
The rec-thy Package
Peter M. Gerdes (gerdes@invariant.org)

2011-01-01: Version 2.1

Abstract

The rec-thy package is designed to help mathematicians publish-
ing papers in the area of recursion theory (aka Computability Theory)
easily use standard notation. This includes easy commands to denote
Turing reductions, Turing functionals, c.e. sets, stagewise computa-
tions, forcing and syntactic classes.

1 Introduction
This package aims to provide a useful set of LATEX macros covering basic
computability theory notation. Given the variation in usage in several areas
this package had to pick particular notational conventions. The package
author would like to encourage uniformity in these conventions but has in-
cluded a multitude of package options to allow individual authors to choose
alternative conventions or exclude that part of the package. Some effort
has been made to align the semantic content of documents created with this
package with the LATEX source. The author hopes that eventually this pack-
age may be incorporated into some larger package for typesetting papers in
mathematical logic.

While computability theory is now the more popular name for the subject
also known as recursion theory the author deliberately choose to title this
package rec-thy to avoid confusion with the proliferation of packages for
typesetting computer science related disciplines. While the subject matter of
computability theory and theoretical computer science overlap significantly
the notational conventions often differ.

Comments, patches, suggestions etc.. are all welcome. This project is
hosted on github at https://github.com/TruePath/Recursion-Theory-Latex-
Package.

1

https://github.com/TruePath/Recursion-Theory-Latex-Package
https://github.com/TruePath/Recursion-Theory-Latex-Package

2 Usage
Include the package in your document by placing \usepackage{rec-thy}
into your preamble after placing rec-thy.sty somewhere TEX can find it.
The commands in this package have been divided into related groups. The
commands in a given section can be disabled by passing the appropriate
package option. For instance to disable the commands in the general math-
ematics section and the delimiters section you would include the following in
your preamble \usepackage[nomath,nodelim]{rec-thy}. The commands
in each subsection along with their results are listed below and the options
to disable the commands in each grouping or modify their behavior are listed
in that subsection. Aliases and variants of a command are listed below the
initial version of a command and aliases are indented.

Significant use is made in this package of optional arguments delimited
either by square brackets or parenthesis. Users of the package should take
care to wrap arguments that may themselves include brackets or parenthe-
sis in braces. For example \REset(\REset(X){e}){i} should be fixed to
\REset({\REset(X){e}}){i}.

3 Commands
A few general conventions are usually followed in the commands. Whenever
an operator can be used as a binary operator (as in X ∪ Y) and as an
operation on some collection

∪
i∈ω Xi the binary operator will begin with a

lowercase letter \union and the operation on the collection will begin with
a capital letter \Union. If the first letter is already capitalized then the
second letter is used instead.

Objects that have a natural stagewise approximation generally admit an
optional argument in brackets to specify a stage. For instance \REset[s]{e}
yields We,s. An optional argument in parenthesis is used for relativization.
For instance \REset(X){e} produces WX

e . A notable exception to this rule
are the formula classes where square brackets are used to indicate an oracle
to be placed in the superscript, e.g., \pizn[X]{2} yields Π0,X

2 , so as not to
generate confusion with the alternative notion Π0

2(X). Also a lowercase first
letter in a formula class indicates the lightface version while a capital first
letter indicates the boldface version.

Unless indicated otherwise all macros are to be used inside math mode.
Indented commands indicate an alias for the command on the line above u

2

3.1 Computations
To disable these commands pass the option nocomputations.

3

\murec{x}{f(x)>1} µx (f(x) > 1) Least x satisfying condition.
\recfnl{e}{Y}{x} Φe(Y ;x)

Computable functions/functionals\recfnl[s]{e}{Y}{x} Φe,s(Y ;x)

\recfnl{e}{Y}{} Φe(Y)

\recfnl{e}{}{x} Φe(x)

\recfnl{e}{}{} Φe

\recfnl{e}{}{} \cequiv \recfnl{i}{}{} Φe ⋍ Φi Equivalent computations
\recfnl{e}{}{} \ncequiv \recfnl{i}{}{} Φe ̸⋍ Φi Inequivalent computations
\recfnl{e}{}{x}\conv Φe(x)↓ Convergence

