
The pstool package

Concept by Zebb Prime

Package by Will Robertson∗

v1.5d 2017/10/13

Abstract

This package defines the \psfragfig user command for including eps

files that use psfrag features in a pdfLATEX document. The command \pstool
can be used to define other commands with similar behaviour.

Contents

I User documentation 1
1 Introduction 1
2 Getting started 2
3 User commands 2
4 Package options 3
5 Miscellaneous details 7

II Implementation 10
6 Package information 10
7 Code 10
8 Macros 14
9 Command parsing 18
10 User commands 19
11 The figure processing 20
12 User commands 25

Part I

User documentation

1 Introduction

While directly producing pdf output with pdfLATEX is a great improvement in
many ways over the ‘old method’ of dvi→ps→pdf, it loses the ability to interface
with a generic PostScript workflow, used to great effect in numerous packages,
most notably PSTricks and psfrag.

∗wspr81@gmail.com

1

Until now, the best way to use these packages while running pdfLATEX has
been to use the pst-pdf package, which processes the entire document through a
filter, sending the relevant PostScript environments (only) through a single pass
of LATEX producing dvi→ps→pdf. The resulting pdf versions of each graphic
are then included into the pdfLATEX document in a subsequent compilation. The
auto-pst-pdf package provides a wrapper to perform all of this automatically.

The disadvantage with this method is that for every document compilation, ev-
ery graphic must be re-processed. The pstool package uses a different approach to
allow each graphic to be processed only as needed, speeding up and simplifying
the typesetting of the main document.

At present this package is designed solely as a replacement for pst-pdf in the
rôle of supporting the psfrag package (which it loads) in pdfLATEX.

More flexible usage to provide a complete replacement for pst-pdf (e.g.,
supporting the \begin{postscript} environment) is planned for a later release.
If you simply need to automatically convert plain eps files to pdf, I recommend
using the epstopdf package with the [update,prepend] package options (epstopdf
and pstool are compatible, but only if epstopdf is loaded first).

2 Getting started

Processing pdfLATEX documents with pstool requires the ‘shell escape’ feature
of pdfTEX to be activated. This allows execution of auxiliary commands from
within LATEX, a feature which is often disabled by default for security reasons.
If shell escape is not enabled, a warning will be issued in console output when
the package is loaded. Depending how you compile your LATEX document, shell
escape is enabled in different ways.1

Load the package as usual; no package options are required by default, but
there are a few useful options described later in section 4. Note that you do not
need to load psfrag separately. You also do not need to load graphicx separately,
but if you do so, ensure that you do not include driver information (such as
[pdftex]); this will play havoc with pstool’s automatic processing stage.

3 User commands

The low-level generic command provided by this package is

\pstool 〈suffix〉 [〈options〉] {〈filename〉} {〈input definitions〉}

It converts the graphic 〈filename〉.eps to 〈filename〉.pdf with psfrag macros in
〈filename〉.tex through a unique dvi→ps→pdf process for each graphic, using

1On the command line, use the -shell-escape switch. Otherwise, you’re on your own.

2

the preamble of the main document. The resulting graphic is then inserted into
the document, with 〈options〉 consisting of options for graphicx (e.g., angle, scale)
or for pstool (as described later in Section 4). Note that these optional arguments
take effect in the processing stage; if you change the 〈options〉, you must manually
re-process the figure. The third argument to \pstool allows arbitrary 〈input
definitions〉 (such as \psfrag directives) to be inserted before the figure as it is
processed.

By default, \pstool processes the graphic 〈filename〉.eps if 〈filename〉.pdf
does not already exist, or if the eps file is newer than the pdf. Additionally, if
one or more macro files are associated with the graphic, they are also checked
whether they have changed since the pdf was generated. The macro file(s) can be
defined per-graphic as for the \psfragfig command (see below), and/or globally
as for the [macro-file=...] package option described in Section 4.1.

The \pstool command can take an optional * or ! suffix to change its be-
haviour:

\pstool* Always process the figure;
\pstool! Never process the figure.

The behaviour in all three cases can be overridden globally by the package option
[process] as described in section 4.2.

3.1 The main \psfragfig command

It is useful to define higher-level commands based on \pstool for including
specific types of eps graphics that take advantage of psfrag. The pstool package
defines the following wrapper command \psfragfig, which also supports the *
or ! suffixes described above.

\psfragfig 〈suffix〉 [〈opts〉] {〈filename〉}

This catch-all macro is designed to support a wide range of graphics nam-
ing schemes. It inserts an eps file named either 〈filename〉-psfrag.eps or
〈filename〉.eps (in that order of preference), and uses psfrag definitions con-
tained within either 〈filename〉-psfrag.tex or 〈filename〉.tex. The \psfragfig
command can be used to insert figures produced by the Mathematica pack-
age MathPSfrag or the Matlab package matlabfrag. \psfragfig also accepts an
optional braced argument:

\psfragfig 〈suffix〉 [〈opts〉] {〈filename〉} {〈input definitions〉}

The command behaves as above, but also inserts the arbitrary code 〈input
definitions〉 into the processing stage; this additional code will usually be used to
define new or override existing psfrag commands.

3

4 Package options

Package options can be set or overridden at any time with \pstoolsetup{〈pstool
settings〉}. As mentioned in the previous section, these options also may be set in
the optional argument to \pstool and \psfragfig, in which case they apply to
that figure alone.

4.1 Macro file(s)

New in v1.5. As mentioned above, macro files can be used to store commands
for processing psfrag graphics. If they change, these macro files can trigger a
pre-compilation of the graphics. While usually the macro files will be defined
per-graphic (such as foo.eps having a foo-psfrag.tex file), pstool will also load
a ‘master’ macro file for each graphic if it exists.

