
The pythontex package

Geoffrey M. Poore
gpoore@gmail.com

github.com/gpoore/pythontex

Version 0.12? from 2013/08/26

Abstract

PythonTEX provides access to Python from within LATEX documents. It
allows Python code entered within a LATEX document to be executed, and
the results to be included within the original document. Python code may
be adjacent to the figure or calculation it produces. The package also makes
possible macro definitions that mix Python and LATEX code. In addition,
PythonTEX provides syntax highlighting for many programming languages
via the Pygments syntax highlighter.

PythonTEX is fast and user-friendly. Python code is only executed when
it has been modified, or when user-specified criteria are met. When code
is executed, user-defined sessions automatically run in parallel. If Python
code produces errors, the error message line numbers are synchronized with
the LATEX document line numbering, simplifying debugging. Dependencies
may be specified so that code is automatically re-executed whenever they
are modified.

Because documents that use PythonTEX mix LATEX and Python code,
they are less suitable than plain LATEX documents for journal submis-
sion, sharing, and conversion to other formats. PythonTEX includes
a depythontex utility that creates a copy of a document in which all
PythonTEX content is replaced by its output.

While Python is the focus of PythonTEX, adding basic support for an
additional language is usually as simple as creating a new class instance and
a few templates, usually totaling less than 100 lines of code. The following
languages are already have built-in support: Ruby.

Warning
PythonTEX makes possible some pretty amazing things. But that power brings
with it a certain risk and responsibility. Compiling a document that uses
PythonTEX involves executing Python code, and potentially other programs, on
your computer. You should only compile PythonTEX documents from sources you
trust. PythonTEX comes with NO WARRANTY.1 The copyright holder and any
additional authors will not be liable for any damages.

1All LATEX code is licensed under the LATEX Project Public License (LPPL) and all Python
code is licensed under the BSD 3-Clause License.

1

gpoore@gmail.com
https://github.com/gpoore/pythontex
http://www.latex-project.org/lppl.txt
http://www.opensource.org/licenses/BSD-3-Clause

Contents
1 Introduction 5

2 Installing and running 8
2.1 Installing PythonTEX . 8
2.2 Compiling documents using PythonTEX 11

3 Usage 13
3.1 Package options . 13
3.2 Commands and environments . 19

3.2.1 Inline commands . 19
3.2.2 Environments . 21
3.2.3 Console command and environment families 21
3.2.4 Default families . 22
3.2.5 Custom code . 23
3.2.6 PythonTEX utilities class 25
3.2.7 Formatting of typeset code 28
3.2.8 Access to printed content (stdout) and error messages (stderr) 29

3.3 Pygments commands and environments 30
3.4 General code typesetting . 31

3.4.1 Listings float . 31
3.4.2 Background colors . 31
3.4.3 Referencing code by line number 32
3.4.4 Beamer compatibility . 33

3.5 Advanced PythonTEX usage . 33

4 depythontex 35
4.1 Preparing a document that will be converted 35
4.2 Removing PythonTEX dependence 36
4.3 Technical details . 38

5 LATEX programming with PythonTEX 41
5.1 Macro programming with PythonTEX 41
5.2 Package writing with PythonTEX 42

6 Support for additional languages 42
6.1 Ruby . 42
6.2 Julia . 43
6.3 Adding support for a new language 43

6.3.1 Template . 44
6.3.2 Wrapper . 46
6.3.3 The CodeEngine class . 46
6.3.4 Creating the LATEX interface 48

7 Troubleshooting 48

2

8 The future of PythonTEX 49
8.1 To Do . 49

8.1.1 Modifications to make . 49
8.1.2 Modifications to consider 49

Version History 50

9 Implementation 59
9.1 Package opening . 59
9.2 Required packages . 59
9.3 Package options . 60

9.3.1 Enabling command and environment families 60
9.3.2 Gobble . 60
9.3.3 Beta . 60
9.3.4 Runall . 60
9.3.5 Rerun . 61
9.3.6 Hashdependencies . 61
9.3.7 Autoprint . 61
9.3.8 Debug . 62
9.3.9 makestderr . 62
9.3.10 stderrfilename . 63
9.3.11 Python’s __future__ module 63
9.3.12 Upquote . 63
9.3.13 Fix math spacing . 64
9.3.14 Keep temporary files . 64
9.3.15 Pygments . 64
9.3.16 Python console environment 66
9.3.17 depythontex . 67
9.3.18 Process options . 67

9.4 Utility macros and input/output setup 68
9.4.1 Automatic counter creation 68
9.4.2 Saving verbatim content in macros 68
9.4.3 Code context . 69
9.4.4 Code groups . 70
9.4.5 File input and output . 71
9.4.6 Interface to fancyvrb . 76
9.4.7 Access to printed content (stdout) 78
9.4.8 Access to stderr . 81
9.4.9 depythontex . 82

9.5 Inline commands . 86
9.5.1 Inline core macros . 86
9.5.2 Inline command constructors 91

9.6 Environments . 95
9.6.1 Block and verbatim environment constructors 95
9.6.2 Code environment constructor 101
9.6.3 Console environment constructor 104

3

9.7 Constructors for command and environment families 106
9.8 Default commands and environment families 109
9.9 Listings environment . 109
9.10 Pygments for general code typesetting 110
9.11 Pygments utilities macros . 111

9.11.1 Inline Pygments command 111
9.11.2 Pygments environment . 112
9.11.3 Special Pygments commands 114
9.11.4 Creating the Pygments commands and environment 116

9.12 Final cleanup . 118
9.13 Compatibility with beta releases 118

4

1 Introduction
This introduction provides background and objectives for the PythonTEX package.
To jump right in and get started, you may wish to consult the pythontex_quickstart
and pythontex_gallery documents, as well as Sections 2 and 3, below. If you
are primarily interested in using PythonTEX with a language other than Python,
see Section 6.

LATEX can do a lot,2 but the programming required can sometimes be painful.3
In spite of the many packages available for LATEX, the libraries and packages of
a general-purpose programming language are lacking. Furthermore, it can be
convenient to include non-LATEX code in a document to make it more reproducible.
For these reasons, there have been multiple systems that allow other languages to
be used within LATEX documents.4

• PerlTEX allows the bodies of LATEX macros to be written in Perl.

• SageTEX allows code for the Sage mathematics software to be executed from
within a LATEX document.

• Martin R. Ehmsen’s python.sty provides a very basic method of executing
Python code from within a LATEX document.

• SympyTEX allows more sophisticated Python execution, and is largely based
on a subset of SageTEX.

• LuaTEX extends the pdfTEX engine to provide Lua as an embedded scripting
language, and as a result yields tight, low-level Lua integration.

PythonTEX attempts to fill a perceived gap in the current integrations of LATEX
with an additional language. It has a number of objectives, only some of which
have been met by previous packages.

Execution speed
In the approaches mentioned above, all the non-LATEX code is executed
at every compilation of the LATEX document (PerlTEX, LuaTEX, and
python.sty), or all the non-LATEX code is executed every time it is modified
(SageTEX and SympyTEX). However, many tasks such as plotting and data
analysis take a significant time to execute. We need a way to fine-tune code
execution, so that independent blocks of slow code may be separated into
their own sessions and are only executed when modified. If we are going
to split code into multiple sessions, we might as well run these sessions in
parallel, further increasing speed. A byproduct of this approach is that it
now becomes much more feasible to include slower code, since we can still
have fast compilations whenever the slow code isn’t modified.

2TEX is a Turing-complete language.
3As I learned in creating this package.
4I am not including the various web and weave dialects in my discussion, since they typically

involve a web or weave document from which the .tex source is generated, and thus weaker
integration with LATEX. Two sophisticated examples of this approach are Sweave and knitr, both
of which combine LATEX with the R language for tasks such as dynamic report generation.

5

http://www.ctan.org/tex-archive/macros/latex/contrib/perltex/
http://www.ctan.org/tex-archive/macros/latex/contrib/sagetex/
http://www.ctan.org/pkg/python
http://elec.otago.ac.nz/w/index.php/SympyTeX
http://www.luatex.org/
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://yihui.name/knitr/

Compiling without executing
Even with all of these features to boost execution speed, there will be times
when we have to run slow code. Thus, we need the execution of non-LATEX
code to be separated from compiling the LATEX document. We need to be
able to edit and compile a document containing unexecuted code. Unexe-
cuted code should be invisible or be replaced by placeholders. SageTEX and
SympyTEX have implemented such a separation of compiling and executing.
In contrast, LuaTEX and PerlTEX execute all the code at each compilation—
but that is appropriate given their goal of simplifying macro programming.

Error messages
Whenever code is saved from a LATEX document to an external file and then
executed, the line numbers for any error messages will not correspond to the
line numbering of the original LATEX document. At one extreme, python.sty
doesn’t attempt to deal with this issue, while at the other extreme, SageTEX
uses an ingenous system of Try/Except statements on every chunk of code.
We need a system that translates all error messages so that they correspond
to the line numbering of the original LATEX document, with minimal overhead
when there are no errors.

Syntax highlighting
Once we begin using non-LATEX code, sooner or later we will want to typeset
some of it, which means we need syntax highlighting. A number of syntax
highlighting packages currently exist for LATEX; perhaps the most popular
are listings and minted. listings uses pure LATEX. It has not been up-
dated since 2007, which makes it a less ideal solution in some circumstances.
minted uses the Python-based syntax highlighter Pygments to perform high-
lighting. Pygments can provide superior syntax highlighting, but minted can
be very slow because all code must be highlighted at each compilation and
each instance of highlighting involves launching an external Python process.
We need high-speed, user-friendly syntax highlighting via Pygments.5

Printing
It would be nice for the print statement/function,6 or its equivalent, to
automatically return its output within the LATEX document. For example,
using python.sty it is possible to generate some text while in Python, open a
file, save the text to it, close the file, and then \input the file after returning
to LATEX. But it is much simpler to generate the text and print it, since
the printed content is automatically included in the LATEX document. This
was one of the things that python.sty really got right.

Pure code
LATEX has a number of special characters (# $ % & ~ _ ^ \ { }), which

5The author recently started maintaining the minted package. In the near future, minted will
inherit PythonTEX’s speed enhancements, and the two packages will become more compatible.

6In Python, print was a statement until Python 3, when it became a function. The function
form is available via import from __future__ in Python 2.6 and later.

6

complicates the entry of non-LATEX code since these same characters are
common in many languages. SageTEX and SympyTEX delimit all inline code
with curly braces ({}), but this approach fails in the (somewhat unlikely)
event that code needs to contain an unmatched brace. More seriously, they
do not allow the percent symbol % (modular arithmetic and string formatting
in Sage and Python) to be used within inline code. Rather, a \percent
macro must be used instead. This means that code must (sometimes) be
entered as a hybrid between LATEX and the non-LATEX language. LuaTEX is
somewhat similar: “The main thing about Lua code in a TeX document is
this: the code is expanded by TeX before Lua gets to it. This means that
all the Lua code, even the comments, must be valid TeX!”7 In the case of
LuaTEX, though, there is the luacode package that allows for pure Lua.

This language hybridization is not terribly difficult to work around in the
SageTEX and SympyTEX cases, and is actually a LuaTEX feature in many
contexts. But if we are going to create a system for general-purpose access
to a non-LATEX language, we need all valid code to work correctly in all
contexts, with no hybridization of any sort required. We should be able
to copy and paste valid code into a LATEX document, without having to
worry about hybridizing it. Among other things, this means that inline code
delimiters other than LATEX’s default curly braces {} must be available.

Hybrid code
Although we need a system that allows input of pure non-LATEX code, it
would also be convenient to allow hybrid code, or code in which LATEX
macros may be present and are expanded before the code is executed. This
allows LATEX data to be easily passed to the non-LATEX language, facilitat-
ing a tighter integration of the two languages and the use of the non-LATEX
language in macro definitions.

Math and science libraries
The author decided to create PythonTEX after writing a physics disserta-
tion using LATEX and realizing how frustrating it can be to switch back and
forth between a TEX editor and plotting software when fine-tuning figures.
We need access to a non-LATEX language like Python, MATLAB, or Mathe-
matica that provides strong support for data analysis and visualization. To
maintain broad appeal, this language should primarily involve open-source
tools, should have strong cross-platform support, and should also be suitable
for general-purpose programming.

Language-independent implementation
It would be nice to have a system for executing non-LATEX code that depends
very little on the language of the code. We should not expect to escape
all language dependence. But if the system is designed to be as general
as possible, then it may be expanded in the future to support additional
languages.

7http://wiki.contextgarden.net/Programming_in_LuaTeX

7

http://www.ctan.org/pkg/luacode
http://wiki.contextgarden.net/Programming_in_LuaTeX

Python was chosen as the language to fulfill these objectives for several reasons.

• It is open-source and has good cross-platform support.

• It has a strong set of scientific, numeric, and visualization packages, including
NumPy, SciPy, matplotlib, and SymPy. Much of the initial motivation for
PythonTEX was the ability to create publication-quality plots and perform
complex mathematical calculations without having to leave the TEX editor.

• We need a language that is suitable for scripting. Lua is already available
via LuaTEX, and in any case lacks the math and science tools.8 Perl is al-
ready available via PerlTEX, although PerlTEX’s emphasis on Perl for macro
creation makes it rather unsuitable for scientific work using the Perl Data
Language (PDL) or for more general programming. Python is one logical
choice for scripting.

Now at this point there will almost certainly be some reader, sooner or later,
who wants to object, “But what about language X !” Well, yes, in some respects
the choice to use Python did come down to personal preference. But you should
give Python a try, if you haven’t already. You may also wish to consider the many
interfaces that are available between Python and other languages. If you still
aren’t satisfied, keep in mind PythonTEX’s “language-independent” implementa-
tion! In many cases, adding support for additional languages is relatively simple
(see Section 6).

2 Installing and running

2.1 Installing PythonTEX
PythonTEX requires a TEX installation. It has been tested with TEX Live and
MiKTEX, but should work with other distributions. The following LATEX pack-
ages, with their dependencies, are required: fancyvrb, etex, etoolbox, xstring,
pgfopts, newfloat, currfile, and color or xcolor. A current TEX installation
is recommended, since some features require recent versions of the packages. If you
are creating and including graphics, you will also need graphicx. The mdframed
package is recommended for enclosing typeset code in boxes with fancy borders
and/or background colors; tcolorbox and framed are alternatives.

PythonTEX also requires a Python installation. Python 2.7 is recommended
for the greatest compatibility with scientific tools, although many scientific pack-
ages are now compatible with Python 3. PythonTEX is compatible with Python
2.7 and 3.2+. The Python package Pygments must be installed for syntax
highlighting to function. PythonTEX has been tested with Pygments 1.4 and
later, but the latest version is recommended. For scientific work, or to compile
pythontex_gallery.tex, the following are also recommended: NumPy, SciPy,
matplotlib, and SymPy.

8One could use Lunatic Python, and some numeric packages for Lua are in development.

8

http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://sympy.org
http://pdl.perl.org/
http://pdl.perl.org/
http://www.tug.org/texlive/
http://miktex.org/
http://www.ctan.org/pkg/mdframed
http://www.ctan.org/pkg/tcolorbox
http://www.ctan.org/pkg/framed
http://www.python.org/
http://pygments.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://sympy.org
http://labix.org/lunatic-python
http://numlua.luaforge.net/

PythonTEX also provides support for other languages such as Ruby, so you
will need to install any additional languags you plan to use. Typically, the most
recent major version of these languages is supported.

PythonTEX consists of the following files:

• Installer file pythontex.ins

• Documented LATEX source file pythontex.dtx, from which pythontex.pdf
and pythontex.sty are generated

• Main script pythontex.py, which imports from pythontex2.py or pythontex3.py,
based on the Python version

• Language definitions pythontex_engines.py

• Utilities class pythontex_utils.py

• depythontex.py, which imports from depythontex2.py or depythontex3.py,
based on the Python version; used to remove PythonTEX dependence

• README (in rst style)

• pythontex_gallery.tex and pythontex_gallery.pdf

• pythontex_quickstart.tex and pythontex_quickstart.pdf

• Optional installation script pythontex_install_texlive.py for TEX Live

• Optional batch file pythontex.bat for use in launching pythontex.py under
Windows

• Optional conversion script pythontex_2to3.py for converting PythonTEX
code written for Python 2 into a form compatible with Python 3

The style file pythontex.stymay be generated by running LATEX on pythontex.ins.
The documentation you are reading may be generated by running LATEX on
pythontex.dtx. Some code is provided in two forms, one for Python 2 and one
for Python 3 (names ending in 2 and 3). Whenever this is the case, a version-
independent wrapper is supplied that automatically runs the correct code based
on the Python version. For example, there are two main scripts, pythontex2.py
and pythontex3.py, but you should actually run pythontex.py, which imports
the correct code based on the Python version.9

If you want the absolute latest version of PythonTEX, you should install it man-
ually from github.com/gpoore/pythontex. A Python installation script is provided
for use with TEX Live. It has been tested with Windows, Linux, and OS X, but
may need manual input or slight modifications depending on your system. The

9Unfortunately, it is not possible to provide full Unicode support for both Python 2 and 3
using a single script. Currently, all code is written for Python 2, and then the Python 3 version
is automatically generated via the pythontex_2to3.py script. This script comments out code
that is only for Python 2, and un-comments code that is only for Python 3.

9

https://github.com/gpoore/pythontex

installation script performs the steps described below. Note that for a typical
TEX setup under Linux, you may need to run the script with elevated
privileges, and may need to run it with the user’s PATH. This can be nec-
essary when you are using a Linux distribution that includes an outdated version
of TEX Live, and have installed a new version manually. If you are installing
PythonTEX on a machine with multiple version of TEX, make sure you
install PythonTEX for the correct version. For example, under Ubuntu
Linux, you will probably need the following command if you have installed the
latest version of TEX Live manually:

sudo env PATH=$PATH python pythontex_install_texlive.py

The installer creates the following files. It will offer to create the paths if they
do not exist. If you are installing in TEXMFLOCAL, the paths will have an
additional local/ at the end.

• 〈TEX tree root〉/doc/latex/pythontex/

– pythontex.pdf

– README

– pythontex_quickstart.tex

– pythontex_quickstart.pdf

– pythontex_gallery.tex

– pythontex_gallery.pdf

• 〈TEX tree root〉/scripts/pythontex/

– pythontex.py, pythontex2.py and pythontex3.py

– pythontex_engines.py

– pythontex_utils.py

– depythontex.py, depythontex2.py and depythontex3.py

• 〈TEX tree root〉/source/latex/pythontex/

– pythontex.dtx

– pythontex.ins

• 〈TEX tree root〉/tex/latex/pythontex/

– pythontex.sty

After the files are installed, the system must be made aware of their exis-
tence. The installer runs mktexlsr to do this. In order for pythontex.py and
depythontex.py to be executable, a symlink (TEX Live under Linux), launch-
ing wrapper (TEX Live under Windows), or batch file (general Windows) should
be created in the bin/〈system〉 directory. The installer attempts to create a

10

symlink or launching wrapper automatically. For TEX Live under Windows, it
copies bin/win32/runscript.exe to bin/win32/pythontex.exe to create the
wrapper.10

2.2 Compiling documents using PythonTEX
Compiling a document with PythonTEX involves three steps: running a LATEX-
compatible TEX engine (binary executable), running pythontex.py (preferably
via a symlink, wrapper, or batch file, as described above), and finally running
the TEX engine again. The first TEX run saves code into an external file where
PythonTEX can access it. The second TEX run pulls the PythonTEX output back
into the document.

If you plan to use code that contains non-ASCII characters such as Unicode,
you should make sure that your document is properly configured:

• Under pdfLaTeX, your documents need \usepackage[T1]{fontenc} and
\usepackage[utf8]{inputenc}, or a similar configuration.

• Under LuaLaTeX, your documents need \usepackage{fontspec}, or a sim-
ilar configuration.

• Under XeLaTeX, your documents need \usepackage{fontspec} as well as
\defaultfontfeatures{Ligatures=TeX}, or a similar configuration.

For an example of a PythonTEX document that will correctly compile under all
three engines, see the pythontex_gallery.tex source.

If you use XeLaTeX, and your non-LATEX code contains tabs, you must invoke
XeLaTeX with the -8bit option so that tabs will be written to file as actual tab
characters rather than as the character sequence ^^I.11

pythontex.py requires a single command-line argument: the name of the .tex
file to process. The filename can be passed with or without an extension; the
script really only needs the \jobname, so any extension is stripped off.12 The
filename may include the path to the file; you do not have to be in the same
directory as the file to run PythonTEX. If you are configuring your editor to run
PythonTEX automatically via a shortcut, you may want to wrap the filename in
double quotes " to allow for space characters.13 For example, under Windows
with TEX Live and Python 2.7 we would create the wrapper pythontex.exe.
Then we could run PythonTEX on a file 〈file name〉.tex using the command
pythontex.exe "〈file name〉".

pythontex.py accepts the following optional command-line arguments. Some
of these options duplicate package-level options, so that settings may be config-
ured either within the document or at the command line. In the event that the

10See the output of runscript -h under Windows for additional details.
11See http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file

for more on tabs with XeTeX.
12Thus, PythonTEX works happily with .tex, .ltx, .dtx, and any other extension.
13Using spaces in the names of .tex files is apparently frowned upon. But if you configure

things to handle spaces whenever it doesn’t take much extra work, then that’s one less thing
that can go wrong.

11

http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file

command-line and package options conflict, the package options always override
the command-line options. For variations on these options that are acceptable,
run pythontex.py -h.

• --encoding=〈encoding〉 This sets the file encoding. Any encoding supported
by Python’s codecs module may be used. The encoding should match that
of the LATEX document. If an encoding is not specified, PythonTEX uses
UTF-8. If support for characters beyond ASCII is required, then additional
LATEX packages are required; see the discussion of TEX engines above.

• --error-exit-code={true,false} By default, pythontex.py returns an
exit code of 1 if there were any errors, and an exit code of 0 otherwise.
This may be useful when PythonTEX is used in a scripting or command-line
context, since the presence of errors may be easily detected. It is also useful
with some TEX editors. For example, TeXworks automatically hides the
output of external programs unless there are errors.

In some contexts, returning a nonzero exit code can be redundant. For exam-
ple, with the WinShell editor under Windows with TeX Live, the complete
output of PythonTEX is always available in the “Output” view, so it is clear
if errors have occurred. Having a nonzero exit code causes runscript.exe
to return an additional, redundant error message in the “Output” view. In
such situations, it may be desirable to disable the nonzero exit code.

• --runall=[{true,false}] This causes all code to be executed, regardless
of modification or rerun settings. It is useful when code has not been modi-
fied, but a dependency such as a library or external data has changed. Note
that the PythonTEX utilities class also provides a mechanism for automat-
ically re-executing code that depends on external files when those external
files are modified.

There is an equivalent runall package option. The command-line option
--rerun=always is essentially equivalent.

• --rerun={never,modified,errors,warnings,always} This sets the thresh-
old for re-executing code. By default, PythonTEX will rerun code that has
been modified or that produced errors on the last run. Sometimes, we may
wish to have a more lenient setting (only rerun if modified) or a more strin-
gent setting (rerun even for warnings, or just rerun everything). never never
executes code; a warning is issued if there is modified code. modified only
executes code that has been modified (or that has modified dependencies).
errors executes all modified code as well as all code that produced errors
on the last run; this is the default. warnings executes all modified code, as
well as all code that produced errors or warnings. always executes all code
always and is essentially equivalent to --runall.

There is an equivalent rerun package option.

• --hashdependencies=[{true,false}] This determines whether dependen-
cies (external files highlighted by Pygments, code dependencies specified via

12

http://docs.python.org/library/codecs.html
http://www.tug.org/texworks/
http://winshell.de/

pytex.add_dependencies(), etc.) are checked for changes via their hashes
or modification times. By default, mtime is used, since it is faster. The
package option hashdependencies is equivalent.

• --verbose This gives more verbose output, including a list of all processes
that are launched.

• --interpreter This allows the interpreter for a given language to be spec-
ified. The argument should be in the form

--interpreter "<interpreter>:<command>, <interp>:<cmd>, ..."

where <interpreter> is python, ruby, etc., and <command> is the command
for invoking the desired interpreter. The argument to --interpreter may
also be in the form of a Python dictionary. The argument need not be
enclosed in quotation marks if it contains no spaces.

For example, by default Python code is executed with whatever inter-
preter the python command invokes. But Python 3 could be speci-
fied using --interpreter python:python3 (many Linux distributions) or
--interpreter "python:py -3" (Windows, with Python 3.3 installed so
that the py wrapper is available).

PythonTEX attempts to check for a wide range of errors and return mean-
ingful error messages. But due to the interaction of LATEX and Python code,
some strange errors are possible. If you cannot make sense of errors when
using PythonTEX, the simplest thing to try is deleting all files created by
PythonTEX, then recompiling. By default, these files are stored in a directory
called pythontex-files-〈jobname〉, in the same directory as your .tex document.
See Section 7 for more details regarding troubleshooting.

3 Usage

3.1 Package options
Package options may be set in the standard manner when the package is loaded:

\usepackage[〈options〉]{pythontex}

All options are described as follows. The option is listed, followed by its possible
values. When a value is not required, 〈none〉 is listed as a possible value. In this
case, the value to which 〈none〉 defaults is also given. Each option lists its default
setting, if the option is not invoked when the package is loaded.

Some options have a command-line equivalent. Package options override
command-line options.

All options related to printed content are provided in two forms for convenience:
one based on the word print and one based on stdout.

13

usefamily=〈basename 〉/{〈basename1, basename2, ... 〉}
By default, only the py, sympy, and pylab families of commands and envi-

ronments are defined, to prevent possible package conflicts.14 This option defines
preconfigured families for other available languages. It takes either a single lan-
guage base name, or a list of comma-separated names enclosed in curly braces.
Currently, the Ruby families rb and ruby may be created.

gobble=none/auto
default:none This option is still under development and may change somewhat in future

releases. If that occurs, equivalent functionality will be provided.
This option determines how code indentation is handled. By default, in-

dentation is left as-is; leading whitespace is significant. auto will dedent
all code by gobbling the largest common leading whitespace, using Python’s
textwrap.dedent().15 Keep in mind that Python’s dedent will not work cor-
rectly with mixed tabs and spaces.

The gobble option always works correctly with executed code. However,
currently the option only works with typeset code when Pygments is used.
The option is currently only available at the document level, but finer-grained
control is planned in the future.

The gobble option is supported by depythontex.
beta=〈none 〉/true/false

default:false 〈none 〉=true This option provides compatibility with the beta releases from before the full
v0.11 release, which introduced some changes in syntax and command names.
This option should only be used with old PythonTEX documents that require it.

You are encouraged to update old documents, since this compatility option
will only be provided for a few releases.

runall=〈none 〉/true/false
default:false 〈none 〉=true This option causes all code to be executed, regardless of whether it has been

modified. This option is primarily useful when code depends on external files,
and needs to be re-executed when those external files are modified, even though
the code itself may not have changed. Note that the PythonTEX utilities class
also provides a mechanism for automatically re-executing code that depends on
external files when those external files are modified.

A command-line equivalent --runall exists for pythontex.py. The package
option rerun=always is essentially equivelent.

rerun=never/modified/errors/warnings/always
default:errors 14For example, a \ruby command for Ruby code, and the \ruby command defined by the Ruby

package in the CJK package.
15It would be possible to do the dedent on the LATEX side, as is done manually in the fancyvrb

and listings packages with the gobble option and is done automatically in the lstautogobble
package. This is not done for stability and security reasons. lstautogobble determines the
dedent by extracting the leading whitespace from the first line of code, and then applying this
dedent to each subsequent line. This is adequate for typesetting code, since the worst-case
scenario is that a subsequent line with less indentation will be typeset with the first few characters
missing. Such an approach is not acceptable when the code will be executed, since a few missing
characters could in principle cause serious damage. Doing the dedent on the Python side ensures
that no characters are discarded, even if that results in an indentation error.

14

http://www.ctan.org/pkg/cjk

This option sets the threshold for re-executing code. By default, PythonTEX
will rerun code that has been modified or that produced errors on the last run.
Sometimes, we may wish to have a more lenient setting (only rerun if modified)
or a more stringent setting (rerun even for warnings, or always rerun). never
never executes code; a warning is issued if there is modified code. modified only
executes code that has been modified. errors executes all modified code as well
as all code that produced errors on the last run; this is the default. warnings
executes all modified code, as well as all code that produced errors or warnings.
always executes all code regardless of its condition.

A command-line equivalent --rerun exists for pythontex.py.
hashdependencies=〈none 〉/true/false
default:false 〈none 〉=true When external code files are highlighted with Pygments, or external dependen-

cies are specified via the PythonTEX utilities class, they are checked for modifi-
cation via their modification time (Python’s os.path.getmtime()). Usually, this
should be sufficient—and it offers superior performance, which is important if data
sets are large enough that hashing takes a noticeable amount of time. However,
occasionally hashing may be necessary or desirable, so this option is provided.

A command-line equivalent --hashdependencies exists for pythontex.py.
autoprint=〈none 〉/true/false

default:true 〈none 〉=true
autostdout=〈none 〉/true/false

default:true 〈none 〉=true
Whenever a print command/statement is used, the printed content will au-

tomatically be included in the document, unless the code doing the printing is
being typeset.16 In that case, the printed content must be included using the
\printpythontex or \stdoutpythontex commands.

Printed content is pulled in directly from the external file in which it is saved,
and is interpreted by LATEX as LATEX code. If you wish to avoid this, you should
print appropriate LATEX commands with your content to ensure that it is typeset
as you desire. Alternatively, you may use \printpythontex or \stdoutpythontex
to bring in printed content in verbatim form, using those commands’ optional verb
and verbatim options.

The autoprint (autostdout) option sets autoprint behavior for the entire doc-
ument. This may be overridden within the document using the \setpythontexautoprint
command.

debug
This option aids in debugging invalid LATEX code that is brought in from

Python. It disables the inclusion of printed content/content written to stdout.
16Note that autoprint only works within the body of the document. The code command and

environment can be used in the preamble, but autoprint is disabled there. It is usually a not a
good idea to print in the preamble, because nothing can be typeset; the only thing that could
be validly printed is LATEX commands that do not typeset content, such as macro definitions.
Thus, it is appropriate that printed content is only brought in while in the preamble if it is
explicitly requested via \printpythontex. This approach is also helpful for writing packages
using PythonTEX, since the author does not have to worry about any LATEX commands printed
by the package either not being included (if autoprint is relied upon, but the user turns it off)
or being included twice (if \printpythontex is used and autoprint is enabled). Printing should
only be used in the preamble with great care.

15

Since printed content should almost always be included, a warning is raised when
this option is used.

Not including printed content is useful when the printed content contains LATEX
errors, and would cause document compilation to fail. When the document fails
to compile, this can prevent modified Python code from being written to the code
file, resulting in an inescapable loop unless printed content is disabled or the saved
output is deleted.

Note that since commands like \py involve printing, they are also disabled.
makestderr=〈none 〉/true/false
default:false 〈none 〉=true This option determines whether the stderr produced by scripts is available for

input by PythonTEX, via the \stderrpythontex macro. This will not be needed
in most situations. It is intended for typeseting incorrect code next to the errors
that it produces. This option is not true by default, because additional processing
is required to synchronize stderr with the document.

stderrfilename=full/session/genericfile/genericscript
default:full This option governs the file name that appears in stderr. Python errors begin

with a line of the form

File "<file or source>", line <line>

By default (option full), <file or source> is the actual name of the script that
was executed. The name will be in the form 〈family name〉_〈session〉_〈restart〉.〈extension〉.
For example, an error produced by a py command or environment, in the session
mysession, using the default restart (that is, the default \restartpythontexsession
treatment), would be reported in py_mysession_default.py. The session op-
tion replaces the full file name with the name of the session, mysession.py in this
example. The genericfile and genericscript options replace the file name
with <file> and <script>, respectively.

pyfuture=none/all/default
default:default Under Python 2, this determines what is automatically imported from

__future__ for all code. It does not apply to console content. none im-
ports nothing from __future__. all imports everything available in Python
2.7 (absolute_import, division, print_function, and unicode_literals).
default imports a default set of features that should be compatible with al-
most all packages. Everything except unicode_literals is imported, since
unicode_literals can occasionally cause conflicts. Note that imports from
__future__ are also allowed within sessions, so long as they are at the very be-
ginning of the session, as they would have to be in a normal script.

This option has no effect under Python 3.
pyconfuture=none/all/default

default:none This is the equivalent of pyfuture for Python console content. The two
options are separate, because in the console context it may be desirable to show
explicitly all code that is executed.

upquote=〈none 〉/true/false
default:true 〈none 〉=true This option determines whether the upquote package is loaded. In general, the

upquote package should be loaded, because it ensures that quotes within verbatim
contexts are “upquotes,” that is, ' rather than ’.

16

Using upquote is important beyond mere presentation. It allows code to be
copied directly from the compiled PDF and executed without any errors due to
quotes ’ being copied as acute accents ´.

fixlr=〈none 〉/true/false
default:false 〈none 〉=true This option removes “extra” spacing around \left and \right in math mode.

This spacing is sometimes undesirable, especially when typesetting functions such
as the trig functions. See the implementation for details. Similar functionality is
provided by the mleftright package

keeptemps=〈none 〉/all/code/none
default:none 〈none 〉=all When PythonTEX runs, it creates a number of temporary files. By default,

none of these are kept. The none option keeps no temp files, the code option
keeps only code temp files (these can be useful for debugging), and the all option
keeps all temp files (code, stdout and stderr for each code file, etc.). Note that this
option does not apply to any user-generated content, since PythonTEX knows very
little about that; it only applies to files that PythonTEX automatically creates by
itself.

prettyprinter=pygments/fancyvrb
default:pygments This allows the user to determine at the document level whether code is typeset

using Pygments or fancyvrb.
The package-level option can be overridden for individual command and en-

vironment families, using the \setpythontexprettyprinter command. Overrid-
ing is never automatic and should generally be avoided, since using Pygments to
highlight only some content results in an inconsistent style. Keep in mind that
Pygment’s text lexer and/or bw style can be used when content needs little or no
syntax highlighting.

prettyprintinline=〈none 〉/true/false
default:true 〈none 〉=true This determines whether inline content is pretty printed. If it is turned off,

inline content is typeset with fancyvrb.
pygments=〈none 〉/true/false
default:true 〈none 〉=true This allows the user to determine at the document level whether code is typeset

using Pygments rather than fancyvrb. It is an alias for prettyprinter=pygments.
pyginline=〈none 〉/true/false

default:true 〈none 〉=true This option governs whether inline code, not just code in environments, is
highlighted when Pygments highlighting is in use. When Pygments is in use, it
will highlight everything by default.

It is an alias for prettyprintinline.
pyglexer=〈pygments lexer 〉

default:〈none 〉 This allows a Pygments lexer to be set at the document level. In general, this
option should not be used. It overrides the default lexer for all commands and
environments, for both PythonTEX and Pygments content, and this is usually not
desirable. It should be useful primarily when all content uses the same lexer, and
multiple lexers are compatible with the content.

pygopt={〈pygments options 〉}
default:〈none 〉 This allows Pygments options to be set at the document level. The op-

tions must be enclosed in curly braces {}. Currently, three options may
be passed in this manner: style=〈style name〉, which sets the formatting

17

http://www.ctan.org/pkg/mleftright

style; texcomments, which allows LATEX in code comments to be rendered;
and mathescape, which allows LATEX math mode ($...$) in comments. The
texcomments and mathescape options may be used with an argument (for exam-
ple, texcomments=True/False); if an argument is not supplied, True is assumed.
Example: pygopt={style=colorful, texcomments=True, mathescape=False}.

Pygments options for individual command and environment families may
be set with the \setpythontexpygopt macro; for Pygments content, there is
\setpygmentspygopt. These individual settings are always overridden by the
package option.

fvextfile=〈none 〉/〈integer 〉
default:∞ 〈none 〉=25 This option speeds the typesetting of long blocks of code that are created

on the Python side. This includes content highlighted using Pygments and the
console environment. Typesetting speed is increased at the expense of creating
additional external files (in the PythonTEX directory). The 〈integer〉 determines
the number of lines of code at which the system starts using multiple external
files, rather than a single external file. See the implementation for the technical
details; basically, an external file is used rather than fancyvrb’s SaveVerbatim,
which becomes increasingly inefficient as the length of the saved verbatim content
grows. In most situations, this option should not be needed, or should be fine with
the default value or similar “small” integers.

pyconbanner=none/standard/default/pyversion
default:none This option governs the appearance (or disappearance) of a banner at the be-

ginning of Python console environments. (A banner only appears in the first envi-
ronment within each session.) The options none (no banner), standard (standard
Python banner), default (default banner for Python’s code module, standard
banner plus interactive console class name), and pyversion (banner in the form
Python x.y.z) are accepted.

pyconfilename=stdin/console
default:stdin This governs the form of the filename that appears in error messages in Python

console environments. Python errors messages have a form such as the following:

>>> z = 1 + 34 +
File "<name>", line 1
z = 1 + 34 +

^
SyntaxError: invalid syntax

The stdin option replaces <name> with <stdin>, as it appears in a standard
Python interactive session. The console option uses <console> instead, which
is the default setting for the Python code module used by PythonTEX to create
Python console environments.

depythontex=〈none 〉/true/false
default:false 〈none 〉=true This option is used to create a version of the LATEX document that does not

require the PythonTEX package. When invoked, it creates an auxiliary file called
<filename>.depytx. The script depythontex.py uses the original document and
this auxiliary file to create a new document in which all PythonTEX commands and

18

environments have been replaced by typeset code and code output. For additional
information on depythontex, see Section 4.

