{\Xunvxh{0}{#1}}/

\dp0=0pt

\htO=\csname #1footfudgefactor\endcsname\wd0

yA

Here we produce the contents of the footnote from box 0, and add a penalty of 0 between
boxes in this insert.

\if@RTL\noindent \leavevmode\fi\box07,
\penalty0
\egroup}

30Wayne supplied his own macros to do this, but since they were almost identical to Michael’s, Peter Wilson
have used the latter’s \Xunvxh macro since it is publicly documented.
31*Line Breaking’, p. 610.

\mpparavfootnote

\Xunvxh

168 XII Critical footnotes

The final penalty of 0 was added here at Wayne’s suggestion to avoid a weird page-
breaking problem, which occurs on those occasions when TgX attempts to split foot
paragraphs. After trying out such a split (see The TeXbook, p. 124), TgX inserts a penalty
of —10000 here, which nearly always forces the break at the end of the whole footnote
paragraph (since individual notes can’t be split) even when this leads to an overfull vbox.
The change above results in a penalty of 0 instead which allows, but does not force, such
breaks. This penalty of 0 is later removed, after page breaks have been decided, by the
\unpenalty macro in \makehboxofhboxes. So it does not affect how the footnote
paragraphs are typeset (the notes still have a penalty of —10 between them, which is
added by \parafootfmt).

This version is for minipages.

5 \newcommand*{\mpparavfootnote}[2]{/

\global\setbox\@nameuse{mp#1footins}\vbox{/
\unvbox\@nameuse{mp#1footins}y
\csuse{Xnotefontsize@#1}

\footsplitskips
\setbox0=\vbox{\hsize=\maxdimen,
\let\bidi@RTL@everypar\Qempty
\insert@Xtxtbeforenotes{#1}/
\noindent\color@begingroup/
\csuse{Xbhooknote@#1}/,
\csname #1footfmt\endcsname #2{#1}\color@endgroup}/
\setbox0=\hbox{\Xunvxh{0}{#1}}/,

o }}

\dp0=\z@
\htO=\csname #1footfudgefactor\endcsname\wd0
\box0
\penalty0
A

Here is (modified) Michael’s definition of \unvxh, used above. Michael’s macro also
takes care to remove some unwanted penalties and glue that TgX automatically attaches
to the end of paragraphs. When TgX finishes a paragraph, it throws away any remaining
glue, and then tacks on the following items: a \penalty of 10000, a \parfillskip and
a \rightskip (The TeXbook, pp.99-100). \unvxh cancels these unwanted paragraph-
final items using \unskip and \unpenalty.

772 \newcommand*{\Xunvxh} [2]{%

\setbox0=\vbox{\unvbox#17,
\global\setboxl=\lastbox}/

\unhbox1

\unskip % remove \rightskip,
\unskip % remove \parfillskip,
\unpenalty % remove \penalty of 10000,

\hskip\csuse{Xafternote@#2}\relax}), add the glue to go between the notes

781 th

XII.6 Footnotes arrangement 169

\parafootfmt \parafootfmt is \normalfootfmt adapted to do the special stuff needed for para-
graphed notes — leaving out the \endgraf at the end, sticking in special penalties and
kern and leaving out the \footstrut. The first argument is the line and page number
information, the second is the lemma, the third is the text of the footnote, and the fourth
is the series (optional, for backward compatibility).

252 \newcommand*{\parafootfmt} [4]1{/
\Xinsertparafootsep{#4}/,

2784 \ledsetnormalparstuff@commony,

zss \printlinefootnote{#1}{#4}/
\print@lemma{#1}{#2}{#4}/
\csuse{Xwrapcontent@#4}{#3}/,

2 \penalty-10 }

2189

Note that in the above definition, the penalty of —10 encourages a line break be-
tween notes, so that notes have a slight tendency to begin on new lines. The
\Xinsertparafootsep command is used to insert the \Xparafootsep@series be-
tween each note in the same page.

\parafootgroup This footgroup code is modelled on the macros in The TeXbook, p.399. The only differ-
ence is the \unpenalty in \makehboxofhboxes, which is there to remove the penalty
of 0 which was added to the end of each footnote by \paravfootnote.

The call to \Xnotefontsize@(s) is to ensure that the correct \baselineskip for
the footnotes is used. The argument is the no