[macro-file = ...]

The default is [macro-file=〈jobname 〉-pstool.tex]; if this file does not exist
then no macro file is loaded. That is, if your document is called thesis.tex,
the master macro file will be loaded in each graphic as thesis-pstool.tex, if it
exists.

This option is useful if you have macro definitions in a single file that are
used by multiple graphics. By updating the definitions file, the graphics in the
document will be automatically updated. (Note that this file can contain plain
LATEX defintions; the \psfrag commands can still be located in the per-graphic
.tex files.)

To suppress the loading of a master macro file in all cases, use an empty
argument for the package option, as in [macro-file={}].

4.2 Forcing/disabling graphics processing

While the suffixes * and ! can be used to force or disable (respectively) the
processing of each individual graphic, sometimes we want to do this on a global
level. The following package options override all pstool macros:

[process=auto] This is the default mode as described in the previous section,
in which graphics without suffixes are only (re-)processed if the eps file is
newer or the pdf file does not exist;

[process=all] Suffixes are ignored and all \pstool graphics are processed;
[process=none] Suffixes are ignored and no \pstool graphics are processed.2

2If pstool is loaded in a LATEX document in dvi mode, this is the option that is used since no
external processing is required for these graphics.

4

4.3 Cropping graphics

The default option [crop=preview] selects the preview package to crop graphics
to the appropriate size for each auxiliary process.

However, when an inserted label protrudes from the natural bounding box of
the figure, or when the original bounding box of the figure is wrong, the preview
package will not always produce a good result (with parts of the graphic trimmed
off the edge). A robust method to solve this problem is to use the pdfcrop program
instead.3 This can be activated in pstool with the [crop=pdfcrop] package option.

4.4 Temporary files & cleanup

Each figure that is processed spawns an auxiliary LATEX compilation through
dvi→ps→pdf. This process is named after the name of the figure with an ap-
pended string suffix; the default is [suffix={-pstool}]. Most of these suffixed
files are “temporary” in that they may be deleted once they are no longer needed.

As an example, if the figure is called ex.eps, the files that are created are
ex-pstool.tex, ex-pstool.dvi, The [cleanup] package option declares via
a list of filename suffixes which temporary files are to be deleted after processing.

The default is [cleanup={.tex, .dvi, .ps, .pdf, .log}]. To delete none of
the temporary files, choose [cleanup={}] (useful for debugging). Note that if
you want cross-referencing to work correctly for labels in figures, etc., then you
must not delete the .aux file (see Section 5.3).

4.5 Interaction mode of the auxiliary processes

Each graphic echoes the output of its auxiliary process to the console window;
unless you are trying to debug errors there is little interest in seeing this infor-
mation. The behaviour of these auxiliary processes are governed globally by the
[mode] package option, which takes the following parameters:

[mode=batch] hide almost all of the LATEX output (default);
[mode=nonstop] echo all LATEX output but continues right past any errors; and
[mode=errorstop] prompt for user input when errors are encountered.

These three package options correspond to the LATEX command line op-
tions -interaction=batchmode, =nonstopmode, and =errorstopmode, respec-
tively. When [mode=batch] is activated, then dvips is also run in ‘quiet mode’.

3pdfcrop requires a Perl installation under Windows, freely available from http://www.
activestate.com/Products/activeperl/index.plex

5

http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex

4.6 Auxiliary processing command line options

The command line options passed to each program of the auxiliary processing
can be changed with the following package options:

[latex-options = ...]
[dvips-options = ...]
[ps2pdf-options = ...] and,
[pdfcrop-options = ...] (if applicable).

For the most part these will be unnecessary, although passing the correct options
to ps2pdf can sometimes be a little obscure.4 For example, I used the following
for generating figures in my thesis:

ps2pdf-options={-dPDFSETTINGS=/prepress}
This forces the ‘base fourteen’ fonts to be embedded within the individual

figure files, without which some printers and pdf viewers have trouble with the
textual labels. In fact, from v1.3 of pstool, this option is now the default. Note
that subsequent calls to [ps2pdf-options=...] will override the pstool default;
use ps2pdf-options={} to erase ps2pdf’s defaults if necessary.

New in 1.5: recently, the behaviour of ps2pdf has changed under Windows.
In the past, options to ps2pdf needed to be quoted and use = to assign its options.
Something about this has now changed, and it appears the best way to set ps2pdf
options to use the # character instead. Therefore, pstool attempts to be clever
and replaces all instances of = within a ps2pdf option into # (under Windows
only). No quotes are added. Windows uses can therefore continue to use = to set
ps2pdf options and allow pstool to make the substitution; their documents will
still compile correctly on Mac OS X or Linux platforms.

4.7 Compression of bitmap data

In the conversion using ps2pdf, bitmap images are stored using either lossy
or lossless compression. The default behaviour for pstool is to force lossless
compression, because we believe that to be the most commonly desired use case
(you don’t want scientific graphics rendered with possible compression artifacts).
This behaviour can be adjusted using one of these options:5

[bitmap=auto] : Do whatever ps2pdf does by default, which seems to be to use
lossy compression most, if not all, of the time;

[bitmap=lossy] : Bitmap images are compressed like jpg; this is only really
suitable for photographs;

4The manual is here: http://pages.cs.wisc.edu/~ghost/doc/cvs/Ps2pdf.htm
5Technical details are given in section 5.5.

6

http://pages.cs.wisc.edu/~ghost/doc/cvs/Ps2pdf.htm

[bitmap=lossless] (default) : Bitmap images are compressed like png; this is
suitable for screenshots and generated data such as a surface plot within
Matlab.

