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1 Drawing approximations to the area under a graph by rectangles

1.1 Description

We recall here an application in Calculus. Let f(x) be a function, defined and bounded on the
interval [a, b]. If f is integrable (in Riemann sense) on [a, b], then its definite integral over this
interval is ∫ b

a
f(x)dx = lim

‖P‖→0

n∑
i=1

f(ξi)∆xi,

∗PSTricks is the original work of Timothy Van Zandt (email address: tvz@econ.insead.fr). It is currently edited
by Herbert Voß (hvoss@tug.org).
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where P : a = x0 < x1 < · · · < xn = b, ∆xi = xi − xi−1, ξi ∈ [xi−1, xi], i = 1, 2, . . . , n, and
‖P‖ = max{∆xi : i = 1, 2, . . . , n}. Hence, when ‖P‖ is small enough, we may have an approximation

I =

∫ b

a
f(x)dx ≈

n∑
i=1

f(ξi)∆xi. (1)

Because I is independent to the choice of the partition P and of the ξi, we may divide [a, b] into n
subintervals with equal length and choose ξi = (xi + xi−1)/2. Then, I can be approximately seen as
the sum of areas of the rectangles with sides f(ξi) and ∆xi.

We will make a drawing procedure to illustrate the approximation (1). Firstly, we establish
commands to draw the sum of rectangles, like the area under piecewise-constant functions (called
step shape, for brevity). The choice here is a combination of the macros \pscustom (to join hori-
zontal segments, automatically) and \multido, of course. In particular, the horizontal segments are
depicted within the loop \multido by

\psplot[settings]{xi−1}{xi}{f(ξi)}

The \pscustom will join these segments altogether with the end points (a, 0) and (b, 0), to make the
boundary of the step shape. Then, we draw the points (ξi, f(ξi)), i = 1, 2, . . . , n, and the dotted
segments between these points and the points (ξi, 0), i = 1, 2, . . . , n, by

\psdot[algebraic,...](*{ξi} {f(x)}),
\psline[algebraic,linestyle=dotted,...](ξi,0)(*{ξi} {f(x)}),

where we use the structure (*{value} {f(x)}) to obtain the point (ξi, f(ξi)). Finally, we draw
vertical segments to split the step shape into rectangular cells by

\psline[algebraic,...](xi,0)(*{xi} {f(x−∆xi/2)})

The process of performing steps is depicted in Figure 1.

We can combine the above steps to make a procedure whose calling sequence consists of main
parameters a, b, f and n, and dependent parameters xi−1, xi, ξi, f(ξi) and f(x ± ∆xi/2). For
instant, let us consider the approximations to the integral of f(x) = sinx− cosx over [−2, 3] in the
cases of n = 5 and n = 20. Those approximations are given in Figure 2.

In fact, we can make a procedure to illustrate the approximation (1), say RiemannSum, whose
calling sequence has the form

\RiemannSum{a}{b}{f(x)}{n}{xini}{xend}{xchoice}{f(x+ ∆xi/2)}{f(x−∆xi/2)},

where x0 = a and for each i = 1, 2 . . . , n:

xi = a+
b− a
n

i, ∆xi = xi − xi−1 =
b− a
n

,

xini = x0 + ∆xi, xend = x1 + ∆xi, xchoice =
xini + xend

2
=
x0 + x1

2
+ ∆xi.

Note that xini, xend and xchoice are given in such forms to be suitable to variable declaration in
\multido. They are nothing but xi−1, xi and ξi, respectively, at the step i-th in the loop.

Tentatively, in PSTricks language, the definition of RiemannSum is suggested to be
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Figure 1: Steps to make the drawing procedure.
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Figure 2: Approximations to the integral of f(x) = sinx− cosx over [−2, 3].
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\def\RiemannSum#1#2#3#4#5#6#7#8#9{%

\psplot[linecolor=blue]{#1}{#2}{#3}

\pscustom[linecolor=red]{%

\psline{-}(#1,0)(#1,0)

\multido{\ni=#5,\ne=#6}{#4}

{\psline(*{\ni} {#8})(*{\ne} {#9})}}

\multido{\ne=#6,\nc=#7}{#4}

{\psdot(*{\nc} {#3})