\recfnl{e}{}{x}\conv[s] Φe(x)↓s
\recfnl{e}{}{x}\nconv Φe(x)∖ ↓ Divergence

\recfnl{e}{}{x}\nconv[s] Φe(x)∖ ↓s
\use{\recfnl{e}{Y}{x}} u[Φe(Y ;x)] Use of a computation.
\REset{e} We

c.e. sets\REset[s]{e} We,s

\REset(X){e} WX
e

\REset[s](X){e} WX
e,s

\iREAop{e}(\eset)
Je(∅) 1-REA operator\reaop*{e}(\eset)

\alphaREAop{\alpha}(\eset) J α(∅) α-REA operator
\reaop{\alpha}(\eset)

\alphaREAop[f]{\alpha}(\eset) J α
f (∅) with particular witness to uniformity

\reaop[f]{\alpha}(\eset)

3.2 Degrees
To disable these commands pass the option nodegrees.

4

\Tdeg{d} d˜ Turing degree
\Tjump{X}

X ′ Turing jump\jump{X}

\jjump{X} X ′′

\jumpn{X}{n} X(n)

\Tzero ⊬ Computable degree
\zeroj ⊬′

\zerojj ⊬′′

\zerojjj ⊬′′′

\zeron{n} ⊬(n)

X \Tequiv Y
X ≡T Y Turing equivalenceX \Teq Y

X \nTequiv Y
X ≇T Y Turing inequivalenceX \nTeq Y

X \Tlneq Y X ⪇T Y

X \Tleq Y X ≤T Y

X \Tgneq Y X ⪈T Y

X \Tgeq Y X ≥T Y

X \Tgtr Y X >T Y

X \Tless Y X <T Y

X \nTleq Y X ≰T Y

X \nTgeq Y X ≱T Y

\Tdeg{d} \Tdegjoin \Tdeg{d'} d˜ ∨T d′˜ Join of degrees
\Tdeg{d} \Tdegmeet \Tdeg{d'}

d˜ ∧T d′˜ Meet of degrees (when defined)\Tdeg{d} \Tmeet \Tdeg{d'}

X \Tplus Y
X ⊕ Y

Effective join of setsX \Tjoin Y
\TPlus_{i \in \omega} X_i ⊕

i∈ω Xi\TJoin_{i \in \omega} X_i

5

X \ttlneq Y X ⪇tt Y Truth table reducibilities
X \ttleq Y X ≤tt Y

X \ttgneq Y X ⪈tt Y

X \ttgeq Y X ≥tt Y

X \ttgtr Y X >tt Y

X \ttless Y X <tt Y

X \ttnleq Y X ≰tt Y

X \ttngeq Y X ≱tt Y

3.3 Requirement Assistance
To disable these commands pass the option noreqhelper. To disable the
hyperlinked requirements pass nohyperreqs
Math mode is not required for \req{R}{e\}

\req{R}{e} Re

Requirement\req[\nu]{R}{e\} Rν
e

\req*{R}{e\} Re

Requirement without hyperlinks\req*[\nu]{R}{e\} Rν
e

We also introduce the following two enviornments for introducing re-
quirements. The requirement enviornment is used as follows

\ begin { requirement }{\ req {R^{∗}}{ r , j }}
\ r e c f n l { r }{B}{} = \REset{ j } \ i m p l i e s

\ e x i s t s [k] \ l e f t (\ Upsi lon ^{ j }_k(
C \Tplus \REset{ j }) = B) \ l o r \
REset{ j } \Tleq \Tzero \ r i g h t)

\end{ requirement }

Giving output

R∗
r,j : Φr(B) = Wj =⇒ [∃ k]

(
Υj

k(C ⊕Wj) = B) ∨Wj ≤T ⊬
)

The require enfiornment merges the \req[\nu]{R}{e\} command di-
rectly into the enviornment arguments. It also creates an automatic label

6

which makes use of the 1st and 2nd arguments but assumes the third are
just indexes whose names are subject to change. Unless nohyperreqs is
passed the \req[\nu]{R}{e\} automatically links to the defining require
enviornment.