These are just special cases of the [ps2pdf-options=...] option, but using
[bitmap=...] is much more convenient since the ps2pdf options to effect this
behaviour are quite verbose. Note that the auto and lossy outputs differ in
quality; lossy is lower quality than auto even when the latter uses a lossy
compression scheme. Adjusting the quality for these options is only possible with
relatively complex Ghostscript options.

5 Miscellaneous details

5.1 Conditional preamble or setup commands

It can be necessary to use a slightly different preamble for the main document
compared to the auxiliary file used to process each graphic individually. To have
preamble material be directed at only one or the other, use the \ifpdf command
(automatically loaded from the ifpdf package) as follows:

\ifpdf
% main preamble only

\else
% graphics preamble only

\fi
For example, when using beamer and showing navigation symbols on each

slide, you want to suppress these in the pstool-generated graphics (else they’ll
show up twice!). In this case, the preamble snippet would look something like:

\ifpdf\else
\setbeamertemplate{navigation symbols}{}

\fi
It would be possible to provide specific pstool commands or environments

to do this; let me know if the \ifpdf approach doesn’t work for you. For larger
amount of preamble material that should be omitted for each graphic, the
\EndPreamble command (see next) might also help.

5.2 The \EndPreamble command

The pstool package scans the beginning of the main document to insert its
preamble into each graphic that is converted. This feature hasn’t been well-
tested and there are certain cases in which it is known to fail. (For example, if
\begin{document} doesn’t appear on a line by itself.) If you need to indicate

7

the end of the preamble manually because this scanning has failed, place the
command \EndPreamble where-ever you’d like the preamble in the auxiliary
processing to end. This is also handy to bypass anything in the preamble that
will never be required for the figures but which will slow down or otherwise
conflict with the auxiliary processing.

5.3 Cross-referencing

New in v1.5: pstool now supports cross-referencing within graphics. That is, you
can use \ref and \cite, etc., within psfrag commands. In fact, references to page
numbers within an external figure should now resolve correctly; e.g., you can
use \thepage within a psfrag command. (I haven’t really tested, but this should
allow any package that writes information to the .aux file to work correctly.)

The implementation to achieve this is somewhat convoluted and difficult to
extend, but the user interface should work just as you would expect, mostly. The
main gotcha to keep in mind is that when cross-referencing is used, the graph-
ics will need multiple compilations to resolve all the cross-references properly.
Therefore, I recommend when setting such figures up in your document to use
the \psfragfig* command, which forces graphics compilation every time, and
remove the star only when you’re sure the graphic is now correct. Alternatively,
don’t worry about the resolving of the cross-references until the very end, and
then load the package with the [process=all] option.

5.4 A note on file paths

The pstool package tries to ensure that you can put image files in subdirec-
tories of the main document and the auxiliary processing will still function
correctly. In order to ensure this, the external pdflatex compilation uses the
-output-directory feature of pdfTEX. This command line option is definitely
supported on all platforms from TeX Live 2008 and MiKTeX 2.7 onwards, but
earlier distributions may not be supported.

One problem that pstool does not solve on its own is the inclusion of im-
ages that do not exist in subdirectories of the main document. For example,
\pstool{../Figures/myfig} can not process by default because pdfTEX usually
does not have permission to write into folders that are higher in the heirarchy
than the main document. This can be worked around presently in two different
ways: (although maybe only for Mac OS X and Linux)

1. Give pdflatex permission to write anywhere with the command:
openout_any=a pdflatex ...

2. Create a symbolic link in the working directory to a point higher in the
path: ln -s ../../PhD ./PhD, for example, and then refer to the graphics
through this symbolic link.

8

5.5 Technical details on ps2pdf’s bitmap options

The [bitmap=auto] pstool option does not set any ps2pdf options; use this if you
wish to set the following ps2pdf options manually.

For both [bitmap=lossless] (default) and [bitmap=lossy], the following
ps2pdf options are set:

-dAutoFilterColorImages=false
-dAutoFilterGrayImages=false

Then for lossless image encoding, the following options are set:

-dColorImageFilter=/FlateEncode
-dGrayImageFilter=/FlateEncode

Instead for lossly encoding, these are the options used:

-dColorImageFilter=/DCTEncode
-dGrayImageFilter=/DCTEncode

If there are more ps2pdf options that you frequently use, please let me know and
it may be a good idea to add pstool wrappers to make them more convenient.

9

Part II

Implementation

6 Package information

The most recent publicly released version of pstool is available at ctan: http://
tug.ctan.org/pkg/pstool/. Historical and developmental versions are available
at GitHub: http://github.com/wspr/pstool/. While general feedback via email
is welcomed, specific bugs or feature requests should be reported through the
issue tracker: http://github.com/wspr/pstool/issues.

6.1 Licence

This package is freely modifiable and distributable under the terms and condi-
tions of the LATEX Project Public Licence, version 1.3c or greater (your choice).6

This work consists of the files pstool.tex and the derived files pstool.sty,
pstool.ins, and pstool.pdf. This work is maintained by Will Robertson.

7 Code

Note that the following code is typeset in a non-verbatim manner; indentation is
controlled automatically by some hastily written macros (and will sometimes not
indent as might be done manually). When in doubt, consult the source directly!

TODO: convert this package into expl3 syntax (will save many lines of code).