\psline[linestyle=dotted,dotsep=1.5pt](\nc,0)(*{\nc} {#3})

\psline[linecolor=red](\ne,0)(*{\ne} {#9})}}

1.2 Examples

We give here two more examples just to see that using the drawing procedure is very easy. In the
first example, we approximate the area under the graph of the function f(x) = x − (x/2) cosx + 2
on the interval [0, 8]. To draw the approximation, we try the case n = 16; thus x0 = 0 and for
each i = 1, . . . , 16, we have xi = 0.5 i, ∆xi = 0.5, xini = 0.00 + 0.50, xend = 0.50 + 0.50 and
xchoice = 0.25 + 0.50.
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Figure 3: An approximation to the area under the graph of f(x) = x− (x/2) cosx+ 2 on [0, 8].

To get Figure 3, we have used the following LATEX code:

\begin{pspicture}(0,0)(4.125,5.5)

\psset{plotpoints=500,algebraic,dotsize=2.5pt,unit=0.5}

\RiemannSum{0}{8}{x-(x/2)*cos(x)+2}{16}{0.00+0.50}{0.50+0.50}{0.25+0.50}

{x+0.25-((x+0.25)/2)*cos(x+0.25)+2}{x-0.25-((x-0.25)/2)*cos(x-0.25)+2}

\psaxes[ticksize=2.2pt,labelsep=4pt]{->}(0,0)(8.5,11)

\end{pspicture}

In the second example below, we will draw an approximation to the integral of f(x) = x sinx
over [1, 9]. Choosing n = 10 and computing parameters needed, we get Figure 4, mainly by the
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command

\RiemannSum{1}{9}{x sinx}{10}{1.00 + 0.80}{1.80 + 0.80}{1.40 + 0.80}
{(x+ 0.4) sin(x+ 0.4)}{(x− 0.4) sin(x− 0.4)}

in the drawing procedure.
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Figure 4: An approximation to the integral of f(x) = x sinx over [1, 9].

2 Drawing the vector field of an ordinary differential equation of order one

2.1 Description

Let us consider the differential equation

dy

dx
= f(x, y). (2)

At each point (x0, y0) in the domain D of f , we will put a vector v with slope k = f(x0, y0). If
y(x0) = y0, then k is the slope of the tangent to the solution curve y = y(x) of (2) at (x0, y0). The
v’s make a vector field and the picture of this field would give us information about the shape of
solution curves of (2), even we have not found yet any solution of (2).

The vector field of (2) will be depicted on a finite grid of points in D. This grid is made of lines,
paralell to the axes Ox and Oy. The intersectional points of those lines are called grid points and
often indexed by (xi, yj), i = 0, . . . , Nx, j = 0, . . . , Ny. For convenience, we will use polar coordinate
to locate the terminal point (x, y) of a field vector, with the initial point at the grid point (xi, yj).
Then, we can write

x = xi + r cosϕ,

y = yj + r sinϕ.

Because k = f(xi, yj) = tanϕ is finite, we may take −π/2 < ϕ < π/2. From sin2 ϕ+ cos2 ϕ = 1 and
sinϕ = k cosϕ, we derive

cosϕ =
1√

1 + k2
, sinϕ =

k√
1 + k2

.
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b b

b

xi xi+1

yj

yj+1

Figure 5: Field vectors on a grid.

The field vectors should all have the same magnitude and we choose here that length to be 1/2,
that means r = 1/2. Thus, vectors on the grid have their initial points and terminal ones as

(xi, yj),
(
xi +

1

2
cosϕ, yj +

1

2
sinϕ

)
.

Of macros in PSTricks to draw lines, we select \parametricplot1 for its fitness. We immetiately
have the simple parameterization of the vector at the grid point (xi, yj) as

x = xi +
t

2
cosϕ = xi +

t

2
√

1 + k2
,

y = yj +
t

2
sinϕ = yj +

tk

2
√

1 + k2
,

where t goes from t = 0 to t = 1, along the direction of the vector. The macro \parametricplot

has the syntax as
\parametricplot[settings]{tmin}{tmax}{x(t)|y(t)},

where we should use the option algebraic to make the declaration of x(t) and y(t) simpler with
ASCII code.