3.2 Commands and environments
PythonTEX provides four types of commands for use with inline code and three
environments for use with multiple lines of code, plus special commands and envi-
ronments for console content. All commands and environments are named using
a base name and a command- or environment-specific suffix. A complete set of
commands and environments with the same base name constitutes a command
and environment family. In what follows, the different commands and envi-
ronments are described using the py base name (the py family) as an example.

Most commands and environments cannot be used in the preamble, because
they typeset material and that is not possible in the preamble. The one exception
is the code command and environment. These can be used to enter code, but
need not typeset anything. This allows you to collect your PythonTEX code in
the preamble, if you wish, or even use PythonTEX in package writing. Note that
the package option autoprint is never active in the preamble, so even if a code
command or environment did print in the preamble, printed content would never
be inputted unless \printpythontex or \stdoutpythontex were used.

All commands and environments take a session name as an optional argument.
The session name determines the session in which the code is executed. This allows
code to be executed in multiple independent sessions, increasing speed (sessions
run in parallel) and preventing naming conflicts. If a session is not specified, then
the default session is used. Session names should use the characters a-z, A-Z,
0-9, the hyphen, and the underscore. All characters used must be valid in file
names, since session names are used to create temporary files. The colon is also
allowed, but it is replaced with a hyphen internally, so the sessions code:1 and
code-1 are identical.

In addition, all environments take fancyvrb settings as a second, optional ar-
gument. See the fancyvrb documentation for an explanation of accepted settings.
This second optional argument must be preceeded by the first optional argument
(session name). If a named session is not desired, the optional argument can be
left empty (default session), but the square brackets [] must be present so that
the second optional argument may be correctly identified:

\begin{〈environment〉}[][〈fancyvrb settings〉]

3.2.1 Inline commands

Inline commands are suitable for single lines of code that need to be executed
within the body of a paragraph or within a larger body of text. The commands
use arbitrary code delimiters (like \verb does), which allows the code to contain
arbitrary characters. Note that this is only guaranteed to work properly when the
inline commands are not inside other macros. If an inline command is used within
another macro, the code will be read by the external macro before PythonTEX

19

http://www.ctan.org/tex-archive/macros/latex/contrib/fancyvrb

can read the special code characters (that is, LATEX will tokenize the code). The
inline commands can work properly within other macros, but it is best to stick
with curly braces for delimiters in this case and you may have trouble with the
hash # and percent % characters.

\py[〈session 〉]〈opening delim 〉〈code 〉〈closing delim 〉
This command is used for including variable values or other content that can

be converted to a string. It is an alternative to including content via the print
statement/function within other commands/environments.

The \py command sends 〈code〉 to Python, and Python returns a string repre-
sentation of 〈code〉. 〈opening delim〉 and 〈closing delim〉 must be either a pair of
identical, non-space characters, or a pair of curly braces. If curly braces are used
as delimiters, then curly braces may only be used within 〈code〉 if they are paired.
Thus, \py{1+1} sends the code 1+1 to Python, Python evaluates the string repre-
sentation of this code, and the result is returned to LATEX and included as 2. The
commands \py#1+1# and \py@1+1@ would have the same effect. The command
can also be used to access variable values. For example, if the code a=1 had been
executed previously, then \py{a} simply brings the string represantation of a back
into the document as 1.

Assignment is not allowed using \py. For example, \py{a=1} is not valid.
This is because assignment cannot be converted to a string.17

The text returned by Python must be valid LATEX code. Verbatim and other
special content is allowed under the pdfTeX and XeTeX engines (a known bug
prevents it from working with LuaTeX). The primary reasons for using \py rather
than print are (1) \py is more compact and (2) print requires an external file
to be created for every command or environment in which it is used, while \py
and equivalents for other families share a single external file. Thus, use of \py
minimizes the creation of external files, which is a key design goal for PythonTEX.18
The main reason for using print rather than \py is if you need to include a very
large amount of material; print’s use of external files won’t use up TEX’s memory,
and may give noticeably better performance once the material is sufficiently long.

\pyc[〈session 〉]〈opening delim 〉〈code 〉〈closing delim 〉
This command is used for executing but not typesetting 〈code〉. The suffix c

is an abbreviation of code. If the print statement/function is used within 〈code〉,
printed content will be included automatically so long as the package autoprint
option is set to true (the default setting).

17It would be simple to allow any code within \py, including assignment, by using a try/except
statement. In this way, the functionality of \py and \pyc could be merged. While that would
be simpler to use, it also has serious drawbacks. If \py is not exclusively used to typeset string
representations of 〈code〉, then it is no longer possible on the LATEX side to determine whether
a command should return a string. Thus, it is harder to determine, from within a TEX editor,
whether pythontex.py needs to be run; warnings for missing Python content could not be issued,
because the system wouldn’t know (on the LATEX side) whether content was indeed missing.

18For \py, the text returned by Python is stored in macros and thus must be valid LATEX code,
because LATEX interprets the returned content. The use of macros for storing returned content
means that an external file need not be created for each use of \py. Rather, all macros created
by \py and equivalent commands from other families are stored in a single file that is inputted.
Note that even though the content is stored in macros, verbatim content is allowed, through the
use of special macro definitions combined with \scantokens.

20

\pyv[〈session 〉]〈opening delim 〉〈code 〉〈closing delim 〉
This command is used for typesetting but not executing 〈code〉. The suffix v

is an abbreviation for verb.
\pyb[〈session 〉]〈opening delim 〉〈code 〉〈closing delim 〉

This command both executes and typesets 〈code〉. Since it is unlikely that the
user would wish to typeset code and then immediately include any output of
the code, printed content is not automatically included, even when the package
autoprint option is set to true. Rather, any printed content is included at a
user-designated location via the \printpythontex or \stdoutpythontex macros.

3.2.2 Environments

pycode [〈session 〉][〈fancyvrb settings 〉]
This environment encloses code that is executed but not typeset. The second

optional argument 〈fancyvrb settings〉 is irrelevant since nothing is typeset, but it
is accepted to maintain parallelism with the verbatim and block environments.
If the print statement/function is used within the environment, printed content
will be included automatically so long as the package autoprint option is set to
true (the default setting).

pyverbatim [〈session 〉][〈fancyvrb settings 〉]
This environment encloses code that is typeset but not executed.

pyblock [〈session 〉][〈fancyvrb settings 〉]
This environment encloses code that is both executed and typeset. Since it is

unlikely that the user would wish to typeset code and then immediately print any
output of the code, printed content is not automatically included, even when the
package autoprint option is set to true. Rather, any printed content is included
at a user-designated location via the \printpythontex or \stdoutpythontex
macros.

3.2.3 Console command and environment families

So far, we have considered the py command and environment family. PythonTEX
also provides families for console content. These emulate the behavior of a Python
interactive console. In what follows, the pycon family is described

The pycon family includes a \pyconv and pyconverbatim that typeset a con-
sole session pasted from an interpreter. It also includes a \pyconc and pyconcode
that execute code but typeset nothing. These should be used with care, since it
may often be advisable to show all executed code when working with an interactive
console.

The pycon family also includes a special environment and command.
pyconsole [〈session 〉][〈fancyvrb settings 〉]

This environment treats its contents as a series of commands passed to an inter-
active Python console. Python’s code module is used to intersperse the commands
with their output, to emulate an interactive Python interpreter.

When a multi-line command is entered (for example, a function definition), a
blank line after the last line of the command may be necessary.

21

http://docs.python.org/3/library/code.html

For example,

a = 1
b = 2
a + b

produces

>>> a = 1
>>> b = 2
>>> a + b
3

\pycon[〈session 〉]〈opening delim 〉〈code 〉〈closing delim 〉
This command executes 〈code〉 using the emulated interpreter, and brings the

output back into the document, discarding the input. The output is typeset
verbatim (since it will not in general be valid LATEX), with the same font used for
the pyconsole environment.

For example, \pycon{a + b} would create 3.
This command is primarily for use in referencing console variable values.
Notice that there is not a command or environment for console content that

parallels the block command and environment. That is, there is not a command
or environment that both typesets and executes code in the console, but does not
show the output. This is intentional. In most cases, if you are going to use the
console, you should use it consistently, showing input and output together.

3.2.4 Default families

By default, three command and environment families are defined, with three cor-
responding console families.

• Python

– Base name py: \py, \pyc, \pyv, \pyb, pycode, pyverbatim, pyblock.
– Base name pycon: \pycon, \pyconc, \pyconv, pyconsole, pyconcode,

pyconverbatim.
– Imports: None.

• Python + pylab (matplotlib module)

– Base name pylab: \pylab, \pylabc, \pylabv, \pylabb, pylabcode,
pylabverbatim, pylabblock.

– Base name pylabcon: \pylabcon, \pylabconc, \pylabconv, pylabconsole,
pylabconcode, pylabconverbatim.

– Imports: matplotlib’s pylab module, which provides access to much
of matplotlib and NumPy within a single namespace. pylab content is
brought in via from pylab import *.

22

– Additional notes: matplotlib added a pgf backend in version 1.2. You
will probably want to use this for creating most plots. However, this
is not currently configured automatically because many users will want
to customize font, TEX engine, and other settings. Using TEX to create
plots also introduces a performance penalty.

• Python + SymPy

– Base name sympy: \sympy, \sympyc, \sympyv, \sympyb, sympycode,
sympyverbatim, sympyblock, sympyconsole.

– Base name sympycon: \sympycon, \sympyconc, \sympyconv, sympyconsole,
sympyconcode, sympyconverbatim.

– Imports: SymPy via from sympy import *.

– Additional notes: By default, content brought in via \sympy is format-
ted using a context-sensitive interface to SymPy’s LatexPrinter class,
described below.

Under Python 2.7, all non-console families import absolute_import, division,
and print_function from __future__ by default. This may be changed using
the package option pyfuture. There is an equivalent pyconfuture for console
families. Keep in mind that importing unicode_literals from __future__ may
break compatibility with some packages; this is why it is not imported by default.
Imports from __future__ are also possible without using the pyfuture option.
You may use the \pythontexcustomc command or pythontexcustomcode envi-
ronment (described below), or simply enter the import commands immediately at
the beginning of a session.

3.2.5 Custom code

You may wish to customize the behavior of one or more families within a document
by adding custom code to the beginning and end of each session. The custom code
command and environment make this possible. While the custom code command
and environment work with console content, most of the discussion below is
geared toward the non-console case.

If you wish to share these customizations among several documents, you can
create your own document class or package containing custom code commands
and environments.

While custom code can be added anywhere in a document, it is probably best
for organizational reasons to add it in the preamble or near the beginning of the
document.

Note that custom code is executed, but never typeset. Only code that is ac-
tually entered within a block (or verbatim) command or environment is ever
typeset. This means that you should be careful about how you use custom code.
For example, if you are documenting code, you probably want to show absolutely
all code that is executed, and in that case using custom code might not be ap-
propriate. If you are using PythonTEX to create figures or automate text, are

23

http://matplotlib.org/users/pgf.html

using many sessions, and require many imports, then custom code could save
some typing by centralizing the imports.

Any errors or warnings due to custom code will be correctly synchronized with
the document, just like normal errors and warnings. Any errors or warnings will
be specifically identified as originating in custom code.

Custom code is not allowed to print or write to stdout. It would be pointless
for custom code at the beginning of a session to print, because all printed content
would be identical since custom code at the beginning comes before any regular
code that might make the output session-specific. In addition, it is not obvious
where printed content from custom code would be included, especially for custom
code at the end of a session. Furthermore, custom code may be in the preamble,
where nothing can be typeset.

If custom code does attempt to print, a warning is raised and the printed
content is included in the PythonTEX run summary. This gives you access to the
printed content, while not including it in the document. This can be useful in
cases where you cannot control whether content prints (for example, if a library
automatically prints debugging information).

\pythontexcustomc[〈position 〉]{〈family 〉}{〈code 〉}
This macro allows custom code to be added to all sessions within a command

and environment family. 〈position〉 should be either begin or end; it determines
whether the custom code is executed at the beginning or end of each session. By
default, custom code is executed at the beginning. 〈code〉 should be a single
line of code. For example, \pythontexcustomc{py}{a=1; b=2} would create the
variables a and b within all sessions of the py family, by adding that line of code
at the beginning of each session.

If you need to add more than a single line of custom code, you could
use the command multiple times, but it will be more efficient to use the
pythontexcustomcode environment.
〈code〉may contain imports from __future__. These must be the first elements

in any custom code command or environment, since __future__ imports are only
possible at the very beginning of a Python script and only the very beginning of
custom code is checked for them. If imports from __future__ are present at the
beginning of both custom code and the user’s code, all imports will work correctly;
the presence of the imports in custom code, before user code, does not turn off
checking for __future__ imports at the very beginning of user code. However, it
is probably best to keep all __future__ imports in a single location.

pythontexcustomcode[〈position 〉]{〈family 〉}
This is the environment equivalent of \pythontexcustomc. It is used for adding

multi-line custom code to a command and environment family. In general, the en-
vironment should be preferrred to the command unless only a very small amount of
custom code is needed. The environment has the same properties as the command,
including the ability to contain imports from __future__.

24

3.2.6 PythonTEX utilities class

All non-console families import pythontex_utils.py, and create an instance
of the PythonTEX utilities class called pytex. This provides various utilities for
interfacing with LATEX and PythonTEX.

The utilities class provides an interface for determining how Python objects are
converted into strings in commands such as \py. The pytex.set_formatter(〈formatter〉)
method is used to set the conversion. Two formatters are provided:

• ’str’ converts Python objects to a string, using the str() function un-
der Python 3 and the unicode() function under Python 2. (The use of
unicode() under Python 2 should not cause problems, even if you have not
imported unicode_literals and are not using unicode strings. All encod-
ing issues should be taken care of automatically by the utilities class.)

• ’sympy_latex’ uses SymPy’s LatexPrinter class to return context-sensitive
LATEX representations of SymPy objects. Separate LatexPrinter set-
tings may be created for the following contexts: ’display’ (displaystyle
math), ’text’ (textstyle math), ’script’ (superscripts and subscripts),
and ’scriptscript’ (superscripts and subscripts, of superscripts and sub-
scripts). Settings are created via pytex.set_sympy_latex(〈context〉,〈settings〉).
For example, pytex.set_sympy_latex(’display’, mul_symbol=’times’)
sets multiplication to use a multiplication symbol ×, but only when math is
in displaystyle.19 See the SymPy documentation for a list of possible settings
for the LatexPrinter class.

By default, ’sympy_latex’ only treats matrices differently based on context.
Matrices in displaystyle are typeset using pmatrix, while those in all other
styles are typeset via smallmatrix with parentheses.

The context-sensitive interface to SymPy’s LatexPrinter is always available
via pytex.sympy_latex().

The PythonTEX utilities formatter may be set to a custom function that re-
turns strings, simply by reassigning the pytex.formatter() method. For exam-
ple, define a formatter function my_func(), and then pytex.formatter=my_func.

The utilities class also provides methods for tracking dependencies and created
files.

• pytex.add_dependencies(〈dependencies〉) This adds 〈dependencies〉 to a
list. If any dependencies in the list change, code is re-executed, even if the
code itself has not changed (unless rerun=never). Modified dependencies are
determined via either modification time (default) or hash; see the package
option hashdependencies for details. This method is useful for tracking
changes in external data and similar files.

19Internally, the ’sympy_latex’ formatter uses the \mathchoice macro to return multiple
representations of a SymPy object, if needed by the current settings. Then \mathchoice typesets
the correct representation, based on context.

25

http://docs.sympy.org/dev/modules/printing.html

〈dependencies〉 should be one or more strings, separated by commas, that
are the file names of dependencies. Dependencies should be given with rela-
tive paths from the current working directory, with absolute paths, or with
paths based on the user’s home directory (that is, starting with a tilde ~).
Paths can use a forward slash “/” even under Windows. Remember that by
default, the working directory is the pythontex-files-〈jobname〉 directory
where all PythonTEX temporary files are stored. This can be adjusted with
\setpythontexworkingdir.

It is possible that a dependency of one session might be modified by another
session while PythonTEX runs. The first session might not be executed
during the PythonTEX run because its dependency was unmodified at the
beginning. A more serious case occurs when the first session does run, but
we don’t know whether it accessed the dependency before or after the de-
pendency was updated (remember, sessions run in parallel). PythonTEX
keeps track of the time at which it started. Any sessions with dependencies
that were modified after that time are set to re-execute on the next run. A
warning is also issued to indicated that this is the case.

• pytex.add_created(〈created files〉) This adds 〈created files〉 to a list of files
created by the current session. Any time the code for the current session is
executed, all of these files will be deleted. Since this method deletes files,
it should be used with care. It is intended for automating cleanup when code
is modified. For example, if a figure’s name is changed, the old figure would
be deleted if its name had been added to the list. By default, PythonTEX
can only clean up the temporary files it creates; it knows nothing about
user-created files. This method allows user-created files to be specified, and
thus added to PythonTEX’s automatic cleanup.

〈created files〉 should be one or more strings, separated by commas, that
are the file names of created files. Paths should be the same as for
pytex.add_dependencies(): relative to the working directory, absolute,
or based on the user’s home directory. Again, paths can use a forward slash
“/” even under Windows.

Depending on how you use PythonTEX, this method may not be very ben-
eficial. If all of the output is contained in the default output directory, or
a similar directory of your choosing, then manual cleanup may be simple
enough that this method is not needed.

These two methods for tracking files may be used manually. However, that is
prone to errors, since you will have to modify both a PythonTEX utilities command
and an open or save command every time you change a file name or add or remove
a dependency or created file. It may be better to redefine your open and save
commands, or define new ones, so that a single command opens (or saves) and
adds a dependency (or adds a created file). For example, the following would
create a version of the standard open() that automatically tracks dependencies
and created files.

26

def track_open(file, mode=’r’, *args, **kwargs):
if mode in (’r’, ’rb’):

pytex.add_dependencies(file)
elif mode in (’w’, ’wb’):

pytex.add_created(file)
return open(file, mode, *args, **kwargs)

pytex.open = track_open

Notice that this approach does not deal with files opened for appending or updat-
ing; such cases require more complex logic.

The utilities class provides a pair of methods, before() and after(), that
are called immediately before and after each chunk of user code. These may be
redefined to customize the output of user code. For example, LATEX commands
could be printed at the beginning and end of each command or environment,
wrapping any content printed by the user. Or any matplotlib figures that were
created in the chunk of code could be detected and saved, and LATEX commands
to include them in the document could be printed. Or stdout could be redirected
to a StringIO stream in before(), then processed in after() before being sent
to the original stdout.

You may redefine before() and after() at the class level. For example,

def open(self):
<body>

PythontexUtils.open = open

Or you may redefine these methods as instance attributes that happen to be
functions (rather than bound methods). Notice that in this case self is not
allowed.

def open():
<body>

pytex.open = open

Finally, you may redefine these methods as bound methods for the pytex instance.

def open(self):
<body>

import types
pytex.open = types.MethodType(open, pytex)

The first and third approaches are necessary if you want to be able to use self
(for example, to access instance attributes). Notice that before() and after()
take no arguments (except self where applicable).

An example of using the after() method to automatically save and in-
clude all matplotlib figures created in a command or environment is shown be-
low. This example is designed for the pylab family of commands, or when

27

from pylab import * is used. If pyplot is imported as plt instead, then
plt.get_fignums(), plt.figure(), plt.savefig(), plt.close(), etc., would
be needed.

Basename for figures that will be created
pytex.basename = ’_’.join([pytex.input_type, pytex.input_session,

pytex.input_restart])

Need to keep track of total number of figures in each session
pytex.fignum = 0

The figure could be included in more sophisticated ways
For example, a ‘‘figure‘‘ environment could be used
def after():

for num in get_fignums():
fname = pytex.basename + ’_fig’ + str(pytex.fignum) + ’.pdf’
pytex.fignum += 1
figure(num)
savefig(fname)
pytex.add_created(fname)
close(num)
print(r’\includegraphics{’ + fname + ’}’)

In this case, I’m taking the easy approach to redefine ‘‘open()‘‘
pytex.after = after

3.2.7 Formatting of typeset code

\setpythontexfv[〈family 〉]{〈fancyvrb settings 〉}
This command sets the fancyvrb settings for all command and environment

families. Alternatively, if an optional argument 〈family〉 is supplied, the settings
only apply to the family with that base name. The general command will override
family-specific settings.

Each time the command is used, it completely overwrites the previous settings.
If you only need to change the settings for a few pieces of code, you should use
the second optional argument in block and verb environments.

Note that \setpythontexfv and \setpygmentsfv are equivalent when they
are used without an optional argument; in that case, either may be used to deter-
mine the document-wide fancyvrb settings, because both use the same underlying
macro.

\setpythontexprettyprinter[〈family 〉]{〈printer 〉}
This should generally not be needed. It sets the pretty printing used by the

document, or by 〈family〉 if given. Valid options for 〈printer〉 are fancyvrb and
pygments. The option auto may be given for 〈family〉, in which case the formatter
is inherited from the document-level settings. Using either of the other two options
will force 〈family〉 to use that printer, regardless of the document-level settings.
By default, families use auto.

28

Remember that Pygments has a text lexer and a bw style. These are an
alternative to setting the formatter to fancyvrb.

\setpythontexpyglexer[〈family 〉]{〈pygments lexer 〉}
This allows the Pygments lexer to be set for 〈family〉. 〈pygments lexer〉 should

use a form of the lexer name that does not involve any special characters. For
example, you would want to use the lexer name csharp rather than C#. This will be
a consideration primarily when using the Pygments commands and environments
to typeset code of an arbitrary language.

If a 〈family〉 is not specified, the lexer is set for the entire document.
\setpythontexpygopt[〈family 〉]{〈pygments options 〉}

This allows the Pygments options for 〈family〉 to be redefined. Note that any
previous options are overwritten. The same Pygments options may be passed
here as are available via the package pygopt option. Note that for each available
option, individual family settings will be overridden by the package-level pygopt
settings, if any are given.

If a 〈family〉 is not specified, the options are set for the entire document.

3.2.8 Access to printed content (stdout) and error messages (stderr)

The macros that allow access to printed content and any additional content written
to stdout are provided in two identical forms: one based off of the word print and
one based off of stdout. Macro choice depends on user preference. The stdout
form provides parallelism with the macros that provide accesss to stderr.

\printpythontex[〈mode 〉][〈options 〉]
\stdoutpythontex[〈mode 〉][〈options 〉]

Unless the package option autoprint is true, printed content from code com-
mands and environments will not be automatically included. Even when the
autoprint option is turned on, block commands and environments do not auto-
matically include printed content, since we will generally not want printed content
immediately after typeset code. This macro brings in any printed content from
the last command or environment. It is reset after each command/environment,
so its scope for accessing particular printed content is very limited. It will return
an error if no printed content exists.
〈mode〉 determines how printed content is handled. It may be raw (interpreted

as LATEX), verb (inline verbatim), or verbatim; raw is the default. Verbatim
content is brought in via fancyvrb. 〈options〉 consists of fancyvrb settings.

\saveprintpythontex{〈name 〉}
\savestdoutpythontex{〈name 〉}
\useprintpythontex[〈verbatim options 〉][〈fancyvrb options 〉]{〈name 〉}
\usestdoutpythontex[〈verbatim options 〉][〈fancyvrb options 〉]{〈name 〉}

We may wish to be able to access the printed content from a command or
environment at any point after the code that prints it, not just before any addi-
tional commands or environments are used. In that case, we may save access to
the content under 〈name〉, and access it later via \useprintpythontex{〈name〉}.
〈mode〉 must be raw, verb, or verbatim. If content is brought in verbatim, then
〈fancyvrb options〉 are applied.

29

\stderrpythontex[〈mode 〉][〈fancyvrb options 〉]
This brings in the stderr produced by the last command or environment. It

is intended for typesetting incorrect code next to the errors that it produces.
By default, stderr is brought in verbatim. 〈mode〉 may be set to raw, verb, or
verbatim. In general, bringing in stderr raw should be avoided, since stderr will
typically include special characters that will make TEX unhappy.

The line number given in the stderr message will correctly align with the line
numbering of the typeset code. Note that this only applies to code and block
environments. Inline commands do not have line numbers, and as a result, they
do not produce stderr content.

By default, the file name given in the message will be in the form

〈family name〉_〈session〉_〈group〉.〈extension〉

For example, an error produced by a pycode environment, in the session
mysession, using the default group (that is, the default \restartpythontexsession
treatment), would be reported in py_mysession_default.py. The package op-
tion stderrfilename may be used to change the reported name to the following
forms: mysession.py, <file>, <script>.

\savestderrpythontex{〈name 〉}
\usestderrpythontex[〈mode 〉][〈fancyvrb options 〉]{〈name 〉}

Content written to stderr may be saved and accessed anywhere later in the
document, just as stdout content may be. These commands should be used with
care. Using Python-generated content at multiple locations within a document
may often be appropriate. But an error message will usually be most meaningful
in its context, next to the code that produced it.

\setpythontexautoprint{〈boolean 〉}
\setpythontexautostdout{〈boolean 〉}

This allows autoprint behavior to be modified at various points within the
document. The package-level autoprint option is also available for setting au-
toprint at the document level, but it is overridden by \setpythontexautoprint.
〈boolean〉 should be true or false.

3.3 Pygments commands and environments
Although PythonTEX’s goal is primarily the execution and typesetting of Python
code from within LATEX, it also provides access to syntax highlighting for any
language supported by Pygments.

\pygment{〈lexer 〉}〈opening delim 〉〈code 〉〈closing delim 〉
This command typesets 〈code〉 in a suitable form for inline use within a para-

graph, using the specified Pygments 〈lexer〉. Internally, it uses the same macros
as the PythonTEX inline commands. 〈opening delim〉 and 〈closing delim〉 may be
a pair of any characters except for the space character, or a matched set of curly
braces {}.

As with the inline commands for code typesetting and execution, there is not an
optional argument for fancyvrb settings, since almost all of them are not relevant

30

for inline usage, and the few that might be should probably be used document-wide
if at all.

pygments [〈fancyvrb settings 〉]{〈lexer 〉}
This environment typesets its contents using the specified Pygments 〈lexer〉

and applying the 〈fancyvrb settings〉.
\inputpygments[〈fancyvrb settings 〉]{〈lexer 〉}{〈external file 〉}

This command brings in the contents of 〈external file〉, highlights it using
〈lexer〉, and typesets it using 〈fancyvrb settings〉.

\setpygmentsfv[〈lexer 〉]{〈fancyvrb settings 〉}
This command sets the 〈fancyvrb settings〉 for 〈lexer〉. If no 〈lexer〉 is supplied,

then it sets document-wide 〈fancyvrb settings〉. In that case, it is equivalent to
\setpythontexfv{〈fancyvrb settings〉}.

\setpygmentspygopt[〈lexer 〉]{〈pygments options 〉}
This sets 〈lexer〉 to use 〈pygments options〉. If there is any overlap between

〈pygments options〉 and the package-level pygopt, the package-level options over-
ride the lexer-specific options.

If 〈lexer〉 is not given, options are set for the entire document.
\setpygmentsprettyprinter{〈printer 〉}

This usually should not be needed. It allows the pretty printer for the document
to be set; it is equivalent to using \setpythontexprettyprinter without an
optional argument. Valid options for 〈printer〉 are fancyvrb and pygments.

Remember that Pygments has a text lexer and a bw style. These are an
alternative to setting the formatter to use fancyvrb.

3.4 General code typesetting
3.4.1 Listings float

listing
PythonTEX will create a float environment listing for code listings, unless

an environment with that name already exists. The listing environment is cre-
ated using the newfloat package. Customization is possible through newfloat’s
\SetupFloatingEnvironment command.

\setpythontexlistingenv{〈alternate listing environment name 〉}
In the event that an environment named listing already exists for some other

purpose, PythonTEX will not override it. Instead, you may set an alternate name
for PythonTEX’s listing environment, via \setpythontexlistingenv.

3.4.2 Background colors

PythonTEX uses fancyvrb internally to typeset all code. Even code that is high-
lighted with Pygments is typeset afterwards with fancyvrb. Using fancyvrb, it
is possible to set background colors for individual lines of code, but not for entire
blocks of code, using \FancyVerbFormatLine (you may also wish to consider the
formatcom option). For example, the following command puts a green background
behind all the characters in each line of code:

31

\renewcommand{\FancyVerbFormatLine}[1]{\colorbox{green}{#1}}

If you need a completely solid colored background for an environment, or
a highly customizable background, you should consider the mdframed package.
Wrapping PythonTEX environments with mdframed frames works quite well. You
can even automatically add a particular style of frame to all instances of an envi-
ronment using the command

\surroundwithmdframed[〈frame options〉]{〈environment〉}

Or you could consider using etoolbox to do the same thing with mdframed or an-
other framing package of your choice, via etoolbox’s \BeforeBeginEnvironment
and \AfterEndEnvironment macros.

3.4.3 Referencing code by line number

It is possible to reference individual lines of code, by line number. If code is
typeset using pure fancyvrb, then LATEX labels can be included within com-
ments. The labels will only operate correctly (that is, be treated as LATEX rather
than verbatim content) if fancyvrb’s commandchars option is used. For example,
commandchars=\\\{\} makes the backslash and the curly braces function nor-
mally within fancyvrb environments, allowing LATEX macros to work, including
label definitions. Once a label is defined within a code comment, then referencing
it will return the code line number.

The disadvantage of the pure fancyvrb approach is that by making the back-
slash and curly braces command characters, we can produce conflicts if the code
we are typesetting contains these characters for non-LATEX purposes. In such a
case, it might be possible to make alternate characters command characters, but
it would probably be better to use Pygments.

If code is typeset using Pygments (which also ties into fancyvrb), then this
problem is avoided. The Pygments option texcomments=true has Pygments look
for LATEX code only within comments. Possible command character conflicts with
the language being typeset are thus eliminated.

Note that when labels are created within comments, the labes themselves will
be invisible within the final document but the comment character(s) and any other
text within comments will still be visible. For example, the following

abc = 123 # An important line of code!\label{lst:important}

would appear as

abc = 123 # An important line of code!

If a comment only contains the \label command, then only the comment char-
acter # would actually be visible in the typeset code. If you are typesetting code
for instructional purposes, this may be less than ideal. Unfortunately, Pygments
currently does not allow escaping to LATEX outside of comments (though this fea-
ture has been requested). At the same time, by only allowing references within

32

comments, Pygments does force us to create code that would actually run. And
in many cases, if a line is important enough to label, it is also important enough
for a brief comment.

3.4.4 Beamer compatibility

PythonTEX is compatible with Beamer. Since PythonTEX typesets code as verba-
tim content, Beamer’s fragile option must be used for any frame that contains
typeset code. Beamer’s fragile option involves saving frame contents to an ex-
ternal file and bringing it back in. This use of an external file breaks PythonTEX’s
error line number synchronization, since the error line numbers will correspond to
the temporary external file rather than to the actual document.

If you need to typeset code with Beamer, but don’t need to use overlays on the
slides containing code, you should use the fragile=singleslide option. This al-
lows verbatim content to be typeset without using an external file, so PythonTEX’s
error line syncronization will work correctly.

3.5 Advanced PythonTEX usage
\restartpythontexsession{〈counter value(s) 〉}

This macro determines when or if sessions are restarted (or “subdivided”).
Whenever 〈counter value(s)〉 change, the session will be restarted.

By default, each session corresponds to a single code file that is executed.
But sometimes it might be convenient if the code from each chapter or section
or subsection were to run within its own file, as its own session. For exam-
ple, we might want each chapter to execute separately, so that changing code
within one chapter won’t require that all the code from all the other chapters
be executed. But we might not want to have to go to the bother and ex-
tra typing of defining a new session for every chapter (like \py[ch1]{〈code〉}).
To do that, we could use \restartpythontexsession{\thechapter}. This
would cause all sessions to restart whenever the chapter counter changes. If
we wanted sessions to restart at each section within a chapter, we would
use \restartpythontexsession{\thechapter〈delim〉\thesection}. 〈delim〉 is
needed to separate the counter values so that they are not ambiguous (for ex-
ample, we need to distinguish chapter 11-1 from chapter 1-11). Usually 〈delim〉
should be a hyphen or an underscore; it must be a character that is valid in file
names.

Note that counter values, and not counters themselves, must be supplied as
the argument. Also note that the command applies to all sessions. If it did not,
then we would have to keep track of which sessions restarted when, and the lack
of uniformity could easily result in errors on the part of the user.

Keep in mind that when a session is restarted, all continuity is lost. It is best
not to restart sessions if you need continuity. If you must restart a session, but
also need to keep some data, you could save the data before restarting the session
and then load the saved data after the restart. This approach should be used with

33

http://www.ctan.org/pkg/beamer

extreme caution, since it can result in unanticipated errors due to sessions not
staying synchronized.20

This command can only be used in the preamble.
\setpythontexoutputdir{〈output directory 〉}

By default, PythonTEX saves all temporary files and automatically gener-
ated content in a directory called pythontex-files-〈sanitized jobname〉, where
〈sanitized jobname〉 is just \jobname with any space characters or asterisks re-
placed with hyphens. This directory will be created by pythontex.py. If we wish
to specify another directory (for example, if \jobname is long and complex, and
there is no danger of two files trying to use the same directory), then we can use
the \setpythontexoutputdir macro to redefine the output directory.21

Any slashes in 〈output directory〉 should be forward slashes “/” (even under
Windows).

\setpythontexworkingdir{〈working directory 〉}
The PythonTEX working directory is the current working directory for

PythonTEX scripts. This is the directory in which any open or save operations will
take place, unless a path is explicitly specified. By default, the working directory is
the same as the output directory. For example, if you are writing my_file.tex and
save a matplotlib figure with savefig(’my_figure.pdf’), then my_figure.pdf
will be created in the output directory pythontex-files-my_file. But maybe
you have a directory called plots in your document root directory. In that
case, you could leave the working directory unchanged, and simply specify the
relative path to plots when saving. Or you could set the working directory
to plots using \setpythontexworkingdir{plots}, so that all content would
automatically be saved there. If you want your working directory to be the
document root directory, you should use a period (.) for 〈working directory〉:
\setpythontexworkingdir{.}.

Any slashes in 〈working directory〉 should be forward slashes “/” (even under
Windows).

The working directory is automatically added to Python’s sys.path, so that
code in the working directory there may be imported without a path being speci-
fied.

Note that in typical use scenarios, you should be able to use the output di-
rectory as the working directory. The graphicx package will automatically look
for images and figures in the output directory, so long as you do not use the

20For example, suppose sessions are restarted based on chapter. session-ch1 saves a data file,
and session-ch2 loads it and uses it. You write the code, and run PythonTEX. Then you realize
that session-ch1 needs to be modified and make some changes. The next time PythonTEX
runs, it will only execute session-ch1, since it detects no code changes in session-ch2. This
means that session-ch2 is not updated, at least to the extent that it depends on the data
from session-ch1. Again, saving and loading data between restarted sessions, or just be-
tween sessions in general, can produce unexpected behavior. This can be avoided by using the
pytex.add_dependencies() method for all data that is loaded. It will ensure that all sessions
stay in sync.

21In the rare event that both \setpythontexoutputdir is used and \printpythontex is needed
in the preamble, \setpythontexoutputdir must be used first, so that \printpythontex will know
where to look for output.

34

\graphicspath command outside the preamble.22
It is also possible to change the working directory from within Python code,

via os.chdir().

4 depythontex

PythonTEX can greatly simplify the creation of documents. At the same time, by
introducing dependence on non-LATEX external tools, it can constrain how these
documents are used. For example, many publishers will not accept LATEX docu-
ments that require special packages or need special macros. To address this issue,
the package includes a feature called depythontex that can convert a PythonTEX
document into a plain LATEX document.

4.1 Preparing a document that will be converted
The conversion process should work flawlessly in most cases, with no special for-
matting required.

For best results, keep the following in mind.

• The PythonTEX package should have its own \usepackage.

• Currently, depythontex only supports the standard PythonTEX commands
and environments. Support for user-defined commands and environments
that incorporate PythonTEX is planned for a future release.

• If you need to insert content from Python in inline contexts, it is best to
use \py or an equivalent command. If you use print, either directly (for
example, from within \pyc) or via \printpythontex, make sure that the
spacing following the printed content is correct. You may need to print
an \endinput or % at the end of your content to prevent an extra trailing
space. depythontex will attempt to reproduce the spacing of the original
document, even if it is not ideal. See Section 4.3 for additional details.

• Some LATEX environments, such as the verbatim environment from the
verbatim package and the Verbatim environment from fancyvrb, do not al-
low text to follow the \end{〈environment〉}. If you bring Python-generated
content that ends with one of these environments into your document, using
print or \py, make sure that the end-of-environment command is followed
by a newline. For example, if you are assembling a Verbatim environment
to bring in, the last line should be the string

22graphicx looks for graphics in the document root directory and in the most recent graph-
ics path defined by \graphicspath. \graphicspath stores the graphics path in \Ginput@path,
overwriting any previous value. At the end of the preamble, PythonTEX appends the output
directory to \Ginput@path. Thus, that directory will always be checked for graphics, so long
as \Ginput@path is not overwritten by a subsequent use of \graphicspath. If you need to use
\graphicspath within the document, you could consider creating a custom version that redefines
\Ginput@path with the PythonTEX output directory automatically appended.