\ begin { r e q u i r e }{R}{ i }
\ r e c f n l { i }{B}{} = \REset{ i } \ i m p l i e s \ e x i s t s

[k] \ l e f t (\ Upsi lon ^{ i }_k(C \Tplus \REset{ i
}) = B) \ l o r \REset{ j } \Tleq \Tzero \ r i g h t)

\end{ r e q u i r e }

Giving output

Ri: Φi(B) = Wi =⇒ [∃ k]
(
Υi

k(C ⊕Wi) = B) ∨Wj ≤T ⊬
)

3.4 General Math Commands
To disable these commands pass the option nomath.

7

\eqdef def
= Definitional equals

\iffdef def⇐⇒ Definitional equivalence
\aut Aut Automorphisms of some structure
\Ord Ord Set of ordinals
x \meet y x ∧ y Meet operation
\Meet_{i\in \omega} x_i

∧
i∈ω xi

x \join y x ∨ y Join operation
\Join_{i\in \omega} x_i

∨
i∈ω xi

\abs{x} |x| Absolute value
\dom dom Domain
\rng rng Range
f\restr{X} f↾X Restriction
\ordpair{x}{y} (x, y) Ordered Pair
f\map{X}{Y} f : X 7→ Y Function specification\functo{f}{X}{Y} f : X 7→ Y

f \compfunc g
f ◦ g Function compositionf \funcomp g

f \compose g

\(\ensuretext{blah} \) blah Types argument in text mode\ensuretext{blah}

8

3.5 Set Notation
To disable these commands pass the option nosets.

\set{(x,y)}{x > y} {(x, y)|x > y} Set notation
\set{(x,y)}{} {(x, y)}

\set{(x,y)} {(x, y)}

\card{X} |X| Cardinality
X \union Y X ∪ Y Union
\Union_{i \in \omega} X_i

∪
i∈ω Xi

X \isect Y X ∩ Y Intersection
\Isect_{i \in \omega} X_i

∩
i∈ω Xi

X \cross Y X × Y Cartesian product (Cross Product)
\Cross_{i \in \omega} X_i Πi∈ω Xi

\powset{\omega} P (ω) Powerset
\eset ∅ Emptyset abbreviation
x \nin A x /∈ A not an element
\setcmp{X} X Set compliment

∽X With option minussetcmp

X \setminus Y X − Y Set difference
X \symdiff Y X ∆ Y Symmetric difference
\interior X intX Interior
\closure X clX Closure

3.6 Delimiters
To disable these commands pass the option nodelim.

9

\gcode{\phi}
⌜ϕ⌝ Godel Code/Corner Quotes\godelnum{\phi}

\cornerquote{\phi}

\llangle x,y,z \rrangle ⟨⟨x, y, z⟩⟩ Properly spaced double angle brackets

3.7 Recursive vs. Computable
To disable these commands pass the option nonames. To use recursive, r.e.
and recursively enumerable everywhere pass the option re. To use com-
putable, c.e. and computably enumerable everywhere pass the option ce.
To force REA and CEA use the options rea and cea. If none of these op-
tions are passed the macros will expand as below. All macros in this section
work in both text and math modes.

\re r.e.
\ce c.e.
\REA REA
\CEA CEA
\recursive recursive
\computable computable
\recursivelyEnumerable recursively enumerable
\computablyEnumerable computably enumerable
\Recursive Recursive
\Computable Computable
\RecursivelyEnumerable Recursively enumerable
\ComputablyEnumerable Computably enumerable

3.8 Quantifiers & Connectives
To disable these commands pass the option noquants. The commands
\exists and \forall are standard but the package extends them.