From the above description of one field vector, we go to the one of the whole vector field on a
grid belonging to the domain R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. To determine the grid, we confine
grid points to the range

a ≤ xi ≤ b, c ≤ yj ≤ d. (3)

With respect to the indices i and j, we choose initial values x0 = a and y0 = c, with increments
∆x = ∆y = δ, corresponding to the length of vectors and the distance between grid points as
indicated in Figure 5. Thus, to draw vectors at grid points (xi, yj), we need two loops for i and j,
with 0 ≤ i ≤ bm/δc, 0 ≤ j ≤ bn/δc, where m = b − a, n = d − c. Apparently, these two loops are
nested \multidos, with variable declaration for each loop as follows

\nx = initial value + increment = x0 + ∆x,

\ny = initial value + increment = y0 + ∆y.

Finally, we will replace \nx, \ny by xi, yj in the below calling sequence for simplicity.

1This macro is of ones, often added and updated in the package pstricks-add, the authors: Dominique Rodriguez
(dominique.rodriguez@waika9.com), Herbert Voß (voss@pstricks.de).
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Thus, the main procedure to draw the vector field of the equation (2) on the grid (3) is

\multido
{
yj = y0 + ∆y

}{
bn/δc

}{
\multido

{
xi = x0 + ∆x

}{
bm/δc

}
{
\parametricplot[settings]{0}{1}

{
xi +

t

2
√

1 +
[
f(xi, yj)

]2 ∣∣∣ yj +
tf(xi, yj)

2
√

1 +
[
f(xi, yj)

]2}
}

where we at least use arrows=-> and algebraic for settings.

We can combine the steps mentioned above to define a drawing procedure, say \vecfld, that
consists of main parameters in the order as \nx=x0 + ∆x, \ny=y0 + ∆y, bm/δc, bn/δc, δ and
f(\nx, \ny). We may change these values to modify the vector field or to avoid the vector intersection.
Such a definition is suggested to be

\def\vecfld#1#2#3#4#5#6{%

\multido{#2}{#4}{\multido{#1}{#3}

{\parametricplot[algebraic,arrows=->,linecolor=red]{0}{1}

{\nx+((#5)*t)*(1/sqrt(1+(#6)^2))|\ny+((#5)*t)*(1/sqrt(1+(#6)^2))*(#6)}}}}

2.2 Examples

Firstly, we consider the equation that describes an object falling in a resistive medium:

dv

dt
= 9.8− v

5
, (4)

where v = v(t) is the speed of the object in time t. In Figure 6, the vector field of (4) is given on
the grid R = {(t, y) : 0 ≤ t ≤ 9, 46 ≤ v ≤ 52}, together with the graph of the equilibrium solution
v = 49.
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v

Figure 6: The vector field of (4).

Figure 6 is made of the following LATEX code:
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\begin{pspicture}(0,46)(9.5,52.5)

\vecfld{\nx=0.25+0.50}{\ny=46.25+0.50}{18}{12}{0.5}{9.8-0.2*\ny}

\psplot[algebraic,linewidth=1.2pt]{0}{9}{49}

\psaxes[Dy=1,Dx=1,Oy=46]{->}(0,46)(0,46)(9.5,52.5)

\rput(9.5,45.8){$t$}\rput(-0.2,52.5){$y$}

\end{pspicture}

Let us next consider the problem

dy

dx
= x+ y, y(0) = 0. (5)

It is easy to check that y = ex − x− 1 is the unique solution to the problem (5). We now draw the
vector field of (5) and the solution curve2 on the grid R = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 5} in Figure
7.
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y

Figure 7: The vector field of (5).

We then go to the logistic equation, which is chosen to be a model for the dependence of the
population size P on time t in Biology:

dP

dt
= kP

(
1− P

M

)
, (6)

where k and M are constants, respectively various to selected species and environment. For
specification, we take, for instant, k = 0.5 and M = 100. The right hand side of (6) then
becomes f(t, P ) = 0.5P (1 − 0.01P ). In Figure 8, we draw the vector field of (6) on the grid
R = {(t, P ) : 0 ≤ t ≤ 10, 95 ≤ P ≤ 100} and the equilibrium solution curve P = 100. Furthermore,
with the initial condition P (0) = 95, the equation (6) has the unique solution P = 1900(e−0.5t+19)−1.
This solution curve is also given in Figure 8.