35

’\\end{Verbatim}\n’

Even if you neglect a final newline, depythontex will still function correctly
in most cases. Whenever Python-generated content does not end with a
newline, depythontex usually inserts one and gobbles spaces that follow
the environment. This preserves the correct spacing while avoiding any
issues produced by an end-of-environment command. But in some cases,
depythontex cannot do this. For example, if \py is used to bring in a
Verbatim environment, and there is text immediately after the \py, without
any intervening space, depythontex cannot substitute a newline for spaces,
because there are none. Because of the way that print and \py content is
brought in, everything may still work correctly in the original PythonTEX
document. But it would fail in the depythontex output.

• Do not create PythonTEX commands or environments on the Python side
and print or otherwise bring them in. That is too many levels of complexity!

• depythontex is only designed to replace PythonTEX commands and envi-
ronments that are actually in the main document file. Do not bring in
anything that contains PythonTEX commands or environments via \input,
\include, or \usepackage. The only exception is PythonTEX commands
and environments that do not typeset anything (for example, code environ-
ments that don’t print). If these are brought in via a package or external file,
the command \DepythontexOff must come before them, and they must be
followed by the command \DepythontexOn. Basically, depythontex must
be disabled for commands and environments brought in via external files.
This works so long as the commands and environments only provide code
and settings, rather than any typeset content.

Tools for automatically removing the \usepackage for packages that contain
PythonTEX commands will be added soon; for now, these \usepackage’s
must be removed manually in the depythontex output.

• Keep in mind that the file produced by depythontex will need to include
any graphics that you create with PythonTEX. Make sure any graphics are
saved in a location where they are easily accessible.

4.2 Removing PythonTEX dependence
Converting a document requires three steps.

1. Turn on the package option depythontex. Then compile the document,
run pythontex.py, and compile the document again. Depending on the
document, additional compiles may be necessary (for example, to resolve
references). Any syntax highlighting will be turned off automatically during
this process, to remove dependence on Pygments.

36

During compilation, an auxiliary file called 〈jobname〉.depytx is created.
This file contains information about the location of the PythonTEX com-
mands and environments that need to be replaced, and about the content
with which they are to be replaced.

2. Run the depythontex.py script. This takes the following arguments.

• --encoding ENCODING This is the encoding of the LATEX file and all
related files. If an encoding is not specified, UTF-8 is assumed.

• --overwrite This turns off the user prompt in the event that a file
already exists with the output name, making overwriting automatic.

• --listing This option specifies the commands and environments that
are used for any typeset code. This can be verbatim, fancyvrb,
listings, minted, or pythontex.23 verbatim is used by default. An
appropriate \usepackage command is automatically added to the out-
put document’s preamble.
When code is typeset with any option other than verbatim, listing
line numbering from the original document will be preserved. When
code is typeset with any option other than verbatim and fancyvrb,
syntax highlighting will also be preserved. The only exception is
when listings is used, and listings’s language name does not cor-
respond to Pygments’ lexer name. In this case, you should use the
--lexer-dict option to specify how the Pygments lexer is to be trans-
lated into a listings language.

• --lexer-dict This option is used to specify how Pygments lexers are
converted to listings languages, when the two do not have the same
name. It takes a comma-separated list of the form

"<Pygments lexer>:<listings language>, ..., ... "

A Python-style dict will also be accepted.

• --preamble This option allows additional commands to be added to
the output document’s preamble. This is useful when you want the
output document to load a package that was automatically loaded by
PythonTEX, such as upquote.

• --graphicspath This option adds the outputdir to any existing
graphics path defined by \graphicspath, or adds a \graphicspath
command if one does not already exist. This causes the depythontex
document to automatically look in the outputdir for graphics. Only
use this option if you want to continue using the outputdir with the
depythontex document. Graphics are further discussed below.

23The pythontex option is included for completeness. In most cases, you would probably use
depythontex to remove all dependence on PythonTEX. But sometimes it might be useful to
remove all Python code while still using PythonTEX for syntax highlighting.

37

• TEXNAME The name of the LATEX file whose PythonTEX dependence is
to be removed.

• [OUTFILE] By default, the script takes a file <filename>.<ext> and
creates a new file called depythontex_<filename>.<ext>. If a name
is given for the output file, that is used instead.

3. Compile the depythontex file, and compare it to the original.
The original and depythontex files should be nearly identical. All Python-
generated content is substituted directly, so it should be unchanged. Usually,
any differences will be due to changes in the way that code is typeset. For ex-
ample, by default all code in the depythontex file is typeset with \verb and
verbatim. But \verb is more fragile than the inline PythonTEX commands
(it isn’t allowed inside other commands), and verbatim does not support
line numbering or syntax highlighting.
Remember that the depythontex file will need to include any graphics
created by PythonTEX. By default, these are saved in the PythonTEX
outputdir, which is pythontex-files-<jobname> unless you have cus-
tomized it. They may be in other locations if you have set a non-default
workingdir or have specified a path when saving graphics. Depending
on your needs and configuration, you may wish to copy the graphics into
a new location or specify their location via \graphicspath. Or you can
run depythontex with the --graphicspath option, which will add the
outputdir to any existing usage of \graphicspath, or add a \graphicspath
command if one does not already exist.24

Depending on your needs, you may wish to customize depythontex.py. The
actual substitutions are performed in a few functions that are defined at the
beginning of the script.

4.3 Technical details
The depythontex process should go smoothly under most circumstances, and the
document produced usually should not need manual tweaking. There are a few
technical details that may be of interest.

• Content that is printed (actually printed, not from a command like \py)
is always followed by a space when included as LATEX code rather than as
verbatim. Usually this is only noticeable when the content is used inline, ad-
jacent to other text. In such cases, you need to make sure that the spacing is
correct in your original document, and need to be aware of how depythontex
handles the conversion.
This spacing behavior is due to LATEX’s \input. When the file of printed
content is brought in via \input, LATEX removes any newline characters (\n,

24Keep in mind that any time \graphicspath is used, it overwrites any previously specified
path. If your document is using \graphicspath at multiple points in the preamble, or using it
anywhere outside the preamble, then the --graphicspath option will fail due to the path being
overwritten.

38

\r, or \r\n) at the end of each line, and adds a space at the end of each line
(even if there wasn’t a newline character). Thus, when the printed content
is brought in, a space is added to its end. Since this space is within the
\input’s curly braces {}, it is not combined with any following spaces in
the LATEX document to make a single space. Rather, if the printed content
is followed by one or more spaces, two spaces will result; and if it is followed
immediately by text, there will be a single space before the text.

The space added by \input is often invisible, and even when it is not, it
is sometimes desirable.25 But this space can be an issue in some inline
contexts. The simplest solution is to use a command like \py to bring in
content inline.

If a command like \py is not practical for some reason, there are at least three
ways to deal with the space introduced by \input: by printing \endinput at
the end of the printed content (ending the content before the final space), by
printing % at the end of the printed content (commenting out the final space),
or by using \unskip after the printed content (eating preceding spaces).
depythontex will work with all three approaches, but only under a limited
range of circumstances. In summary, depythontex works with \endinput
and % only if they are the very last thing printed (before a final newline),
and works with a following \unskip.26

– \endinput cannot be left in the printed content that is substituted
into the new document, because it would cause the new document to
end immediately. depythontex checks the very end of printed content
for \endinput, and removes it if it is there before substituting the
content. The terminating \endinput is only removed if it is not a
string, \string\endinput.
If \endinput is anywhere else in the printed content, and it is not
immediately preceded by \string, depythontex issues a warning.

– A terminating % cannot be left in the printed content that is substituted
into the new document, because it would comment out any text in
the remainder of the line into which it is substituted (in \input, its
effect is limited to the print file). depythontex checks the very end of
printed content for %, and removes it if it is there before substituting
the content. depythontex only removes the terminating % if it is not a
literal character \% or \string%.

25For example, \printpythontex behaves as a normal command, and gobbles following spaces,
but the space from \input puts a space back. So you often get the space you want in inline
contexts.

26It would be possible to make depythontex work with \endinput and % anywhere, not just
at the very end of printed content. But doing so would require a lot of additional parsing,
especially for \endinput, to be absolutely sure that we found an actual command rather than a
string. Furthermore, there is no reason that there should be any content after an \endinput or
%, since such content would never be included in the document. Indeed, the current approach
prevents any printed content from accidentally being eliminated in this manner.

39

depythontex checks the last line of printed content for other % char-
acters, and issues a warning if there are any % characters that are not
part of \% or \string%.

– A following \unskip could be left in the new document, since it would
not produce incorrect spacing. But it would be undesirable, since it
was only there in the first place because of the way that PythonTEX
was used. depythontex checks for \unskip, and if it is found, attempts
to correct the spacing and remove the \unskip. This removal process
is only possible if \unskip immediately follows a command (otherwise,
it wouldn’t work anyway) or is on the line immediately after the end of
an environment.
If depythontex finds \unskip following printed content, but cannot
replace it (it doesn’t immediately follow a command, or isn’t on the
line immediately after the end of an environment), a warning is issued.
It is possible that the \unskip is not correctly positioned, and even if
it produces the correct spacing, the user should know that due to its
location it will survive in the converted document.

If one of the above approaches is not used to eliminate the space introduced
by the final newline in printed content, depythontex still makes sure that the
spacing in the new document matches that of the original document, even if
that means forcing a double space. In the majority of cases, depythontex
can create the correct spacing using actual spaces and newlines. But in a few
instances, it will include a \space{} to ensure a double space that matches
the original document. In those situations, a warning is issued in case the
spacing was not intentional.

• Strings such as \\}, \\{, and \string can occur in PythonTEX content
that is being replaced. It is possible that they might decrease performance
somewhat in larger or more complex documents.

PythonTEX commands for entering code allow the code to be delimited with
either matched braces {} or with a repeated character such as # (as in
\verb). Any verbatim code delimited by braces cannot contain any braces
unless they are paired. So it is easy for depythontex.py to find the end of
the delimited code.

However, depythontex.py must also replace PythonTEX commands that
take a normal, non-verbatim argument delimited by braces (for example, the
various \setpythontex... commands). Finding the closing brace for these
commands is usually straightforward, but it can be tricky because the argu-
ment might contain a literal brace such as \} or \string}. depythontex.py
automatically accounts for \}. If it detects \string, it also accounts for it,
but doing so requires more intense parsing. Similarly, \\} requires extra
parsing, because depending on what comes before it, the first backslash \
could be literal (for example, if preceded by \string), or the two backslashes
\\ could go together to indicate a new line.

40

5 LATEX programming with PythonTEX
This section will be expanded in the future. For now, it offers a brief summary.

5.1 Macro programming with PythonTEX
In many situations, you can use PythonTEX commands inside macro definitions
without any special consideration. For example, consider the following macro, for
calculating powers.

\newcommand{\pow}[2]{\py{#1**#2}}

Once this is defined, we can calculate 2**8 via \pow{2}{8}: 256. Similarly, we
can reverse a string.

\newcommand{\reverse}[1]{\py{"#1"[::-1]}}

Now we can use \reverse{‘‘This is some text!’’}: ”!txet emos si sihT“.
Such approaches will break down when some special LATEX characters such

as percent % and hash # must be passed as arguments. In such cases, the argu-
ments need to be captured verbatim. The xparse and newverbs packages provide
commands for creating macros that capture verbatim arguments. You could also
consult the PythonTEX implementation, particularly the implementation of the
inline commands. In either case, you may need to learn about TEX’s catcodes and
tokenization, if you aren’t already familiar with them.

Of course, there are many cases where macros don’t need arguments. Here is
code for creating a macro that generates random polynomials.

\begin{sympycode}
from sympy.stats import DiscreteUniform, sample
x = Symbol(’x’)
a = DiscreteUniform(’a’, range(-10, 11))
b = DiscreteUniform(’b’, range(-10, 11))
c = DiscreteUniform(’c’, range(-10, 11))
def randquad():

return Eq(sample(a)*x**2 + sample(b)*x + sample(c))
\end{sympycode}
\newcommand\randquad{\sympy{randquad()}}

If you are considering writing macros that involve PythonTEX, you should keep
a few things in mind.

• Do you really need to use PythonTEX? If another package already provides
the functionality you need, it may be simpler to use an existing tool, partic-
ularly if you are working with special characters and thus need to capture
verbatim arguments.

41

• A feature called depythontex has recently been added. It creates a copy
of the original LATEX document in which all PythonTEX commands and
environments are replaced by their output, so that the new document does
not depend on PythonTEX at all. This is primarily of interest for publication,
since publishers tend not to like special packages or macros. depythontex
does not yet support custom user commands. So if you decide to create
custom macros now, and expect to need depythontex, you should expect to
have to edit your macros before they will work with depythontex.

5.2 Package writing with PythonTEX
As of v0.10beta, the custom code command and environment, and the regular
code command and environment, work in the preamble. This means that it is now
possible to write packages that incorporate PythonTEX! At this point, packages
are probably a good way to keep track of custom code that you use frequently,
and maybe some macros that use PythonTEX.

However, you are encouraged not to develop a huge mathematical or scien-
tific package for LATEX using PythonTEX. At least not yet! As discussed above,
depythontex will bring changes to macro programming involving PythonTEX. So
have fun writing packages if you want—but keep in mind that PythonTEX will
keep changing, and some things that are difficult now may be very simple in the
future.

6 Support for additional languages
Beginning with v0.12, it is much simpler to add support for languages beyond
Python. Support for several additional languages will be added in coming months.

In the immediate future, support for additional languages will be part of
PythonTEX. Later, it may make sense to provide an alternative interface for
other languages. For example, a package could be created that provides access
to PythonTEX internals in a language-agnostic manner, without having the word
“python” as part of the command names.

Languages beyond Python will typically not be enabled by default, to pre-
vent potential macro naming conflicts with other packages. At least two possible
base names for commands and environments will be provided for each language.
Typically these will be the name of the language and the language’s file exten-
sion. For example, Ruby has the ruby and rb base names. You can choose which
base name to use for creating a family of commands and environments based on
personal preference and potential naming conflicts.

6.1 Ruby
Support for Ruby was added in v0.12. Ruby support should be almost at the same
level as that for Python.

42

The utilities class is called RubyTeXUtils, and the class instance is rbtex. The
variables and methods are the same as those for Python (Section 3.2.6), except
that there is not currently a set_formatter()method. (The Python utilities class
has the special SymPy formatter, but there aren’t yet any specialized formatters
for Ruby.)

A family of commands and environments for Ruby is not created by default.
Two base names are provided for families: ruby and rb. Preconfigured families
for these names may be created via the usefamily package option. Keep in mind
that a ruby command is defined as part of the Ruby package in the CJK package.
I am unaware of a package that provides an \rb command.

Ruby exceptions are synchronized with the document, but the line numbering
does not always correspond to the Python equivalent. For example, suppose that
\pyc{1+} is on line 10 of a document. The SyntaxError will then be synchronized
with line 10. If \rubyc{1+} were on the same line, the resulting error would be
synchronized with line 11. This is because Ruby allows addition to continue on
subsequent lines of code, so an error is only raised when the next line of code that
is executed does not contain a number (there is always template code after user
code).

6.2 Julia
Support for Julia was added in v0.12. Julia support should be at almost the same
level as that for Python. The format of Julia stderr is somethat different from
that of Python and Ruby. This required a modified parsing and synchronization
algorithm. The current system is functional but will likely change somewhat in
the future.

The utilities class is called JuliaTeXUtils, and the class instance is jltex.
The variables and methods are the same as those for Python (Section 3.2.6), except
that there is not currently a set_formatter()method. (The Python utilities class
has the special SymPy formatter, but there aren’t yet any specialized formatters
for Julia.)

A family of commands and environments for Ruby is not created by default.
Two base names are provided for families: julia and jl. Preconfigured families
for these names may be created via the usefamily package option. Keep in mind
that Pygments only added Julia support in version 1.6, so you may need to update
your Pygments installation, or just change the default lexer.

Julia exceptions are synchronized with the document, but the line numbering
does not always correspond to the Python equivalent. This is because Julia allows
expressions to be continued on subsequent lines in ways that Python does not.

6.3 Adding support for a new language
Adding support for an additional language involves creating two templates, cre-
ating a new instance of a class, and using a PythonTEX macro. In some cases,
additional changes may be necessary for full support. The information below

43

http://www.ctan.org/pkg/cjk

does not deal with creating console families; additional support for user-defined
console families will be added in the future.

The system for adding languages should be relatively stable, but is subject
to change as additional languages with additional requirements are added. The
current system is sufficient for Python and similar languages. Languages with less
regular stderr may require additional features and may not be able to have full
synchronization between stderr and the LATEX document. Keep in mind that if
PythonTEX is unable to classify exceptions as errors or warnings, it treats them
as errors or warnings based on the script exit status.

It may be helpful to refer to pythontex_engines.py, specifically the templates
and utilities classes, while reading the section below.

6.3.1 Template

PythonTEX executes user code by inserting it in a script template. Replacement
fields in the template are indicated by double curly braces: {{〈field〉}}. Space
between 〈field〉 and the braces is allowed; {{ 〈field〉 }} is valid. Replacement fields
(including the braces) should be surrounded by quotation marks or equivalent
when the replacement is to be a string rather than literal code.

The template should perform the following tasks.

• Set the script encoding. The {{encoding}} field will be replaced with a
user-specified encoding or the default UTF-8. If you are not using anything
beyond ASCII, this is not strictly necessary.

• Python templates should have a {{future}} field at the beginning, for com-
pability with Python 2 and the package option pyfuture.27

• Set the stdout and stderr encoding, again using {{encoding}}. As before,
this is not strictly necessary when only ASCII support is needed.

• Create a language-specific equivalent of the PythonTEX utilities class.28 Cre-
ate an instance of this class. It is recommended that the class be called
〈language name〉TeXUtils and the instance 〈language extension〉tex, by
analogy with the Python case.29 When the 〈language extension〉 is only
a single character or is shared by multiple languages, it may be better to

27The beginning of user code is parsed for imports from __future__. Any imports are collected
and inserted into the {{future}} field.

28Python templates can import the PythonTEX utilities class. In that case,
sys.path.append(’{{utilspath}}’) is needed before the import, so that the location of the
utilities class is known.

29The class could be called 〈language name〉TeX. In that case, the class and the instance would
have the very same name (except for capitalization) in cases where the language name and
extension are the same (for example, Lua). That is probably not desirable, and besides, Utils
adds additional clarity. The instance name 〈language extension〉tex is recommended because it
will be short and easily remembered. Plain tex could be used instead, but that would be less
descriptive (it lacks the interface connotations) and would not remind the user of the language
currently in use (which could be beneficial in a document combining multiple languages, each
with its own slightly different utilities class).

44

use the full 〈language name〉 or an abbreviation in the name of the class
instance.
For full PythonTEX support, the utilities class should provide the following
methods:

– formatter(): For formatting content for inline commands equivalent
to \py. This should take a single argument of any type. By default, it
should return a standard string representation of its argument.

– before() and after(): Initially, these should do nothing; they are
provided to be redefined by the user. They should take no arguments.

– add_dependencies() and add_created(): These should accept an ar-
bitrary number of comma-separated strings (if supported by the lan-
guage). Each method should append its arguments to a list or equiva-
lent data structure, for later use.

– cleanup(): This prints a dependencies delimiter string {{dependencies_delim}}
to stdout, then prints all dependencies (one per line), then prints a cre-
ated files delimiter string {{created_delim}}, then prints all created
files (one per line). The delimiters should be printed even if there are
no dependencies or created files. The delimiters contain no backslashes
or quotes.

The utilities class should also provide several variables, as described below.

• Attempt to change to the working directory {{workingdir}}. Raise an error
and exit if this is not possible. For convenience, the script should check for
a --manual command line argument. If this argument is present, the script
should proceed even if the working directory cannot be found. This allows
the user to manually invoke the script for debugging (the script can be saved
via keeptemps).
The working directory should be added to the module search path (Python
sys.path, Ruby $: or $LOAD_PATH, etc.), unless it is the same as the docu-
ment root directory or is otherwise already on the module search path.

• For full compatibility, the template should have an {{extend}} field where
additional module imports or other code may be inserted. This allows a
basic template to be a created for each language. The basic template may
then be customized for specific purposes. The {{extend}} field should be
after the utilities class instance has been created, so that the workings of the
utilities class (formatter(), before(), after(), etc.) may be customized
by it.

• LATEX-related variables of the utilities class instance that do not change
should be set. These use the fields {{input_family}}, {{input_session}},
and {{input_restart}}; all should be strings. These variables should be
named after the fields if possible (for example, pytex.input_family). These
variables are not strictly necessary, but they allow user code to access infor-
mation about its LATEX context.

45

• There should be a {{body}} field where the body of the script is inserted.

• The script should end by calling the cleanup() method.

6.3.2 Wrapper

Each chunk of user code is inserted into a wrapper template. This performs the
following tasks.

• Set additional LATEX-related utilities variables: {{input_command}}, {{input_context}},
{{input_args}}, {{input_instance}}, {{input_line}}. All of these
should be strings. They are not required, but make possible closer LATEX in-
tegration. {{input_context}} and {{input_args}} are not yet supported
on the LATEX side, but will allow information about the LATEX context (for
example, page width) and arguments from LATEX commands to be passed to
user code.

• Write a delimiter {{stdout_delim}} to stdout and a delimiter {{stderr_delim}}
to stderr. Both delimiters should be strings. Both should be written in such
a way that the delimiter is followed by a newline; the delimiters that are in-
serted in the wrapper template do not contain a newline. For example,
something like "{{stderr_delim}}\n" might be necessary. The delimiters
contain no backslashes or quotation marks.

• Call before().

• Have a {{code}} field into which the current chunk of user code is inserted.

• Call after(). For languages like Ruby that allow statements to continue
onto subsequent lines, without enclosing parentheses or other delimiters, the
call to after() should immediately follow user code, without any interve-
nening empty lines. That way, any syntax errors from the last line of user
code will be caught as early as possible, and the corresponding line numbers
will be more meaningful.

6.3.3 The CodeEngine class

The final step in adding support for a language is creating a new instance of the
CodeEngine class. The CodeEngine class manages the process of inserting user
code into code templates and creates the records needed for synchronizing stderr
with the document.

A new CodeEngine instance is initialized with the following arguments. All
arguments are strings unless noted otherwise.

• The instance name. This will be the base name for commands and environ-
ments that use the instance. For example, \py, \pyc, pycode, etc., rely on
the py instance of the CodeEngine class.

• The name of the language. In some cases, this may be the same as the
instance name.

46

• The filename extension for scripts (with or without a period).

• The command for running scripts. The script that is executed should be
referred to as “{{file}}.〈extension〉” (without the quotes).30 The inter-
preter may be hardcoded (python {{file}}.py), but it is best to leave it as
a substitution field ({{python}} {{file}}.py) so that the --interpreter
command-line option can be used to provide a specific interpreter.

• The script template.

• The wrapper template.

• A template that specifies how code from commands like \py should be in-
serted into a call to the formatter() method. The user code is specified
by {{code}}. The output of the formatter() method should be writ-
ten to stdout, so something like ’print(pytex.formatter({{code}}))’
is needed.

• An optional list of strings (or an individual string) that gives patterns for
identifying error messages.

• An optional list of strings (or an individual string) that gives patterns for
identifying warning messages.

• An optional list of strings (or an individual string) that gives patterns
for identifying code line numbers in stderr. These patterns use the field
{{number}}. These patterns are searched for in any line of stderr that
contains the name of the script that was executed.

• An optional boolean that specifies whether the engine emulates an interac-
tive console. Currently, user-defined engines that emulate consoles are not
supported.

• An optional string of startup commands for engines that emulate consoles.

• An optional list of strings (or an individual string) that specifies any files
created during execution, beyond the script {{file}}.〈extension〉. The field
{{file}} may be used in file names.

An example of creating the py engine is shown below. The python_template
and python_wrapper are long enough that they are defined separately.

CodeEngine(’py’, ’python’, ’.py’, ’python {{file}}.py’,
python_template, python_wrapper,
’print(pytex.formatter({{code}}))’,
’Error:’, ’Warning:’, [’line {{number}}’, ’:{{number}}:’])

30It might seem that the extension is redundant, since it is specified separately. The command
is specified in this form to simplify cases where there may be intermediary files in the execution
process.

47

The script template and wrapper templates may be defined with Python’s triple-
quoted strings. All content within such a string may be indented for clarity, as
can be seen in pythontex_engines.py. Strings are automatically dedented when
CodeEngine instances are created.

In addition to the CodeEngine class, there is also a SubCodeEngine class. It
allows a new engine to be created based on an existing engine. It requires the
name of the engine from which to inherit and the name of the new engine. All of
the other arguments listed above are optional; if any are provided, they overwrite
the inherited arguments. The class also takes one additional optional argument,
extend. This is a string that specifies additional code to be entered in the inherited
template, in the {{extend}} field. Subengines of subengines may be created; in
that case, any extends are cumulative.

6.3.4 Creating the LATEX interface

Once a new engine has been created, access from the LATEX side must be provided.
PythonTEX provides a macro for this purpose.

\makepythontexfamily[〈options 〉]{〈engine 〉}
This command creates a non-console family of commands and environments

for 〈engine〉: code, block, and verbatim commands and environments, and an
inline command like \py.

This command is appropriate for user-defined languages, but it is
preferable (and more convenient) to use the package option usefamily
when using an engine that is included with PythonTEX. The package
option will create a preconfigured family in which things such as the appropriate
Pygments lexer have already been set.
〈options〉 allows prettyprinter, pyglexer, and pygopt to be specified for the

family.

7 Troubleshooting
• If a PythonTEX document will not compile, you may want to delete the
directory in which PythonTEX content is stored and try compiling from
scratch. It is possible for PythonTEX to become stuck in an unrecoverable
loop. Suppose you tell Python to print some LATEX code back to your LATEX
document, but make a fatal LATEX syntax error in the printed content. This
syntax error prevents LATEX from compiling. Now suppose you realize what
happened and correct the syntax error. The problem is that the corrected
code cannot be executed until LATEX correctly compiles and saves the code
externally, but LATEX cannot compile until the corrected code has already
been executed. One solution in such cases is to correct the code, delete all
files in the PythonTEX directory, compile the LATEX document, and then
run PythonTEX from scratch. You can also disable the inclusion of printed
content using the debug package options.

48

• Dollar signs $ may appear as £ in italic code comments typeset by Pygments.
This is a font-related issue. One fix is to \usepackage[T1]{fontenc}.

8 The future of PythonTEX
This section consists of a To Do list for future development. The To Do list is
primarily for the benefit of the author, but also gives users a sense of what changes
are in progress or under consideration.

8.1 To Do
8.1.1 Modifications to make

• Add support for depythontex to remove the \usepackage for a package that
contains PythonTEX commands and environments.

• Add better support for macro programming, including depythontex support
for user-defined commands and environments.

• Add Pygments commands and environments that are compatible with basic
listings and minted syntax. This will make it easier to work with docu-
ments converted to LATEX from another format, for example via Pandoc.

• User-defined custom commands and environments for general Pygments
typesetting.

• Additional documentation for the Python code (Sphinx?).

• Improved testing framework.

• It might nice to include some methods in the PythonTEX utilities for for-
matting numbers (especially with SymPy and Pylab).

• Test the behavior of files brought in via \input and \include that contain
PythonTEX content.

• Continue adding support for additional languages. In preparation: Julia.
Under consideration: Perl, Lua, MATLAB, Mathematica, Sage, R, Octave.

8.1.2 Modifications to consider

• Consider fixing error line number synchronization with Beamer (and other
situations involving error lines in externalized files). The filehook and
currfile packages may be useful in this. One approach may be to patch the
macros associated with \beamer@doframeinput in beamerbaseframe.sty.
Note: Beamer’s fragile=singleslide option makes this much less of an
issue. This is low priority.

49

• Allow LATEX in code, and expand LATEX macros before passing code to
pythontex.py. Maybe create an additional set of inline commands with
additional exp suffix for expanded? This can already be done by creating a
macro that contains a PythonTEX macro, though.

• Built-in support for background colors for blocks and verbatim, via mdframed
or a similar package?

• Support for executing external scripts, not just internal code? It would be
nice to be able to typeset an external file, as well as execute it by passing
command-line arguments and then pull in its output.

• Is there any reason that saved printed content should be allowed to be
brought in before the code that caused it has been typeset? Are there
any cases in which the output should be typeset before the code that cre-
ated it? That would require some type of external file for bringing in saved
definitions.

• Consider some type of primitive line-breaking algorithm for use with Pyg-
ments. Could break at closest space, indent 8 spaces further than parent
line (assuming 4-space indents; could auto-detect the correct size), and use
LATEX counter commands to keep the line numbering from being incorrectly
incremented. Such an approach might not be hard and might have some real
promise.

• Consider allowing names of files into which scripts are saved to be specified.
This could allow PythonTEX to be used for literate programming, general
code documentation, etc. Also, it could allow writing a document that
describes code and also produces the code files, for user modification (see
the bashful package for the general idea). Doing something like this would
probably require a new, slightly modified interface to preexisting macros.

Acknowledgements
Thanks to Nicholas Lu Chee Seng for help testing the earliest versions.

Thanks to Øystein Bjørndal for many suggestions and for help with OS X
compatibility.

Version History
v0.12 (2013/08/26)

• Added support for the Julia language, with the julia and jl families
of commands and environments. (Note that Pygments only added Julia
support in version 1.6.)

50

• Warnings and errors are now synchronized with the line numbers of
files brought in via \input, \include, etc. This is accomplished using
the currfile package.

• Added package option gobble. When gobble=auto, all code is de-
dented before being executed and/or typeset. The current implemen-
tation is functional but basic; it will be improved and extended in the
future.

• The document root directory is now always added to sys.path (or its
equivalent), even when it is not the working directory. (The working
directory has been added to sys.path since v0.12beta.) The document
directory is added after the working directory, so that the working di-
rectory has precedence.

• Fixed a bug in console commands and environments; sys.path now
contains the working and document directories, and the working direc-
tory is now the output directory by default. This parallels the behavior
of non-console commands and environments.

• Added command-line option --interpreter that allows an interpreter
to be invoked via a specific command. This allows, for example, a
specific version of Python to be invoked.

• Improved synchronization of stderr in cases when an error is triggered
far after its origin (for example, an error caused by a multiline string
that is lacking a closing quote/delimiter, and thus may span several
chunks of user code).

• Modified usage of the shlex module to work around its lack of Unicode
support in Python versions prior to 2.7.3.

• Fixed a bug from v0.12beta that prevented \inputpygments from work-
ing when pygments=true.

• Fixed a bug with counters that caused errors when content spanning
multiple columns was created within a tabular environment.

• Added checking for compatible Python versions in pythontex.py.

• Improved execution of *.bat and *.cmd files under Windows. The
solution from v0.12beta allowed *.bat and *.cmd to be found and exe-
cuted when the extension was not given, but did not give correct return
codes.

v0.12beta (2013/06/24)

• Merged pythontex_types*.py into a single replacement pythontex_engines.py
compatible with both Python 2 and 3. It is now much simpler to add
support for additional languages.

• Added support for the Ruby language as a demonstration of new ca-
pabilities. The ruby and rb families of commands and environments
may be enabled via the new usefamily package option. Support for

51

additional languages is coming soon. See the new section in the docu-
mentation on support for other languages for more information.

• Reimplemented treatment of Pygments content for better efficiency.
Now a Pygments process only runs if there is content to highlight.
Eliminated redundant highlighting of unmodified code.

• Improved treatment of dependencies. If a dependency is modified
(os.path.getmtime()) after the current PythonTeX run starts, then
code that depends on it will be re-executed the next time PythonTeX
runs. A message is also issued to indicate that this is the case.

• The utilities class now has before() and after() methods that are
called immediately before and after user code. These may be redefined
to customize output. For example, LaTeX commands could be printed
before and after user code; stdout could be redirected to StringIO
for further processing; or matplotlib figures could be automatically de-
tected, saved, and included in the document.

• Added explanation of how to track dependencies and created files auto-
matically, and how to include matplotlib figures automatically, to the
documentation for the PythonTeX utilities class.

• Created a new system for parsing and synchronizing stderr.
– Exceptions that do not reference a line number in user code (such as

those from warnings.warn() in a module) are now traced back to
a single command or environment. Previously no synchronization
was attempted. This is accomplished by writing delimiters to stderr
before executing the code from each command/environment.

– Exceptions that do reference a line in user code are more efficiently
synchronized with a document line number. This is accomplished
by careful record keeping as each script is assembled. Line num-
ber synchronization no longer involves parsing the script that was
executed.

– Improved and generalized parsing of stderr, in preparation for sup-
porting additional languages. Exceptions that cannot be identified
as errors or warnings are treated based on Popen.returncode.

• Created a new system for console content.
– There are now separate families of console commands and environ-

ments. No Pygments or fancyvrb settings are shared with the non-
console families, as was previously the case. There is a new fam-
ily of commands and environments based on pycon, including the
\pycon command (inline reference to console variable), pyconsole
environment (same as the old one), \pyconc and pyconcode (exe-
cute only), and \pyconv and pyconverbatim (typeset only). There
are equivalent families based on pylabcon and sympycon.

– Each console session now runs in its own process and is cached indi-
vidually. Console output is now cached so that changing Pygments
settings no longer requires re-execution.

52

– Unicode is now supported under Python 2.
– The new package option pyconfuture allows automatic imports

from __future__ for console families under Python 2, paralleling
the pyfuture option.

– Any errors or warnings caused by code that is not typeset (code
command and environment, startup code) are reported in the run
summary. This ensures that such code does not create mischief.

– customcode is now supported for console content.

• Better support for latexmk and similar build tools. PythonTeX creates
a file of macros (*.pytxmcr) that is always included in a document, and
thus can be automatically detected and tracked by latexmk. This file
now contains the time at which PythonTeX last created files. When
new files are created, the macro file will have a new hash, triggering
another document compile.

• Improved the way in which the PythonTeX outputdir is added to the
graphics path. This had been done with \graphicspath, but that
overwrites any graphics path previously specified by the user. Now the
outputdir is appended to any pre-existing path.

• Added the depythontex option --graphicspath. This adds the
outputdir to the graphics path of the depythontex document.

• The installer now provides more options for installation locations. It
will now create missing directories if desired.

• The working directory (workingdir) is now appended to sys.path, so
that code there may be imported.

• UnderWindows, subprocess.Popen() is now invoked with shell=True
if shell=False results in a WindowsError. This allows commands in-
volving *.bat and *.cmd files to be executed when the extension is not
specified; otherwise, only *.exe can be found and run.

• The path to utils is now found in pythontex.py via sys.path[0] rather
than kpsewhich. This allows the PythonTeX scripts to be executed in
an arbitrary location; they no longer must be installed in a texmf tree
where kpsewhich can find them.

• Added rerun value never.

• At the end of each run, data and macros are only saved if modified,
improving efficiency.

• The number of temporary files required by each process was reduced
by one. All macros for commands like \py are now returned within
stdout, rather than in their own file.

• Fixed a bug with \stderrpythontex; it was defaulting to verb rather
than verbatim mode.

v0.11 (2013/04/21)

53

• As the first non-beta release, this version adds several features and in-
troduces several changes. You should read these release notes carefully,
since some changes are not backwards-compatible. Changes are based
on a thorough review of all current and planned features. PythonTeX’s
capabilities have already grown beyond what was originally intended,
and a long list of features still remains to be implemented. As a result,
some changes are needed to ensure consistent syntax and naming in
the future. Insofar as possible, all command names and syntax will be
frozen after this release.

• Added the pythontex.py and depythontex.py wrapper scripts. When
run, these detect the current version of Python and import the cor-
rect PythonTeX code. It is still possible to run pythontex*.py and
depythontex*.py directly, but the new wrapper scripts should be used
instead for simplicity. There is now only a single pythontex_utils.py,
which works with both Python 2 and Python 3.

• Added the beta package option. This makes the current version behave
like v0.11beta, for compatibility. This option is temporary and will
probably only be retained for a few releases.

• Backward-incompatible changes (require the beta option to restore old
behavior)

– The pyverb environment has been renamed pyverbatim. The old
name was intended to be concise, but promoted confusion with
LaTeX’s \verb macro.

– For \printpythontex, \stdoutpythontex, and \stderrpythontex,
the modes inlineverb and v have been replaced by verb, and the
old mode verb has been replaced by verbatim. This brings nam-
ing conventions in line with standard LaTeX \verb and verbatim,
avoiding a source of potential confusion.

– The \setpythontexpyglexer, \setpythontexpygopt, and \setpygmentspygopt
commands now take an optional argument and a mandatory argu-
ment, rather than two mandatory arguments. This creates better
uniformity among current and planned settings macros.

– The \setpythontexformatter and \setpygmentsformatter com-
mands have been replaced by the \setpythontexprettyprinter
and \setpygmentsprettyprinter commands. This anticipates
possible upcoming features. It also avoids potential confusion
with Pygments’s formatters and the utilities class’s formatter()
method.

• Deprecated (still work, but raise warnings; after a few releases, they
will raise errors instead, and after that eventually be removed)

– The rerun setting all was renamed always, in preparation for
upcoming features.

54

– The stderr option is replaced by makestderr. The print/stdout
option is replaced by debug. These are intended to prevent confu-
sion with future features.

– The fixlr option is deprecated. It was originally introduced to
deal with some of SymPy’s LaTeX formatting, which has since
changed.

– The utilities class method init_sympy_latex() is deprecated. The
sympy_latex() and set_sympy_latex() methods now automati-
cally initialize themselves on first use.