10

\exists[x < y] [∃x < y]

\exists(x < y) (∃x < y)

\exists* ∃∞
\existsinf

\exists*[x < y] [∃∞ x < y]

\exists*(x < y) (∃∞ x < y)

\nexists[x < y] [∄x < y]

\nexists(x < y) (∄x < y)

\nexists* ∄∞
\nexistsinf

\nexists*[x < y] [∄∞ x < y]

\nexists*(x < y) (∄∞ x < y)

\forall[x < y] [∀x < y]

\forall(x < y) (∀x < y)

\forall* ∀∗
For almost all.\forallae

\forall*[x < y] [∀∗ x < y]

\forall*(x < y) (∀∗ x < y)

\True ⊤

\False ⊥

\Land \phi_i
∧
ϕi Operator form of and

\Lor \phi_i
∨
ϕi Operator form of or

\LLand \phi_i
∧∧

ϕi Infinitary conjunction
\LLor \phi_i

∨∨
ϕi Infinitary disjunction

3.9 Spaces
To disable these commands pass the option nospaces.

11

\bstrs 2<ω Finite binary strings
\wstrs ω<ω Finite sequences of integers
\cantor 2ω Cantor space
\baire ωω Baire space

\Baire N Alternate baire space

3.10 Strings
To disable these commands pass the option nostrings.

\str{1,0,1} ⟨⟨1, 0, 1⟩⟩ Strings/Codes for strings\code{5,8,13} ⟨⟨5, 8, 13⟩⟩

\EmptyStr λ Empty string
\estr λ

\decode{\sigma}{3} (σ)3 Alternate notation for σ(3)

\sigma\concat\tau σˆτ Concatenation
\sigma\concat[0] σˆ⟨⟨0⟩⟩

\strpred{\sigma} σ− The immediate predecessor of σ
\lh{\sigma} |σ| Length of σ
\sigma \incompat \tau σ | τ Incompatible strings\sigma \incomp \tau σ | τ

\sigma \compat \tau σ ∤ τ Compatible strings
\pair{x}{y} ⟨x, y⟩ Code for the pair (x, y)

\setcol{X}{n} X [n] {y|⟨n, y⟩ ∈ X}

\setcol{X}{\leq n} X [≤n] {⟨x, y⟩|⟨x, y⟩ ∈ X ∧ x ≤ n}

3.11 Subfunctions
To disable these commands pass the option nosubfuns.

12

f \subfun g f ≺ g

Varities of the function extension relation

f \supfun g f ≻ g

f \nsubfun g f ⊀ g

f \nsupfun g f ⊁ g

f \subfuneq g f ⪯ g

f \supfuneq g f ⪰ g

f \nsubfuneq g f ⪯̸ g

f \nsupfuneq g f ⪰̸ g

3.12 Trees
To disable these commands pass the option notrees.

\CBderiv{T} T ⟨1⟩
Cantor-Bendixson Derivative

\CBderiv[\alpha]{T} T ⟨α⟩

\pruneTree{T} T ⟨∞⟩ {σ ∈ T |(∃ g)(g ∈ [T] ∧ σ ⊂ g)}

\hgt{T} ∥T∥

3.13 Set Relations
To disable these commands pass the option nosetrels.
Note that many of these commands are extensions of existing commands.

13

X \subset* Y X ⊂∗ Y All but finitely much of X is in YX \subseteq* Y X ⊆∗ Y

X \supset* Y X ⊃∗ Y All but finitely much of Y is in XX \supseteq* Y X ⊇∗ Y

X \eq Y X = Y Macro for =
X \eq* Y

X =∗ Y Equal mod finiteX \eqae Y

X \infsubset Y X ⊂∞ Y X ⊂ Y ∧ |Y −X| = ω

X \infsubset* Y X ⊂∗
∞ Y X ⊂∗ Y ∧ |Y −X| = ω

X \infsupset Y X ⊃∞ Y Y ⊂ X ∧ |X − Y | = ω

X \infsupset* Y X ⊃∗
∞ Y Y ⊂∗ X ∧ |X − Y | = ω

X \majsubset Y X ⊂m Y X is a major subset of Y
X \majsupset Y X ⊃m Y Y is a major subset of X

3.14 Ordinal Notations
To disable these commands pass the option noordinalnotations.

14

\wck ωck
1 First non-computable ordinal

\ordzero 0 Notation for ordinal 0
\abs{\alpha} |α| Ordinal α denotes
\kleeneO O Set of ordinal notations

\ordNotations

\kleeneO*
O Unique set of ordinal notations\uniqOrdNotations

\kleeneOuniq

\kleeneO(X) OX Relativized ordinal notations

\kleeneO[\alpha] O|α| Ordinal notations for ordinals < |α|

\kleeneO*(X)[\alpha] OX
|α|

\alpha \kleeneless \beta α <O β Ordering on notations
\alpha \kleenel \beta α <O β