3 \ProvidesPackage{1pstool1}[2017/10/13 v1.5d
4 Wrapper for processing PostScript/psfrag figures]

External packages:

7 \RequirePackage{1

8 catchfile,color,ifpdf,ifplatform,filemod,
9 graphicx,psfrag,shellesc,suffix,trimspaces,xkeyval,expl3
10 1}

Add an additional command before trimspaces.sty is updated formally:

13 \providecommand*{1\trim@multiple@spaces@in1}[1]{1 %
14 \let\trim@temp#1%

6http://www.latex-project.org/lppl.txt

10

http://tug.ctan.org/pkg/pstool/
http://tug.ctan.org/pkg/pstool/
http://github.com/wspr/pstool/
http://github.com/wspr/pstool/issues
http://www.latex-project.org/lppl.txt

15 \trim@spaces@in#1%
16 \ifx\trim@temp#1%
17 \else
18 \expandafter\trim@multiple@spaces@in\expandafter#1%
19 \fi
20 1}

7.1 Allocations

23 \expandafter\newif\csname if@pstool@pdfcrop@\endcsname
24 \expandafter\newif\csname if@pstool@verbose@\endcsname
25 \expandafter\newif\csname if@pstool@write@aux\endcsname

27 \newwrite\pstool@out
28 \newread\pstool@mainfile@ior
29 \newread\pstool@auxfile@ior

Macro used to store the name of the graphic’s macro file:

32 \let\pstool@tex\@empty

7.2 Package options

36 \define@choicekey*{1pstool.sty1}{1crop1}
37 [\@tempa\@tempb]{1preview,pdfcrop1}{1 %
38 \ifcase\@tempb\relax
39 \@pstool@pdfcrop@false
40 \or
41 \@pstool@pdfcrop@true
42 \or
43 \fi
44 1}

46 \define@choicekey*{1pstool.sty1}{1process1}
47 [\@tempa\pstool@process@choice]{1all,none,auto1}{}
48 \ExecuteOptionsX{1process=auto1}

50 \define@choicekey*{1pstool.sty1}{1mode1}

11

51 [\@tempa\@tempb]{1errorstop,nonstop,batch1}{1%
52 \ifnum\@tempb=2\relax
53 \@pstool@verbose@false
54 \else
55 \@pstool@verbose@true
56 \fi
57 \edef\pstool@mode{2\@tempa mode2}%
58 1}
59 \ExecuteOptionsX{1mode=batch1}

61 \DeclareOptionX{1cleanup1}{1 %
62 \edef\pstool@rm@files{2\zap@space #1 \@empty2}%
63 \@for\@ii:=\pstool@rm@files\do{2 %
64 \edef\@tempa{3\@ii3}%
65 \def\@tempb{3.aux3}%
66 \ifx\@tempa\@tempb
67 \PackageWarning{3pstool3}{3^^J\space\space%
68 You have requested that ".aux" files be deleted.^^J\space\space
69 Cross-referencing within pstool graphics therefore disabled.^^J%
70 This warning occurred3}
71 \fi
72 2}
73 1}
74 \ExecuteOptionsX{1cleanup={2.tex,.dvi,.ps,.pdf,.log2}1}

76 \DeclareOptionX{1suffix1}{1\def\pstool@suffix{2#12}1}
77 \ExecuteOptionsX{1suffix={2-pstool2}1}

There is an implicit \space after the bitmap options.

80 \define@choicekey*{1pstool.sty1}{1bitmap1}
81 [\@tempa\@tempb]{1auto,lossless,lossy1}{1%
82 \ifcase\@tempb
83 \let\pstool@bitmap@opts\@empty
84 \or
85 \def\pstool@bitmap@opts{2 %
86 -dAutoFilterColorImages=false
87 -dAutoFilterGrayImages=false
88 -dColorImageFilter=/FlateEncode
89 -dGrayImageFilter=/FlateEncode % space
90 2}
91 \or

12

92 \def\pstool@bitmap@opts{2 %
93 -dAutoFilterColorImages=false
94 -dAutoFilterGrayImages=false
95 -dColorImageFilter=/DCTEncode
96 -dGrayImageFilter=/DCTEncode % space
97 2}
98 \fi
99 1}
100 \ExecuteOptionsX{1bitmap=lossless1}

102 \DeclareOptionX{1latex-options1}{1\def\pstool@latex@opts{2#12}1}
103 \DeclareOptionX{1dvips-options1}{1\def\pstool@dvips@opts{2#12}1}
104 \DeclareOptionX{1ps2pdf-options1}{1\def\pstool@pspdf@opts{2#12}1}
105 \DeclareOptionX{1pdfcrop-options1}{1\def\pstool@pdfcrop@opts{2#12}1}

107 \ExecuteOptionsX{1

108 latex-options={},
109 dvips-options={},
110 ps2pdf-options={2-dPDFSETTINGS=/prepress2},
111 pdfcrop-options={}
112 1}

114 \DeclareOptionX{1macro-file1}{1 %
115 \IfFileExists{2#12}
116 {2\def\pstool@macrofile{3#13}2}
117 {2 %
118 \let\pstool@macrofile\@empty
119 \PackageError{3pstool3}{3^^J\space\space%
120 No file ‘#1’ found for "macro-file" package option.^^J
121 This warning occurred3}
122 2}
123 1}

Default:

126 \IfFileExists{1\jobname-pstool.tex1}
127 {1\edef\pstool@macrofile{2\jobname-pstool.tex2}1}
128 {1\let\pstool@macrofile\@empty1}

131 \ifpdf
132 \ifshellescape\else

13

133 \ExecuteOptionsX{1process=none1}
134 \PackageWarning{1pstool1}{1^^J\space\space%
135 Package option [process=none] activated^^J\space\space
136 because -shell-escape is not enabled.^^J%
137 This warning occurred1}
138 \fi
139 \fi

141 \ProcessOptionsX

A command to set pstool options after the package is loaded.