• Added autostdout package option and \setpythontexautostdout, to
complement autoprint. Added prettyprinter and prettyprintinline
package options to complement new settings commands.

• Added quickstart guide.

• Installer now installs gallery and quickstart files, if present.

v0.11beta (2013/02/17)

• Commands like \py can now bring in any valid LaTeX code, including
verbatim content, under the pdfTeX and XeTeX engines. Verbatim
content was not allowed previously. LuaTeX cannot bring in verbatim,
due to a known bug.

• Added package option depythontex and scripts depythontex*.py.
These allow a PythonTeX document to be converted into a pure LaTeX
document, with no Python dependency. The package option creates an
auxiliary file with extension .depytx. The depythontex*.py scripts
take this auxiliary file and the original LaTeX document, and com-
bine the two to produce a new document that does not rely on the
PythonTeX package. All PythonTeX commands and environments are
replaced by their output. All Python-generated content is substituted
directly into the document. By default, all typeset code is wrapped in
\verb and verbatim, but depythontex*.py has a --listing option
that allows fancyvrb, listings, minted, or pythontex to be used
instead.

• The current PythonTeX version is now saved in the .pytxcode. If
this does not match the version of the PythonTeX scripts, a warning
is issued. This makes it easier to determine errors due to version mis-
matches.

• Fixed an incompatibility with the latest release of xstring (version
1.7, 2013/01/13).

• Fixed a bug in the console environment that could cause problems
when switching from Pygments highlighting to fancyvrb when using
the fvextfile option. Fixed a bug introduced in the v0.10beta series
that prevented the console environment from working with fancyvrb.

55

• Fixed a bug with PythonTeX verbatim commands and environments
that use Pygments. The verbatim commands and environments were
incorrectly treated as if they had the attributes of executed code in the
v0.10beta series.

• Fixed a bug from the v0.10beta series that sometimes prevented imports
from __future__ from working when there were multiple sessions.

• Fixed a bug related to hashing dependencies’ mtime under Python 3.

v0.10beta2 (2013/01/23)

• Improved pythontex*.py’s handling of the name of the file being pro-
cessed. A warning is no longer raised if the name is given with an
extension; extensions are now processed (stripped) automatically. The
filename may now contain a path to the file, so you need not run
pythontex*.py from within the document’s directory.

• Added command-line option --verbose for more verbose output. Cur-
rently, this prints a list of all processes that are launched.

• Fixed a bug that could crash pythontex*.py when the package option
pygments=false.

• Added documentation about autoprint behavior in the preamble.
Summary: code commands and environments are allowed in the pream-
ble as of v0.10beta. autoprint only applies to the body of the docu-
ment, because nothing can be typeset in the preamble. Content printed
in the preamble can be brought in by explicitly using \printpythontex,
but this should be used with great care.

• Revised \stdoutpythontex and \printpythontex so that they work
in the preamble. Again, this should be used with great care if at all.

• Revised treatment of any content that custom code attempts to print.
Custom code is not allowed to print to the document (see documenta-
tion). If custom code attempts to print, a warning is raised, and the
printed content is included in the pythontex*.py run summary.

• One-line entries in stderr, such as those produced by Python’s warnings.warn(),
were not previously parsed because they are of the form :<linenumber>:
rather than line <linenumber>. These are now parsed and synchro-
nized with the document. They are also correctly parsed for inclusion
in the document via \stderrpythontex.

• If the package option stderrfilename is changed, all sessions that
produced errors or warnings are now re-executed automatically, so that
their stderr content is properly updated with the new filename.

v0.10beta (2013/01/09)

• Backward-incompatible: Redid treatment of command-line options for
pythontex*.py, using Python’s argparsemodule. Run pythontex*.py
with option -h to see new command line options.

56

• Deprecated: \setpythontexcustomcode is deprecated in favor of the
\pythontexcustomc command and pythontexcustomcode environ-
ment. These allow entry of pure code, unlike \setpythontexcustomcode.
These also allow custom code to be added to the beginning or end of
a session, via an optional argument. Improved treatment of errors and
warnings associated with custom code.

• The summary of errors and warnings now correctly differentiates errors
and warnings produced by user code, rather than treating all of them
as errors. By default, pythontex*.py now returns an exit code of 1 if
there were errors.

• The PythonTeX utilities class now allows external file dependencies to
be specified via pytex.add_dependencies(), so that sessions are auto-
matically re-executed when external dependencies are modified (modi-
fication is determined via either hash or mtime; this is governed by the
new hashdependencies option).

• The PythonTeX utilities class now allows created files to be specified
via pytex.add_created(), so that created files may be automatically
cleaned up (deleted) when the code that created them is modified (for
example, name change for a saved plot).

• Added the following package options.

– stdout (or print): Allows input of stdout to be disabled. Useful
for debugging.

– runall: Executes everything. Useful when code depends on exter-
nal data.

– rerun: Determines when code is re-executed. Code may be set to
always run (same as runall option), or only run when it is modified
or when it produces errors or warnings. By default, code is always
re-executed if there are errors or modifications, but not re-executed
if there are warnings.

– hashdependencies: Determines whether external dependencies
(data, external code files highlighted with Pygments, etc.) are
checked for modification via hashing or modification time. Modifi-
cation time is default for performance reasons.

• Added the following new command line options. The options that are
equivalent to package options are overridden by the package options
when present.

– --error-exit-code: Determines whether an exit code of 1 is re-
turned if there were errors. On by default, but can be turned off
since it is undesirable when working with some editors.

– --runall: Equivalent to new package option.
– --rerun: Equivalent to new package option.
– --hashdependencies: Equivalent to new package option.

57

• Modified the fixlr option, so that it only patches commands if they
have not already been patched (avoids package conflicts).

• Added \setpythontexautoprint command for toggling autoprint
on/off within the body of the document.

• Installer now attempts to create symlinks under OS X and Linux with
TeX Live, and under OS X with MacPorts Tex Live.

• Performed compatibility testing under lualatex and xelatex (previously,
had only tested with pdflatex). Added documentation for using these
TeX engines; at most, slightly different preambles are needed. Modified
the PythonTeX gallery to support all three engines.

• Code commands and environments may now be used in the pream-
ble. This, combined with the new treatment of custom code, allows
PythonTeX to be used in creating LaTeX packages.

• Added documentation for using PythonTeX in LaTeX programming.

• Fixed a bug that sometimes caused incorrect line numbers with stderr
content. Improved processing of stderr.

• Fixed a bug in automatic detection of pre-existing listings environment.

• Improved the detection of imports from __future__. Detection should
now be stricter, faster, and more accurate.

v0.9beta3 (2012/07/17)

• Added Unicode support, which required the Python code to be split into
one set for Python 2 and another set for Python 3. This will require
any old installation to be completely removed, and a new installation
created from scratch.

• Refactoring of Python code. Documents should automatically re-
execute all code after updating to the new version. Otherwise, you
should delete the PythonTeX directory and run PythonTeX.

• Improved installation script.

• Added package options: pyfuture, stderr, upquote, pyglexer, pyginline.
Renamed the pygextfile option to fvextfile.

• Added custom code and workingdir commands.

• Added the console environment and associated options.

• Rewrote pythontex_utils*.py, creating a new, context-aware interface
to SymPy’s LatexPrinter class.

• Content brought in via macros no longer uses labels. Rather, long defs
are used, which allows line breaks.

• Pygments highlighting is now default for PythonTeX commands and
environments

v0.9beta2 (2012/05/09)

58

• Changed Python output extension to .stdout.

v0.9beta (2012/04/27)

• Initial public beta release.

9 Implementation
This section describes the technical implementation of the package. Unless you
wish to understand all the fine details or need to use the package in extremely
sophisticated ways, you should not need to read it.

The prefix pytx@ is used for all PythonTEX macros, to prevent conflict with
other packages. Macros that simply store text or a value for later retrieval are
given names completely in lower case. For example, \pytx@packagename stores
the name of the package, PythonTeX. Macros that actually perform some operation
in contrast to simple storage are named using CamelCase, with the first letter after
the prefix being capitalized. For example, \pytx@CheckCounter checks to see if a
counter exists, and if not, creates it. Thus, macros are divided into two categories
based on their function, and named accordingly.

9.1 Package opening
We store the name of the package in a macro for later use in warnings and error
messages.
1 \newcommand{\pytx@packagename}{PythonTeX}
2 \newcommand{\pytx@packageversion}{v0.12}

9.2 Required packages
A number of packages are required. fancyvrb is used to typeset all code that is
not inline, and its internals are used to format inline code as well. etex provides
extra registers, to avoid the (probably unlikely) possibility that the many counters
required by PythonTEX will exhaust the supply. etoolbox is used for string
comparison and boolean flags. xstring provides string manipulation. pgfopts
is used to process package options, via the pgfkeys package. newfloat allows
the creation of a floating environment for code listings. currfile is needed to
allow errors and warnings to be synchronized with content brought in via \input,
\include, etc. xcolor or color is needed for syntax highlighting with Pygments.
3 \RequirePackage{fancyvrb}
4 \RequirePackage{etex}
5 \RequirePackage{etoolbox}
6 \RequirePackage{xstring}
7 \RequirePackage{pgfopts}
8 \RequirePackage{newfloat}
9 \RequirePackage{currfile}

10 \AtBeginDocument{\@ifpackageloaded{color}{}{\RequirePackage{xcolor}}}

59

9.3 Package options
We now proceed to define package options, using the pgfopts package that pro-
vides a package-level interface to pgfkeys. All keys for package-level options are
placed in the key tree under the path /PYTX/pkgopt/, to prevent conflicts with
any other packages that may be using pgfkeys.

9.3.1 Enabling command and environment families

\pytx@families This option determines which command and environment families are defined be-
yond py, pylab, and sympy. Additional families are not automatically defined
since some of them create commands or environment that may conflict with other
packages.31

11 \def\pytx@families{}
12 \pgfkeys{/PYTX/pkgopt/usefamily/.estore in=\pytx@families}

9.3.2 Gobble

\pytx@opt@gobble This option determines how leading whitespace in user code is treated.
13 \def\pytx@opt@gobble{none}
14 \pgfkeys{/PYTX/pkgopt/gobble/.is choice}
15 \pgfkeys{/PYTX/pkgopt/gobble/none/.code=\def\pytx@opt@gobble{none}}
16 \pgfkeys{/PYTX/pkgopt/gobble/auto/.code=\def\pytx@opt@gobble{auto}}

9.3.3 Beta

pytx@opt@beta This option provides compatibility with the beta releases from before the full v0.11
release. It should be removed after a few major releases.
17 \newbool{pytx@opt@beta}
18 \pgfkeys{/PYTX/pkgopt/beta/.default=true}
19 \pgfkeys{/PYTX/pkgopt/beta/.is choice}
20 \pgfkeys{/PYTX/pkgopt/beta/true/.code=\booltrue{pytx@opt@beta}}
21 \pgfkeys{/PYTX/pkgopt/beta/false/.code=\boolfalse{pytx@opt@beta}}

9.3.4 Runall

pytx@opt@rerun This option causes all code to be executed, regardless of whether it has been
modified. It is primarily useful for re-executing code that has not changed, when
the code depends on external files that have changed. Since it shares functionality
with the rerun option, both options share a single macro. Note that the macro
is initially set to default, rather than the default value of errors, so that the
Python side can distinguish whether a value was actually set by the user on the
TEX side, and thus any potential conflicts between command-line options and
package options can be resolved in favor of package options.
22 \def\pytx@opt@rerun{default}

31For example, a \ruby command for Ruby code, and the \ruby command defined by the Ruby
package in the CJK package.

60

http://www.ctan.org/pkg/cjk

23 \pgfkeys{/PYTX/pkgopt/runall/.default=true}
24 \pgfkeys{/PYTX/pkgopt/runall/.is choice}
25 \pgfkeys{/PYTX/pkgopt/runall/true/.code=\def\pytx@opt@rerun{always}}
26 \pgfkeys{/PYTX/pkgopt/runall/false/.code=\relax}

9.3.5 Rerun

This option determines the conditions under which code is rerun. It stores its
state in a macro shared with runall.
27 \pgfkeys{/PYTX/pkgopt/rerun/.is choice}
28 \pgfkeys{/PYTX/pkgopt/rerun/never/.code=\def\pytx@opt@rerun{never}}
29 \pgfkeys{/PYTX/pkgopt/rerun/modified/.code=\def\pytx@opt@rerun{modified}}
30 \pgfkeys{/PYTX/pkgopt/rerun/errors/.code=\def\pytx@opt@rerun{errors}}
31 \pgfkeys{/PYTX/pkgopt/rerun/warnings/.code=\def\pytx@opt@rerun{warnings}}
32 \pgfkeys{/PYTX/pkgopt/rerun/always/.code=\def\pytx@opt@rerun{always}}
33 \pgfkeys{/PYTX/pkgopt/rerun/all/.code=\def\pytx@opt@rerun{always}%
34 \PackageWarning{\pytx@packagename}{rerun=all is deprecated; use rerun=always}}

9.3.6 Hashdependencies

pytx@opt@hashdependencies This option determines whether dependencies (either code to be highlighted, or
dependencies such as data that have been specified within a session) are checked
for modification via modification time or via hashing.
35 \def\pytx@opt@hashdependencies{default}
36 \pgfkeys{/PYTX/pkgopt/hashdependencies/.is choice}
37 \pgfkeys{/PYTX/pkgopt/hashdependencies/.default=true}
38 \pgfkeys{/PYTX/pkgopt/hashdependencies/true/.code=\def\pytx@opt@hashdependencies{true}}
39 \pgfkeys{/PYTX/pkgopt/hashdependencies/false/.code=\def\pytx@opt@hashdependencies{false}}

9.3.7 Autoprint

pytx@opt@autoprint The autoprint option determines whether content printed within a code com-
mand or environment is automatically included at the location of the command or
environment. If the option is not used, autoprint is turned on by default. If the
option is used, but without a setting (\usepackage[autoprint]{pythontex}), it
is true by default. We use the key handler 〈key〉/.is choice to ensure that only
true/false values are allowed. The code for the true branch is redundant, but is
included for symmetry.
40 \newbool{pytx@opt@autoprint}
41 \booltrue{pytx@opt@autoprint}
42 \pgfkeys{/PYTX/pkgopt/autoprint/.default=true}
43 \pgfkeys{/PYTX/pkgopt/autoprint/.is choice}
44 \pgfkeys{/PYTX/pkgopt/autoprint/true/.code=\booltrue{pytx@opt@autoprint}}
45 \pgfkeys{/PYTX/pkgopt/autoprint/false/.code=\boolfalse{pytx@opt@autoprint}}
46 \pgfkeys{/PYTX/pkgopt/autostdout/.default=true}
47 \pgfkeys{/PYTX/pkgopt/autostdout/.is choice}
48 \pgfkeys{/PYTX/pkgopt/autostdout/true/.code=\booltrue{pytx@opt@autoprint}}
49 \pgfkeys{/PYTX/pkgopt/autostdout/false/.code=\boolfalse{pytx@opt@autoprint}}

61

\setpythontexautoprint
\setpythontexautostdout

Sometimes it may be useful to switch autoprint on and off within different parts
of a document, rather than setting it to a single setting for the entire document.
So we provide a command for that purpose. Note that the command overrides the
package-level option.
50 \newcommand{\setpythontexautoprint}[1]{%
51 \Depythontex{cmd:setpythontexautoprint:m:n}%
52 \ifstrequal{#1}{true}{\booltrue{pytx@opt@autoprint}}{}%
53 \ifstrequal{#1}{false}{\boolfalse{pytx@opt@autoprint}}{}%
54 }
55 \newcommand{\setpythontexautostdout}[1]{%
56 \Depythontex{cmd:setpythontexautostdout:m:n}%
57 \ifstrequal{#1}{true}{\booltrue{pytx@opt@autoprint}}{}%
58 \ifstrequal{#1}{false}{\boolfalse{pytx@opt@autoprint}}{}%
59 }

9.3.8 Debug

pytx@opt@stdout This option determines whether printed content/content written to stdout is in-
cluded in the document. Disabling the inclusion of printed content is useful when
the printed content contains LATEX errors that would prevent successful compila-
tion.
60 \newbool{pytx@opt@stdout}
61 \booltrue{pytx@opt@stdout}
62 \pgfkeys{/PYTX/pkgopt/debug/.code=\boolfalse{pytx@opt@stdout}}
63 \pgfkeys{/PYTX/pkgopt/stdout/.default=true}
64 \pgfkeys{/PYTX/pkgopt/stdout/.is choice}
65 \pgfkeys{/PYTX/pkgopt/stdout/true/.code=\booltrue{pytx@opt@stdout}%
66 \PackageWarning{\pytx@packagename}{Option stdout is deprecated; use option debug}}
67 \pgfkeys{/PYTX/pkgopt/stdout/false/.code=\boolfalse{pytx@opt@stdout}%
68 \PackageWarning{\pytx@packagename}{Option stdout is deprecated; use option debug}}
69 \pgfkeys{/PYTX/pkgopt/print/.default=true}
70 \pgfkeys{/PYTX/pkgopt/print/.is choice}
71 \pgfkeys{/PYTX/pkgopt/print/true/.code=\booltrue{pytx@opt@stdout}%
72 \PackageWarning{\pytx@packagename}{Option print is deprecated; use option debug}}
73 \pgfkeys{/PYTX/pkgopt/print/false/.code=\boolfalse{pytx@opt@stdout}%
74 \PackageWarning{\pytx@packagename}{Option print is deprecated; use option debug}}
75 \AtBeginDocument{%
76 \ifbool{pytx@opt@stdout}{}{%
77 \PackageWarning{\pytx@packagename}{Using package option debug}%
78 }%
79 }

9.3.9 makestderr

pytx@opt@stderr The makestderr option determines whether stderr is saved and may be included
in the document via \stderrpythontex.
80 \newbool{pytx@opt@stderr}
81 \pgfkeys{/PYTX/pkgopt/makestderr/.default=true}

62

82 \pgfkeys{/PYTX/pkgopt/makestderr/.is choice}
83 \pgfkeys{/PYTX/pkgopt/makestderr/true/.code=\booltrue{pytx@opt@stderr}}
84 \pgfkeys{/PYTX/pkgopt/makestderr/false/.code=\boolfalse{pytx@opt@stderr}}
85 \pgfkeys{/PYTX/pkgopt/stderr/.default=true}
86 \pgfkeys{/PYTX/pkgopt/stderr/.is choice}
87 \pgfkeys{/PYTX/pkgopt/stderr/true/.code=\booltrue{pytx@opt@stderr}%
88 \PackageWarning{\pytx@packagename}{Option stderr is deprecated; use option makestderr}}
89 \pgfkeys{/PYTX/pkgopt/stderr/false/.code=\boolfalse{pytx@opt@stderr}%
90 \PackageWarning{\pytx@packagename}{Option stderr is deprecated; use option makestderr}}

9.3.10 stderrfilename

\pytx@opt@stderrfilename This option determines how the file name appears in stderr.
91 \def\pytx@opt@stderrfilename{full}
92 \pgfkeys{/PYTX/pkgopt/stderrfilename/.default=full}
93 \pgfkeys{/PYTX/pkgopt/stderrfilename/.is choice}
94 \pgfkeys{/PYTX/pkgopt/stderrfilename/full/.code=\def\pytx@opt@stderrfilename{full}}
95 \pgfkeys{/PYTX/pkgopt/stderrfilename/session/.code=\def\pytx@opt@stderrfilename{session}}
96 \pgfkeys{/PYTX/pkgopt/stderrfilename/genericfile/.code=%
97 \def\pytx@opt@stderrfilename{genericfile}}
98 \pgfkeys{/PYTX/pkgopt/stderrfilename/genericscript/.code=%
99 \def\pytx@opt@stderrfilename{genericscript}}

9.3.11 Python’s __future__ module

\pytx@opt@pyfuture The pyfuture option determines what is imported from the __future__ module
under Python 2. It has no effect under Python 3.

100 \def\pytx@opt@pyfuture{default}
101 \pgfkeys{/PYTX/pkgopt/pyfuture/.is choice}
102 \pgfkeys{/PYTX/pkgopt/pyfuture/default/.code=\def\pytx@opt@pyfuture{default}}
103 \pgfkeys{/PYTX/pkgopt/pyfuture/all/.code=\def\pytx@opt@pyfuture{all}}
104 \pgfkeys{/PYTX/pkgopt/pyfuture/none/.code=\def\pytx@opt@pyfuture{none}}

\pytx@opt@pyconfuture The pyconfuture option determines what is automatically imported from the
__future__ module under Python 2, for console content. It has no effect under
Python 3.

105 \def\pytx@opt@pyconfuture{none}
106 \pgfkeys{/PYTX/pkgopt/pyconfuture/.is choice}
107 \pgfkeys{/PYTX/pkgopt/pyconfuture/default/.code=\def\pytx@opt@pyconfuture{default}}
108 \pgfkeys{/PYTX/pkgopt/pyconfuture/all/.code=\def\pytx@opt@pyconfuture{all}}
109 \pgfkeys{/PYTX/pkgopt/pyconfuture/none/.code=\def\pytx@opt@pyconfuture{none}}

9.3.12 Upquote

pytx@opt@upquote The upquote option determines whether the upquote package is loaded. It makes
quotes within verbatim contexts ' rather than ’. This is important, because it
means that code may be copied directly from the compiled PDF and executed
without any errors due to quotes ’ being copied as acute accents ´.

63

110 \newbool{pytx@opt@upquote}
111 \booltrue{pytx@opt@upquote}
112 \pgfkeys{/PYTX/pkgopt/upquote/.default=true}
113 \pgfkeys{/PYTX/pkgopt/upquote/.is choice}
114 \pgfkeys{/PYTX/pkgopt/upquote/true/.code=\booltrue{pytx@opt@upquote}}
115 \pgfkeys{/PYTX/pkgopt/upquote/false/.code=\boolfalse{pytx@opt@upquote}}

9.3.13 Fix math spacing

pytx@opt@fixlr The fixlr option fixes extra, undesirable spacing in mathematical formulae in-
troduced by the commands \left and \right. For example, compare the results
of $\sin(x)$ and $\sin\left(x\right)$: sin(x) and sin (x). The fixlr option
fixes this, using a solution proposed by Mateus Araújo, Philipp Stephani, and
Heiko Oberdiek.32

116 \newbool{pytx@opt@fixlr}
117 \pgfkeys{/PYTX/pkgopt/fixlr/.default=true}
118 \pgfkeys{/PYTX/pkgopt/fixlr/.is choice}
119 \pgfkeys{/PYTX/pkgopt/fixlr/true/.code=\booltrue{pytx@opt@fixlr}}
120 \pgfkeys{/PYTX/pkgopt/fixlr/false/.code=\boolfalse{pytx@opt@fixlr}}

9.3.14 Keep temporary files

\pytx@opt@keeptemps By default, PythonTEX tries to be very tidy. It creates many temporary files, but
deletes all that are not required to compile the document, keeping the overall file
count very low. At times, particularly during debugging, it may be useful to keep
these temporary files, so that code, errors, and output may be examined more
directly. The keeptemps option makes this possible.

121 \def\pytx@opt@keeptemps{none}
122 \pgfkeys{/PYTX/pkgopt/keeptemps/.default=all}
123 \pgfkeys{/PYTX/pkgopt/keeptemps/.is choice}
124 \pgfkeys{/PYTX/pkgopt/keeptemps/all/.code=\def\pytx@opt@keeptemps{all}}
125 \pgfkeys{/PYTX/pkgopt/keeptemps/code/.code=\def\pytx@opt@keeptemps{code}}
126 \pgfkeys{/PYTX/pkgopt/keeptemps/none/.code=\def\pytx@opt@keeptemps{none}}

9.3.15 Pygments

pytx@opt@pygments By default, PythonTEX uses fancyvrb to typeset code. This provides nice format-
ting and font options, but no syntax highlighting. The prettyprinter options,
and pygments alias, determine whether Pygments or fancyvrb is used to type-
set code. Pygments is a generic syntax highlighter written in Python. Since
PythonTEX sends code to Python anyway, having Pygments process the code is
only a small additional step and in many cases takes little if any extra time to
execute.33

32 http://tex.stackexchange.com/questions/2607/spacing-around-left-and-right
33Pygments code highlighting is executed as a separate process by pythontex.py, so it runs

in parallel on a multicore system. Pygments usage is optimized by saving highlighted code and
only reprocessing it when changed.

64

http://tex.stackexchange.com/questions/2607/spacing-around-left-and-right

Command and environment families obey the prettyprinter option by de-
fault, but they may be set to override it and always use Pygments or always use
fancyvrb, via \setpythontexprettyprinter and \setpygmentsprettyprinter.

127 \newbool{pytx@opt@pygments}
128 \booltrue{pytx@opt@pygments}
129 \pgfkeys{/PYTX/pkgopt/prettyprinter/.is choice}
130 \pgfkeys{/PYTX/pkgopt/prettyprinter/pygments/.code=\booltrue{pytx@opt@pygments}}
131 \pgfkeys{/PYTX/pkgopt/prettyprinter/fancyvrb/.code=\boolfalse{pytx@opt@pygments}}
132 \pgfkeys{/PYTX/pkgopt/pygments/.default=true}
133 \pgfkeys{/PYTX/pkgopt/pygments/.is choice}
134 \pgfkeys{/PYTX/pkgopt/pygments/true/.code=\booltrue{pytx@opt@pygments}}
135 \pgfkeys{/PYTX/pkgopt/pygments/false/.code=\boolfalse{pytx@opt@pygments}}

pytx@opt@pyginline This option governs whether, when Pygments is in use, it highlights inline content.
136 \newbool{pytx@opt@pyginline}
137 \booltrue{pytx@opt@pyginline}
138 \pgfkeys{/PYTX/pkgopt/prettyprintinline/.default=true}
139 \pgfkeys{/PYTX/pkgopt/prettyprintinline/.is choice}
140 \pgfkeys{/PYTX/pkgopt/prettyprintinline/true/.code=\booltrue{pytx@opt@pyginline}}
141 \pgfkeys{/PYTX/pkgopt/prettyprintinline/false/.code=\boolfalse{pytx@opt@pyginline}}
142 \pgfkeys{/PYTX/pkgopt/pyginline/.default=true}
143 \pgfkeys{/PYTX/pkgopt/pyginline/.is choice}
144 \pgfkeys{/PYTX/pkgopt/pyginline/true/.code=\booltrue{pytx@opt@pyginline}}
145 \pgfkeys{/PYTX/pkgopt/pyginline/false/.code=\boolfalse{pytx@opt@pyginline}}

pytx@pyglexer For completeness, we need a way to set the Pygments lexer for all content. Note
that in general, resetting the lexers for all content is not desirable.

146 \def\pytx@pyglexer{}
147 \pgfkeys{/PYTX/pkgopt/pyglexer/.code=\def\pytx@pyglexer{#1}}

\pytx@pygopt We also need a way to specify Pygments options at the package level. This is
accomplished via the pygopt option: pygopt={〈options〉}. Note that the options
must be enclosed in curly braces since they contain equals signs and thus must be
distinguishable from package options.

Currently, three options may be passed in this manner: style=〈style〉, which
sets the formatting style; texcomments, which allows LATEX in code comments to
be rendered; and mathescape, which allows LATEX math mode ($...$) in com-
ments. The texcomments and mathescape options may be used with a boolean
argument; if an argument is not supplied, true is assumed. As an example of
pygopt usage, consider the following:

pygopt={style=colorful, texcomments=True, mathescape=False}

The usage of capitalized True and False is more pythonic, but is not strictly
require.

While the package-level pygments option may be overridden by individual com-
mands and environments (though it is not by default), the package-level Pygments
options cannot be overridden by individual commands and environments.

65

148 \def\pytx@pygopt{}
149 \pgfkeys{/PYTX/pkgopt/pygopt/.code=\def\pytx@pygopt{#1}}

\pytx@fvextfile By default, code highlighted by Pygments, the console environment, and some
other content is brought back via fancyvrb’s SaveVerbatim macro, which saves
verbatim content into a macro and then allows it to be restored. This makes it
possible for all Pygments content to be brought back in a single file, keeping the
total file count low (which is a major priority for PythonTEX!). This approach does
have a disadvantage, though, because SaveVerbatim slows down as the length of
saved code increases.34 To deal with this issue, we create the fvextfile option.
This option takes an integer, fvextfile=〈integer〉. All content that is more than
〈integer〉 lines long will be saved to its own external file and inputted from there,
rather than saved and restored via SaveVerbatim and UseVerbatim. This provides
a workaround should speed ever become a hindrance for large blocks of code.

A default value of 25 is set. There is nothing special about 25; it is just a
relatively reasonably cutoff. If the option is unused, it has a value of −1, which is
converted to the maximum integer on the Python side.

150 \def\pytx@fvextfile{-1}
151 \pgfkeys{/PYTX/pkgopt/fvextfile/.default=25}
152 \pgfkeys{/PYTX/pkgopt/fvextfile/.code=\IfInteger{#1}{%
153 \ifnum#1>0\relax
154 \def\pytx@fvextfile{#1}%
155 \else
156 \PackageError{\pytx@packagename}{option fvextfile must be an integer > 0}{}%
157 \fi}%
158 {\PackageError{\pytx@packagename}{option fvextfile must be an integer > 0}{}}%
159 }

9.3.16 Python console environment

\pytx@opt@pyconbanner This option governs the appearance (or disappearance) of a banner at the begin-
ning of Python console environments. The options none (no banner), standard
(standard Python banner), default (default banner for Python’s code module,
standard banner plus interactive console class name), and pyversion (banner in
the form Python x.y.z) are accepted.

160 \def\pytx@opt@pyconbanner{none}
161 \pgfkeys{/PYTX/pkgopt/pyconbanner/.is choice}
162 \pgfkeys{/PYTX/pkgopt/pyconbanner/none/.code=\def\pytx@opt@pyconbanner{none}}
163 \pgfkeys{/PYTX/pkgopt/pyconbanner/standard/.code=\def\pytx@opt@pyconbanner{standard}}
164 \pgfkeys{/PYTX/pkgopt/pyconbanner/default/.code=\def\pytx@opt@pyconbanner{default}}
165 \pgfkeys{/PYTX/pkgopt/pyconbanner/pyversion/.code=\def\pytx@opt@pyconbanner{pyversion}}

\pytx@opt@pyconfilename This option governs the file name that appears in error messages in the console.
The file name may be either stdin, as it is in a standard interactive interpreter,

34The macro in which code is saved is created by grabbing the code one line at a time, and
for each line redefining the macro to be its old value with the additional line tacked on. This is
rather inefficient, but apparently there isn’t a good alternative.

66

or console, as it would typically be for the Python code module.

Traceback (most recent call last):
File "<file name>", line <line no>, in <module>

166 \def\pytx@opt@pyconfilename{stdin}
167 \pgfkeys{/PYTX/pkgopt/pyconfilename/.is choice}
168 \pgfkeys{/PYTX/pkgopt/pyconfilename/stdin/.code=\def\pytx@opt@pyconfilename{stdin}}
169 \pgfkeys{/PYTX/pkgopt/pyconfilename/console/.code=\def\pytx@opt@pyconfilename{console}}

9.3.17 depythontex

pytx@opt@depythontex This option governs whether PythonTEX saved data that can be used to create a
version of the .tex file that does not require PythonTEX to be compiled. This op-
tion should be useful for converting a PythonTEX document into a more standard
TEX document when sharing or publishing documents.

While we’re at it, we go ahead and define dummy versions of the depythontex
macros, so that they can be used in defining commands that are used within the
package, not just outside of it.

170 \newbool{pytx@opt@depythontex}
171 \pgfkeys{/PYTX/pkgopt/depythontex/.default=true}
172 \pgfkeys{/PYTX/pkgopt/depythontex/.is choice}
173 \pgfkeys{/PYTX/pkgopt/depythontex/true/.code=\booltrue{pytx@opt@depythontex}}
174 \pgfkeys{/PYTX/pkgopt/depythontex/false/.code=\boolfalse{pytx@opt@depythontex}}
175 \let\Depythontex\@gobble
176 \let\DepyFile\@gobble
177 \let\DepyMacro\@gobble
178 \let\DepyListing\@empty

9.3.18 Process options

Now we process the package options.
179 \ProcessPgfPackageOptions{/PYTX/pkgopt}

The fixlr option only affects one thing, so we go ahead and take care of that.
Notice that before we patch \left and \right, we make sure that they have not
already been patched by checking how \left is expanded. This is important if
the user has manually patched these commands, is using the mleftright package,
or accidentally loads PythonTEX twice.

180 \ifbool{pytx@opt@fixlr}{
181 \IfStrEq{\detokenize\expandafter{\left}}{\detokenize{\left}}{
182 \let\originalleft\left
183 \let\originalright\right
184 \renewcommand{\left}{\mathopen{}\mathclose\bgroup\originalleft}
185 \renewcommand{\right}{\aftergroup\egroup\originalright}
186 }{}
187 }{}

67

Likewise, the upquote option.
188 \ifbool{pytx@opt@upquote}{\RequirePackage{upquote}}{}

If the depythontex option is used, we also need to disable Pygments highlight-
ing. This is necessary because some content, such as console environments, is
needed in a non-highlighted form, so that it will not contain any special macros.

189 \ifbool{pytx@opt@depythontex}{\boolfalse{pytx@opt@pygments}}{}

9.4 Utility macros and input/output setup
Once options are processed, we proceed to define a number of utility macros and
setup the file input/output that is required by PythonTEX. We also create macros
and perform setup needed by depythontex, since these are closely related to in-
put/output.

9.4.1 Automatic counter creation

\pytx@CheckCounter We will be using counters to give each command/environment a unique identifier,
as well as to manage line numbering of code when desired. We don’t know the
names of the counters ahead of time (this is actually determined by the user’s
naming of code sessions), so we need a macro that checks whether a counter
exists, and if not, creates it.

190 \def\pytx@CheckCounter#1{%
191 \ifcsname c@#1\endcsname\else\newcounter{#1}\fi
192 }

9.4.2 Saving verbatim content in macros

\pytx@SVMCR Commands like \py bring in string representations of objects. Printed content is
saved to external files, but commands like \py bring in content by saving it in
macros. A single large file of macro definitions is brought in, rather than many
external files.

This prevents the creation of unnecessary files, but it also has a significant
drawback: only some content can be saved in a standard macro. In particular,
verbatim content using \verb and verbatim will not work. So we need a way
to save anything in a macro. The solution is to create a special macro that
captures its argument verbatim. The argument is then tokenized when it is used
via \scantokens. All of this requires a certain amount of catcode trickery.

While this approach works with the XeTeX and pdfTeX engines, it does not
work with the LuaTeX engine, which has a known bug in its implementation
of \scantokens.35 So we provide a separate version for LuaTEX that does not
support verbatim. The space after the #1 is intentional, so that the newline at
the beginning of the macro definition is gobbled, and the macro content will start
with text rather than leading whitespace.

193 \def\pytx@SVMCR#1{%

35http://tracker.luatex.org/view.php?id=733

68

http://tracker.luatex.org/view.php?id=733

194 \edef\pytx@tmp{\csname #1\endcsname}%
195 \begingroup
196 \endlinechar‘\^^J
197 \let\do\@makeother\dospecials
198 \pytx@SVMCR@i}
199 \begingroup
200 \catcode‘!=0
201 !catcode‘!\=12
202 !long!gdef!pytx@SVMCR@i#1\endpytx@SVMCR^^J{%
203 !endgroup
204 !expandafter!gdef!pytx@tmp{%
205 !expandafter!scantokens!expandafter{#1!empty}}%
206 }%
207 !endgroup
208 \expandafter\ifx\csname directlua\endcsname\relax\else
209 \def\pytx@SVMCR#1 {%
210 \edef\pytx@tmp{\csname #1\endcsname}%
211 \pytx@SVMCR@i}
212 \long\def\pytx@SVMCR@i#1\endpytx@SVMCR{%
213 \expandafter\gdef\pytx@tmp{#1}%
214 }
215 \fi

9.4.3 Code context

\pytx@context
\pytx@SetContext

\definepythontexcontext

It would be nice if when our code is executed, we could know something about its
context, such as the style of its surroundings or information about page size.

By default, no contextual information is passed to LATEX. There is a wide
variety of information that could be passed, but most use cases would only need
a very specific subset. Instead, the user can customize what information is passed
to LATEX. The \definepythontexcontext macro defines what is passed. It cre-
ates the \pytx@SetContext macro, which creates \pytx@context, in which the
expanded context information is stored. The context should only be defined in
the preamble, so that it is consistent throughout the document.

If you are interested in typesetting mathematics based on math styles, you
should use the \mathchoice macro rather than attempting to pass contextual
information.

216 \newcommand{\definepythontexcontext}[1]{%
217 \def\pytx@SetContext{%
218 \edef\pytx@context{#1}%
219 }%
220 }
221 \definepythontexcontext{}
222 \@onlypreamble\definepythontexcontext

69

9.4.4 Code groups

By default, PythonTEX executes code based on sessions. All of the code entered
within a command and environment family is divided based on sessions, and each
session is saved to a single external file and executed. If you have a calculation
that will take a while, you can simply give it its own named session, and then the
code will only be executed when there is a change within that session.

While this approach is appropriate for many scenarios, it is sometimes ineffi-
cient. For example, suppose you are writing a document with multiple chapters,
and each chapter needs its own session. You could manually do this, but that would
involve a lot of commands like \py[chapter x]{〈some code〉}, which means lots
of extra typing and extra session names. So we need a way to subdivide or restart
sessions, based on context such as chapter, section, or subsection.