\alpha \kleeneleq \beta α ≤O β

\alpha \kleenegtr \beta α >O β

\alpha \kleenegeq \beta α ≥O β

\alpha \kleenePlus \beta α+O β Effective addition of notations
\alpha \kleeneMul \beta α ·O β Effective multiplication of notations
\kleenelim{\lambda}{n} λ[n] The n-th element in effective limit defining notation λ

\kleenepred{\alpha} α− Predecessor of α if defined
\kleenehgt{R} ∥R∥O

Heigh of computable relation R
\hgtO{R}

3.15 Forcing
To disable these commands pass the option noforcing.

15

\sigma \forces \phi
σ ⊩ ϕ σ forces ϕ\sigma \frc \phi

\sigma \forces(X) \phi σ ⊩X
T ϕ ϕ is formula relative to X

\sigma \forces[T] \phi σ ⊩X
T ϕ Local forcing on T

\sigma \forces* \phi σ ⊩* ϕ Strong forcing

3.16 Syntax
To disable these commands pass the option nosyntax.
All syntax classes can be relativized with an optional argument in square
brackets even when not listed below. Only the ∆ formula classes are listed
below since the syntax is identical for Σ and Π. Capitalizing the first letter
gives the boldface version in all cases (except the computable infinitary
formulas as this doesn’t make sense). Not all formulas/abbreviations are
demonstrated below given the huge number but the enough are included
to make it clear what command is required to generate the desired formula
class, e.g., substituting pi for delta does what you think it does.

To change the syntax for the computable infinitary formulas you can pass
the options cdeltasym, csigmasym and cpisym set equal to the command to
produce your desired symbol. This is UNTESTED and quite likely doesn’t
work yet. If you desire this feature and it doesn’t work send me a bug report.
\Cdeltan[X]{\alpha} C∆X

2 The computable δXα formulas
\deltan{2} ∆2

\deltan[X]{2} ∆X
2

\deltaZeroN[X]{2}
∆0,X

2\deltazn[X]{2}

\deltaZeroOne[X]
∆0,X

1\deltazi[X]

\sigmaZeroTwo[X]
∆0,X

2\sigmazii[X]

\deltaZeroThree[X]
∆0,X

3\deltaziii[X]

\deltaOneN[X]{2}
∆1,X

2\deltaIn[X]{2}

16

\deltaOneOne[X]
∆1,X

1\deltaIi[X]

\deltaOneTwo[X]
∆1,X

2\deltaIii[X]

\deltaOneThree[X]
∆1,X

3\deltaIiii[X]

\pizi Π0
1

\pizn[X]{n} Π0,X
n

\Deltan{2} ∆˜ 2

\DeltaOneN[X]{n} ∆˜ 1,X
n

\logic{\omega_1}{\omega} Lω1,ω Indicates the kind of infinitary logic

3.17 MRref
Finally to enable the mrref helper macros pass the option mrref.
These macros normalize the formating of mathscinet references for sup-
ported bibliography styles and ensure the MR numbers link to the math-
scinet page of the article. Unless you have a good reason (like journal for-
matting guidelines) there is no reason not to always pass this option. Note
this option requires the hyperref package.

4 Release Notes
2.1 10/05/2017 - Fixed way packages are required so rec-thy can be loaded

in a flexible order. Also fixed one or two bugs.

2.0 09/26/2017 - Added support for introducing requirements, the sub-
function relation and probably other undocumented features

1.3 06/20/2012 - Added abbreviations for computable infinitary formulas
and made a few minor fixes.

1.2 01/01/2011 - Fixed awful option processing bug preventing most op-
tions from being recognized and added mrref option.

1.0 10/15/2010 - Initial public release

17

	Introduction
	Usage
	Commands
	Computations
	Degrees
	Requirement Assistance
	General Math Commands
	Set Notation
	Delimiters
	Recursive vs. Computable
	Quantifiers & Connectives
	Spaces
	Strings
	Subfunctions
	Trees
	Set Relations
	Ordinal Notations
	Forcing
	Syntax
	MRref

	Release Notes