144 \newcommand\pstoolsetup{1%
145 \setkeys{2pstool.sty2}%
146 1}

8 Macros

Used to echo information to the console output. Can’t use \typeout because it’s
asynchronous with any \immediate\write18 processes (for some reason).

152 \def\pstool@echo#1{1%
153 \if@pstool@verbose@
154 \pstool@echo@verbose{2#12}%
155 \fi
156 1}

158 \def\pstool@echo@verbose#1{1%
159 \ShellEscape{2echo "#1"2}%
160 1}

162 \let\pstool@includegraphics\includegraphics

Command line abstractions between platforms:

165 \edef\pstool@cmdsep{1\ifwindows\string&\else\string;\fi\space1}
166 \edef\pstool@rm@cmd{1\ifwindows del \else rm – \fi1}
167 \edef\pstool@cp@cmd{1\ifwindows copy \else cp – \fi1}

14

Delete a file if it exists:
#1: path
#2: filename

172 \newcommand\pstool@rm[2]{1 %
173 \IfFileExists{2#1#22}{2 %
174 \ShellEscape{3 %
175 cd "#1"\pstool@cmdsep\pstool@rm@cmd "#2"
176 3}%
177 2}{}%
178 1}

Copy a file if it exists:
#1: path
#2: filename
#3: new filename

184 \newcommand\pstool@cp[3]{1 %
185 \IfFileExists{2#1#22}{2 %
186 \ShellEscape{3 %
187 cd "#1"\pstool@cmdsep\pstool@cp@cmd "#2" "#3"
188 3}%
189 2}{}%
190 1}

Generic function to execute a command on the shell and pass its exit status back
into LATEX. Any number of \pstool@exe statements can be made consecutively
followed by \pstool@endprocess, which also takes an argument. If any of the
shell calls failed, then the execution immediately skips to the end and expands
\pstool@error instead of the argument to \pstool@endprocess.
#1: ‘name’ of process #2: relative path where to execute the command #3: the
command itself

196 \newcommand\pstool@exe[3]{1 %
197 \pstool@echo{2^^J=== pstool: #1 ===2}%
198 \pstool@shellexecute{2#22}{2#32}%
199 \pstool@retrievestatus{2#22}%
200 \ifnum\pstool@status > \z@
201 \PackageWarning{2pstool2}{2 %
202 Execution failed during process:^^J\space\space
203 #3^^JThis warning occurred%
204 2}%
205 \expandafter\pstool@abort

15

206 \fi
207 1}

Edit this definition to print something else when graphic processing fails.

210 \def\pstool@error{1 %
211 \fbox{2%
212 \parbox{30.8\linewidth3}{3%
213 \color{4red4}\centering\ttfamily\scshape\small
214 An error occured processing graphic:\\
215 \upshape‘%
216 \detokenize\expandafter{4\pstool@path4}%
217 \detokenize\expandafter{4\pstool@filestub4}.eps%
218 ’\\\bigskip
219 \tiny
220 Check the log file for compilation errors:\\
221 ‘%
222 \detokenize\expandafter{4\pstool@path4}%
223 \detokenize\expandafter{4\pstool@filestub4}-pstool.log%
224 ’\\
225 3}%
226 2}%
227 1}

229 \def\pstool@abort#1\pstool@endprocess{1\pstool@error\@gobble1}
230 \let\pstool@endprocess\@firstofone

It is necessary while executing commands on the shell to write the exit status
to a temporary file to test for failures in processing. (If all versions of pdflatex
supported input pipes, things might be different.)

233 \def\pstool@shellexecute#1#2{1 %
234 \ShellEscape{2 %
235 cd "#1" \pstool@cmdsep
236 #2 \pstool@cmdsep
237 \ifwindows
238 call echo
239 \string^\@percentchar ERRORLEVEL\string^\@percentchar
240 \else
241 echo \detokenize{3$?3}
242 \fi
243 > \pstool@statusfile2}%

16

That’s the execution; now we need to flush the write buffer to the status file.
This ensures the file is written to disk properly (allowing it to be read by
\CatchFileEdef). Not necessary on Windows, whose file writing is evidently
more crude/immediate.

245 \ifwindows\else
246 \ShellEscape{2 %
247 touch #1\pstool@statusfile2}%
248 \fi
249 1}
250 \def\pstool@statusfile{1pstool-statusfile.txt1}

Read the exit status from the temporary file and delete it. #1 is the path Status
is recorded in \pstool@status.

255 \def\pstool@retrievestatus#1{1 %
256 \CatchFileEdef{2\pstool@status2}{2#1\pstool@statusfile2}{}%
257 \pstool@rm{2#12}{2\pstool@statusfile2}%
258 \ifx\pstool@status\pstool@statusfail
259 \PackageWarning{2pstool2}{2 %
260 Status of process unable to be determined:^^J #1^^J%
261 Trying to proceed... 2}%
262 \def\pstool@status{202}%
263 \fi
264 1}
265 \def\pstool@statusfail{1\par 1}% what results when TEX reads an empty file

Grab filename and filepath. Always need a relative path to a filename even if it’s
in the same directory.

268 \def\pstool@getpaths#1{1 %
269 \filename@parse{2#12}%
270 \ifx\filename@area\@empty
271 \def\pstool@path{2./2}%
272 \else
273 \let\pstool@path\filename@area
274 \fi
275 \let\pstool@filestub\filename@base
276 1}

The filename of the figure stripped of its path, if any: (analogous to standard
\jobname)

17

280 \def\pstool@jobname{1\pstool@filestub\pstool@suffix1}

9 Command parsing

User input is \pstool (with optional * or ! suffix) which turns into one of the
following three macros depending on the mode.