“Groups” provide a solution to this problem. Each session is subdivided based
on groups behind the scenes. By default, this changes nothing, because each
session is put into a single default group. But the user can redefine groups based on
chapter, section, and other counters, so that sessions are automatically subdivided
accordingly. Note that there is no continuity between sessions thus subdivided. For
example, if you set groups to change between chapters, there will be no continuity
between the code of those chapters, even if all the code is within the same named
session. If you require continuity, the groups approach is probably not appropriate.
You could consider saving results at the end of one chapter and loading them at
the beginning of the next, but that introduces additional issues in keeping all code
properly synchronized, since code is executed only when it changes, not when any
data it loads may have changed.

\restartpythontexsession
\pytx@group

\pytx@SetGroup
\pytx@SetGroupVerb
\pytx@SetGroupCons

We begin by creating the \restartpythontexsession macro. It creates the
\pytx@SetGroup* macros, which create \pytx@group, in which the expanded
context information is stored. The context should only be defined in the
preamble, so that it is consistent throughout the document. Note that groups
should be defined so that they will only contain characters that are valid in
file names, because groups are used in naming temporary files. It is also a
good idea to avoid using periods, since LATEX input of file names containing
multiple periods can sometimes be tricky. For best results, use A-Z, a-z, 0-9,
and the hyphen and underscore characters to define groups. If groups contain
numbers from multiple sources (for example, chapter and section), the num-
bers should be separated by a non-numeric character to prevent unexpected
collisions (for example, distinguishing chapter 1-11 from 11-1). For example,
\restartpythontexsession{\arabic{chapter}-\arabic{section}} could be a
good approach.

Three forms of \pytx@SetGroup* are provided. \pytx@SetGroup is for general
code use. \pytx@SetGroupVerb is for use in verbatim contexts. It splits verbatim
content off into its own group. That way, verbatim content does not affect the in-
stance numbers of code that is actually executed. This prevents code from needing
to be run every time verbatim content is added or removed; code is only executed
when it is actually changed. pytx@SetGroupCons is for console environments. It

70

separate console content from executed code and from verbatim content, again for
efficiency reasons.

223 \newcommand{\restartpythontexsession}[1]{%
224 \Depythontex{cmd:restartpythontexsession:m:n}%
225 \def\pytx@SetGroup{%
226 \edef\pytx@group{#1}%
227 }%
228 \def\pytx@SetGroupVerb{%
229 \edef\pytx@group{#1verb}%
230 }%
231 \def\pytx@SetGroupCons{%
232 \edef\pytx@group{#1cons}%
233 }%
234 \AtBeginDocument{%
235 \pytx@SetGroup
236 \IfSubStr{\pytx@group}{verb}{%
237 \PackageError{\pytx@packagename}%
238 {String "verb" is not allowed in \string\restartpythontexsession}%
239 {Use \string\restartpythontexsession with a valid argument}}{}%
240 \IfSubStr{\pytx@group}{cons}{%
241 \PackageError{\pytx@packagename}%
242 {String "cons" is not allowed in \string\restartpythontexsession}%
243 {Use \string\restartpythontexsession with a valid argument}}{}%
244 }%
245 }

For the sake of consistency, we only allow group behaviour to be set in the
preamble. And if the group is not set by the user, then we use a single default
group for each session.

246 \@onlypreamble\restartpythontexsession
247 \restartpythontexsession{default}

9.4.5 File input and output

\pytx@jobname We will need to create directories and files for PythonTEX output, and some of
these will need to be named using \jobname. This presents a problem. Ideally,
the user will choose a job name that does not contain spaces. But if the job
name does contain spaces, then we may have problems bringing in content from a
directory or file that is named based on the job, due to the space characters. So
we need a “sanitized” version of \jobname. We replace spaces with hyphens. We
replace double quotes " with nothing. Double quotes are placed around job names
containing spaces by TEX Live, and thus may be the first and last characters of
\jobname. Since we are replacing any spaces with hyphens, quote delimiting is
no longer needed, and in any case, some operating systems (Windows) balk at
creating directories or files with names containing double quotes. We also replace
asterisks with hyphens, since MiKTEX (at least v. 2.9) apparently replaces spaces

71

with asterisks in \jobname,36 and some operating systems may not be happy with
names containing asterisks.

This approach to “sanitizing” \jobname is not foolproof. If there are ever two
files in a directory that both use PythonTEX, and if their names only differ by these
substitutions for spaces, quotes, and asterisks, then the output of the two files will
collide. We believe that it is better to graciously handle the possibility of space
characters at the expense of nearly identical file names, since nearly identical file
names are arguably a much worse practice than file names containing spaces, and
since such nearly identical file names should be much rarer. At the same time, in
rare cases a collision might occur, and in even rarer cases it might go unnoticed.37
To prevent such issues, pythontex.py checks for collisions and issues a warning if
a potential collision is detected.

248 \StrSubstitute{\jobname}{ }{-}[\pytx@jobname]
249 \StrSubstitute{\pytx@jobname}{"}{}[\pytx@jobname]
250 \StrSubstitute{\pytx@jobname}{*}{-}[\pytx@jobname]

\pytx@outputdir
\setpythontexoutputdir

To keep things tidy, all PythonTEX files are stored in a directory that is
created in the document root directory. By default, this directory is called
pythontex-files-〈sanitized jobname〉, but we want to provide the user with the
option to customize this. For example, when 〈sanitized jobname〉 is very long, it
might be convenient to use pythontex-〈abbreviated name〉.

The command \setpythontexoutputdir stores the name of PythonTEX’s out-
put directory in \pytx@outputdir. If the graphicx package is loaded, the out-
put directory is also added to the graphics path at the beginning of the doc-
ument, so that files in the output directory may be included within the main
document without the necessity of specifying path information. The command
\setpythontexoutputdir is only allowed in the preamble, because the location
of PythonTEX content should be specified before the body of the document is
typeset.

251 \newcommand{\setpythontexoutputdir}[1]{%
252 \Depythontex{cmd:setpythontexoutputdir:m:n}%
253 \def\pytx@outputdir{#1}}
254 \setpythontexoutputdir{pythontex-files-\pytx@jobname}
255 \AtBeginDocument{%
256 \@ifpackageloaded{graphicx}{%
257 \ifx\Ginput@path\@undefined
258 \graphicspath{{\pytx@outputdir/}}%
259 \else
260 \g@addto@macro\Ginput@path{{\pytx@outputdir/}}%
261 \fi
262 }{}%

36http://tex.stackexchange.com/questions/14949/why-does-jobname-give-s-instead-of-spaces-
and-how-do-i-fix-this

37In general, a collision would produce errors, and the user would thereby become aware of
the collision. The dangerous case is when the two files with similar names use exactly the same
PythonTEX commands, the same number of times, so that the naming of the output is identical.
In that case, no errors would be issued.

72

http://tex.stackexchange.com/questions/14949/why-does-jobname-give-s-instead-of-spaces-and-how-do-i-fix-this
http://tex.stackexchange.com/questions/14949/why-does-jobname-give-s-instead-of-spaces-and-how-do-i-fix-this

263 }
264 \@onlypreamble\setpythontexoutputdir

pytx@workingdir
\setpythontexworkingdir

We need to be able to set the current working directory for the scripts executed by
PythonTEX. By default, the working directory should be the same as the output
directory. That way, any files saved in the current working directory will be in the
PythonTEX output directory, and will thus be kept separate. But in some cases
the user may wish to specify a different working directory, such as the document
root.

265 \newcommand{\setpythontexworkingdir}[1]{%
266 \Depythontex{cmd:setpythontexworkingdir:m:n}%
267 \def\pytx@workingdir{#1}%
268 }
269 \@onlypreamble\setpythontexworkingdir
270 \AtBeginDocument{%
271 \ifcsname pytx@workingdir\endcsname\else
272 %\setpythontexworkingdir{\pytx@outputdir}\fi Depythontex
273 \let\pytx@workingdir\pytx@outputdir\fi
274 }

pytx@usedpygments Once we have specified the output directory, we are free to pull in content from
it. Most content from the output directory will be pulled in manually by the user
(for example, via \includegraphics) or automatically by PythonTEX as it goes
along. But content “printed” by code commands and environments (via macros)
as well as code typeset by Pygments needs to be included conditionally, based on
whether it exists and on user preferences.

This gets a little tricky. We only want to pull in the Pygments content if it
is actually used, since Pygments content will typically use fancyvrb’s SaveVerb
environment, and this can slow down compilation when very large chunks of code
are saved. It doesn’t matter if the code is actually used; saving it in a macro is
what potentially slows things down. So we create a bool to keep track of whether
Pygments is ever actually used, and only bring in Pygments content if it is.38
This bool must be set to true whenever a command or environment is created
that makes use of Pygments (in practice, we will simply set it to true when a
family is created). Note that we cannot use the pytx@opt@pygments bool for this
purpose, because it only tells us if the package option for Pygments usage is true
or false. Typically, this will determine if any Pygments content is used. But it is
possible for the user to create a command and environment family that overrides
the package option (indeed, this may sometimes be desirable, for example, if the

38The same effect could be achieved by having pythontex.py delete the Pygments content
whenever it is run and Pygments is not used. But that approach is faulty in two regards. First,
it requires that pythontex.py be run, which is not necessarily the case if the user simply sets the
package option pygments to false and the recompiles. Second, even if it could be guaranteed
that the content would be deleted, such an approach would not be optimal. It is quite possible
that the user wishes to temporarily turn off Pygments usage to speed compilation while working
on other parts of the document. In this case, deleting the Pygments content is simply deleting
data that must be recreated when Pygments is turned back on.

73

user wishes code in a particular language never to be highlighted). Thus, a new
bool is needed to allow detection in such nonstandard cases.

275 \newbool{pytx@usedpygments}

Now we can conditionally bring in the Pygments content. Note that we must
use the etoolbox macro \AfterEndPreamble. This is because commands and
environments are created using \AtBeginDocument, so that the user can change
their properties in the preamble before they are created. And since the com-
mands and environments must be created before we know the final state of
pytx@usedpygments, we must bring in Pygments content after that.

276 \AfterEndPreamble{%
277 \ifbool{pytx@usedpygments}%
278 {\InputIfFileExists{\pytx@outputdir/\pytx@jobname.pytxpyg}{}{}}{}%
279 }

While we are pulling in content, we also pull in the file of macros that stores
some inline “printed” content, if the file exists. Since we need this file in general,
and since it will not typically invole a noticeable speed penalty, we bring it in at
the beginning of the document without any special conditions.

280 \AtBeginDocument{%
281 \makeatletter
282 \InputIfFileExists{\pytx@outputdir/\pytx@jobname.pytxmcr}{}{}%
283 \makeatother
284 }

\pytx@codefile We create a new write, named \pytx@codefile, to which we will save code. All
the code from the document will be written to this single file, interspersed with
information specifying where in the document it came from. PythonTEX parses
this file to separate the code into individual sessions and groups. These are then
executed, and the identifying information is used to tie code output back to the
original code in the document.39

285 \newwrite\pytx@codefile
286 \immediate\openout\pytx@codefile=\jobname.pytxcode

In the code file, information from PythonTEX must be interspersed with
the code. Some type of delimiting is needed for PythonTEX information. All
PythonTEX content is written to the file in the form =>PYTHONTEX#〈content〉#.

39The choice to write all code to a single file is the result of two factors. First, TEX has a limited
number of output registers available (16), so having a separate output stream for each group or
session is not possible. The morewrites package from Bruno Le Floch potentially removes this
obstacle, but since this package is very recent (README from 2011/7/10), we will not consider
using additional writes in the immediate future. Second, one of the design goals of PythonTEX
is to minimize the number of persistent files created by a run. This keeps directories cleaner
and makes file synchronization/transfer somewhat simpler. Using one write per session or group
could result in numerous code files, and these could only be cleaned up by pythontex.py since
LATEX cannot delete files itself (well, without unrestricted write18). Using a single output file
for code does introduce a speed penalty since the code does not come pre-sorted by session or
group, but in typical usage this should be minimal. Adding an option for single or multiple code
files may be something to reconsider at a later date.

74

When this content involves package options, the delimiter is modified to the form
=>PYTHONTEX:SETTINGS#〈content〉#. The # symbol is also used as a subdelimiter
within 〈content〉. The # symbol is convenient as a delimiter since it has a special
meaning in TEX and is very unlikely to be accidentally entered by the user in unex-
pected locations without producing errors. Note that the usage of “=>PYTHONTEX#”
as a beginning delimiter for PythonTEX data means that this string should never
be written by the user at the beginning of a line, because pythontex.py will try
to intepret it as data and will fail.

\pytx@delimchar We create a macro to store the delimiting character.
287 \edef\pytx@delimchar{\string#}

\pytx@delim We create a macro to store the starting delimiter.
288 \edef\pytx@delim{=\string>PYTHONTEX\string#}

\pytx@delimsettings And we create a second macro to store the starting delimiter for settings that are
passed to Python.

289 \edef\pytx@delimsettings{=\string>PYTHONTEX:SETTINGS\string#}

Settings need to be written to the code file. Some of these settings are not final
until the beginning of the document, since they may be modified by the user within
the preamble. Thus, all settings should be written at the end of the document,
so that they will all be together and will not be interspersed with any code that
was entered in the preamble. The order in which the settings are written is not
significant, but for symmetry it should mirror the order in which they were defined.

290 \AtEndDocument{%
291 \immediate\write\pytx@codefile{\pytx@delimsettings}%
292 \immediate\write\pytx@codefile{version=\pytx@packageversion}%
293 \immediate\write\pytx@codefile{outputdir=\pytx@outputdir}%
294 \immediate\write\pytx@codefile{workingdir=\pytx@workingdir}%
295 \immediate\write\pytx@codefile{gobble=\pytx@opt@gobble}%
296 \immediate\write\pytx@codefile{rerun=\pytx@opt@rerun}%
297 \immediate\write\pytx@codefile{hashdependencies=\pytx@opt@hashdependencies}%
298 \immediate\write\pytx@codefile{makestderr=\ifbool{pytx@opt@stderr}{true}{false}}%
299 \immediate\write\pytx@codefile{stderrfilename=\pytx@opt@stderrfilename}%
300 \immediate\write\pytx@codefile{keeptemps=\pytx@opt@keeptemps}%
301 \immediate\write\pytx@codefile{pyfuture=\pytx@opt@pyfuture}%
302 \immediate\write\pytx@codefile{pyconfuture=\pytx@opt@pyconfuture}%
303 \immediate\write\pytx@codefile{pygments=\ifbool{pytx@opt@pygments}{true}{false}}%
304 \immediate\write\pytx@codefile{pygglobal=:GLOBAL|\pytx@pyglexer|\pytx@pygopt}%
305 \immediate\write\pytx@codefile{fvextfile=\pytx@fvextfile}%
306 \immediate\write\pytx@codefile{pyconbanner=\pytx@opt@pyconbanner}%
307 \immediate\write\pytx@codefile{pyconfilename=\pytx@opt@pyconfilename}%
308 \immediate\write\pytx@codefile{depythontex=\ifbool{pytx@opt@depythontex}{true}{false}}%
309 }

\pytx@WriteCodefileInfo
\pytx@WriteCodefileInfoExt

Later, we will frequently need to write PythonTEX information to the code file in
standardized form. We create a macro to simplify that process. We also create

75

an alternate form, for use with external files that must be inputted or read in by
PythonTEX and processed. While the standard form employs a counter that is
incremented elsewhere, the version for external files substitutes a zero (0) for the
counter, because each external file must be unique in name and thus numbering
via a counter is redundant.40

310 \def\pytx@argsrun{}
311 \def\pytx@argspprint{}
312 \def\pytx@WriteCodefileInfo{%
313 \ifcurrfile{\currfilebase}{\jobname}%
314 {\let\pytx@currfile\@empty}{\let\pytx@currfile\currfilename}%
315 \immediate\write\pytx@codefile{\pytx@delim\pytx@type\pytx@delimchar%
316 \pytx@session\pytx@delimchar\pytx@group\pytx@delimchar%
317 \arabic{\pytx@counter}\pytx@delimchar\pytx@cmd\pytx@delimchar%
318 \pytx@context\pytx@delimchar\pytx@argsrun\pytx@delimchar%
319 \pytx@argspprint\pytx@delimchar%
320 \pytx@currfile\pytx@delimchar%
321 \the\inputlineno\pytx@delimchar}%
322 }
323 \newcommand{\pytx@WriteCodefileInfoExt}[1][]{%
324 \ifcurrfile{\currfilebase}{\jobname}%
325 {\let\pytx@currfile\@empty}{\let\pytx@currfile\currfilename}%
326 \immediate\write\pytx@codefile{\pytx@delim\pytx@type\pytx@delimchar%
327 \pytx@session\pytx@delimchar\pytx@group\pytx@delimchar%
328 0\pytx@delimchar\pytx@cmd\pytx@delimchar%
329 \pytx@context\pytx@delimchar\pytx@argsrun\pytx@delimchar%
330 \pytx@argspprint\pytx@delimchar%
331 \pytx@currfile\pytx@delimchar%
332 \the\inputlineno\pytx@delimchar#1}%
333 }

9.4.6 Interface to fancyvrb

The fancyvrb package is used to typeset lines of code, and its internals are also
used to format inline code snippets. We need a way for each family of PythonTEX
commands and environments to have its own independent fancyvrb settings.

\pytx@fvsettings
\setpythontexfv

The macro \setpythontexfv[〈family〉]{〈settings〉} takes 〈settings〉 and stores
them in a macro that is run through fancyvrb’s \fvset at the beginning
of PythonTEX code. If a 〈family〉 is specified, the settings are stored in
\pytx@fvsettings@〈family〉, and the settings only apply to typeset code belong-
ing to that family. If no optional argument is given, then the settings are stored
in \pytx@fvsettings, and the settings apply to all typeset code.

In the current implementation, \setpythontexfv and \fvset differ because
the former is not persistent in the same sense as the latter. If we use \fvset

40The external-file form also takes an optional argument. This corresponds to a command-line
argument that is passed to an external file during the file’s execution. Currently, executing exter-
nal files, with or without arguments, is not implemented. But this feature is under consideration,
and the macro retains the optional argument for the potential future compatibility.

76

to set one property, and then use it later to set another property, the setting for
the original property is persistent. It remains until another \fvset command is
issued to change it. In contrast, every time \setpythontexfv is used, it clears
all prior settings and only the current settings actually apply. This is because
\fvset stores the state of each setting in its own macro, while \setpythontexfv
simply stores a string of settings that is passed to \fvset at the appropriate times.
For typical use scenarios, this distinction shouldn’t be important—usually, we will
want to set the behavior of fancyvrb for all PythonTEX content, or for a family of
PythonTEX content, and leave those settings constant throughout the document.
Furthermore, environments that typeset code take fancyvrb commands as their
second optional argument, so there is already a mechanism in place for changing
the settings for a single environment. However, if we ever want to change the
typesetting of code for only a small portion of a document (larger than a single
environment), this persistence distinction does become important.41

334 \newcommand{\setpythontexfv}[2][]{%
335 \Depythontex{cmd:setpythontexfv:om:n}%
336 \ifstrempty{#1}%
337 {\gdef\pytx@fvsettings{#2}}%
338 {\expandafter\gdef\csname pytx@fvsettings@#1\endcsname{#2}}%
339 }%

Now that we have a mechanism for applying global settings to typeset
PythonTEX code, we go ahead and set a default tab size for all environments.
If \setpythontexfv is ever invoked, this setting will be overwritten, so that must
be kept in mind.

340 \setpythontexfv{tabsize=4}

\pytx@FVSet Once the fancyvrb settings for PythonTEX are stored in macros, we need a way
to actually invoke them. \pytx@FVSet applies family-specific settings first, then
PythonTEX-wide settings second, so that PythonTEX-wide settings have prece-
dence and will override family-specific settings. Note that by using \fvset, we are
overwriting fancyvrb’s settings. Thus, to keep the settings local to the PythonTEX
code, \pytx@FVSet must always be used within a \begingroup ... \endgroup
block.

341 \def\pytx@FVSet{%
342 \expandafter\let\expandafter\pytx@fvsettings@@%
343 \csname pytx@fvsettings@\pytx@type\endcsname
344 \ifdefstring{\pytx@fvsettings@@}{}%
345 {}%
346 {\expandafter\fvset\expandafter{\pytx@fvsettings@@}}%
347 \ifdefstring{\pytx@fvsettings}{}%
348 {}%

41An argument could be made for having \setpythontexfv behave exactly like \fvset.
Properly implementing this behavior would be tricky, because of inheritance issues between
PythonTEX-wide and family-specific settings (this is probably a job for pgfkeys). Full persis-
tence would likely require a large number of macros and conditionals. At least from the per-
spective of keeping the code clean and concise, the current approach is superior, and probably
introduces minor annoyances at worst.

77

349 {\expandafter\fvset\expandafter{\pytx@fvsettings}}%
350 }

\pytx@FVB@SaveVerbatim
pytx@FancyVerbLineTemp

fancyvrb’s SaveVerbatim environment will be used extensively to include code
highlighted by Pygments and other processed content. Unfortunately, when the
saved content is included in a document with the corresponding UseVerbatim,
line numbering does not work correctly. Based on a web search, this ap-
pears to be a known bug in fancyvrb. We begin by fixing this, which re-
quires patching fancyvrb’s \FVB@SaveVerbatim and \FVE@SaveVerbatim. We
create a patched \pytx@FVB@SaveVerbatim by inserting \FV@StepLineNo and
\FV@CodeLineNo=1 at appropriate locations. We also delete an unnecessary
\gdef\SaveVerbatim@Name{#1}. Then we create a \pytx@FVE@SaveVerbatim,
and add code so that the two macros work together to prevent FancyVerbLine
from incorrectly being incremented within the SaveVerbatim environment. This
involves using the counter pytx@FancyVerbLineTemp to temporarily store the
value of FancyVerbLine, so that it may be restored to its original value after
verbatim content has been saved.

Typically, we \let our own custom macros to the corresponding macros within
fancyvrb, but only within a command or environment. In this case, however, we
are fixing behavior that should be considered a bug even for normal fancyvrb
usage. So we let the buggy macros to the patched macros immediately after
defining the patched versions.

351 \newcounter{pytx@FancyVerbLineTemp}

352 \def\pytx@FVB@SaveVerbatim#1{%
353 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
354 \@bsphack
355 \begingroup
356 \FV@UseKeyValues
357 \def\SaveVerbatim@Name{#1}%
358 \def\FV@ProcessLine##1{%
359 \expandafter\gdef\expandafter\FV@TheVerbatim\expandafter{%
360 \FV@TheVerbatim\FV@StepLineNo\FV@ProcessLine{##1}}}%
361 \gdef\FV@TheVerbatim{\FV@CodeLineNo=1}%
362 \FV@Scan}
363 \def\pytx@FVE@SaveVerbatim{%
364 \expandafter\global\expandafter\let
365 \csname FV@SV@\SaveVerbatim@Name\endcsname\FV@TheVerbatim
366 \endgroup\@esphack
367 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}}
368 \let\FVB@SaveVerbatim\pytx@FVB@SaveVerbatim
369 \let\FVE@SaveVerbatim\pytx@FVE@SaveVerbatim

9.4.7 Access to printed content (stdout)

The autoprint package option automatically pulls in printed content from code
commands and environments. But this does not cover all possible use cases, be-
cause we could have print statements/functions in block commands and environ-
ments as well. Furthermore, sometimes we may print content, but then desire

78

to bring it back into the document multiple times, without duplicating the code
that creates the content. Here, we create a number of macros that allow access to
printed content. All macros are created in two identical forms, one based on the
name print and one based on the name stdout. Which macros are used depends
on user preference. The macros based on stdout provide symmetry with stderr
access.

\pytx@stdfile We begin by defining a macro to hold the base name for stdout and stderr content.
The name of this file is updated by most commands and environments so that it
stays current.42 It is important, however, to initially set the name empty for
error-checking purposes.

370 \def\pytx@stdfile{}

\pytx@FetchStdoutfile Now we create a generic macro for bringing in the stdout file. This macro can
input the content in verbatim form, applying fancyvrb options if present. Usage:
\pytx@FetchStdoutfile[〈mode〉][〈options〉]{〈file path〉}. We must disable the
macro in the event that the debug option is false. Also, the warning text should
not be included if we are in the preamble.

371 \def\pytx@stdout@warntext{}
372 \def\pytx@FetchStdoutfile[#1][#2]#3{%
373 \IfFileExists{\pytx@outputdir/#3.stdout}{%
374 \ifstrempty{#1}{\input{\pytx@outputdir/#3.stdout}}{}%
375 \ifstrequal{#1}{raw}{\input{\pytx@outputdir/#3.stdout}}{}%
376 \ifstrequal{#1}{verb}{\BVerbatimInput[#2]{\pytx@outputdir/#3.stdout}}{}%
377 \ifstrequal{#1}{verbatim}{\VerbatimInput[#2]{\pytx@outputdir/#3.stdout}}{}%
378 \DepyFile{p:\pytx@outputdir/#3.stdout:mode=#1}%
379 }%
380 {\pytx@stdout@warntext
381 \PackageWarning{\pytx@packagename}{Non-existent printed content}}%
382 }
383 \ifbool{pytx@opt@stdout}{}{\def\pytx@FetchStdoutfile[#1][#2]#3{}}
384 \AtBeginDocument{\def\pytx@stdout@warntext{\textbf{??~\pytx@packagename~??}}}

\printpythontex
\stdoutpythontex

We define a macro that pulls in the content of the most recent stdout file, accepting
verbatim settings and also fancyvrb settings if they are given.

385 \def\stdoutpythontex{%
386 \Depythontex{cmd:stdoutpythontex:oo:p}%
387 \@ifnextchar[{\pytx@Stdout}{\pytx@Stdout[raw]}%
388 }
389 \def\pytx@Stdout[#1]{%
390 \@ifnextchar[{\pytx@Stdout@i[#1]}{\pytx@Stdout@i[#1][]}%
391 }
392 \def\pytx@Stdout@i[#1][#2]{%
393 \pytx@FetchStdoutfile[#1][#2]{\pytx@stdfile}%

42It is only updated by those commands and environments that interact with pythontex.py and
thus increment a type-session-group counter so that they can be distinguished. verb commands
and environments that use fancyvrb for typesetting do not interact with pythontex.py, do not
increment a counter, and thus do not update the stdout file.

79

394 }
395 \def\printpythontex{%
396 \Depythontex{cmd:printpythontex:oo:p}%
397 \@ifnextchar[{\pytx@Stdout}{\pytx@Stdout[raw]}%
398 }

\saveprintpythontex
\savestdoutpythontex

Sometimes, we may wish to use printed content at multiple locations in a docu-
ment. Because \pytx@stdfile is changed by every command and environment
that could print, the printed content that \printpythontex tries to access is
constantly changing. Thus, \printpythontex is of use only immediately after
content has actually been printed, before any additional PythonTEX commands
or environments change the definition of \pytx@stdfile. To get around this, we
create \saveprintpythontex{〈name〉}. This macro saves the current name of
\pytx@stdfile so that it is associated with 〈name〉 and thus can be retrieved
later, after \pytx@stdfile has been redefined.

399 \def\savestdoutpythontex{%
400 \Depythontex{cmd:savestdoutpythontex:m:n}%
401 \savestdoutpythontex@i
402 }
403 \def\savestdoutpythontex@i#1{%
404 \ifcsname pytx@SVout@#1\endcsname
405 \PackageError{\pytx@packagename}%
406 {Attempt to save content using an already-defined name}%
407 {Use a name that is not already defined}%
408 \else
409 \expandafter\edef\csname pytx@SVout@#1\endcsname{\pytx@stdfile}%
410 \fi
411 }
412 \def\saveprintpythontex{%
413 \Depythontex{cmd:saveprintpythontex:m:n}%
414 \savestdoutpythontex@i
415 }

\useprintpythontex
\usestdoutpythontex

Now that we have saved the current \pytx@stdoutfile under a new, user-chosen
name, we need a way to retrieve the content of that file later, using the name.

416 \def\usestdoutpythontex{%
417 \Depythontex{cmd:usestdoutpythontex:oom:p}%
418 \@ifnextchar[{\pytx@UseStdout}{\pytx@UseStdout[]}%
419 }
420 \def\pytx@UseStdout[#1]{%
421 \@ifnextchar[{\pytx@UseStdout@i[#1]}{\pytx@UseStdout@i[#1][]}%
422 }
423 \def\pytx@UseStdout@i[#1][#2]#3{%
424 \ifcsname pytx@SVout@#3\endcsname
425 \pytx@FetchStdoutfile[#1][#2]{\csname pytx@SVout@#3\endcsname}%
426 \else
427 \textbf{??~\pytx@packagename~??}%
428 \PackageWarning{\pytx@packagename}{Non-existent saved printed content}%
429 \fi

80

430 }
431 \def\useprintpythontex{%
432 \Depythontex{cmd:useprintpythontex:oom:p}%
433 \@ifnextchar[{\pytx@UseStdout}{\pytx@UseStdout[]}%
434 }

9.4.8 Access to stderr

We need access to stderr, if it is enabled via the package makestderr option.
Both stdout and stderr share the same base file name, stored in \pytx@stdfile.

Only the file extensions, .stdout and .stderr, differ.
stderr and stdout are treated identically, except that stderr is brought in ver-

batim by default, while stdout is brought in raw by default.

\pytx@FetchStderrfile Create a generic macro for bringing in the stderr file.
435 \def\pytx@FetchStderrfile[#1][#2]#3{%
436 \IfFileExists{\pytx@outputdir/#3.stderr}{%
437 \ifstrequal{#1}{raw}{\input{\pytx@outputdir/#3.stderr}}{}%
438 \ifstrempty{#1}{\VerbatimInput[#2]{\pytx@outputdir/#3.stderr}}{}%
439 \ifstrequal{#1}{verb}{\BVerbatimInput[#2]{\pytx@outputdir/#3.stderr}}{}%
440 \ifstrequal{#1}{verbatim}{\VerbatimInput[#2]{\pytx@outputdir/#3.stderr}}{}%
441 \DepyFile{p:\pytx@outputdir/#3.stderr:mode=#1}%
442 }%
443 {\textbf{??~\pytx@packagename~??}%
444 \PackageWarning{\pytx@packagename}{Non-existent stderr content}}%
445 }

\stderrpythontex We define a macro that pulls in the content of the most recent error file, accepting
verbatim settings and also fancyvrb settings if they are given.

446 \def\stderrpythontex{%
447 \Depythontex{cmd:stderrpythontex:oo:p}%
448 \@ifnextchar[{\pytx@Stderr}{\pytx@Stderr[verbatim]}%
449 }
450 \def\pytx@Stderr[#1]{%
451 \@ifnextchar[{\pytx@Stderr@i[#1]}{\pytx@Stderr@i[#1][]}%
452 }
453 \def\pytx@Stderr@i[#1][#2]{%
454 \pytx@FetchStderrfile[#1][#2]{\pytx@stdfile}%
455 }

A mechanism is provided for saving and later using stderr. This should be
used with care, since stderr content may lose some of its meaning if isolated from
the larger code context that produced it.

\savestderrpythontex

456 \def\savestderrpythontex#1{%
457 \Depythontex{cmd:savestderrpythontex:m:n}%
458 \ifcsname pytx@SVerr@#1\endcsname
459 \PackageError{\pytx@packagename}%

81

460 {Attempt to save content using an already-defined name}%
461 {Use a name that is not already defined}%
462 \else
463 \expandafter\edef\csname pytx@SVerr@#1\endcsname{\pytx@stdfile}%
464 \fi
465 }

\usestderrpythontex

466 \def\usestderrpythontex{%
467 \Depythontex{cmd:usestderrpythontex:oom:p}%
468 \@ifnextchar[{\pytx@UseStderr}{\pytx@UseStderr[verb]}%
469 }
470 \def\pytx@UseStderr[#1]{%
471 \@ifnextchar[{\pytx@UseStderr@i[#1]}{\pytx@UseStderr@i[#1][]}%
472 }
473 \def\pytx@UseStderr@i[#1][#2]#3{%
474 \ifcsname pytx@SVerr@#3\endcsname
475 \pytx@FetchStderrfile[#1][#2]{\csname pytx@SVerr@#3\endcsname}%
476 \else
477 \textbf{??~\pytx@packagename~??}%
478 \PackageWarning{\pytx@packagename}{Non-existent saved stderr content}%
479 \fi
480 }

9.4.9 depythontex

The purpose of depythontex is to create a version of the original LATEX docu-
ment that does not rely on the PythonTEX package. All uses of PythonTEX are
replaced by their output. This is particularly useful when submitting a paper to
a journal, because PythonTEX can simplify the writing process, but many jour-
nals frown upon “special” packages or custom macros. Note that if you just need
to share a PythonTEX document with someone, you can always include a copy
of pythontex.sty and the PythonTEX output directory with the document, and
then non-Python parts of the document can be edited just like a normal LATEX
document, without running any Python code.

The general strategy for depythontex is to write an auxiliary file that contains
information about all environments and macros that need to be replaced, includ-
ing location, format, and the content with which they are to be replaced. This
auxiliary file is then used to performed substitutions on a copy of the original doc-
ument. It would be possible to simply create a list of all PythonTEX macros and
environments, and use that to perform substitutions. But that approach would
have to track the state of PythonTEX more carefully than the auxiliary file ap-
proach. For example, in the auxiliary file approach, it is easy to track whether
autoprint is on or off, because commands and environments will write to the
auxiliary file if they do indeed use autoprint. But without an auxiliary file, you
would have to search for \setpythontexautoprint and devise an algorithm for
determining where it is on or off. Furthermore, once there is a large set of macros,
a general search-and-replace could be quite expensive computationally.

82

These commands need to be defined after all the other settings commands,
because some of the other settings commands are used within this package after
being defined, and thus don’t need replacement because they’re in the package. At
the same time, the depythontex commands have to exist so that other commands
can be defined with them. So dummy versions are created earlier. During the
next refactoring, the order will be cleaned up and clarified.

\pytx@depyfile If the depythontex package option is on, we need to open an auxiliary file for
writing depythontex information.

481 \ifbool{pytx@opt@depythontex}{%
482 \newwrite\pytx@depyfile
483 \immediate\openout\pytx@depyfile=\jobname.depytx
484 }{}

\Depythontex Each command or environment that is to work with depythontex will write the
following information to the auxiliary file:

=>DEPYTHONTEX#<type>:<name>:<args>:<typeset>:<line>:[<Pygments lexer>]#

where <type> is cmd or env; <name> is the complete name of the com-
mand or environment; <args> is a string representing the arguments taken
(o=optional, m=mandatory, v=mandatory verbatim, n=none); <typeset> is a
string representing what is typeset (c=code, p=printed, n=null), and <line> is
\the\inputlineno. The last one can be determined automatically without user
input, but the first four must be entered when a macro is created. Optionally, the
Pygments lexer is written to file if it is available (if \pytx@lexer is not \relax).
These pieces of information are needed for the following reasons.

• <type> We need to know whether we are dealing with a command or envi-
ronment, so we know how to deal with it. There is no way to detect this
automatically, since a command could always be inside some environment.

• <name> We need to know the name of what is to be replaced. There’s no
way to automatically get this.

• <args> We need to know the form of the arguments, so we can assemble an
appropriate regular expression. In some cases, a command might be created
in such a way that this could be detected or easily passed on to PythonTEX
(for example, if the command was defined using the xparse package), but
in general there isn’t a simple way to detect it.

• <typeset> Technically, this could be determined from \pytx@cmd in many
instances. But it couldn’t be determined for cases like \printpythontex and
\stderrpythontex. Furthermore, we want a very general interface suitable
for users writing custom commands and environments.

• <line> This can be determined automatically.

83

• <Pygments lexer> This is needed if so that the language can be specified
in the output. In general, \pytx@lexer can be defined automatically by a
command and environment generator.

We need a command that writes this information to the auxiliary file. Since
this command may be employed by users writing custom macros, we choose a
capitalized name not containing any ampersands @. Since we need to be able to
easily disable the macro, we create the real macro with name ending in @orig,
and then \let the intended name to it.

485 \let\pytx@lexer\relax
486 \def\Depythontex@orig#1{%
487 \immediate\write\pytx@depyfile{=>DEPYTHONTEX\pytx@delimchar#1:%
488 \the\inputlineno:\ifx\pytx@lexer\relax\else\pytx@lexer\fi\pytx@delimchar}%
489 \let\pytx@lexer\relax}
490 \ifbool{pytx@opt@depythontex}%
491 {\let\Depythontex\Depythontex@orig}%
492 {\let\Depythontex\@gobble}
493 \ifbool{pytx@opt@depythontex}{%
494 \AtEndDocument{%
495 \immediate\write\pytx@depyfile{=>DEPYTHONTEX:SETTINGS\pytx@delimchar version=%
496 \pytx@packageversion\pytx@delimchar}%
497 \immediate\write\pytx@depyfile{=>DEPYTHONTEX:SETTINGS\pytx@delimchar macrofile=%
498 \pytx@outputdir/\pytx@jobname.pytxmcr\pytx@delimchar}%
499 \immediate\write\pytx@depyfile{=>DEPYTHONTEX:SETTINGS\pytx@delimchar outputdir=%
500 \pytx@outputdir\pytx@delimchar}%
501 \immediate\write\pytx@depyfile{=>DEPYTHONTEX:SETTINGS\pytx@delimchar graphicx=%
502 \ifcsname graphicspath\endcsname true\else false\fi\pytx@delimchar}%
503 \immediate\write\pytx@depyfile{=>DEPYTHONTEX:SETTINGS\pytx@delimchar gobble=%
504 \pytx@opt@gobble\pytx@delimchar}%
505 }%
506 }{}

\DepyMacro We need a macro that will write the appropriate information to the auxiliary file
if substitution with the contents of a macro is needed. The argument is of the
form <typeset>:<macro name>, where <typeset> is the type of content (p=print,
c=code).

