
PythonTEX Quickstart

github.com/gpoore/pythontex

Compiling

Compiling a document that uses PythonTEX involves
three steps: run latex, run pythontex.py, and finally
run latex again. You may wish to create a symlink or
launching wrapper for pythontex.py, if one was not
created during installation. PythonTEX is compatible
with the pdfLaTeX, XeLaTeX, and LuaLaTeX engines.
There are minor engine-specific differences.

Commands

\py returns a string representation of its argu-
ment. For example, \py{2 + 4**2} produces 18, and
\py{’ABC’.lower()} produces abc. \py’s argument
can be delimited by curly braces, or by a matched
pair of other characters (just like \verb).
\pyc executes code. By default, anything that is

printed is automatically included in the document (see
autoprint/autostdout in the main documentation).
For example, \pyc{var = 2} creates a variable, and
then its value may be accessed later via \py{var}: 2.
\pyb executes and typesets code. For example,

\pyb{var = 2} typesets var = 2 in addition to cre-
ating the variable. If anything is printed, it is
not automatically included, but can be accessed via
\printpythontex and \stdoutpythontex.
\pyv only typesets code. For example,

\pyv{var = 2} produces var = 2.

Environments

There are pycode, pyblock, and pyverbatim environ-
ments, which are the environment equivalents of \pyc,
\pyb, and \pyv. For example,

\begin{pycode}

print(r’\begin{center}’)

print(r’\textit{A message from Python!}’)

print(r’\end{center}’)

\end{pycode}

produces

A message from Python!

There is also a pyconsole environment that emu-
lates a Python interactive console. For example,

\begin{pyconsole}

var = 1 + 1

var

\end{pyconsole}

yields

>>> var = 1 + 1

>>> var

2

The \begin and \end of an environment should be
on lines by themselves. Code in environments may be
indented; see the gobble option in the documentation
for more details.

Macro programming

PythonTEX commands can be used inside other com-
mands in macro programming. They will usually work
fine, but curly braces should be used as delimiters
and special LATEX characters such as % and # should
be avoided in the Python code. PythonTEX environ-
ments cannot be used inside LATEX commands, due
to the way LATEX deals with verbatim content and
catcodes.

Additional features

PythonTEX provides many additional features. The
working and output directories can be specified. The
user can determine when code is executed with the
package option rerun, based on factors such as modifi-
cation and exit status. By default, all commands and
environments run in a single session, providing con-
tinuity. Commands and environments accept an op-
tional argument that specifies the session in which the
code is executed; sessions run in parallel. PythonTEX
provides a utilities class that is always imported into
each session. The utilities class provides methods for
tracking dependencies and automatically cleaning up
created files.

PythonTEX also provides the depythontex util-
ity, which creates a copy of a document in which all
PythonTEX commands and environments have been
replaced by their output. The resulting document
is more suitable for journal submission, sharing, and
conversion to other document formats.

https://github.com/gpoore/pythontex