The previous differential equations are all of seperated variable or linear cases that can be solved
for closed-form solutions by some simple integration formulas. We will consider one more equation
of the non-linear case whose solution can only be approximated by numerical methods. The vector
field of such an equation is so useful and we will use the Runge-Kutta curves (of order 4) to add more
information about the behaviour of solution curve. Here, those Runge-Kutta curves are depicted by
the procedure \psplotDiffEqn, also updated from the package pstricks-add.

2We have used ch(1) + sh(1) for the declaration of e, natural base of logarithmic function.
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Figure 8: The vector field of (6) with k = 0.5 and M = 100.

The vector field of the non-linear differential equation

dy

dx
= y2 − xy + 1 (7)

will be depicted on the grid R = {(x, y) : − 3 ≤ x ≤ 3, −3 ≤ y ≤ 3} and the solutions of Cauchy
problems for (7), corresponding to initial conditions

(i) y(−3) = −1,

(ii) y(−2) = −3,

(iii) y(−3) = −0.4,

will be approximated by the method of Runge-Kutta, with the grid size h = 0.2. It is very easy to
recognize approximate curves, respective to (i), (ii) and (iii) in Figure 9 below.
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Figure 9: The vector field of (7) and the Runge-Kutta curves.
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3 Remarks on how to color arrows properly for a vector field

3.1 Description

In the \vecfld procedure, the command

\parametricplot[settings]{tmin}{tmax}{x(t)|y(t)} (8)

does the two works: drawing the whole oriented line segment and putting the endpoint right after
the vector. This blots out the pointy head of arrows and makes field vectors less sharp when being
seen closely. However, there is no problem with the procedure if we just want a monochrome vector
field. But, in case of using arrows with their various color shades, we should use an independent
procedure with options to draw a color arrow. For such a procedure, the command \psline could
be the best choice. We just call it with two argument points, which are extracted from the curve
produced by the command \parametricplot.

To modify the \vecfld procedure, from the above consideration, we might take the command
\curvepnodes in the package pst-node3 to extract points from a curve (x(t), y(t)) given in the
algebraic form. Because we only need the two ending points of the curve, we can use

\curvepnodes[algebraic,plotpoints=2]{0}{1}{x(t)|y(t)}{P}, (9)

where P is a name of the root of nodes and we just get the two nodes P0, P1 when executing this
command. Then, the corresponding vector is drawn by the command

\psline[linecolor=settings]{->}(P0)(P1) (10)

The command (8) may be replaced by the two ones (9) and (10), and we obtain the arrows whose
heads are now sharper.

The remaining problem is how to appropriately make settings in (10) to bring out a vector field.
Obviously, settings should be various color shades according to slope of vectors. In Subsection 2.1,
we know for the equation (2) that f(xi, yj) is right the slope of field vectors at grid points (xi, yj),
and we will divide these slopes into some number of scales, corresponding to the degree of color
shades. Here, we confine our interest to a continuous function f(x, y) in two independent variables
on the domain R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} and choose the scale of 10 degrees. This number
of degrees can be changed to any positive integer.

According to the input data from the differential equation (2), the set R and the grid points on
it and the value M = max{|f(xi, yj)| : 0 ≤ i ≤ bm/∆xc, 0 ≤ j ≤ bn/∆yc}, where m = b − a and
n = d− c, we can now define the degree of color shade for each arrow in our vector field. It should
be an integer nij such that nij = b10|f(xi, yj)|/Mc, that is

nijM ≤ 10|f(xi, yj)| < (nij + 1)M. (11)

For finding such an integer, in TEX codes, we need one \newcount for it and two \newdimen for
f(xi, yj) and intermediate values to be compared with |f(xi, yj)|. For more explanation, let us begin
with settings \newcount\intg (referring (ref.) to “integer”), \newdimen\slope (ref. to “slope”)
and \newdimen\interm (ref. to “intermediate values”). Then, the integer nij at stage (i, j) within
the two loops \multido can be defined by the recursive macro \fintg (ref. to “find the integer”)
as follows