507 \def\DepyMacro@orig#1{%
508 \immediate\write\pytx@depyfile{MACRO:#1}%
509 }
510 \ifbool{pytx@opt@depythontex}%
511 {\let\DepyMacro\DepyMacro@orig}%
512 {\let\DepyMacro\@gobble}

\DepyFile We also need a macro that will write the appropriate information to the auxiliary
file if substitution with the contents of a file is needed. As an argument, this
command takes <typeset>:<filename>[:mode=<format>], where <typeset> is
the type of content (p=print, c=code), <filename> is the full filename, and the
optional mode is the format in which the file is brought in (raw, verb, verbatim).

84

If mode is not specified, it defaults to reasonable defaults. In general, mode is only
needed for p content; c content is verbatim of one form or another.

513 \def\DepyFile@orig#1{%
514 \immediate\write\pytx@depyfile{FILE:#1}%
515 }%
516 \ifbool{pytx@opt@depythontex}%
517 {\let\DepyFile\DepyFile@orig}%
518 {\let\DepyFile\@gobble}

\DepyListing We need a macro that will write information to the auxiliary file for code listings,
specifically whether line numbers were used, and if so, what the starting number
was. This is non-trivial, because it is possible to change both of these via an
environment’s second optional argument. One approach would be to capture all
optional arguments, pass the second to fancyvrb, and then attempt to evaluate the
status of line numbers via an examination of fancyvrb’s internals. That approach
would require a good deal of work and would likely involve a patch for fancyvrb.
Instead, we redefine \theFancyVerbLine, so that it saves the line number to file
the first time it is used, and then redefines itself to its original form.

Since we are redefining \theFancyVerbLine, \DepyListing can only be used
with commands (such as \inputpygments) if it is in a group (\begingroup ...
\endgroup). This prevents the redefinition from “escaping,” if line numbering is
not used. (Environments are wrapped in groups automatically, so this doesn’t
apply to them.)

519 \newcommand{\pytx@DepyListing@write}{%
520 \immediate\write\pytx@depyfile{LISTING:firstnumber=\arabic{FancyVerbLine}}%
521 }
522 \def\DepyListing@orig{%
523 \let\oldFancyVerbLine\theFancyVerbLine
524 \def\theFancyVerbLine{%
525 \pytx@DepyListing@write
526 \expandafter\gdef\expandafter\theFancyVerbLine\expandafter{\oldFancyVerbLine}%
527 \theFancyVerbLine
528 }%
529 }
530 \ifbool{pytx@opt@depythontex}%
531 {\let\DepyListing\DepyListing@orig}%
532 {\let\DepyListing\@empty}

\DepythontexOn
\DepythontexOff

We need a way to switch depythontex on and off. When depythontex is being
used, it needs to be on throughout the entire main document. But it must be
switched off for any commands or environments that are brought in via external
files (for example, in a package). Since anything that is brought in isn’t actually in
the text of the main document, substitution is both impossible and unnecessary.

533 \newcommand{\DepythontexOn}{%
534 \let\Depythontex\Depythontex@orig
535 \let\DepyMacro\DepyMacro@orig
536 \let\DepyFile\DepyFile@orig
537 \let\DepyListing\DepyListing@orig

85

538 }
539 \newcommand{\DepythontexOff}{%
540 \let\Depythontex\@gobble
541 \let\DepyMacro\@gobble
542 \let\DepyFile\@gobble
543 \let\DepyListing\@empty
544 }

9.5 Inline commands
9.5.1 Inline core macros

All inline commands use the same core of inline macros. Inline commands in-
voke the \pytx@Inline macro, and this then branches through a number of ad-
ditional macros depending on the details of the command and the usage context.
\@ifnextchar and \let are used extensively to control branching.

\pytx@Inline, and the macros it calls, perform the following series of opera-
tions.

• If there is an optional argument, capture it. The optional argument is the
session name of the command. If there is no session name, use the “default”
session.

• Determine the delimiting character(s) used for the code encompassed by the
command. Any character except for the space character and the opening
curly brace { may be used as a delimiting character, just as for \verb. The
opening curly brace { may be used, but in this case the closing delimiting
character is the closing curly brace }. If paired curly braces are used as
delimiters, then the code enclosed may only contain paired curly braces.

• Using the delimiting character(s), capture the code. Perform some combi-
nation of the following tasks: typeset the code, save it to the code file, and
bring in content created by the code.

\pytx@Inline This is the gateway to all inline core macros. It is called by all inline commands.
Because the delimiting characters could be almost anything, we need to turn off
all special category codes before we peek ahead with \@ifnextchar to see if an
optional argument is present, since \@ifnextchar sets the category code of the
character it examines. But we set the opening curly brace { back to its standard
catcode, so that matched braces can be used to capture an argument as usual.
The catcode changes are enclosed withing \begingroup ... \endgroup so that
they may be contained.

The macro \pytx@InlineOarg which is called at the end of \pytx@Inline
takes an argument enclosed by square brackets. If an optional argument is
not present, then we supply an empty one, which invokes default treatment in
\pytx@InlineOarg.

545 \def\pytx@Inline{%
546 \begingroup

86

547 \let\do\@makeother\dospecials
548 \catcode‘\{=1
549 \@ifnextchar[{\endgroup\pytx@InlineOarg}{\endgroup\pytx@InlineOarg[]}%
550 }%

\pytx@InlineOarg This macro captures the optional argument (or the empty default substitute),
which corresponds to the code session. Then it determines whether the delimiters
of the actual code are a matched pair of curly braces or a pair of other, identical
characters, and calls the next macro accordingly.

We begin by testing for an empty argument (either from the user or from the
default empty substitute), and setting the default value if this is indeed the case.
It is also possible that the user chose a session name containing a colon. If so,
we substitute a hyphen for the colon. This is because temporary files are named
based on session, and file names often cannot contain colons.

Then we turn off all special catcodes and set the catcodes of the curly braces
back to their default values. This is necessary because we are about to capture
the actual code, and we need all special catcodes turned off so that the code can
contain any characters. But curly braces still need to be active just in case they are
being used as delimiters. We also make the space and tab characters active, since
fancyvrb needs them that way.43 Using \@ifnextchar we determine whether
the delimiters are curly braces. If so, we proceed to \pytx@InlineMargBgroup to
capture the code using curly braces as delimiters. If not, we reset the catcodes of
the braces and proceed to \pytx@InlineMargOther, which uses characters other
than the opening curly brace as delimiters.

551 \def\pytx@InlineOarg[#1]{%
552 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
553 \begingroup
554 \let\do\@makeother\dospecials
555 \catcode‘\{=1
556 \catcode‘\}=2
557 \catcode‘\ =\active
558 \catcode‘\^^I=\active
559 \@ifnextchar\bgroup
560 {\pytx@InlineMargBgroup}%
561 {\catcode‘\{=12
562 \catcode‘\}=12
563 \pytx@InlineMargOther}%
564 }

\pytx@InlineMargOther
\pytx@InlineMargOtherGet

This macro captures code delimited by a pair of identical non-brace characters.
Then it passes the code on to \pytx@InlineMargBgroup for processing. This
approach means that the macro definition may be kept concise, and that the
processing code must only be defined once.

The macro captures only the next character. This will be the delimiting charac-
ter. We must begin by ending the group that was left open by \pytx@InlineOarg,

43Part of this may be redundant, since we detokenize later and then retokenize during type-
setting if Pygments isn’t used. But the detokenizing and saving eliminates tab characters if they
aren’t active here.

87

so that catcodes return to normal. Next we check to see if the delimiting charac-
ter is a space character. If so, we issue an error, because that is not allowed.
If the delimiter is valid, we define a macro \pytx@InlineMargOtherGet that
will capture all content up to the next delimiting character and pass it to the
\pytx@InlineMargBgroup macro for processing. That macro does exactly what
is needed, except that part of the retokenization is redundant since curly braces
were not active when the code was captured.

Once the custom capturing macro has been created, we turn off special catcodes
and call the capturing macro.

565 \def\pytx@InlineMargOther#1{%
566 \endgroup
567 \ifstrequal{#1}{ }{%
568 \PackageError{\pytx@packagename}%
569 {The space character cannot be used as a delimiting character}%
570 {Choose another delimiting character}}{}%
571 \def\pytx@InlineMargOtherGet##1#1{\pytx@InlineMargBgroup{##1}}%
572 \begingroup
573 \let\do\@makeother\dospecials
574 \pytx@InlineMargOtherGet
575 }

\pytx@InlineMargBgroup We are now ready to capture code using matched curly braces as delimiters, or to
process previously captured code that used another delimiting character.

At the very beginning, we must end the group that was left open from
\pytx@InlineOarg (or by \pytx@InlineMargOther), so that catcodes return to
normal.

We save a detokenized version of the argument in \pytx@argdetok. Even
though the argument was captured under special catcode conditions, this is still
necessary. If the argument was delimited by curly braces, then any internal curly
braces were active when the argument was captured, and these need their catcodes
corrected. If the code contains any unicode characters, detokenization is needed
so that they may be correctly saved to file.

We save a retokenized version of the argument in \pytx@argretok. This is
needed for typesetting with fancyvrb. The code must be retokenized so that
space characters are active, since fancyvrb allows space characters to be visible
or invisible by making them active.

The name of the counter corresponding to this code is assembled. It is needed
for keeping track of the instance, and is used for bringing in content created by
the code and for bringing in highlighting created by Pygments.

Next we call a series of macros that determine whether the code is shown
(typeset), whether it is saved to the code file, and whether content created by
the code (“printed”) should be brought in. These macros are \let to appropriate
values when an inline command is called; they are not defined independently.

Finally, the counter for the code is incremented.
576 \def\pytx@InlineMargBgroup#1{%
577 \endgroup
578 \def\pytx@argdetok{\detokenize{#1}}%

88

579 \def\pytx@arg{#1}%
580 \xdef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
581 \pytx@CheckCounter{\pytx@counter}%
582 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
583 \pytx@InlineShow
584 \pytx@InlineSave
585 \pytx@InlinePrint
586 \stepcounter{\pytx@counter}%
587 }%

\pytx@InlineShow
\pytx@InlineSave
\pytx@InlinePrint

The three macros \pytx@InlineShow, \pytx@InlineSave, and \pytx@InlinePrint
will be \let to appropriate values when commands are called. We must now define
the macros to which they may be \let.

\pytx@InlineShowFV Code may be typeset with fancyvrb. fancyvrb settings are invoked via
pytx@FVSet, but this must be done within a group so that the settings re-
main local. Most of the remainder of the commands are from fancyvrb’s
\FV@FormattingPrep, and take care of various formatting matters, including spac-
ing, font, whether space characters are shown, and any user-defined formatting.
Finally, we create an \hbox and invoke \FancyVerbFormatLine to maintain paral-
lelism with BVerbatim, which is used for inline content highlighted with Pygments.
\FancyVerbFormatLine may be redefined to alter the typeset code, for example,
by putting it in a colorbox via the following command:44

\renewcommand{\FancyVerbFormatLine}[1]{\colorbox{green}{#1}}

588 \def\pytx@InlineShowFV{%
589 \def\pytx@argretok{%
590 \begingroup
591 \everyeof{\noexpand}%
592 \endlinechar-1\relax
593 \let\do\@makeother\dospecials
594 \catcode‘\ =\active
595 \catcode‘\^^I=\active
596 \expandafter\scantokens\expandafter{\pytx@arg}%
597 \endgroup}%
598 \begingroup
599 \pytx@FVSet
600 \FV@BeginVBox
601 \frenchspacing
602 \FV@SetupFont
603 \FV@DefineWhiteSpace
604 \FancyVerbDefineActive
605 \FancyVerbFormatCom
606 \FV@ObeyTabsInit
607 \hbox{\FancyVerbFormatLine{\pytx@argretok}}%

44Currently, \FancyVerbFormatLine is global, as in fancyvrb. Allowing a family-specific vari-
ant may be considered in the future. In most cases, the fancyvrb option formatcom, combined
with external formatting from packages like mdframed, should provide all formatting desired. But
something family-specific might occasionally prove useful.

89

608 \FV@EndVBox
609 \endgroup
610 }

\pytx@InlineShowPyg Code may be typeset with Pygments. Processed Pygments content is saved in
the .pytxmcr file, wrapped in fancyvrb’s SaveVerbatim environment. The con-
tent is then restored, in a form suitable for inline use, via BUseVerbatim. Un-
like non-inline content, which may be brought in either via macro or via sep-
arate external file, inline content is always brought in via macro. The counter
pytx@FancyVerbLineTemp is used to prevent fancyvrb’s line count from being
affected by PythonTEX content. A group is necessary to confine the fancyvrb
settings created by \pytx@FVSet.

611 \def\pytx@InlineShowPyg{%
612 \begingroup
613 \pytx@FVSet
614 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counter}\endcsname
615 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
616 \BUseVerbatim{\pytx@counter @\arabic{\pytx@counter}}%
617 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
618 \else
619 \textbf{??}%
620 \PackageWarning{\pytx@packagename}{Non-existent Pygments content}%
621 \fi
622 \endgroup
623 }

\pytx@InlineSaveCode This macro writes PythonTEX information to the code file and then writes the
actual code.

624 \def\pytx@InlineSaveCode{%
625 \pytx@WriteCodefileInfo
626 \immediate\write\pytx@codefile{\pytx@argdetok}%
627 }

\pytx@InlineAutoprint This macro brings in printed content automatically, if the package autoprint
option is true. Otherwise, it does nothing. We must disable the macro in the event
that the debug option is false. We wait until the beginning of the document to
create the real macro, since any code commands and environments in the preamble
shouldn’t be printing and in any case we can’t know what the outputdir is until
the beginning of the document.

628 \let\pytx@InlineAutoprint\@empty
629 \AtBeginDocument{
630 \def\pytx@InlineAutoprint{%
631 \ifbool{pytx@opt@autoprint}{%
632 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.stdout}%
633 {\DepyFile{p:\pytx@outputdir/\pytx@stdfile.stdout}}{}}{}%
634 }
635 \ifbool{pytx@opt@stdout}{}{\let\pytx@InlineAutoprint\@empty}
636 }

90

\pytx@InlineMacroprint This macro brings in “printed” content that is brought in via macros in the
.pytxmcr file. We must disable the macro in the event that the debug option
is false.

637 \def\pytx@InlineMacroprint{%
638 \edef\pytx@mcr{pytx@MCR@\pytx@type @\pytx@session @\pytx@group @\arabic{\pytx@counter}}%
639 \ifcsname\pytx@mcr\endcsname
640 \csname\pytx@mcr\endcsname
641 \DepyMacro{p:\pytx@mcr}%
642 \else
643 \textbf{??}%
644 \PackageWarning{\pytx@packagename}{Missing autoprint content}%
645 \fi
646 }
647 \ifbool{pytx@opt@stdout}{}{\let\pytx@InlineMacroprint\@empty}

\pytx@InlineMacroprintFV This macro brings in “printed” content that is brought in via SaveVerbatim (only
inline console references at the moment). We must disable the macro in the event
that the debug option is false.

648 \def\pytx@InlineMacroprintFV{%
649 \edef\pytx@mcr{pytx@\pytx@type @\pytx@session @\pytx@group @\arabic{\pytx@counter}}%
650 \ifcsname FV@SV@\pytx@mcr\endcsname
651 \BUseVerbatim{\pytx@mcr}%
652 \DepyMacro{c:\pytx@mcr}%
653 \else
654 \textbf{??}%
655 \PackageWarning{\pytx@packagename}{Missing autoprint content}%
656 \fi
657 }
658 \ifbool{pytx@opt@stdout}{}{\let\pytx@InlineMacroprint\@empty}

9.5.2 Inline command constructors

With the core inline macros complete, we are ready to create constructors for
different kinds of inline commands. All of these consctructors take a string and
define an inline command named using that string as a base name. Two forms of
each constructor are created, one that uses Pygments and one that does not. The
Pygments variants have names ending in “Pyg”.

\pytx@MakeInlinebFV
\pytx@MakeInlinebPyg

These macros creates inline block commands, which both typeset code and save
it so that it may be executed. The base name of the command is stored in
\pytx@type. A string representing the kind of command is stored in \pytx@cmd.
Then \pytx@SetContext is used to set \pytx@context and \pytx@SetGroup is
used to set \pytx@group. Macros for showing, saving, and printing are set to ap-
propriate values. Then the core inline macros are invoked through \pytx@Inline.

659 \newcommand{\pytx@MakeInlinebFV}[1]{%
660 \expandafter\newcommand\expandafter{\csname #1b\endcsname}{%
661 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname
662 \Depythontex{cmd:#1b:ov:c}%

91

663 \xdef\pytx@type{#1}%
664 \edef\pytx@cmd{b}%
665 \pytx@SetContext
666 \pytx@SetGroup
667 \let\pytx@InlineShow\pytx@InlineShowFV
668 \let\pytx@InlineSave\pytx@InlineSaveCode
669 \let\pytx@InlinePrint\@empty
670 \pytx@Inline
671 }%
672 }%
673 \newcommand{\pytx@MakeInlinebPyg}[1]{%
674 \expandafter\newcommand\expandafter{\csname #1b\endcsname}{%
675 \xdef\pytx@type{#1}%
676 \edef\pytx@cmd{b}%
677 \pytx@SetContext
678 \pytx@SetGroup
679 \let\pytx@InlineShow\pytx@InlineShowPyg
680 \let\pytx@InlineSave\pytx@InlineSaveCode
681 \let\pytx@InlinePrint\@empty
682 \pytx@Inline
683 }%
684 }%

\pytx@MakeInlinevFV
\pytx@MakeInlinevPyg

This macro creates inline verbatim commands, which only typeset code. \pytx@type,
\pytx@cmd, \pytx@context, and \pytx@group are still set, for symmetry with
other commands. They are not needed for fancyvrb typesetting, though. We
use \pytx@SetGroupVerb to split verbatim content (v and verb) off into its own
group. That way, verbatim content doesn’t affect the instance numbers of exe-
cuted code, and thus executed code is not affected by the addition or removal of
verbatim content.

685 \newcommand{\pytx@MakeInlinevFV}[1]{%
686 \expandafter\newcommand\expandafter{\csname #1v\endcsname}{%
687 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname
688 \Depythontex{cmd:#1v:ov:c}%
689 \xdef\pytx@type{#1}%
690 \edef\pytx@cmd{v}%
691 \pytx@SetContext
692 \pytx@SetGroupVerb
693 \let\pytx@InlineShow\pytx@InlineShowFV
694 \let\pytx@InlineSave\@empty
695 \let\pytx@InlinePrint\@empty
696 \pytx@Inline
697 }%
698 }%
699 \newcommand{\pytx@MakeInlinevPyg}[1]{%
700 \expandafter\newcommand\expandafter{\csname #1v\endcsname}{%
701 \xdef\pytx@type{#1}%
702 \edef\pytx@cmd{v}%
703 \pytx@SetContext

92

704 \pytx@SetGroupVerb
705 \let\pytx@InlineShow\pytx@InlineShowPyg
706 \let\pytx@InlineSave\pytx@InlineSaveCode
707 \let\pytx@InlinePrint\@empty
708 \pytx@Inline
709 }%
710 }%

\pytx@MakeInlinecFV
\pytx@MakeInlinecPyg

This macro creates inline code commands, which save code for execution but do
not typeset it. If the code prints content, this content is inputted automatically if
the package option autoprint is on. Since no code is typeset, there is no difference
between the fancyvrb and Pygments forms.

711 \newcommand{\pytx@MakeInlinecFV}[1]{%
712 \expandafter\newcommand\expandafter{\csname #1c\endcsname}{%
713 \Depythontex{cmd:#1c:ov:p}%
714 \xdef\pytx@type{#1}%
715 \edef\pytx@cmd{c}%
716 \pytx@SetContext
717 \pytx@SetGroup
718 \let\pytx@InlineShow\@empty
719 \let\pytx@InlineSave\pytx@InlineSaveCode
720 \let\pytx@InlinePrint\pytx@InlineAutoprint
721 \pytx@Inline
722 }%
723 }%
724 \let\pytx@MakeInlinecPyg\pytx@MakeInlinecFV

\pytx@MakeInlineFV
\pytx@MakeInlinePyg

This macro creates plain inline commands, which save code and then bring in
the output of pytex.formatter(〈code〉) (pytex.formatter() is the formatter
function in Python sessions that is provided by pythontex_utils*.py). The
Python output is saved in a TEX macro, and the macro is written to a file shared
by all PythonTEX sessions. This greatly reduces the number of external files
needed. Since no code is typeset, there is no difference between the fancyvrb and
Pygments forms.

725 \newcommand{\pytx@MakeInlineFV}[1]{%
726 \expandafter\newcommand\expandafter{\csname #1\endcsname}{%
727 \Depythontex{cmd:#1:ov:p}%
728 \xdef\pytx@type{#1}%
729 \edef\pytx@cmd{i}%
730 \pytx@SetContext
731 \pytx@SetGroup
732 \let\pytx@InlineShow\@empty
733 \let\pytx@InlineSave\pytx@InlineSaveCode
734 \let\pytx@InlinePrint\pytx@InlineMacroprint
735 \pytx@Inline
736 }%
737 }%
738 \let\pytx@MakeInlinePyg\pytx@MakeInlineFV

93

\pytx@MakeInlineConsFV
\pytx@MakeInlineConsPyg

This is the inline form for console types. It brings in SaveVerbatim.
739 \newcommand{\pytx@MakeInlineConsFV}[1]{%
740 \expandafter\newcommand\expandafter{\csname #1\endcsname}{%
741 \Depythontex{cmd:#1:ov:c}%
742 \xdef\pytx@type{#1}%
743 \edef\pytx@cmd{i}%
744 \pytx@SetContext
745 \pytx@SetGroup
746 \let\pytx@InlineShow\@empty
747 \let\pytx@InlineSave\pytx@InlineSaveCode
748 \let\pytx@InlinePrint\pytx@InlineMacroprintFV
749 \pytx@Inline
750 }%
751 }%
752 \let\pytx@MakeInlineConsPyg\pytx@MakeInlineConsFV

\pythontexcustomc This macro takes a single line of code and adds it to all sessions within a family.
It is the inline version of the pythontexcustomcode environment.

753 \newcommand{\pythontexcustomc}[2][begin]{%
754 \Depythontex{cmd:pythontexcustomc:omv:p}%
755 \ifstrequal{#1}{begin}{}{%
756 \ifstrequal{#1}{end}{}{\PackageError{\pytx@packagename}%
757 {Invalid optional argument for \string\pythontexcustomc}{}
758 }%
759 }%
760 \xdef\pytx@type{CC:#2:#1}%
761 \edef\pytx@cmd{c}%
762 \def\pytx@context{}%
763 \def\pytx@group{none}%
764 \let\pytx@InlineShow\@empty
765 \let\pytx@InlineSave\pytx@InlineSaveCode
766 \let\pytx@InlinePrint\@empty
767 \pytx@Inline[none]%
768 }%

\setpythontexcustomcode This macro is a holdover from 0.9beta3. It has been deprecated in favor of
\pythontexcustomc and pythontexcustomcode.

769 \def\setpythontexcustomcode#1{%
770 \Depythontex{cmd:setpythontexcustomcode:mv:p}%
771 \PackageWarning{\pytx@packagename}{The command
772 \string\setpythontexcustomcode\space has been deprecated;
773 use \string\pythontexcustomc\space or pythontexcustomcode instead}%
774 \begingroup
775 \let\do\@makeother\dospecials
776 \catcode‘\{=1
777 \catcode‘\}=2
778 \catcode‘\^^M=10\relax
779 \pytx@SetCustomCode{#1}%
780 }

94

781 \long\def\pytx@SetCustomCode#1#2{%
782 \endgroup
783 \pythontexcustomc{#1}{pythontexcustomcode=[#2];
784 exec(’for expr in pythontexcustomcode: exec(expr)’);
785 del(pythontexcustomcode)}
786 }
787 \@onlypreamble\setpythontexcustomcode

9.6 Environments
The inline commands were all created using a common core set of macros, com-
bined with short, command-specific constructors. In the case of environments,
we do not have a common core set of macros. Each environment is coded sepa-
rately, though there are similarities among environments. In the future, it may be
worthwhile to attempt to consolidate the environment code base.

One of the differences between inline commands and environments is that envi-
ronments may need to typeset code with line numbers. Each family of code needs
to have its own line numbering (actually, its own numbering for code, verbatim,
and console groups), and this line numbering should not overwrite any line num-
bering that may separately be in use by fancyvrb. To make this possible, we use
a temporary counter extensively. When line numbers are used, fancyvrb’s line
counter is copied into pytx@FancyVerbLineTemp, lines are numbered, and then
fancyvrb’s line counter is restored from pytx@FancyVerbLineTemp. This keeps
fancyvrb and PythonTEX’s line numbering separate, even though PythonTEX is
using fancyvrb and its macros internally.

9.6.1 Block and verbatim environment constructors

We begin by creating block and verb environment constuctors that use fancyvrb.
Then we create Pygments versions.

\pytx@FancyVerbGetLine The block environment needs to both typeset code and save it so it can be ex-
ecuted. fancyvrb supports typesetting, but doesn’t support saving at the same
time. So we create a modified version of fancyvrb’s \FancyVerbGetLine macro
which does. This is identical to the fancyvrb version, except that we add a line
that writes to the code file. The material that is written is detokenized to avoid
catcode issues and make unicode work correctly.

788 \begingroup
789 \catcode‘\^^M=\active
790 \gdef\pytx@FancyVerbGetLine#1^^M{%
791 \@nil%
792 \FV@CheckEnd{#1}%
793 \ifx\@tempa\FV@EnvironName%
794 \ifx\@tempb\FV@@@CheckEnd\else\FV@BadEndError\fi%
795 \let\next\FV@EndScanning%
796 \else%
797 \def\FV@Line{#1}%
798 \def\next{\FV@PreProcessLine\FV@GetLine}%

95

799 \immediate\write\pytx@codefile{\detokenize{#1}}%
800 \fi%
801 \next}%
802 \endgroup

\pytx@MakeBlockFV Now we are ready to actually create block environments. This macro takes an
environment base name 〈name〉 and creates a block environment 〈name〉block,
using fancyvrb.

The block environment is a Verbatim environment, so we declare that with
the \VerbatimEnvironment macro, which lets fancyvrb find the end of the envi-
ronment correctly. We define the type, define the command, and set the context
and group.

We need to check for optional arguments, so we begin a group and use
\obeylines to make line breaks active. Then we check to see if the next char
is an opening square bracket. If so, there is an optional argument, so we end
our group and call the \pytx@BeginBlockEnvFV macro, which will capture the
argument and finish preparing for the block content. If not, we end the group and
call the same \pytx@BeginBlockEnvFV macro with an empty argument. The line
breaks need to be active during this process because we don’t care about content
on the next line, including opening square brackets on the next line; we only care
about content in the line on which the environment is declared, because only on
that line should there be an optional argument. The problem is that since we are
dealing with code, it is quite possible for there to be an opening square bracket at
the beginning of the next line, so we must prevent that from being misinterpreted
as an optional argument.

After the environment, we need to clean up several things. Much of this relates
to what is done in the \pytx@BeginBlockEnvFV macro. The body of the environ-
ment is wrapped in a Verbatim environment, so we must end that. It is also
wrapped in a group, so that fancyvrb settings remain local; we end the group.
Then we define the name of the outfile for any printed content, so that it may
be accessed by \printpythontex and company. Finally, we rearrange counters.
The current code line number needs to be stored in \pytx@linecount, which was
defined to be specific to the current type-session-group set. The fancyvrb line
number needs to be set back to its original value from before the environment be-
gan, so that PythonTEX content does not affect the line numbering of fancyvrb
content. Finally, the \pytx@counter, which keeps track of commands and envi-
ronments within the current type-session-group set, needs to be incremented.

803 \newcommand{\pytx@MakeBlockFV}[1]{%
804 \expandafter\newenvironment{#1block}{%
805 \VerbatimEnvironment
806 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname
807 \Depythontex{env:#1block:oo|:c}%
808 \DepyListing
809 \xdef\pytx@type{#1}%
810 \edef\pytx@cmd{block}%
811 \pytx@SetContext
812 \pytx@SetGroup

96

813 \begingroup
814 \obeylines
815 \@ifnextchar[{\endgroup\pytx@BeginBlockEnvFV}{\endgroup\pytx@BeginBlockEnvFV[]}%
816 }%
817 {\end{Verbatim}%
818 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
819 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
820 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
821 \stepcounter{\pytx@counter}%
822 }%
823 }

\pytx@BeginBlockEnvFV This macro finishes preparations to actually begin the block environment. It
captures the optional argument (or the empty argument supplied by default). If
this argument is empty, then it sets the value of the argument to the default
value. If not, then colons in the optional argument are replaced with underscores,
and the modified argument is stored in \pytx@session. Colons are replaced with
underscores because session names must be suitable for file names, and colons are
generally not allowed in file names. However, we want to be able to enter session
names containing colons, since colons provide a conventient method of indicating
relationships, and are commonly used in LATEX labels. For example, we could have
a session named plots:specialplot.

Once the session is established, we are free to define the counter for the current
type-session-group, and make sure it exists. We also define the counter that will
keep track of line numbers for the current type-session-group, and make sure it
exists. Then we do some counter trickery. We don’t want fancyvrb line counting
to be affected by PythonTEX content, so we store the current line number held
by FancyVerbLine in pytx@FancyVerbLineTemp; we will restore FancyVerbLine
to this original value at the end of the environment. Then we set FancyVerbLine
to the appropriate line number for the current type-session-group. This provides
proper numbering continuity between different environments within the same type-
session-group.

Next, we write environment information to the code file, now that all the
necessary information is assembled. We begin a group, to keep some things local.
We \let a fancyvrb macro to our custom macro. We set fancyvrb settings to
those of the current type using \pytx@FVSet. Once this is done, we are finally
ready to start the Verbatim environment. Note that the Verbatim environment
will capture a second optional argument delimited by square brackets, if present,
and apply this argument as fancyvrb formatting. Thus, the environment actually
takes up to two optional arguments, but if you want to use fancyvrb formatting,
you must supply an empty (default session) or named (custom session) optional
argument for the PythonTEX code.

824 \def\pytx@BeginBlockEnvFV[#1]{%
825 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
826 \xdef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
827 \pytx@CheckCounter{\pytx@counter}%
828 \edef\pytx@linecount{\pytx@counter @line}%

97

829 \pytx@CheckCounter{\pytx@linecount}%
830 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
831 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
832 \pytx@WriteCodefileInfo
833 \let\FancyVerbGetLine\pytx@FancyVerbGetLine
834 \pytx@FVSet
835 \begin{Verbatim}%
836 }

\pytx@MakeVerbFV The verbatim environments only typeset code; they do not save it for execution.
Thus, we just use a standard fancyvrb environment with a few enhancements.

As in the block environment, we declare that we are using a Verbatim envi-
ronment, define type and command, set context and group (note the use of the
Verb group), and take care of optional arguments before calling a macro to wrap
things up (in this case, \pytx@BeginVerbEnvFV). Currently, much of the saved
information is unused, but it is provided to maintain parallelism with the block
environment.

Ending the environment involves ending the Verbatim environment begun by
\pytx@BeginVerbEnvFV, ending the group that kept fancyvrb settings local, and
resetting counters. We define a stdfile and step the counter, even though there
will never actually be any output to pull in, to force \printpythontex and com-
pany to be used immediately after the code they refer to and to maintain paral-
lelism.

837 \newcommand{\pytx@MakeVerbFV}[1]{%
838 \expandafter\newenvironment{#1verbatim}{%
839 \VerbatimEnvironment
840 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname
841 \Depythontex{env:#1verbatim:oo|:c}%
842 \DepyListing
843 \xdef\pytx@type{#1}%
844 \edef\pytx@cmd{verbatim}%
845 \pytx@SetContext
846 \pytx@SetGroupVerb
847 \begingroup
848 \obeylines
849 \@ifnextchar[{\endgroup\pytx@BeginVerbEnvFV}{\endgroup\pytx@BeginVerbEnvFV[]}%
850 }%
851 {\end{Verbatim}%
852 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
853 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
854 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
855 \stepcounter{\pytx@counter}%
856 }%
857 }

\pytx@BeginVerbEnvFV This macro captures the optional argument of the environment (or the default
empty argument that is otherwise supplied). If the argument is empty, it assignes
a default value; otherwise, it substitutes underscores for colons in the argument.

98

The argument is assigned to \pytx@session. A line counter is created, and its
existence is checked. We do the standard line counter trickery. Then we begin a
group to keep fancyvrb settings local, invoke the settings via \pytx@FVSet, and
begin the Verbatim environment.

858 \def\pytx@BeginVerbEnvFV[#1]{%
859 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
860 \xdef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
861 \pytx@CheckCounter{\pytx@counter}%
862 \edef\pytx@linecount{\pytx@counter @line}%
863 \pytx@CheckCounter{\pytx@linecount}%
864 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
865 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
866 \pytx@FVSet
867 \begin{Verbatim}%
868 }

Now for the Pygments forms of block and verb. Since all code must be saved
now (either to be executed or processed by Pygments, or both), the environment
code may be simplified compared to the non-Pygments case.

\pytx@MakePygEnv The block and verb environments are created via the same macro. The
\pytx@MakePygEnv macro takes two arguments: first, the code type, and sec-
ond, the environment (block or verb). The reason for using the same macro is
that both must now save their code externally, and bring back the result typeset
by Pygments. Thus, on the LATEX side, their behavior is identical. The only dif-
ference is on the Python side, where the block code is executed and thus there
may be output available via \printpythontex and company.

The actual workings of the macro are a combination of those of the non-
Pygments macros, so please refer to those for details. The only exception is the
code for bringing in Pygments output, but this is done using almost the same
approach as that used for the inline Pygments commands. There are two dif-
ferences: first, the block and verb environments use \UseVerbatim rather than
\BUseVerbatim, since they are not typesetting code inline; and second, they ac-
cept a second, optional argument containing fancyvrb commands and this is
used in typesetting the saved content. Any fancyvrb commands are saved in
\pytx@fvopttmp by \pytx@BeginEnvPyg@i, and then used when the code is type-
set.

Note that the positioning of all the FancyVerbLine trickery in what follows is
significant. Saving the FancyVerbLine counter to a temporary counter before the
beginning of VerbatimOut is important, because otherwise the fancyvrb number-
ing can be affected.

869 \newcommand{\pytx@MakePygEnv}[2]{%
870 \expandafter\newenvironment{#1#2}{%
871 \VerbatimEnvironment
872 \xdef\pytx@type{#1}%
873 \edef\pytx@cmd{#2}%
874 \pytx@SetContext

99

875 \ifstrequal{#2}{block}{\pytx@SetGroup}{}
876 \ifstrequal{#2}{verbatim}{\pytx@SetGroupVerb}{}
877 \begingroup
878 \obeylines
879 \@ifnextchar[{\endgroup\pytx@BeginEnvPyg}{\endgroup\pytx@BeginEnvPyg[]}%
880 }%
881 {\end{VerbatimOut}%
882 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
883 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
884 \pytx@FVSet
885 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}}%
886 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counter}\endcsname
887 \UseVerbatim{\pytx@counter @\arabic{\pytx@counter}}%
888 \else
889 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.pygtex}{}%
890 {\textbf{??~\pytx@packagename~??}%
891 \PackageWarning{\pytx@packagename}{Non-existent Pygments content}}%
892 \fi
893 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
894 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
895 \stepcounter{\pytx@counter}%
896 }%
897 }%

\pytx@BeginEnvPyg This macro finishes preparing for the content of a verb or block environment with
Pygments content. It captures an optional argument corresponding to the session
name and sets up instance and line counters. Finally, it calls an additional macro
that handles the possibility of a second optional argument.

898 \def\pytx@BeginEnvPyg[#1]{%
899 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
900 \xdef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
901 \pytx@CheckCounter{\pytx@counter}%
902 \edef\pytx@linecount{\pytx@counter @line}%
903 \pytx@CheckCounter{\pytx@linecount}%
904 \pytx@WriteCodefileInfo
905 \begingroup
906 \obeylines
907 \@ifnextchar[{\endgroup\pytx@BeginEnvPyg@i}{\endgroup\pytx@BeginEnvPyg@i[]}%
908 }%

\pytx@BeginEnvPyg@i This macro captures a second optional argument, corresponding to fancyvrb op-
tions. Note that not all fancyvrb options may be passed to saved content when it
is actually used, particularly those corresponding to how the content was read in
the first place (for example, command characters). But at least most formatting
options such as line numbering work fine. As with the non-Pygments environ-
ments, \begin{VerbatimOut} doesn’t take a second mandatory argument, since
we are using a custom version and don’t need to specify the file in which Verbatim
content is saved. It is important that the FancyVerbLine saving be done here; if

100

it is done later, after the end of VerbatimOut, then numbering can be off in some
circumstances (for example, a single pyverbatim between two Verbatim’s).