286 \newcommand\pstool@alwaysprocess[3][]{1 %
287 \pstool@getpaths{2#22}%
288 \pstool@process{2#12}{2#32}%
289 1}

291 \ifpdf
292 \newcommand\pstool@neverprocess[3][]{1 %
293 \pstool@includegraphics{2#22}%
294 1}
295 \else
296 \newcommand\pstool@neverprocess[3][]{1 %
297 \begingroup
298 \setkeys*{2pstool.sty2}{2#12}%
299 #3%
300 \expandafter\pstool@includegraphics\expandafter[\XKV@rm]{2#22}%
301 \endgroup
302 1}
303 \fi

Process the figure when:
– the PDF file doesn’t exist, or
– the EPS is newer than the PDF, or
– the TeX file is new than the PDF.

309 \ExplSyntaxOn
310 \newcommand\pstool@maybeprocess[3][]
311 {1

312 \pstool_if_should_process:nTF {2#22}
313 {2 \pstool@process{3#13}{3#33} 2}
314 {2 \pstool@includegraphics{3#23} 2}
315 1}

18

317 \prg_set_conditional:Nnn \pstool_if_should_process:n {1TF1}
318 {1

319 \pstool@getpaths{2#12}

321 \file_if_exist:nF {2 #1.pdf 2}
322 {2 \use_i_delimit_by_q_stop:nw \prg_return_true: 2}

324 \filemodCmp {2\pstool@path\pstool@filestub.eps2}
325 {2\pstool@path\pstool@filestub.pdf2}
326 {2 \use_i_delimit_by_q_stop:nw \prg_return_true: 2} {}

328 \exp_args:Nx \clist_map_inline:nn {2 \pstool@macrofile , \pstool@tex 2}
329 % empty entries are ignored in clist mappings, so no need to filter here
330 {2

331 \filemodCmp {3##13} {3\pstool@path\pstool@filestub.pdf3}
332 {3

333 \clist_map_break:n {4 \use_i_delimit_by_q_stop:nw \prg_return_true: 4}
334 3}
335 {}
336 2}

338 \filemodCmp {2\pstool@path\pstool@filestub.tex2}
339 {2\pstool@path\pstool@filestub.pdf2}
340 {2 \use_i_delimit_by_q_stop:nw \prg_return_true: 2} {}

342 \use_i_delimit_by_q_stop:nw \prg_return_false:
343 \q_stop
344 1}
345 \ExplSyntaxOff

10 User commands

Finally, define \pstool as appropriate for the mode: (all, none, auto, respec-
tively)

349 \ifpdf
350 \newcommand\pstool{1 %
351 \ifcase\pstool@process@choice\relax
352 \expandafter \pstool@alwaysprocess \or
353 \expandafter \pstool@neverprocess \or

19

354 \expandafter \pstool@maybeprocess
355 \fi
356 1}
357 \WithSuffix\def\pstool!{1 %
358 \ifcase\pstool@process@choice\relax
359 \expandafter \pstool@alwaysprocess \or
360 \expandafter \pstool@neverprocess \or
361 \expandafter \pstool@neverprocess
362 \fi
363 1}
364 \WithSuffix\def\pstool*{1 %
365 \ifcase\pstool@process@choice\relax
366 \expandafter \pstool@alwaysprocess \or
367 \expandafter \pstool@neverprocess \or
368 \expandafter \pstool@alwaysprocess
369 \fi
370 1}
371 \else
372 \let\pstool\pstool@neverprocess
373 \WithSuffix\def\pstool!{1\pstool@neverprocess1}
374 \WithSuffix\def\pstool*{1\pstool@neverprocess1}
375 \fi

11 The figure processing

And this is the main macro.

380 \newcommand\pstool@process[2]{1 %
381 \begingroup
382 \setkeys*{2pstool.sty2}{2#12}%
383 \pstool@echo@verbose{2 %
384 ^^J^^J=== pstool: begin processing ===2}%
385 \pstool@write@processfile{2#12}
386 {2\pstool@path\pstool@filestub2}{2#22}%
387 \pstool@exe{2auxiliary process: \pstool@filestub\space2}
388 {2./2}{2latex
389 -shell-escape
390 -output-format=dvi
391 -output-directory="\pstool@path"

20

392 -interaction=\pstool@mode\space
393 \pstool@latex@opts\space
394 "\pstool@jobname.tex"2}%

Execute dvips in quiet mode if latex is not run in (non/error)stop mode:

396 \pstool@exe{2dvips2}{2\pstool@path2}{2%
397 dvips \if@pstool@verbose@\else -q \fi -Ppdf
398 \pstool@dvips@opts\space "\pstool@jobname.dvi"2}%

Pre-process ps2pdf options for Windows (sigh):

400 \pstool@pspdf@opts@preprocess \pstool@bitmap@opts
401 \pstool@pspdf@opts@preprocess \pstool@pspdf@opts

Generate the PDF:

403 \if@pstool@pdfcrop@
404 \pstool@exe{2ps2pdf2}{2\pstool@path2}{2 %
405 ps2pdf \pstool@bitmap@opts \pstool@pspdf@opts \space
406 "\pstool@jobname.ps" "\pstool@jobname.pdf"2}%
407 \pstool@exe{2pdfcrop2}{2\pstool@path2}{2 %
408 pdfcrop \pstool@pdfcrop@opts\space
409 "\pstool@jobname.pdf" "\pstool@filestub.pdf"2}%
410 \else
411 \pstool@exe{2ps2pdf2}{2\pstool@path2}{2 %
412 ps2pdf \pstool@bitmap@opts \pstool@pspdf@opts \space
413 "\pstool@jobname.ps" "\pstool@filestub.pdf"2}%
414 \fi

Finish up: (implies success!)