3Package authors: Timothy Van Zandt (tvz@econ.insead.fr), Michael Sharpe (msharpe@euclid.ucsd.edu) and
Herbert Voß (hvoss@tug.org).
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\def\fintg{\interm=Mpt \interm=\intg\interm%

\ifdim\ifdim\slope<0pt -\fi\slope>\interm \advance\intg by 1\fintg\fi}

where M and \slope are holding the values M and f(xi, yj), respectively. Note that, before running
our macro, \slope should be multiplied by 10 with the assignment \slope=10\slope, as defined in
(11). Besides, by simulating the expression of f(x, y), the calculation of f(xi, yj) should be declared
with operations on \newcounts and \newdimens. Then, the integer nij , which is found at stage
(i, j), should take its degree, say k, from 0 to 10 by its value, suitably associated to the command
\psline[linecolor=red!case-k]{->}(P0)(P1). Here, we choose red for the main color (it can be
changed, of course), and case-k will be replaced with an appropriate percentage of red. Finally,
making such a color scale is local and relative, so we can use one more parameter in the procedure
to adjust color shades. The old procedure takes 6 parameters and the new one will take two more
parameters: one for a way of computing f(xi, yj) and the other for adjusting color shades.

Let us take some examples on how to compute f(xi, yj) by TEX codes or by the commands
from the package calculator4. For a simple polynomial f(x, y), computing f(xi, yj) by TEX codes
might be facile. Because \nx and \ny are respectively holding the values of xi and yj , we need the
two corresponding dimensions \newdimen\fx and \newdimen\fy to take these values. By assigning
\fx=\nx pt\fy=\ny pt, we compute f(\nx, \ny) and assign its value to \slope. The declaration
of calculations for some cases of f(x, y) is given in the following table.

f(x, y) TEX codes for computing f(\nx, \ny)

x+ y \advance\slope by \fx \advance\slope by \fy

1− xy \advance\slope by -\decimal\fx\fy \advance\slope by 1pt

y(3− y) \advance\slope by -\decimal\fy\fy \advance\slope by 3\fy

y2 − xy \advance\slope by \decimal\fy\fy \advance\slope by -\decimal\fx\fy

In the table, the command \decimal, which is quotative from [5] for producing decimal numbers
from dimensions, is put in the preamble using a definition as

\def\xch{\catcode‘\p=12 \catcode‘\t=12}\def\ych{\catcode‘\p=11 \catcode‘\t=11}

\xch \def\dec#1pt{#1}\ych \def\decimal#1{\expandafter\dec \the#1}

For a transcendental or rational function f(x, y), we should use the package calculator for
computing f(xi, yj). The following table shows how to perform the calculations.

f(x, y) The commands from the package calculator for computing f(\nx, \ny)

sin(y − x) \SUBTRACT{\ny}{\nx}{\sola}\SIN{\sola}{\solb}\slope=\solb pt

2xy/(1 + y2)
\SUMfunction{\ONEfunction}{\SQUAREfunction}{\Fncty}

\Fncty{\ny}{\soly}{\Dsoly}\DIVIDE{\Dsoly}{\soly}{\tempa}

\MULTIPLY{\nx}{\tempa}{\tempb}\slope=\tempb pt

From the old macro \vecfld, we will construct the new one \vecfldnew by adding up to the
former the two parameters as described above. According to the description of new parameters and
of known ones, the calling sequence of \vecfldnew may have the form of

\vecfldnew{\nx= x0 + ∆x}{\ny= y0 + ∆y}{nx}{ny}{`}{f(\nx, \ny)}{TEX codes}{na}
4Package author: Robert Fuster (rfuster@mat.upv.es).
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where na is an estimate value for M and can be adjusted to be greater or less than M . This flexible
mechanism might be to increase or decrease the degree of color shades. Finally, \intg and \slope

should be reset to zero at the end of each stage. Now, all materials to make the new macro are
ready, and a definition for it is suggested to be