909 \def\pytx@BeginEnvPyg@i[#1]{%
910 \def\pytx@fvopttmp{#1}%
911 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
912 \let\FVB@VerbatimOut\pytx@FVB@VerbatimOut
913 \let\FVE@VerbatimOut\pytx@FVE@VerbatimOut
914 \begin{VerbatimOut}%
915 }%

Since we are using the same code to create both block and verb environments,
we now create a specific macro for creating each case, to make usage equivalent
to that for the non-Pygments case.

\pytx@MakeBlockPyg The block environment is constructed via the \pytx@MakePygEnv macro.
916 \newcommand{\pytx@MakeBlockPyg}[1]{\pytx@MakePygEnv{#1}{block}}

\pytx@MakeVerbPyg The verb environment is constructed likewise.
917 \newcommand{\pytx@MakeVerbPyg}[1]{\pytx@MakePygEnv{#1}{verbatim}}

9.6.2 Code environment constructor

The code environment merely saves code to the code file; nothing is typeset. To
accomplish this, we use a slightly modified version of fancyvrb’s VerbatimOut.

\pytx@WriteDetok We can use fancyvrb to capture the code, but we will need a way to write the
code in detokenized form. This is necessary so that TEX doesn’t try to process
the code as it is written, which would generally be disastrous.

918 \def\pytx@WriteDetok#1{%
919 \immediate\write\pytx@codefile{\detokenize{#1}}}%

\pytx@FVB@VerbatimOut We need a custom version of the macro that begins VerbatimOut. We don’t need
fancyvrb’s key values, and due to our use of \detokenize to write content, we
don’t need its space and tab treatment either. We do need fancyvrb to write to
our code file, not the file to which it would write by default. And we don’t need
to open any files, because the code file is already open. These last two are the
only important differences between our version and the original fancyvrb version.
Since we don’t need to write to a user-specified file, we don’t require the mandatory
argument of the original macro.

920 \def\pytx@FVB@VerbatimOut{%
921 \@bsphack
922 \begingroup
923 \let\FV@ProcessLine\pytx@WriteDetok
924 \let\FV@FontScanPrep\relax
925 \let\@noligs\relax
926 \FV@Scan}%

101

\pytx@FVE@VerbatimOut Similarly, we need a custom version of the macro that ends VerbatimOut. We
don’t want to close the file to which we are saving content.

927 \def\pytx@FVE@VerbatimOut{\endgroup\@esphack}%

\pytx@EnvAutoprint We also need a macro for bringing in autoprint content. This is a separate macro
so that it can be easily disabled by the package option debug. We wait until the
beginning of the document to create the real macro, since any code commands
and environments in the preamble shouldn’t be printing and in any case we can’t
know what the outputdir is until the beginning of the document.

928 \let\pytx@EnvAutoprint\@empty
929 \AtBeginDocument{
930 \def\pytx@EnvAutoprint{%
931 \ifbool{pytx@opt@autoprint}{%
932 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.stdout}%
933 {\DepyFile{p:\pytx@outputdir/\pytx@stdfile.stdout}}{}}{}%
934 }
935 \ifbool{pytx@opt@stdout}{}{\let\pytx@EnvAutoprint\@empty}
936 }

\pytx@MakeCodeFV Now that the helper macros for the code environment have been defined, we are
ready to create the macro that makes code environments. Everything at the
beginning of the environment is similar to the block and verb environments.

After the environment, we need to close the VerbatimOut environment begun
by \pytx@BeginCodeEnv@i and end the group it began. We define the outfile,
and bring in any printed content if the autoprint setting is on. We must still
perform some FancyVerbLine trickery to prevent the fancyvrb line counter from
being affected by writing content! Finally, we step the counter.

937 \newcommand{\pytx@MakeCodeFV}[1]{%
938 \expandafter\newenvironment{#1code}{%
939 \VerbatimEnvironment
940 \Depythontex{env:#1code:oo|:p}%
941 \xdef\pytx@type{#1}%
942 \edef\pytx@cmd{code}%
943 \pytx@SetContext
944 \pytx@SetGroup
945 \begingroup
946 \obeylines
947 \@ifnextchar[{\endgroup\pytx@BeginCodeEnv}{\endgroup\pytx@BeginCodeEnv[]}%
948 }%
949 {\end{VerbatimOut}%
950 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
951 \pytx@EnvAutoprint
952 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
953 \stepcounter{\pytx@counter}%
954 }%
955 }%

\pytx@BeginCodeEnv This macro finishes setting things up before the code environment contents. It
processes the optional argument, defines a counter and checks its existence, writes

102

info to the code file, and then calls the \pytx@BeginCodeEnv@imacro. This macro
is necessary so that the environment can accept two optional arguments. Since the
block and verb environments can accept two optional arguments (the first is the
name of the session, the second is fancyvrb options), the code environment also
should be able to, to maintain parallelism (for example, pyblock should be able
to be swapped with pycode without changing environment arguments—it should
just work). However, VerbatimOut doesn’t take an optional argument. So we
need to capture and discard any optional argument, before starting VerbatimOut.

956 \def\pytx@BeginCodeEnv[#1]{%
957 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
958 \xdef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
959 \pytx@CheckCounter{\pytx@counter}%
960 \pytx@WriteCodefileInfo
961 \begingroup
962 \obeylines
963 \@ifnextchar[{\endgroup\pytx@BeginCodeEnv@i}{\endgroup\pytx@BeginCodeEnv@i[]}%
964 }%

\pytx@BeginCodeEnv@i As described above, this macro captures a second optional argument, if present,
and then starts the VerbatimOut environment. Note that VerbatimOut does not
have a mandatory argument, because we are invoking our custom \pytx@FVB@VerbatimOut
macro. The default fancyvrb macro needs an argument to tell it the name of the
file to which to save the verbatim content. But in our case, we are always writing
to the same file, and the custom macro accounts for this by not having a manda-
tory file name argument. We must perform the typical FancyVerbLine trickery,
to prevent the fancyvrb line counter from being affected by writing content!

965 \def\pytx@BeginCodeEnv@i[#1]{%
966 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
967 \let\FVB@VerbatimOut\pytx@FVB@VerbatimOut
968 \let\FVE@VerbatimOut\pytx@FVE@VerbatimOut
969 \begin{VerbatimOut}%
970 }%

\pytx@MakeCodePyg Since the code environment simply saves code for execution and typesets nothing,
the Pygments version is identical to the non-Pygments version, so we simply let
the former to the latter.

971 \let\pytx@MakeCodePyg\pytx@MakeCodeFV

pythontexcustomcode This environment is used for adding custom code to all sessions within a command
and environment family. It is the environment equivalent of the inline command
\pythontexcustomc.

972 \newenvironment{pythontexcustomcode}[2][begin]{%
973 \VerbatimEnvironment
974 \Depythontex{env:pythontexcustomcode:om:n}%
975 \ifstrequal{#1}{begin}{}{%
976 \ifstrequal{#1}{end}{}{\PackageError{\pytx@packagename}%
977 {Invalid optional argument for pythontexcustomcode}{}
978 }%

103

979 }%
980 \xdef\pytx@type{CC:#2:#1}%
981 \edef\pytx@cmd{code}%
982 \def\pytx@context{}%
983 \def\pytx@group{none}%
984 \pytx@BeginCodeEnv[none]}%
985 {\end{VerbatimOut}%
986 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
987 \stepcounter{\pytx@counter}%
988 }%

9.6.3 Console environment constructor

The console environment needs to write all code contained in the environment
to the code file, and then bring in the console output.

An environment suffix is not enforced for flexibility. For Python, the convention
is that console type names will end with con, and then the environment will use
the suffix sole. For example, the pycon type has the pyconsole environment.

\pytx@MakeConsoleFV

989 \newcommand{\pytx@MakeConsFV}[2]{%
990 \expandafter\newenvironment{#1#2}{%
991 \VerbatimEnvironment
992 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname
993 \Depythontex{env:#1#2:oo|:c}%
994 \DepyListing
995 \xdef\pytx@type{#1}%
996 \edef\pytx@cmd{console}%
997 \pytx@SetContext
998 \pytx@SetGroup
999 \begingroup

1000 \obeylines
1001 \@ifnextchar[{\endgroup\pytx@BeginConsEnvFV}{\endgroup\pytx@BeginConsEnvFV[]}%
1002 }%
1003 {\end{VerbatimOut}%
1004 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
1005 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
1006 \pytx@FVSet
1007 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}}%
1008 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counter}\endcsname
1009 \UseVerbatim{\pytx@counter @\arabic{\pytx@counter}}%
1010 \DepyMacro{c:\pytx@counter @\arabic{\pytx@counter}}%
1011 \else
1012 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.tex}%
1013 {\DepyFile{c:\pytx@outputdir/\pytx@stdfile.tex}}%
1014 {\textbf{??~\pytx@packagename~??}%
1015 \PackageWarning{\pytx@packagename}{Non-existent console content}}%
1016 \fi
1017 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%

104

1018 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1019 \stepcounter{\pytx@counter}%
1020 }%
1021 }

\pytx@BeginConsEnvFV

1022 \def\pytx@BeginConsEnvFV[#1]{%
1023 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
1024 \xdef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
1025 \pytx@CheckCounter{\pytx@counter}%
1026 \edef\pytx@linecount{\pytx@counter @line}%
1027 \pytx@CheckCounter{\pytx@linecount}%
1028 \pytx@WriteCodefileInfo
1029 \begingroup
1030 \obeylines
1031 \@ifnextchar[{\endgroup\pytx@BeginConsEnvFV@i}{\endgroup\pytx@BeginConsEnvFV@i[]}%
1032 }%

\pytx@BeginConsEnvFV@i

1033 \def\pytx@BeginConsEnvFV@i[#1]{%
1034 \def\pytx@fvopttmp{#1}%
1035 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
1036 \let\FVB@VerbatimOut\pytx@FVB@VerbatimOut
1037 \let\FVE@VerbatimOut\pytx@FVE@VerbatimOut
1038 \begin{VerbatimOut}%
1039 }%

\pytx@MakeConsPyg The Pygments version of the console environment is identical to the fancyvrb
version, except that .pygtex rather than .tex files are brought in.

1040 \newcommand{\pytx@MakeConsPyg}[2]{%
1041 \expandafter\newenvironment{#1#2}{%
1042 \VerbatimEnvironment
1043 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname
1044 \Depythontex{env:#1#2:oo|:c}%
1045 \DepyListing
1046 \xdef\pytx@type{#1}%
1047 \edef\pytx@cmd{console}%
1048 \pytx@SetContext
1049 \pytx@SetGroup
1050 \begingroup
1051 \obeylines
1052 \@ifnextchar[{\endgroup\pytx@BeginConsEnvFV}{\endgroup\pytx@BeginConsEnvFV[]}%
1053 }%
1054 {\end{VerbatimOut}%
1055 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
1056 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
1057 \pytx@FVSet
1058 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}}%
1059 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counter}\endcsname

105

1060 \UseVerbatim{\pytx@counter @\arabic{\pytx@counter}}%
1061 \DepyMacro{c:\pytx@counter @\arabic{\pytx@counter}}%
1062 \else
1063 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.pygtex}%
1064 {\DepyFile{c:\pytx@outputdir/\pytx@stdfile.pygtex}}%
1065 {\textbf{??~\pytx@packagename~??}%
1066 \PackageWarning{\pytx@packagename}{Non-existent console content}}%
1067 \fi
1068 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
1069 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1070 \stepcounter{\pytx@counter}%
1071 }%
1072 }

9.7 Constructors for command and environment families
Everything is now in place to create commands and environments, with and with-
out Pygments usage. To make all of this more readily usable, we need macros
that will create a whole family of commands and environments at once, using a
base name. For example, we need a way to create all commands and environments
based off of the py base name.

\makepythontexfamily This macro creates a family of commands. It needs a some pgfkeys to handle
the optional arguments. The actual creation of all non-code commands and envi-
ronments is delayed using \AtBeginDocument, so that the user has the option to
choose whether fancyvrb or Pygments is used for the family.

1073 \pgfkeys{
1074 /PYTX/family/.is family,
1075 /PYTX/family,
1076 prettyprinter/.estore in = \pytx@tmp@pprinter,
1077 pyglexer/.estore in = \pytx@tmp@pyglexer,
1078 pygopt/.estore in = \pytx@tmp@pygopt,
1079 console/.estore in = \pytx@tmp@console,
1080 default/.style = {prettyprinter=auto, pyglexer=text, pygopt={}, console=false}
1081 }
1082 \def\pytx@MakeFamilyFV#1{%
1083 \pytx@MakeInlinebFV{#1}%
1084 \pytx@MakeInlinevFV{#1}%
1085 \pytx@MakeInlineFV{#1}%
1086 \pytx@MakeBlockFV{#1}%
1087 \pytx@MakeVerbFV{#1}%
1088 }
1089 \def\pytx@MakeFamilyPyg#1{%
1090 \ifbool{pytx@opt@pyginline}%
1091 {\pytx@MakeInlinebPyg{#1}\pytx@MakeInlinevPyg{#1}}%
1092 {\pytx@MakeInlinebFV{#1}\pytx@MakeInlinevFV{#1}}%
1093 \pytx@MakeInlinePyg{#1}%
1094 \pytx@MakeBlockPyg{#1}%
1095 \pytx@MakeVerbPyg{#1}%

106

1096 \booltrue{pytx@usedpygments}%
1097 \AtEndDocument{\immediate\write\pytx@codefile{pygfamily=#1|%
1098 \csname pytx@pyglexer@#1\endcsname|%
1099 \csname pytx@pygopt@#1\endcsname}%
1100 }%
1101 }
1102 \def\pytx@MakeFamilyFVCons#1{%
1103 \pytx@MakeInlinevFV{#1}%
1104 \pytx@MakeInlineConsFV{#1}%
1105 \pytx@MakeConsFV{#1}{sole}%
1106 \pytx@MakeVerbFV{#1}%
1107 }
1108 \def\pytx@MakeFamilyPygCons#1{%
1109 \ifbool{pytx@opt@pyginline}%
1110 {\pytx@MakeInlinevPyg{#1}}%
1111 {\pytx@MakeInlinevFV{#1}}%
1112 \pytx@MakeInlineConsPyg{#1}%
1113 \pytx@MakeConsPyg{#1}{sole}%
1114 \pytx@MakeVerbPyg{#1}%
1115 \booltrue{pytx@usedpygments}%
1116 \AtEndDocument{\immediate\write\pytx@codefile{pygfamily=#1|%
1117 \csname pytx@pyglexer@#1\endcsname|%
1118 \csname pytx@pygopt@#1\endcsname}%
1119 }%
1120 }
1121 \newcommand{\makepythontexfamily}[2][]{%
1122 \IfBeginWith{#2}{PYG}%
1123 {\PackageError{\pytx@packagename}%
1124 {Attempt to create macros with reserved prefix PYG}{}}{}%
1125 \pgfkeys{/PYTX/family, default, #1}
1126 \expandafter\xdef\csname pytx@macroformatter@#2\endcsname{\pytx@tmp@pprinter}
1127 \expandafter\gdef\csname pytx@fvsettings@#2\endcsname{}
1128 \expandafter\xdef\csname pytx@pyglexer@#2\endcsname{\pytx@tmp@pyglexer}
1129 \expandafter\xdef\csname pytx@pygopt@#2\endcsname{\pytx@tmp@pygopt}
1130 \expandafter\xdef\csname pytx@console@#2\endcsname{\pytx@tmp@console}
1131 \pytx@MakeInlinecFV{#2}
1132 \pytx@MakeCodeFV{#2}
1133 \AtBeginDocument{%
1134 \ifcsstring{pytx@macroformatter@#2}{auto}{%
1135 \ifbool{pytx@opt@pygments}%
1136 {\ifcsstring{pytx@console@#2}{true}%
1137 {\pytx@MakeFamilyPygCons{#2}}{\pytx@MakeFamilyPyg{#2}}}%
1138 {\ifcsstring{pytx@console@#2}{true}%
1139 {\pytx@MakeFamilyFVCons{#2}}{\pytx@MakeFamilyFV{#2}}}%
1140 }{}%
1141 \ifcsstring{pytx@macroformatter@#2}{fancyvrb}%
1142 {\ifcsstring{pytx@console@#2}{true}%
1143 {\pytx@MakeFamilyFVCons{#2}}{\pytx@MakeFamilyFV{#2}}}{}%
1144 \ifcsstring{pytx@macroformatter@#2}{pygments}%
1145 {\ifcsstring{pytx@console@#2}{true}%

107

1146 {\pytx@MakeFamilyPygCons{#2}}{\pytx@MakeFamilyPyg{#2}}}{}%
1147 }%
1148 }
1149 \@onlypreamble\makepythontexfamily

\setpythontexpyglexer We need to be able to reset the lexer associated with a family after the family has
already been created.

1150 \newcommand{\setpythontexpyglexer}[2][]{%
1151 \Depythontex{cmd:setpythontexpyglexer:om:n}%
1152 \ifstrempty{#1}{\def\pytx@pyglexer{#2}}{%
1153 \ifcsname pytx@pyglexer@#1\endcsname
1154 \expandafter\xdef\csname pytx@pyglexer@#1\endcsname{#2}%
1155 \else
1156 \PackageError{\pytx@packagename}%
1157 {Cannot modify a non-existent family}{}%
1158 \fi
1159 }%
1160 }%
1161 \@onlypreamble\setpythontexpyglexer

\setpythontexpygopt The user may wish to modify the Pygments options associated with a family. This
macro takes two arguments: first, the family base name; and second, the Pygments
options to associate with the family. This macro is particularly useful in changing
the Pygments style of default command and environment families.

Due to the implementation (and also in the interest of keeping typesetting
consistent), the Pygments style for a family must remain constant throughout the
document. Thus, we only allow changes to the style in the preamble.

1162 \newcommand{\setpythontexpygopt}[2][]{%
1163 \Depythontex{cmd:setpythontexpygopt:om:n}%
1164 \ifstrempty{#1}{\def\pytx@pygopt{#2}}{%
1165 \ifcsname pytx@pygopt@#1\endcsname
1166 \expandafter\xdef\csname pytx@pygopt@#1\endcsname{#2}%
1167 \else
1168 \PackageError{\pytx@packagename}%
1169 {Cannot modify Pygments options for a non-existent family}{}%
1170 \fi
1171 }%
1172 }
1173 \@onlypreamble\setpythontexpygopt

\setpythontexprettyprinter We need to be able to reset the pretty printer used by a family among the options
auto, fancyvrb, and pygments.

1174 \newcommand{\setpythontexprettyprinter}[2][]{%
1175 \Depythontex{cmd:setpythontexprettyprinter:om:n}%
1176 \ifstrempty{#1}{%
1177 \ifstrequal{#2}{fancyvrb}{\boolfalse{pytx@opt@pygments}}%
1178 \ifstrequal{#2}{pygments}{\booltrue{pytx@opt@pygments}}%
1179 }{%
1180 \ifcsname pytx@macroformatter@#1\endcsname

108

1181 \ifbool{pytx@opt@depythontex}{}{%
1182 \expandafter\xdef\csname pytx@macroformatter@#1\endcsname{#2}}
1183 \else
1184 \PackageError{\pytx@packagename}%
1185 {Cannot modify a family that does not exist or does not allow formatter choices}%
1186 {Create the family with \string\makepythontexfamily}%
1187 \fi
1188 }%
1189 }
1190 \@onlypreamble\setpythontexprettyprinter

9.8 Default commands and environment families
We are finally prepared to create the default command and environment families.
We create a basic Python family with the base name py. We also create customized
Python families for the SymPy package, using the base name sympy, and for the
pylab module, using the base name pylab. All of these are created with a console
environment.

All of these command and environment families are created conditionally, de-
pending on whether the package option pygments is used, via \makepythontexfamily.
We recommend that any custom families created by the user be constructed in
the same manner.

1191 \makepythontexfamily[pyglexer=python]{py}
1192 \makepythontexfamily[pyglexer=pycon, console=true]{pycon}
1193 \makepythontexfamily[pyglexer=python]{sympy}
1194 \makepythontexfamily[pyglexer=pycon, console=true]{sympycon}
1195 \makepythontexfamily[pyglexer=python]{pylab}
1196 \makepythontexfamily[pyglexer=pycon, console=true]{pylabcon}

We also need to create any additional families specified via the usefamily package
option.45

1197 \renewcommand{\do}[1]{%
1198 \ifstrequal{#1}{ruby}{\makepythontexfamily[pyglexer=ruby]{ruby}}{}%
1199 \ifstrequal{#1}{rb}{\makepythontexfamily[pyglexer=ruby]{rb}}{}%
1200 \ifstrequal{#1}{julia}{\makepythontexfamily[pyglexer=julia]{julia}}{}%
1201 \ifstrequal{#1}{jl}{\makepythontexfamily[pyglexer=julia]{jl}}{}%
1202 }
1203 \expandafter\docsvlist\expandafter{\pytx@families}

9.9 Listings environment
fancyvrb, especially when combined with Pygments, provides most of the format-
ting options we could want. However, it simply typesets code within the flow of
the document and does not provide a floating environment. So we create a floating
environment for code listings via the newfloat package.

45The loop here is accomplished via etoolbox. pgffor might be an alternative, but making
definitions global requires trickery.

109

It is most logical to name this environment listing, but that is already defined
by the minted package (although PythonTEX and minted are probably not likely
to be used together, due to overlapping features). Furthermore, the listings
package specifically avoided using the name listing for an environment due to
the use of this name by other packages.

We have chosen to make a compromise. We create a macro that creates a float
environment with a custom name for listings. If this macro is invoked, then a float
environment for listings is created and nothing else is done. If it is not invoked,
the package attempts to create an environment called listing at the beginning
of the document, and issues a warning if another macro with that name already
exists. This approach makes the logical listing name available in most cases,
and provides the user with a simple fallback in the event that another package
defining listing must be used alongside PythonTEX.

\setpythontexlistingenv We define a bool pytx@listingenv that keeps track of whether a listings environ-
ment has been created. Then we define a macro that creates a floating environment
with a custom name, with appropriate settings for a listing environment. We only
allow this macro to be used in the preamble, since later use would wreak havok.

1204 \newbool{pytx@listingenv}
1205 \def\setpythontexlistingenv#1{%
1206 \Depythontex{cmd:setpythontexlistingenv:m:n}%
1207 \DeclareFloatingEnvironment[fileext=lopytx,listname={List of Listings},name=Listing]{#1}
1208 \booltrue{pytx@listingenv}
1209 }
1210 \@onlypreamble\setpythontexlistingenv

At the beginning of the document, we issue a warning if the listing envi-
ronment needs to be created but cannot be due to a pre-existing macro (and no
version with a custom name has been created). Otherwise, we create the listing
environment.

1211 \AtBeginDocument{
1212 \ifcsname listing\endcsname
1213 \ifbool{pytx@listingenv}{}%
1214 {\PackageWarning{\pytx@packagename}%
1215 {A "listing" environment already exists \MessageBreak
1216 \pytx@packagename\space will not create one \MessageBreak
1217 Use \string\setpythontexlistingenv to create a custom listing environment}}%
1218 \else
1219 \ifbool{pytx@listingenv}{}{\DeclareFloatingEnvironment[fileext=lopytx]{listing}}
1220 \fi
1221 }

9.10 Pygments for general code typesetting
After all the work that has gone into PythonTEX thus far, it would be a pity
not to slightly expand the system to allow Pygments typesetting of any language
Pygments supports. While PythonTEX currently can only execute Python code,

110

it is relatively easy to add support for highlighting any language supported by
Pygments. We proceed to create a \pygment command, a pygments environment,
and an \inputpygments command that do just this. The functionality of these is
very similar to that provided by the minted package.

Both the commands and the environment are created in two forms: one that
actually uses Pygments, which is the whole point in the first place; and one
that uses fancyvrb, which may speed compilation or make editing faster since
pythontex.py need not be invoked. By default, the two forms are switched be-
tween based on the package pygments option, but this may be easily modified as
described below.

The Pygments commands and environment operate under the code type
PYG〈lexer name〉. This allows Pygments typesetting of general code to proceed
with very few additions to pythontex.py; in most situations, the Pygments code
types behave just like standard PythonTEX types that don’t execute any code.
Due to the use of the PYG prefix for all Pygments content, the use of this prefix is
not allowed at the beginning of a base name for standard PythonTEX command
and environment families.

We have previously used the suffix Pyg to denote macro variants that use
Pygments rather than fancyvrb. We continue that practice here. To distinguish
the special Pygments typesetting macros from the regular PythonTEX macros, we
use Pygments in the macro names, in addition to any Pyg suffix

9.11 Pygments utilities macros
\pytx@CheckPygmentsInit We need to see if macros exist for storing Pygments fv settings and pygopt. If

not, create them, and make sure they will be written to file.
1222 \def\pytx@CheckPygmentsInit#1{%
1223 \ifcsname pytx@fvsettings@PYG#1\endcsname\else
1224 \expandafter\gdef\csname pytx@fvsettings@PYG#1\endcsname{}%
1225 \expandafter\gdef\csname pytx@pygopt@PYG#1\endcsname{}%
1226 \AtEndDocument{\immediate\write\pytx@codefile{pygfamily=PYG#1|#1|%
1227 \csname pytx@pygopt@PYG#1\endcsname}}%
1228 \fi
1229 }

9.11.1 Inline Pygments command

\pytx@MakePygmentsInlineFV
\pytx@MakePygmentsInlinePyg

\pygment

These macros create an inline command. They reuse the \pytx@Inline macro
sequence. The approach is very similar to the constructors for inline commands,
except for the way in which the type is defined and for the fact that we have to
check to see if a macro for fancyvrb settings exists. Just as for the PythonTEX
inline commands, we do not currently support fancyvrb options in Pygments
inline commands, since almost all options are impractical for inline usage, and the
few that might conceivably be practical, such as showing spaces, should probably
be used throughout an entire document rather than just for a tiny code snippet
within a paragraph.

111

We supply an empty optional argument to \pytx@Inline, so that the \pygment
command can only take two mandatory arguments, and no optional argument
(since sessions don’t make sense for code that is merely typeset):

\pygment{〈lexer〉}{〈code〉}

1230 \def\pytx@MakePygmentsInlineFV{%
1231 \newcommand{\pygment}[1]{%
1232 \edef\pytx@lexer{##1}%
1233 \Depythontex{cmd:pygment:mv:c}%
1234 \edef\pytx@type{PYG##1}%
1235 \edef\pytx@cmd{v}%
1236 \pytx@SetContext
1237 \pytx@SetGroupVerb
1238 \let\pytx@InlineShow\pytx@InlineShowFV
1239 \let\pytx@InlineSave\@empty
1240 \let\pytx@InlinePrint\@empty
1241 \pytx@CheckPygmentsInit{##1}%
1242 \pytx@Inline[]%
1243 }%
1244 }
1245 \def\pytx@MakePygmentsInlinePyg{%
1246 \newcommand{\pygment}[1]{%
1247 \edef\pytx@type{PYG##1}%
1248 \edef\pytx@cmd{v}%
1249 \pytx@SetContext
1250 \pytx@SetGroupVerb
1251 \let\pytx@InlineShow\pytx@InlineShowPyg
1252 \let\pytx@InlineSave\pytx@InlineSaveCode
1253 \let\pytx@InlinePrint\@empty
1254 \pytx@CheckPygmentsInit{##1}%
1255 \pytx@Inline[]
1256 }%
1257 }

9.11.2 Pygments environment

\pytx@MakePygmentsEnvFV
pygments

The pygments environment is created to take an optional argument, which corre-
sponds to fancyvrb settings, and one mandatory argument, which corresponds to
the Pygments lexer to be used in highlighting the code.

The pygments environment begins by declaring that it is a Verbatim envi-
ronment and setting variables. Again, some variables are unnecessary, but they
are created to maintain uniformity with other PythonTEX environments. The
environment code is very similar to that of PythonTEX verb environments.

1258 \def\pytx@MakePygmentsEnvFV{%
1259 \newenvironment{pygments}{%
1260 \VerbatimEnvironment
1261 \pytx@SetContext
1262 \pytx@SetGroupVerb

112

1263 \begingroup
1264 \obeylines
1265 \@ifnextchar[{\endgroup\pytx@BEPygmentsFV}{\endgroup\pytx@BEPygmentsFV[]}%
1266 }%
1267 {\end{Verbatim}%
1268 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
1269 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1270 }%
1271 }

\pytx@BEPygmentsFV This macro captures the optional argument containing fancyvrb commands.
1272 \def\pytx@BEPygmentsFV[#1]{%
1273 \def\pytx@fvopttmp{#1}%
1274 \begingroup
1275 \obeylines
1276 \pytx@BEPygmentsFV@i
1277 }

\pytx@BEPygmentsFV@i This macro captures the mandatory argument, containing the lexer name, and
proceeds.

1278 \def\pytx@BEPygmentsFV@i#1{%
1279 \endgroup
1280 \edef\pytx@type{PYG#1}%
1281 \edef\pytx@lexer{#1}%
1282 \Depythontex{env:pygments:om:c}%
1283 \DepyListing
1284 \edef\pytx@cmd{verbatim}%
1285 \edef\pytx@session{default}%
1286 \edef\pytx@linecount{pytx@\pytx@type @\pytx@session @\pytx@group @line}%
1287 \pytx@CheckCounter{\pytx@linecount}%
1288 \pytx@CheckPygmentsInit{#1}%
1289 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
1290 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
1291 \pytx@FVSet
1292 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}}%
1293 \begin{Verbatim}%
1294 }

\pytx@MakePygmentsEnvPyg
pygments

The Pygments version is very similar, except that it must bring in external Pyg-
ments content.

1295 \def\pytx@MakePygmentsEnvPyg{%
1296 \newenvironment{pygments}{%
1297 \VerbatimEnvironment
1298 \pytx@SetContext
1299 \pytx@SetGroupVerb
1300 \begingroup
1301 \obeylines
1302 \@ifnextchar[{\endgroup\pytx@BEPygmentsPyg}{\endgroup\pytx@BEPygmentsPyg[]}%
1303 }%

113

1304 {\end{VerbatimOut}%
1305 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
1306 \pytx@FVSet
1307 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}}%
1308 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counter}\endcsname
1309 \UseVerbatim{\pytx@counter @\arabic{\pytx@counter}}%
1310 \else
1311 \InputIfFileExists{\pytx@outputdir/%
1312 \pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}.pygtex}{}%
1313 {\textbf{??~\pytx@packagename~??}%
1314 \PackageWarning{\pytx@packagename}{Non-existent Pygments content}}%
1315 \fi
1316 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
1317 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1318 \stepcounter{\pytx@counter}%
1319 }%
1320 }

\pytx@BEPygmentsPyg This macro captures the optional argument, which corresponds to fancyvrb set-
tings.

1321 \def\pytx@BEPygmentsPyg[#1]{%
1322 \def\pytx@fvopttmp{#1}%
1323 \begingroup
1324 \obeylines
1325 \pytx@BEPygmentsPyg@i
1326 }

\pytx@BEPygmentsPyg@i This macro captures the mandatory argument, containing the lexer name, and
proceeds.

1327 \def\pytx@BEPygmentsPyg@i#1{%
1328 \endgroup
1329 \edef\pytx@type{PYG#1}%
1330 \edef\pytx@cmd{verbatim}%
1331 \edef\pytx@session{default}%
1332 \xdef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
1333 \pytx@CheckCounter{\pytx@counter}%
1334 \edef\pytx@linecount{\pytx@counter @line}%
1335 \pytx@CheckCounter{\pytx@linecount}%
1336 \pytx@WriteCodefileInfo
1337 \pytx@CheckPygmentsInit{#1}%
1338 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
1339 \let\FVB@VerbatimOut\pytx@FVB@VerbatimOut
1340 \let\FVE@VerbatimOut\pytx@FVE@VerbatimOut
1341 \begin{VerbatimOut}%
1342 }

9.11.3 Special Pygments commands

Code highlighting may be used for some tasks that would never appear in a code
execution context, which is what the PythonTEX part of this package focuses on.

114

We create some special Pygments macros to handle these highlighting cases.

\pytx@MakePygmentsInputFV
\pytx@MakePygmentsInputPyg

For completeness, we need to be able to read in a file and highlight it. This
is done through some trickery with the current system. We define the type as
PYG〈lexer〉, and the command as verb. We set the context for consistency. We
set the session as EXT:〈file name〉.46 Next we define a fancyvrb settings macro
for the type if it does not already exist. We write info to the code file using
\pytx@WriteCodefileInfoExt, which writes the standard info to the code file
but uses zero for the instance, since external files that are not executed can only
have one instance.

Then we check to see if the file actually exists, and issue a warning if not. This
saves the user from running pythontex.py to get the same error. We perform our
typical FancyVerbLine trickery. Next we make use of the saved content in the
same way as the pygments environment. Note that we do not create a counter
for the line numbers. This is because under typical usage an external file should
have its lines numbered beginning with 1. We also encourage this by setting
firstnumber=auto before bringing in the content.

The current naming of the macro in which the Pygments content is saved is
probably excessive. In almost every situation, a unique name could be formed with
less information. The current approach has been taken to maintain parallelism,
thus simplifying pythontex.py, and to avoid any rare potential conflicts.

1343 \def\pytx@MakePygmentsInputFV{
1344 \newcommand{\inputpygments}[3][]{%
1345 \edef\pytx@lexer{##2}%
1346 \Depythontex{cmd:inputpygments:omm:c}%
1347 \edef\pytx@type{PYG##2}%
1348 \edef\pytx@cmd{verbatim}%
1349 \pytx@SetContext
1350 \pytx@SetGroupVerb
1351 \edef\pytx@session{EXT:##3}%
1352 \pytx@CheckPygmentsInit{##2}%
1353 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
1354 \begingroup
1355 \DepyListing %Always must be in a group
1356 \pytx@FVSet
1357 \fvset{firstnumber=auto}%
1358 \IfFileExists{##3}%
1359 {\DepyFile{c:##3:mode=verbatim}\VerbatimInput[##1]{##3}}%
1360 {\PackageWarning{\pytx@packagename}{Input file <##3> doesn’t exist}}%
1361 \endgroup
1362 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1363 }%
1364 }
1365 \def\pytx@MakePygmentsInputPyg{
1366 \newcommand{\inputpygments}[3][]{%

46There is no possibility of this session being confused with a user-defined session, because
colons are substituted for hyphens in all user-defined sessions, before they are written to the
code file.

115

1367 \edef\pytx@type{PYG##2}%
1368 \edef\pytx@cmd{verbatim}%
1369 \pytx@SetContext
1370 \pytx@SetGroupVerb
1371 \edef\pytx@session{EXT:##3}%
1372 \pytx@CheckPygmentsInit{##2}%
1373 \pytx@WriteCodefileInfoExt
1374 \IfFileExists{##3}{}{\PackageWarning{\pytx@packagename}%
1375 {Input file <##3> does not exist}}
1376 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
1377 \begingroup
1378 \pytx@FVSet
1379 \fvset{firstnumber=auto}%
1380 \ifcsname FV@SV@pytx@\pytx@type @\pytx@session @\pytx@group @0\endcsname
1381 \UseVerbatim[##1]{pytx@\pytx@type @\pytx@session @\pytx@group @0}%
1382 \else
1383 \InputIfFileExists{\pytx@outputdir/##3_##2.pygtex}{}%
1384 {\textbf{??~\pytx@packagename~??}%
1385 \PackageWarning{\pytx@packagename}{Non-existent Pygments content}}%
1386 \fi
1387 \endgroup
1388 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1389 }%
1390 }

9.11.4 Creating the Pygments commands and environment

We are almost ready to actually create the Pygments commands and environments.
First, though, we create some macros that allow the user to set fancyvrb settings,
Pygments options, and formatting of Pygments content.

\setpygmentsfv This macro allows fancyvrb settings to be specified for a Pygments lexer. It
takes the lexer name as the optional argument and the settings as the mandatory
argument. If no optional argument (lexer) is supplied, then it sets the document-
wide fancyvrb settings, and is in that case equivalent to \setpythontexfv.

1391 \newcommand{\setpygmentsfv}[2][]{%
1392 \Depythontex{cmd:setpygmentsfv:om:n}%
1393 \ifstrempty{#1}%
1394 {\gdef\pytx@fvsettings{#2}}%
1395 {\expandafter\gdef\csname pytx@fvsettings@PYG#1\endcsname{#2}}%
1396 }%

\setpygmentspygopt This macro allows the Pygments option to be set for a lexer. It takes the lexer
name as the first argument and the options as the second argument. If this macro
is used multiple times for a lexer, it will write the settings to the code file multiple
times. But pythontex.py will simply process all settings, and each subsequent
set of settings will overwrite any prior settings, so this is not a problem.

1397 \newcommand{\setpygmentspygopt}[2][]{%
1398 \Depythontex{cmd:setpygmentspygopt:om:n}%

116

1399 \ifstrempty{#1}{\def\pytx@pygopt{#2}}{%
1400 \expandafter\gdef\csname pytx@pygopt@PYG#1\endcsname{#2}}%
1401 }
1402 \@onlypreamble\setpygmentspygopt

\setpygmentsprettyprinter This macro parallels \setpythontexprettyprinter. Currently, it takes no op-
tional argument. Eventually, it may be desirable to allow an optional argument
that sets the pretty printer on a per-lexer basis.