416 \pstool@endprocess{2 %
417 \pstool@includegraphics{3\pstool@path\pstool@filestub3}%

Emulate \include (sort of) and have the main document load the auxiliary aux
file, in a manner of speaking:

419 \pstool@write@aux
420 \pstool@cleanup
421 2}%
422 \pstool@echo@verbose{2^^J=== pstool: end processing ===^^J2}%
423 \endgroup
424 1}

426 \newcommand\pstool@write@aux{1 %
427 \endlinechar=-1\relax
428 \@tempswatrue

21

429 \@pstool@write@auxfalse
430 \in@false
431 \openin \pstool@auxfile@ior "\pstool@path\pstool@jobname.aux"\relax
432 \@whilesw \if@tempswa \fi {2 %
433 \readline \pstool@auxfile@ior to \@tempa
434 \ifeof \pstool@auxfile@ior
435 \@tempswafalse
436 \else
437 \edef\@tempb{3\detokenize\expandafter{4\pstool@auxmarker@text/4}3}%
438 \ifx\@tempa\@tempb
439 \@tempswafalse
440 \else
441 \if@pstool@write@aux
442 \immediate\write\@mainaux{3\unexpanded\expandafter{4\@tempa4}3}%
443 \fi
444 \edef\@tempb{3\detokenize\expandafter{4\pstool@auxmarker@text*4}3}%
445 \ifx\@tempa\@tempb
446 \@pstool@write@auxtrue
447 \fi
448 \fi
449 \fi
450 2}%
451 \closein \pstool@auxfile@ior
452 1}

454 \ExplSyntaxOn
455 \cs_new:Npn \pstool@pspdf@opts@preprocess #1
456 {1

457 \ifwindows
458 \exp_args:NNnx \tl_replace_all:Nnn #1 {2=2} {2 \cs_to_str:N \# 2}
459 \fi
460 1}
461 \ExplSyntaxOff

For what’s coming next.

464 \edef\@begindocument@str{1\detokenize\expandafter{2\string\begin{3document3}2}1}
465 \edef\@endpreamble@str{1\string\EndPreamble1}
466 \def\in@first#1#2{1\in@{2NEVEROCCUR!#12}{2NEVEROCCUR!#22}1}

We need to cache the aux file, so here goes. This is because the aux file is cleared
for writing after \begindocument.

22

470 \ifpdf
471 \pstool@rm{}{1\jobname.oldaux1}
472 \pstool@cp{}{1\jobname.aux1}{1\jobname.oldaux1}
473 \AtEndDocument{1\pstool@rm{}{2\jobname.oldaux2}1}
474 \fi

476 \edef\pstool@auxmarker#1{1\string\@percentchar\space <#1PSTOOLLABELS>1}
477 \edef\pstool@auxmarker@text#1{1\@percentchar <#1PSTOOLLABELS>1}

The file that is written for processing is set up to read the preamble of the original
document and set the graphic on an empty page (cropping to size is done either
here with preview or later with pdfcrop).

480 \def\pstool@write@processfile#1#2#3{1 %
481 \immediate\openout\pstool@out #2\pstool@suffix.tex\relax

Put down a label so we can pass through the current page number:

483 \edef\pstool@label{2pstool-\pstool@path\pstool@filestub2}%
484 \protected@write\@auxout{}%
485 {2\string\newlabel{3\pstool@label3}{3{4\@currentlabel4}{4\the\c@page4}3}2}%

And copy the main file’s bbl file too: (necessary only for biblatex but do it always)

487 \pstool@rm{2\pstool@path2}{2\pstool@jobname.bbl2}%
488 \pstool@cp{}{2\jobname.bbl2}{2\pstool@path\pstool@jobname.bbl2}%

Scan the main document line by line; print preamble into auxiliary file until the
document begins or \EndPreamble is found:

490 \endlinechar=-1\relax
491 \def\@tempa{2\pdfoutput=0\relax2}%
492 \in@false
493 \openin\pstool@mainfile@ior "\jobname"\relax
494 \@whilesw \unless\ifin@ \fi {2 %
495 \immediate\write\pstool@out{3\unexpanded\expandafter{4\@tempa4}3}%
496 \readline\pstool@mainfile@ior to\@tempa
497 \let\@tempc\@tempa
498 \trim@multiple@spaces@in\@tempa
499 \expandafter\expandafter\expandafter\in@first
500 \expandafter\expandafter\expandafter{3 %
501 \expandafter\@begindocument@str
502 \expandafter3}%
503 \expandafter{3\@tempa3}%
504 \unless\ifin@

23

505 \expandafter\expandafter\expandafter\in@first
506 \expandafter\expandafter\expandafter{3%
507 \expandafter\@endpreamble@str
508 \expandafter3}%
509 \expandafter{3\@tempa3}%
510 \fi
511 2}
512 \closein\pstool@mainfile@ior

Now the preamble of the process file:

514 \immediate\write\pstool@out{2 %
515 \if@pstool@pdfcrop@\else
516 \noexpand\usepackage[active,tightpage]{3preview3}^^J%
517 \fi
518 \unexpanded{3%
519 \pagestyle{4empty4}^^J^^J% remove the page number
520 3}%
521 \noexpand\makeatletter^^J%

Sort out the page numbering here. Force the pagestyle locally to output an
integer so it can be written to the external file inside a \setcounter command.