\def\vecfldnew#1#2#3#4#5#6#7#8{%

\newcount\intg \newdimen\slope \newdimen\interm \newdimen\fx \newdimen\fy

\def\fintg{\interm=#8 \interm=\intg\interm%

\ifdim\ifdim\slope<0pt -\fi\slope>\interm \advance\intg by 1\fintg\fi}

\multido{#2}{#4}

{\multido{#1}{#3}

{\curvepnodes[algebraic,plotpoints=2]{0}{1}

{\nx+((#5)*t)*(1/sqrt(1+(#6)^2))|\ny+((#5)*t)*(1/sqrt(1+(#6)^2))*(#6)}{P}

#7\slope=10\slope \fintg \ifnum\intg>10\psline[linecolor=red]{->}(P0)(P1)

\else\ifnum\intg=0\psline[linecolor=red!5]{->}(P0)(P1)

\else\multiply\intg by 10\psline[linecolor=red!\the\intg]{->}(P0)(P1)\fi\fi

\intg=0\slope=0pt

}}}

If we predefine some scale of degrees, instead of the code \ifnum\intg>10 . . . \fi\fi, the struc-
ture \ifcase can be used as

\ifcase\intg

\psline[linecolor=red!5]{->}(P0)(P1)\or

\psline[linecolor=red!10]{->}(P0)(P1)\or
...

\psline[linecolor=red]{->}(P0)(P1)\fi

3.2 Examples

The first example is given with the two nas to see how different the color shades are between the
two cases. The left vector field in Figure 10 is made of the calling sequence

\vecfldnew{\nx=-2.00+0.3}{\ny=-2.00+0.3}{14}{14}{0.3}{(\nx)-2*(\ny)}

{\fy=\ny pt \fx=\nx pt \advance\slope by -2\fy \advance\slope by \fx}{9pt}

1

−1

−2

1−1−2

1

−1

−2

1−1−2

Figure 10: The vector fields of the equation y′ = x− 2y with na = 9pt (the left) and na = 5pt (the
right)
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In Figure 11, the vector fields of the equations y′ = y − x and y′ = x(2 − y) are respectively
drawn by the calling sequences

\vecfldnew{\nx=-3.00+0.4}{\ny=-3.00+0.4}{15}{15}{0.35}{(\ny)-(\nx)}

{\fy=\ny pt \fx=\nx pt \advance\slope by -\fx \advance\slope by \fy}{5pt}

and

\vecfldnew{\nx=-3.00+0.4}{\ny=-3.00+0.4}{15}{15}{0.35}{(\nx)*(2-(\ny))}

{\fy=\ny pt \fx=\nx pt \advance\slope by -\decimal\fx\fy

\advance\slope by 2\fx}{6pt}

1

2

−1

−2

−3

1 2−1−2−3

1

2

−1

−2

−3

1 2−1−2−3

Figure 11: The vector fields of the equation y′ = y − x (the left) and y′ = x(2− y) (the right).

Finally, we consider two more examples on vector fields of differential equations y′ = f(x, y)
containing trigonometric or rational functions on the right side. The calling sequences

\vecfldnew{\nx=-3.00+0.4}{\ny=-3.00+0.4}{15}{15}{0.35}{sin(\nx)*cos(\ny)}

{\SIN{\nx}{\tmpa}\COS{\ny}{\tmpb}\MULTIPLY{\tmpa}{\tmpb}{\tmpc}

\slope=\tmpc pt}{0.6pt}

and

\vecfldnew{\nx=-3.00+0.3}{\ny=-3.00+0.3}{20}{20}{0.3}{2*(\nx)*(\ny)/(1+(\ny)^2)}

{\SUMfunction{\ONEfunction}{\SQUAREfunction}{\Fncty}\Fncty{\ny}{\soly}{\Dsoly}

\DIVIDE{\Dsoly}{\soly}{\tempa}\MULTIPLY{\nx}{\tempa}{\tempb}

\slope=\tempb pt}{2.5pt}

respectively result in the vector field on the left and on the right in Figure 12.
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1

2

−1

−2

−3

1 2−1−2−3

1

2

−1

−2

−3

1 2−1−2−3

Figure 12: The vector fields of the equation y′ = sin(x) cos(y) (the left) and y′ = 2xy/(1 + y2) (the
right).
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