1403 \newcommand{\setpygmentsprettyprinter}[1]{%
1404 \Depythontex{cmd:setpygmentsprettyprinter:m:n}%
1405 \ifstrequal{#1}{fancyvrb}{\boolfalse{pytx@opt@pygments}}%
1406 \ifstrequal{#1}{pygments}{\booltrue{pytx@opt@pygments}}%
1407 }
1408 \@onlypreamble\setpygmentsprettyprinter
1409 \xdef\pytx@macroformatter@PYG{auto}

\makepygmentsfv This macro creates the Pygments commands and environment using fancyvrb, as
a fallback when Pygments is unavailable or when the user desires maximum speed.

1410 \def\makepygmentsfv{%
1411 \pytx@MakePygmentsInlineFV
1412 \pytx@MakePygmentsEnvFV
1413 \pytx@MakePygmentsInputFV
1414 }%
1415 \@onlypreamble\makepygmentsfv

\makepygmentspyg This macro creates the Pygments commands and environment using Pygments.
We must set the bool pytx@usedpygments true so that pythontex.py knows that
Pygments content is present and must be highlighted.

1416 \def\makepygmentspyg{%
1417 \ifbool{pytx@opt@pyginline}%
1418 {\pytx@MakePygmentsInlinePyg}%
1419 {\pytx@MakePygmentsInlineFV}%
1420 \pytx@MakePygmentsEnvPyg
1421 \pytx@MakePygmentsInputPyg
1422 \booltrue{pytx@usedpygments}
1423 }%
1424 \@onlypreamble\makepygmentspyg

\makepygments This macro uses the two preceding macros to conditionally define the Pygments
commands and environments, based on the package Pygments settings.

1425 \def\makepygments{%
1426 \AtBeginDocument{%
1427 \ifdefstring{\pytx@macroformatter@PYG}{auto}%
1428 {\ifbool{pytx@opt@pygments}%
1429 {\makepygmentspyg}{\makepygmentsfv}}{}
1430 \ifdefstring{\pytx@macroformatter@PYG}{pygments}%
1431 {\makepygmentspyg}{}
1432 \ifdefstring{\pytx@macroformatter@PYG}{fancyvrb}%
1433 {\makepygmentsfv}{}

117

1434 }%
1435 }%
1436 \@onlypreamble\makepygments

We conclude by actually creating the Pygments commands and environments.
1437 \makepygments

9.12 Final cleanup
At the end of the document, we need to close files.

1438 \AfterEndDocument{%
1439 \immediate\closeout\pytx@codefile
1440 \ifbool{pytx@opt@depythontex}{\immediate\closeout\pytx@depyfile}{}%
1441 }

9.13 Compatibility with beta releases
The following code maintains compatibility with the beta releases when the pack-
age option beta is used. It will be retained for several releases before being
removed.

1442 \ifbool{pytx@opt@beta}{
1443
1444 % Revert changes in stdout and stderr modes
1445 \def\pytx@FetchStdoutfile[#1][#2]#3{%
1446 \IfFileExists{\pytx@outputdir/#3.stdout}{%
1447 \ifstrempty{#1}{\input{\pytx@outputdir/#3.stdout}}{}%
1448 \ifstrequal{#1}{raw}{\input{\pytx@outputdir/#3.stdout}}{}%
1449 \ifstrequal{#1}{verb}{\VerbatimInput[#2]{\pytx@outputdir/#3.stdout}}{}%
1450 \ifstrequal{#1}{inlineverb}{\BVerbatimInput[#2]{\pytx@outputdir/#3.stdout}}{}%
1451 \ifstrequal{#1}{v}{\BVerbatimInput[#2]{\pytx@outputdir/#3.stdout}}{}%
1452 \DepyFile{p:\pytx@outputdir/#3.stdout:mode=#1}%
1453 }%
1454 {\pytx@stdout@warntext
1455 \PackageWarning{\pytx@packagename}{Non-existent printed content}}%
1456 }
1457 \def\pytx@FetchStderrfile[#1][#2]#3{%
1458 \IfFileExists{\pytx@outputdir/#3.stderr}{%
1459 \ifstrequal{#1}{raw}{\input{\pytx@outputdir/#3.stderr}}{}%
1460 \ifstrempty{#1}{\VerbatimInput[#2]{\pytx@outputdir/#3.stderr}}{}%
1461 \ifstrequal{#1}{verb}{\VerbatimInput[#2]{\pytx@outputdir/#3.stderr}}{}%
1462 \ifstrequal{#1}{inlineverb}{\BVerbatimInput[#2]{\pytx@outputdir/#3.stderr}}{}%
1463 \ifstrequal{#1}{v}{\BVerbatimInput[#2]{\pytx@outputdir/#3.stderr}}{}%
1464 \DepyFile{p:\pytx@outputdir/#3.stderr:mode=#1}%
1465 }%
1466 {\textbf{??~\pytx@packagename~??}%
1467 \PackageWarning{\pytx@packagename}{Non-existent stderr content}}%
1468 }
1469

118

1470
1471 % Old verb environment
1472 \renewcommand{\pytx@MakeVerbFV}[1]{%
1473 \expandafter\newenvironment{#1verb}{%
1474 \VerbatimEnvironment
1475 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname
1476 \Depythontex{env:#1verb:oo|:c}%
1477 \DepyListing
1478 \xdef\pytx@type{#1}%
1479 \edef\pytx@cmd{verb}%
1480 \pytx@SetContext
1481 \pytx@SetGroupVerb
1482 \begingroup
1483 \obeylines
1484 \@ifnextchar[{\endgroup\pytx@BeginVerbEnvFV}{\endgroup\pytx@BeginVerbEnvFV[]}%
1485 }%
1486 {\end{Verbatim}%
1487 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
1488 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
1489 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1490 \stepcounter{\pytx@counter}%
1491 }%
1492 }
1493 \renewcommand{\pytx@MakePygEnv}[2]{%
1494 \expandafter\newenvironment{#1#2}{%
1495 \VerbatimEnvironment
1496 \xdef\pytx@type{#1}%
1497 \edef\pytx@cmd{#2}%
1498 \pytx@SetContext
1499 \ifstrequal{#2}{block}{\pytx@SetGroup}{}
1500 \ifstrequal{#2}{verb}{\pytx@SetGroupVerb}{}
1501 \begingroup
1502 \obeylines
1503 \@ifnextchar[{\endgroup\pytx@BeginEnvPyg}{\endgroup\pytx@BeginEnvPyg[]}%
1504 }%
1505 {\end{VerbatimOut}%
1506 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
1507 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
1508 \pytx@FVSet
1509 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}}%
1510 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counter}\endcsname
1511 \UseVerbatim{\pytx@counter @\arabic{\pytx@counter}}%
1512 \else
1513 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.pygtex}{}%
1514 {\textbf{??~\pytx@packagename~??}%
1515 \PackageWarning{\pytx@packagename}{Non-existent Pygments content}}%
1516 \fi
1517 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
1518 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1519 \stepcounter{\pytx@counter}%

119

1520 }%
1521 }%
1522 \renewcommand{\pytx@MakeVerbPyg}[1]{\pytx@MakePygEnv{#1}{verb}}
1523
1524
1525 % Settings macros
1526 \def\setpythontexpyglexer#1#2{%
1527 \Depythontex{cmd:setpythontexpyglexer:mm:n}%
1528 \ifcsname pytx@pyglexer@#1\endcsname
1529 \expandafter\xdef\csname pytx@pyglexer@#1\endcsname{#2}%
1530 \else
1531 \PackageError{\pytx@packagename}%
1532 {Cannot modify a non-existent family}{}%
1533 \fi
1534 }%
1535 \renewcommand{\setpythontexpygopt}[2]{%
1536 \Depythontex{cmd:setpythontexpygopt:mm:n}%
1537 \ifcsname pytx@pygopt@#1\endcsname
1538 \expandafter\xdef\csname pytx@pygopt@#1\endcsname{#2}%
1539 \else
1540 \PackageError{\pytx@packagename}%
1541 {Cannot modify Pygments options for a non-existent family}{}%
1542 \fi
1543 }
1544 \def\setpygmentspygopt#1#2{%
1545 \Depythontex{cmd:setpygmentspygopt:mm:n}%
1546 \AtEndDocument{\immediate\write\pytx@codefile{%
1547 \pytx@delimsettings pygfamily=PYG#1,#1,%
1548 \string{#2\string}\pytx@delimchar}%
1549 }%
1550 }
1551
1552
1553 % Old formatters
1554 \def\setpythontexformatter#1#2{%
1555 \Depythontex{cmd:setpythontexformatter:mm:n}%
1556 \ifcsname pytx@macroformatter@#1\endcsname
1557 \ifbool{pytx@opt@depythontex}{}{%
1558 \expandafter\xdef\csname pytx@macroformatter@#1\endcsname{#2}}
1559 \else
1560 \PackageError{\pytx@packagename}%
1561 {Cannot modify a family that does not exist or does not allow formatter choices}%
1562 {Create the family with \string\makepythontexfamily}%
1563 \fi
1564 }
1565 \@onlypreamble\setpythontexformatter
1566 \def\setpygmentsformatter#1{%
1567 \Depythontex{cmd:setpygmentsformatter:m:n}%
1568 \ifbool{pytx@opt@depythontex}{}{\xdef\pytx@macroformatter@PYG{#1}}}
1569 \@onlypreamble\setpygmentsformatter

120

1570
1571
1572
1573
1574 }{} %End beta

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\= 201
\@bsphack 354, 921
\@empty 178, 314, 325,

532, 543, 628,
635, 647, 658,
669, 681, 694,
695, 707, 718,
732, 746, 764,
766, 928, 935,
1239, 1240, 1253

\@esphack 366, 927
\@gobble 175–177, 492,

512, 518, 540–542
\@ifnextchar 387, 390,

397, 418, 421,
433, 448, 451,
468, 471, 549,
559, 815, 849,
879, 907, 947,
963, 1001, 1031,
1052, 1265,
1302, 1484, 1503

\@ifpackageloaded .
. 10, 256

\@makeother 197, 547,
554, 573, 593, 775

\@nil 791
\@noligs 925
\@onlypreamble

. 222, 246, 264,
269, 787, 1149,
1161, 1173,
1190, 1210,
1402, 1408,
1415, 1424,

1436, 1565, 1569
\@tempa 793
\@tempb 794
\@undefined 257
\{ . . . 548, 555, 561, 776
\} 556, 562, 777
\^ 196, 558, 595, 778, 789

\␣ 557, 594

A
\active 557,

558, 594, 595, 789
\AfterEndDocument 1438
\AfterEndPreamble . 276
\aftergroup 185
\arabic 317, 520, 582,

614, 616, 638,
649, 818, 852,
882, 886, 887,
950, 1004, 1008–
1010, 1055,
1059–1061,
1308, 1309,
1312, 1487,
1506, 1510, 1511

\AtBeginDocument . .
. . . 10, 75, 234,
255, 270, 280,
384, 629, 929,
1133, 1211, 1426

\AtEndDocument
290, 494, 1097,

1116, 1226, 1546

B
\boolfalse . . 21, 45,

49, 53, 58, 62,
67, 73, 84, 89,
115, 120, 131,
135, 141, 145,
174, 189, 1177, 1405

\booltrue 20,
41, 44, 48, 52,
57, 61, 65, 71,
83, 87, 111, 114,
119, 128, 130,
134, 137, 140,
144, 173, 1096,
1115, 1178,
1208, 1406, 1422

\BUseVerbatim . 616, 651
\BVerbatimInput . . .

376, 439, 1450,
1451, 1462, 1463

C
\csname 194,

208, 210, 338,
343, 365, 409,
425, 463, 475,
640, 660, 661,
674, 686, 687,
700, 712, 726,
740, 806, 840,
992, 1043, 1098,
1099, 1117,
1118, 1126–
1130, 1154,
1166, 1182,
1224, 1225,
1227, 1395,

121

1400, 1475,
1529, 1538, 1558

\currfilebase . 313, 324
\currfilename . 314, 325

D
\DeclareFloatingEnvironment

. 1207, 1219
\definepythontexcontext

. 216
\DepyFile 176,

378, 441, 513,
536, 542, 633,
933, 1013, 1064,
1359, 1452, 1464

\DepyFile@orig
. . . . 513, 517, 536

\DepyListing 178, 519,
537, 543, 808,
842, 994, 1045,
1283, 1355, 1477

\DepyListing@orig .
. . . . 522, 531, 537

\DepyMacro . . . 177,
507, 535, 541,
641, 652, 1010, 1061

\DepyMacro@orig . . .
. . . . 507, 511, 535

\Depythontex . . . 51,
56, 175, 224,
252, 266, 335,
386, 396, 400,
413, 417, 432,
447, 457, 467,
485, 534, 540,
662, 688, 713,
727, 741, 754,
770, 807, 841,
940, 974, 993,
1044, 1151,
1163, 1175,
1206, 1233,
1282, 1346,
1392, 1398,
1404, 1476,
1527, 1536,
1545, 1555, 1567

\Depythontex@orig .
. . . . 486, 491, 534

\DepythontexOff . . . 533

\DepythontexOn 533
\detokenize

. 181, 578, 799, 919
\do . . 197, 547, 554,

573, 593, 775, 1197
\docsvlist 1203
\dospecials 197, 547,

554, 573, 593, 775

E
\endcsname . . . 191,

194, 208, 210,
271, 338, 343,
365, 404, 409,
424, 425, 458,
463, 474, 475,
502, 614, 639,
640, 650, 660,
661, 674, 686,
687, 700, 712,
726, 740, 806,
840, 886, 992,
1008, 1043,
1059, 1098,
1099, 1117,
1118, 1126–
1130, 1153,
1154, 1165,
1166, 1180,
1182, 1212,
1223–1225,
1227, 1308,
1380, 1395,
1400, 1475,
1510, 1528,
1529, 1537,
1538, 1556, 1558

\endlinechar . . 196, 592
\endpytx@SVMCR 202, 212
\everyeof 591
\expandafter . . 181,

208, 213, 338,
342, 346, 349,
359, 364, 409,
463, 526, 596,
660, 661, 674,
686, 687, 700,
712, 726, 740,
804, 806, 838,
840, 870, 885,

938, 990, 992,
1007, 1041,
1043, 1058,
1126–1130,
1154, 1166,
1182, 1203,
1224, 1225,
1292, 1307,
1395, 1400,
1473, 1475,
1494, 1509,
1529, 1538, 1558

F
\FancyVerbDefineActive

. 604
\FancyVerbFormatCom 605
\FancyVerbFormatLine

. 607
\FancyVerbGetLine . 833
\fi 157, 191,

215, 261, 272,
273, 410, 429,
464, 479, 488,
502, 621, 645,
656, 794, 800,
892, 1016, 1067,
1158, 1170,
1187, 1220,
1228, 1315,
1386, 1516,
1533, 1542, 1563

\frenchspacing 601
\FV@@@CheckEnd 794
\FV@BadEndError . . . 794
\FV@BeginVBox 600
\FV@CheckEnd 792
\FV@CodeLineNo 361
\FV@DefineWhiteSpace

. 603
\FV@EndScanning . . . 795
\FV@EndVBox 608
\FV@EnvironName . . . 793
\FV@FontScanPrep . . 924
\FV@GetLine 798
\FV@Line 797
\FV@ObeyTabsInit . . 606
\FV@PreProcessLine . 798
\FV@ProcessLine . . .

. . . . 358, 360, 923

122

\FV@Scan 362, 926
\FV@SetupFont 602
\FV@StepLineNo 360
\FV@TheVerbatim . . .

. . . . 359–361, 365
\FV@UseKeyValues . . 356
\FVB@SaveVerbatim . 368
\FVB@VerbatimOut . .

912, 967, 1036, 1339
\FVE@SaveVerbatim . 369
\FVE@VerbatimOut . .

913, 968, 1037, 1340
\fvset 346, 349,

885, 1007, 1058,
1292, 1307,
1357, 1379, 1509

G
\g@addto@macro 260
\gdef 213, 337,

338, 359, 361,
526, 790, 1127,
1224, 1225,
1394, 1395, 1400

\Ginput@path . . 257, 260
\global 364
\graphicspath 258

H
\hbox 607

I
\IfBeginWith 1122
\ifbool 76,

180, 188, 189,
277, 298, 303,
308, 383, 481,
490, 493, 510,
516, 530, 631,
635, 647, 658,
931, 935, 1090,
1109, 1135,
1181, 1213,
1219, 1417,
1428, 1440,
1442, 1557, 1568

\ifcsname 191,
271, 404, 424,
458, 474, 502,
614, 639, 650,

886, 1008, 1059,
1153, 1165,
1180, 1212,
1223, 1308,
1380, 1510,
1528, 1537, 1556

\ifcsstring
. . . 1134, 1136,
1138, 1141,
1142, 1144, 1145

\ifcurrfile . . . 313, 324
\ifdefstring . . 344,

347, 885, 1007,
1058, 1292,
1307, 1427,
1430, 1432, 1509

\IfFileExists
373, 436, 1358,

1374, 1446, 1458
\IfInteger 152
\ifnum 153
\ifstrempty

. 336, 374, 438,
552, 825, 859,
899, 957, 1023,
1152, 1164,
1176, 1393,
1399, 1447, 1460

\IfStrEq 181
\ifstrequal . . 52, 53,

57, 58, 375–377,
437, 439, 440,
567, 755, 756,
875, 876, 975,
976, 1177, 1178,
1198–1201,
1405, 1406,
1448–1451,
1459, 1461–
1463, 1499, 1500

\IfSubStr 236, 240
\ifx 208,

257, 488, 793, 794
\immediate . . . 286,

291–308, 315,
326, 483, 487,
495, 497, 499,
501, 503, 508,
514, 520, 626,
799, 919, 1097,

1116, 1226,
1439, 1440, 1546

\input 374, 375, 437,
1447, 1448, 1459

\InputIfFileExists .
. 278,
282, 632, 889,
932, 1012, 1063,
1311, 1383, 1513

\inputlineno
. . . . 321, 332, 488

\inputpygments
. 1344, 1366

J
\jobname 248,

286, 313, 324, 483

L
\left 181, 182, 184
\let . . . 175–178, 182,

183, 197, 273,
314, 325, 342,
364, 368, 369,
485, 489, 491,
492, 511, 512,
517, 518, 523,
531, 532, 534–
537, 540–543,
547, 554, 573,
593, 628, 635,
647, 658, 661,
667–669, 679–
681, 687, 693–
695, 705–707,
718–720, 724,
732–734, 738,
746–748, 752,
764–766, 775,
795, 806, 833,
840, 912, 913,
923–925, 928,
935, 967, 968,
971, 992, 1036,
1037, 1043,
1238–1240,
1251–1253,
1339, 1340, 1475

\long 212, 781

123

M
\makeatletter 281
\makeatother 283
\makepygments 1425, 1437
\makepygmentsfv . . .

. . 1410, 1429, 1433
\makepygmentspyg . .

. . 1416, 1429, 1431
\makepythontexfamily

. . . 1073, 1186,
1191–1196,
1198–1201, 1562

\mathclose 184
\mathopen 184
\MessageBreak 1215, 1216

N
\newbool 17, 40, 60, 80,

110, 116, 127,
136, 170, 275, 1204

\newcounter . . . 191, 351
\newwrite 285, 482
\next 795, 798, 801
\noexpand 591

O
\obeylines 814, 848,

878, 906, 946,
962, 1000, 1030,
1051, 1264,
1275, 1301,
1324, 1483, 1502

\oldFancyVerbLine .
. 523, 526

\openout 286, 483
\originalleft . 182, 184
\originalright 183, 185

P
\PackageError

. . . . 156, 158,
237, 241, 405,
459, 568, 756,
976, 1123, 1156,
1168, 1184,
1531, 1540, 1560

\PackageWarning 34,
66, 68, 72, 74,
77, 88, 90, 381,
428, 444, 478,

620, 644, 655,
771, 891, 1015,
1066, 1214,
1314, 1360,
1374, 1385,
1455, 1467, 1515

\pgfkeys 12,
14–16, 18–21,
23–33, 36–39,
42–49, 62–65,
67, 69–71, 73,
81–87, 89, 92–
96, 98, 101–
104, 106–109,
112–115, 117–
120, 122–126,
129–135, 138–
145, 147, 149,
151, 152, 161–
165, 167–169,
171–174, 1073, 1125

\printpythontex . . . 385
\ProcessPgfPackageOptions

. 179
\pygment 1230
\pygments . . 1258, 1295
\pythontexcustomc .

. . . . 753, 773, 783
\pythontexcustomcode

. 972
\pytx@arg 579, 596
\pytx@argdetok 578, 626
\pytx@argretok 589, 607
\pytx@argspprint . .

. . . . 311, 319, 330
\pytx@argsrun

. . . . 310, 318, 329
\pytx@BeginBlockEnvFV

. 815, 824
\pytx@BeginCodeEnv .

. . . . 947, 956, 984
\pytx@BeginCodeEnv@i

. 963, 965
\pytx@BeginConsEnvFV

. . 1001, 1022, 1052
\pytx@BeginConsEnvFV@i

. 1031, 1033
\pytx@BeginEnvPyg .

. . . 879, 898, 1503

\pytx@BeginEnvPyg@i
. 907, 909

\pytx@BeginVerbEnvFV
. . . 849, 858, 1484

\pytx@BEPygmentsFV .
. 1265, 1272

\pytx@BEPygmentsFV@i
. 1276, 1278

\pytx@BEPygmentsPyg
. 1302, 1321

\pytx@BEPygmentsPyg@i
. 1325, 1327

\pytx@CheckCounter .
. . . . 190, 581,
827, 829, 861,
863, 901, 903,
959, 1025, 1027,
1287, 1333, 1335

\pytx@CheckPygmentsInit
. . . 1222, 1241,
1254, 1288,
1337, 1352, 1372

\pytx@cmd 317,
328, 664, 676,
690, 702, 715,
729, 743, 761,
810, 844, 873,
942, 981, 996,
1047, 1235,
1248, 1284,
1330, 1348,
1368, 1479, 1497

\pytx@codefile 285,
291–308, 315,
326, 626, 799,
919, 1097, 1116,
1226, 1439, 1546

\pytx@context . 216,
318, 329, 762, 982

\pytx@counter . 317,
580–582, 586,
614, 616, 638,
649, 818, 821,
826–828, 852,
855, 860–862,
882, 886, 887,
895, 900–902,
950, 953, 958,
959, 987, 1004,
1008–1010,

124

1019, 1024–
1026, 1055,
1059–1061,
1070, 1308,
1309, 1312,
1318, 1332–
1334, 1487,
1490, 1506,
1510, 1511, 1519

\pytx@currfile
. 314, 320, 325, 331

\pytx@delim 288, 315, 326
\pytx@delimchar . . .

. 287, 315–321,
326–332, 487,
488, 495–504, 1548

\pytx@delimsettings
. . . 289, 291, 1547

\pytx@depyfile 481,
487, 495, 497,
499, 501, 503,
508, 514, 520, 1440

\pytx@DepyListing@write
. 519, 525

\pytx@EnvAutoprint .
. 928, 951

\pytx@families 11, 1203
\pytx@FancyVerbGetLine

. 788, 833
\pytx@FancyVerbLineTemp

. 351
\pytx@FetchStderrfile

435, 454, 475, 1457
\pytx@FetchStdoutfile

371, 393, 425, 1445
\pytx@FVB@SaveVerbatim

. 351
\pytx@FVB@VerbatimOut

. 912,
920, 967, 1036, 1339

\pytx@FVE@SaveVerbatim
. 363, 369

\pytx@FVE@VerbatimOut
. 913,
927, 968, 1037, 1340

\pytx@fvextfile 150, 305
\pytx@fvopttmp

885, 910, 1007,
1034, 1058,

1273, 1292,
1307, 1322, 1509

\pytx@FVSet 341, 599,
613, 834, 866,
884, 1006, 1057,
1291, 1306,
1356, 1378, 1508

\pytx@fvsettings . .
334, 347, 349, 1394

\pytx@fvsettings@@ .
. . . . 342, 344, 346

\pytx@group
. 223, 316, 327,
580, 582, 638,
649, 763, 818,
826, 852, 860,
882, 900, 950,
958, 983, 1004,
1024, 1055,
1286, 1312,
1332, 1380,
1381, 1487, 1506

\pytx@Inline . . 545,
670, 682, 696,
708, 721, 735,
749, 767, 1242, 1255

\pytx@InlineAutoprint
. 628, 720

\pytx@InlineMacroprint
. . . . 637, 658, 734

\pytx@InlineMacroprintFV
. 648, 748

\pytx@InlineMargBgroup
. . . . 560, 571, 576

\pytx@InlineMargOther
. 563, 565

\pytx@InlineMargOtherGet
. 565

\pytx@InlineOarg . .
. 549, 551

\pytx@InlinePrint .
. . . . 585, 588,
669, 681, 695,
707, 720, 734,
748, 766, 1240, 1253

\pytx@InlineSave . .
. . . . 584, 588,
668, 680, 694,
706, 719, 733,
747, 765, 1239, 1252

\pytx@InlineSaveCode
. . . . 624, 668,
680, 706, 719,
733, 747, 765, 1252

\pytx@InlineShow . .
. . . . 583, 588,
667, 679, 693,
705, 718, 732,
746, 764, 1238, 1251

\pytx@InlineShowFV .
588, 667, 693, 1238

\pytx@InlineShowPyg
611, 679, 705, 1251

\pytx@jobname . 248,
254, 278, 282, 498

\pytx@lexer . . . 485,
488, 489, 661,
687, 806, 840,
992, 1043, 1232,
1281, 1345, 1475

\pytx@linecount . . .
. . . . 819, 828,
829, 831, 853,
862, 863, 865,
883, 893, 902,
903, 1005, 1017,
1026, 1027,
1056, 1068,
1268, 1286,
1287, 1290,
1305, 1316,
1334, 1335,
1488, 1507, 1517

\pytx@macroformatter@PYG
. . . 1409, 1427,
1430, 1432, 1568

\pytx@MakeBlockFV .
. 803, 1086

\pytx@MakeBlockPyg .
. 916, 1094

\pytx@MakeCodeFV . .
. . . 937, 971, 1132

\pytx@MakeCodePyg . 971
\pytx@MakeConsFV . .

. 989, 1105
\pytx@MakeConsoleFV 989
\pytx@MakeConsPyg .

. 1040, 1113
\pytx@MakeFamilyFV .

. . 1082, 1139, 1143

125

\pytx@MakeFamilyFVCons
. . 1102, 1139, 1143

\pytx@MakeFamilyPyg
. . 1089, 1137, 1146

\pytx@MakeFamilyPygCons
. . 1108, 1137, 1146

\pytx@MakeInlinebFV
. . 659, 1083, 1092

\pytx@MakeInlinebPyg
. 659, 1091

\pytx@MakeInlinecFV
. 711, 1131

\pytx@MakeInlineConsFV
. 739, 1104

\pytx@MakeInlineConsPyg
. 739, 1112

\pytx@MakeInlinecPyg
. 711

\pytx@MakeInlineFV .
. 725, 1085

\pytx@MakeInlinePyg
. 725, 1093

\pytx@MakeInlinevFV
. . . . 685, 1084,
1092, 1103, 1111

\pytx@MakeInlinevPyg
. . 685, 1091, 1110

\pytx@MakePygEnv 869,
916, 917, 1493, 1522

\pytx@MakePygmentsEnvFV
. 1258, 1412

\pytx@MakePygmentsEnvPyg
. 1295, 1420

\pytx@MakePygmentsInlineFV
. . 1230, 1411, 1419

\pytx@MakePygmentsInlinePyg
. 1230, 1418

\pytx@MakePygmentsInputFV
. 1343, 1413

\pytx@MakePygmentsInputPyg
. 1343, 1421

\pytx@MakeVerbFV 837,
1087, 1106, 1472

\pytx@MakeVerbPyg .
. 917,
1095, 1114, 1522

\pytx@mcr
. 638–641, 649–652

\pytx@opt@autoprint 40
\pytx@opt@beta 17

\pytx@opt@depythontex
. 170

\pytx@opt@fixlr . . . 116
\pytx@opt@gobble . .

. 13, 295, 504
\pytx@opt@hashdependencies

35, 35, 38, 39, 297
\pytx@opt@keeptemps

. 121, 300
\pytx@opt@pyconbanner

. 160, 306
\pytx@opt@pyconfilename

. 166, 307
\pytx@opt@pyconfuture

. 105, 302
\pytx@opt@pyfuture .

. 100, 301
\pytx@opt@pyginline 136
\pytx@opt@pygments . 127
\pytx@opt@rerun 22,

22, 25, 28–33, 296
\pytx@opt@stderr . . 80
\pytx@opt@stderrfilename

. 91, 299
\pytx@opt@stdout . . 60
\pytx@opt@upquote . 110
\pytx@outputdir 251,

293, 373–378,
436–441, 498,
500, 632, 633,
889, 932, 933,
1012, 1013,
1063, 1064,
1311, 1383,
1446–1452,
1458–1464, 1513

\pytx@packagename 1,
34, 66, 68, 72,
74, 77, 88, 90,
156, 158, 237,
241, 381, 384,
405, 427, 428,
443, 444, 459,
477, 478, 568,
620, 644, 655,
756, 771, 890,
891, 976, 1014,
1015, 1065,
1066, 1123,
1156, 1168,

1184, 1214,
1216, 1313,
1314, 1360,
1374, 1384,
1385, 1455,
1466, 1467,
1514, 1515,
1531, 1540, 1560

\pytx@packageversion
. 2, 292, 496

\pytx@pyglexer 146,
146, 147, 304, 1152

\pytx@pygopt
148, 304, 1164, 1399

\pytx@session . 316,
327, 552, 580,
582, 638, 649,
818, 825, 826,
852, 859, 860,
882, 899, 900,
950, 957, 958,
1004, 1023,
1024, 1055,
1285, 1286,
1312, 1331,
1332, 1351,
1371, 1380,
1381, 1487, 1506

\pytx@SetContext 216,
665, 677, 691,
703, 716, 730,
744, 811, 845,
874, 943, 997,
1048, 1236,
1249, 1261,
1298, 1349,
1369, 1480, 1498

\pytx@SetCustomCode
. 779, 781

\pytx@SetGroup
. . . . 223, 666,
678, 717, 731,
745, 812, 875,
944, 998, 1049, 1499

\pytx@SetGroupCons . 223
\pytx@SetGroupVerb .

. 223, 692, 704,
846, 876, 1237,
1250, 1262,
1299, 1350,

126

1370, 1481, 1500
\pytx@Stderr . . 448, 450
\pytx@Stderr@i 451, 453
\pytx@stdfile

. . . . 370, 393,
409, 454, 463,
582, 632, 633,
818, 852, 882,
889, 932, 933,
950, 1004, 1012,
1013, 1055,
1063, 1064,
1487, 1506, 1513

\pytx@Stdout
. . . . 387, 389, 397

\pytx@Stdout@i 390, 392
\pytx@stdout@warntext

371, 380, 384, 1454
\pytx@SVMCR 193
\pytx@SVMCR@i

. . . . 198, 211, 212
\pytx@tmp . 194, 210, 213
\pytx@tmp@console .

. 1079, 1130
\pytx@tmp@pprinter .

. 1076, 1126
\pytx@tmp@pyglexer .

. 1077, 1128
\pytx@tmp@pygopt . .

. 1078, 1129
\pytx@type . . . 315,

326, 343, 580,
582, 638, 649,
663, 675, 689,
701, 714, 728,
742, 760, 809,
818, 826, 843,
852, 860, 872,
882, 900, 941,
950, 958, 980,
995, 1004, 1024,
1046, 1055,
1234, 1247,
1280, 1286,
1312, 1329,
1332, 1347,
1367, 1380,
1381, 1478,
1487, 1496, 1506

\pytx@usedpygments . 275

\pytx@UseStderr 468, 470
\pytx@UseStderr@i .

. 471, 473
\pytx@UseStdout . . .

. . . . 418, 420, 433
\pytx@UseStdout@i .

. 421, 423
\pytx@workingdir . .

. 265, 267, 273, 294
\pytx@WriteCodefileInfo

. 310, 625, 832,
904, 960, 1028, 1336

\pytx@WriteCodefileInfoExt
. 310, 1373

\pytx@WriteDetok . .
. 918, 923

R
\relax . 26, 153, 208,

485, 488, 489,
592, 778, 924, 925

\renewcommand . 184,
185, 1197, 1472,
1493, 1522, 1535

\RequirePackage . . .
. 3–10, 188

\restartpythontexsession
. . . . 223, 246, 247

\right 183, 185

S
\saveprintpythontex 399
\savestderrpythontex

. 456
\savestdoutpythontex

. 399
\savestdoutpythontex@i

. . . . 401, 403, 414
\SaveVerbatim@Name .

. 357, 365
\scantokens 596
\setcounter 353, 367,

615, 617, 819,
820, 830, 831,
853, 854, 864,
865, 883, 893,
894, 911, 952,
966, 986, 1005,
1017, 1018,
1035, 1056,

1068, 1069,
1268, 1269,
1289, 1290,
1305, 1316,
1317, 1338,
1353, 1362,
1376, 1388,
1488, 1489,
1507, 1517, 1518

\setpygmentsformatter
. 1566, 1569

\setpygmentsfv . . . 1391
\setpygmentsprettyprinter

. 1403
\setpygmentspygopt .

. 1397, 1544
\setpythontexautoprint

. 50
\setpythontexautostdout

. 50
\setpythontexcustomcode

. 769
\setpythontexformatter

. 1554, 1565
\setpythontexfv . . . 334
\setpythontexlistingenv

. 1204, 1217
\setpythontexoutputdir

. 251
\setpythontexprettyprinter

. 1174
\setpythontexpyglexer

. 1150, 1526
\setpythontexpygopt

. 1162, 1535
\setpythontexworkingdir

. 265
\space . . . 772, 773, 1216
\stderrpythontex . . 446
\stdoutpythontex . . 385
\stepcounter 586, 821,

855, 895, 953,
987, 1019, 1070,
1318, 1490, 1519

\string 238,
239, 242, 243,
287–289, 757,
772, 773, 1186,
1217, 1548, 1562

127

\StrSubstitute 248–
250, 552, 825,
859, 899, 957, 1023

T
\textbf 384, 427, 443,

477, 619, 643,
654, 890, 1014,
1065, 1313,
1384, 1466, 1514

\the 321, 332, 488
\theFancyVerbLine .

. 523, 524, 526, 527

U
\useprintpythontex . 416
\usestderrpythontex 466
\usestdoutpythontex 416
\UseVerbatim

887, 1009, 1060,
1309, 1381, 1511

V
\value 353, 367,

615, 617, 819,
820, 830, 831,

853, 854, 864,
865, 883, 893,
894, 911, 952,
966, 986, 1005,
1017, 1018,
1035, 1056,
1068, 1069,
1268, 1269,
1289, 1290,
1305, 1316,
1317, 1338,
1353, 1362,
1376, 1388,
1488, 1489,
1507, 1517, 1518

\VerbatimEnvironment
. . . . 805, 839,
871, 939, 973,
991, 1042, 1260,
1297, 1474, 1495

\VerbatimInput 377,
438, 440, 1359,
1449, 1460, 1461

W
\write 291–308,

315, 326, 487,
495, 497, 499,
501, 503, 508,
514, 520, 626,
799, 919, 1097,
1116, 1226, 1546

X
\xdef 580,

582, 663, 675,
689, 701, 714,
728, 742, 760,
809, 818, 826,
843, 852, 860,
872, 882, 900,
941, 950, 958,
980, 995, 1004,
1024, 1046,
1055, 1126,
1128–1130,
1154, 1166,
1182, 1332,
1409, 1478,
1487, 1496,
1506, 1529,
1538, 1558, 1568

128

	Introduction
	Installing and running
	Installing PythonTeX
	Compiling documents using PythonTeX

	Usage
	Package options
	Commands and environments
	Inline commands
	Environments
	Console command and environment families
	Default families
	Custom code
	PythonTeX utilities class
	Formatting of typeset code
	Access to printed content (stdout) and error messages (stderr)

	Pygments commands and environments
	General code typesetting
	Listings float
	Background colors
	Referencing code by line number
	Beamer compatibility

	Advanced PythonTeX usage

	depythontex
	Preparing a document that will be converted
	Removing PythonTeX dependence
	Technical details

	LaTeX programming with PythonTeX
	Macro programming with PythonTeX
	Package writing with PythonTeX

	Support for additional languages
	Ruby
	Julia
	Adding support for a new language
	Template
	Wrapper
	The CodeEngine class
	Creating the LaTeX interface

	Troubleshooting
	The future of PythonTeX
	To Do
	Modifications to make
	Modifications to consider

	Version History
	Implementation
	Package opening
	Required packages
	Package options
	Enabling command and environment families
	Gobble
	Beta
	Runall
	Rerun
	Hashdependencies
	Autoprint
	Debug
	makestderr
	stderrfilename
	Python's __future__ module
	Upquote
	Fix math spacing
	Keep temporary files
	Pygments
	Python console environment
	depythontex
	Process options

	Utility macros and input/output setup
	Automatic counter creation
	Saving verbatim content in macros
	Code context
	Code groups
	File input and output
	Interface to fancyvrb
	Access to printed content (stdout)
	Access to stderr
	depythontex

	Inline commands
	Inline core macros
	Inline command constructors

	Environments
	Block and verbatim environment constructors
	Code environment constructor
	Console environment constructor

	Constructors for command and environment families
	Default commands and environment families
	Listings environment
	Pygments for general code typesetting
	Pygments utilities macros
	Inline Pygments command
	Pygments environment
	Special Pygments commands
	Creating the Pygments commands and environment

	Final cleanup
	Compatibility with beta releases