524 \expandafter\ifx\csname r@\pstool@label\endcsname\relax\else
525 \def\noexpand\thepage{3\unexpanded\expandafter{4\thepage4}3}^^J%
526 \noexpand\setcounter{3page3}{3 %
527 \expandafter\expandafter\expandafter
528 \@secondoftwo\csname r@\pstool@label\endcsname
529 3}^^J%
530 \fi

And the document body to place the graphic on a page of its own:

532 \noexpand\@input{3\jobname.oldaux3}^^J%
533 \noexpand\makeatother^^J^^J%
534 \noexpand\begin{3document3}^^J%
535 \noexpand\makeatletter^^J%
536 \unexpanded{3\immediate\write\@mainaux3}{3\pstool@auxmarker*3}^^J%
537 \noexpand\makeatother^^J^^J%
538 \unexpanded{3 %
539 \centering\null\vfill^^J%
540 3}%
541 ^^J%
542 \if@pstool@pdfcrop@\else
543 \noexpand\begin{3preview3}^^J%
544 \fi

24

545 \unexpanded{3#3^^J3}
546 \noexpand\includegraphics
547 [\unexpanded\expandafter{3\XKV@rm3}]
548 {3\pstool@filestub3}^^J%
549 \if@pstool@pdfcrop@\else
550 \noexpand\end{3preview3}^^J%
551 \fi
552 ^^J%
553 \unexpanded{3\vfill^^J^^J\makeatletter^^J\immediate\write\@mainaux3}{3\pstool@auxmarker/3}^^J%
554 \unexpanded{3\makeatother^^J\end{4document4}3}^^J%
555 2}%
556 \immediate\closeout\pstool@out
557 1}

559 \def\pstool@cleanup{1 %
560 \@for\@ii:=\pstool@rm@files\do{2 %
561 \pstool@rm{3\pstool@path3}{3\pstool@jobname\@ii3}%
562 2}%
563 1}

565 \providecommand\EndPreamble{}

12 User commands

These all support the suffixes * and !, so each user command is defined as a
wrapper to \pstool.

For EPS figures with psfrag:

571 \newcommand\psfragfig[2][]{1\pstool@psfragfig{2#12}{2#22}{}1}
572 \WithSuffix\newcommand\psfragfig*[2][]{1 %
573 \pstool@psfragfig{2#12}{2#22}{2*2}%
574 1}
575 \WithSuffix\newcommand\psfragfig![2][]{1 %
576 \pstool@psfragfig{2#12}{2#22}{2!2}%
577 1}

Parse optional input definitions:

580 \newcommand\pstool@psfragfig[3]{1%

25

581 \@ifnextchar\bgroup{2 %
582 \pstool@@psfragfig{3#13}{3#23}{3#33}%
583 2}{2%
584 \pstool@@psfragfig{3#13}{3#23}{3#33}{}%
585 2}%
586 1}

Search for both ‘filename’ and ‘filename’-psfrag inputs.
#1: possible graphicx options
#2: graphic name (possibly with path)
#3: \pstool suffix (i.e., ! or * or ‘empty’)
#4: possible psfrag (or other) macros

593 \newcommand\pstool@@psfragfig[4]{1 %
594 % Find the .eps file to use.
595 \IfFileExists{2#2-psfrag.eps2}{2 %
596 \edef\pstool@eps{3#2-psfrag3}%
597 \IfFileExists{3#2.eps3}{3 %
598 \PackageWarning{4pstool4}{4 %
599 Graphic "#2.eps" exists but "#2-psfrag.eps" is being used%
600 4}%
601 3}{}%
602 2}{2 %
603 \IfFileExists{3#2.eps3}{3 %
604 \edef\pstool@eps{4#24}%
605 3}{3%
606 \PackageError{4pstool4}{4 %
607 No graphic "#2.eps" or "#2-psfrag.eps" found%
608 4}{4 %
609 Check the path and whether the file exists.%
610 4}%
611 3}%
612 2}%
613 % Find the .tex file to use.
614 \IfFileExists{2#2-psfrag.tex2}{2 %
615 \edef\pstool@tex{3#2-psfrag.tex3}%
616 \IfFileExists{3#2.tex3}{3%
617 \PackageWarning{4pstool4}{4 %
618 File "#2.tex" exists that may contain macros
619 for "\pstool@eps.eps"^^J%
620 But file "#2-psfrag.tex" is being used instead.%
621 4}%

26

622 3}{}%
623 2}{2%
624 \IfFileExists{3#2.tex3}{3 %
625 \edef\pstool@tex{4#2.tex4}%
626 3}{3 %
627 \PackageWarning{4pstool4}{4 %
628 No file "#2.tex" or "#2-psfrag.tex" can be found
629 that may contain macros for "\pstool@eps.eps"%
630 4}%
631 3}%
632 2}%
633 % Perform the actual processing step, skipping it entirely if an EPS file hasn’t been found.
634 % (In which case an error would have been called above; this is to clean up nicely in scrollmode, for example.)
635 \ifx\pstool@eps\@undefined\else
636 \edef\@tempa{2 %
637 \unexpanded{3\pstool#3[#1]3}{3\pstool@eps3}{3 %
638 \ifx\pstool@macrofile\@empty\else
639 \unexpanded{4\csname @input\endcsname4}{4\pstool@macrofile4}%
640 \fi
641 \ifx\pstool@tex\@empty\else
642 \unexpanded{4\csname @input\endcsname4}{4\pstool@tex4}%
643 \fi
644 \unexpanded{4#44}%
645 3}%
646 2}\@tempa
647 \fi
648 1}

27

	I User documentation
	Introduction
	Getting started
	User commands
	Package options
	Miscellaneous details

	II Implementation
	Package information
	Code
	Macros
	Command parsing
	User commands
	The figure processing
	User commands

