
The pstool package

Concept by Zebb Prime

Package by Will Robertson∗

v1.0 2008/08/31

Abstract

This package defines the \psfragfig user command for including
eps files that use psfrag features in a pdfLATEX document. The command
\pstool can be used to define other commands with similar behaviour.

Contents

I User documentation 1
1 Introduction 1
2 Getting started 2
3 Package options 3
4 Miscellaneous details 5
5 Package information 6

II Implementation 7
6 Macros 8
7 Command parsing 12
8 User commands 12
9 The figure processing 13
10 User commands 15

Part I

User documentation

1 Introduction

While directly producing pdf output with pdfLATEX is a great improvement
in many ways over the ‘old method’ of dvi→ps→pdf, it loses the ability to
interface with a generic PostScript workflow, used to great effect in numerous
packages, most notably PSTricks and psfrag.

Until now, the best way to use these packages while running pdfLATEX has

∗wspr81@gmail.com

1

been to use the pst-pdf package, which processes the entire document through a
filter, sending the relevant PostScript environments (only) through a single pass
of LATEX producing dvi→ps→pdf. The resulting pdf versions of each graphic
are then included into the pdfLATEX document in the next compilation. The
auto-pst-pdf package provides a wrapper to perform all of this automatically.

The disadvantage with this method is that for every document compila-
tion, every graphic must be re-processed. The pstool package uses a different
approach to allow each graphic to be processed only as-needed, speeding up
and simplifying the typesetting of the main document.

At present this package is designed solely as a replacement for pst-pdf in
the rôle of supporting the psfrag package (which it loads) in pdfLATEX.

More flexible usage to provide a complete replacement for pst-pdf (e.g.,
supporting the \begin{postscript} environment) is planned for a later re-
lease. If you simply need to automatically convert plain eps files to pdf, I
recommend using the epstopdf package with the [update,prepend] package
options (epstopdf and pstool should be completely compatible).

2 Getting started

Load the package as usual; no package options are required by default, but
there are a few useful options described later in section 3. Note that you do
not need to load psfrag separately.

The generic command provided by this package is

\pstool [〈graphicx options〉] {〈filename〉} {〈input definitions〉}

It converts the graphic 〈filename〉.eps to 〈filename〉.pdf through a unique
dvi→ps→pdf process for each graphic, using the preamble of the main docu-
ment. The resulting graphic is then inserted into the document, with optional
〈graphicx options〉. The third argument to \pstool allows arbitrary 〈input def-
initions〉 (such as \psfrag directives) to be inserted before the figure as it is
processed.

The command \pstool can take an optional * or ! suffix to change the
behaviour of the command:

\pstool Process the graphic 〈filename〉.eps if 〈filename〉.pdf does not already
exist, or if the eps file is newer than the pdf;

\pstool* Always process this figure; and,

\pstool! Never process this figure.

The behaviour in these three cases can be overridden globally by the package
option [process] as described in section 3.1.

2

It is useful to define higher-level commands based on \pstool for including
specific types of eps graphics that take advantage of psfrag. As an example,
this package defines the following command, which also supports the * or !
suffixes described above.

\psfragfig[〈opts〉]{〈filename〉} This is the catch-all macro to support a wide
range of graphics naming schemes. It inserts an eps file named either
〈filename〉-psfrag.eps or 〈filename〉.eps (in that order of preference), and
uses psfrag definitions contained within either 〈filename〉-psfrag.tex or
〈filename〉.tex.

This command can be used to insert figures produced by the Mathemat-
ica package MathPSfrag or the Matlab package matlabfrag. \psfragfig
also accepts an optional braced argument as shown next.

\psfragfig[〈opts〉]{〈filename〉}{〈input definitions〉} As above, but inserts the
arbitrary code 〈input definitions〉, which will usually be used to define
new or override existing psfrag commands.

3 Package options

3.1 Forcing/disabling graphics processing

While the suffixes * and ! can be used to force or disable (respectively) the
processing of each individual graphic, sometimes we want to do this on a
global level. The following package options override all \pstool (and related)
macros:

[process=auto] This is the default mode as described in the previous section,
in which graphics with suffixes are only (re-)processed if the eps file is
newer or the pdf file does not exist;

[process=all] Suffixes are ignored and all \pstool graphics are processed;

[process=none] Suffixes are ignored and no \pstool graphics are processed.1

Also note that it would be nice to detect the age of files other than the eps

and pdf graphics in order to affect the processing decisions. This is planned
for a possible future release.

3.2 Cropping graphics

The default option [crop=preview] selects the preview package to crop graphics
to the appropriate size for each auxiliary process.

1If pstool is loaded in a LATEX document in dvi mode, this is the option that is used since no
external processing is required for these graphics.

3

However, when an inserted label protrudes from the natural bounding
box of the figure, or when the original bounding box of the figure is wrong,
the preview package will not always produce a good result (with parts of the
graphic trimmed off the edge). A robust method to solve this problem is to
use the pdfcrop program instead.2 This can be activated in pstool with the
[crop=pdfcrop] package option.

In the future I plan to also support epstool for doing the same thing.

3.3 Temporary files & cleanup

Each figure that is processed spawns an auxiliary LATEX compilation through
dvi→ps→pdf. This process is named after the name of the figure with an ap-
pended string suffix; the default is [suffix={-pstool}]. All of these suffixed
files are “temporary” in that they may be deleted once they are no longer
needed.

As an example, if the figure is called ex.eps, the files that are created are
ex-pstool.tex, ex-pstool.dvi, The [cleanup] package option declares
via a list of filename suffixes which temporary files are to be deleted after
processing.

The default is [cleanup={.tex, .dvi, .ps, .pdf, .log, .aux}]. To delete
none of the temporary files, choose [cleanup={}] (useful for debugging).

3.4 Interaction mode of the auxiliary processes

Each graphic echoes the output of its auxiliary process to the console window;
unless you are trying to debug errors there is little interest in seeing this
information. The behaviour of these auxiliary processes are governed globally
by the [mode] package option, which takes the following parameters:

[mode=batch] hide almost all of the LATEX output (default);

[mode=nonstop] echo all LATEX output but continues right past any errors; and

[mode=errorstop] prompt for user input when errors in the source are en-
countered.

These three package options correspond to the LATEX command line options
-interaction=batchmode, =nonstopmode, and =errorstopmode, respectively.
When [mode=batch] is activated, then dvips is also run in ‘quiet mode’.

2pdfcrop requires a Perl installation under Windows, freely available from http://www.
activestate.com/Products/activeperl/index.plex

4

http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex

4 Miscellaneous details

4.1 The \EndPreamble command

At present, pstool scans the preamble of the main document by redefining
\begin{document}, but this is rather fragile because many classes and packages
do their own redefining which overwrites pstool’s attempt. In this case, place
the command

\EndPreamble
where-ever you’d like the preamble in the auxiliary processing to end. This is
also handy to bypass anything in the preamble that will never be required for
the figures but which will slow down or otherwise conflict with the auxiliary
processing.

4.2 Cross-reference limitations

The initial release of this package does not support cross-references within
the psfrag labels of the included graphics. (If, say, you wish to refer to an
equation number within a figure.) A future release of pstool will hopefully lift
this limitation.

4.3 A note on file paths

pstool does its best to ensure that you can put image files where-ever you like
and the auxiliary processing will still function correctly. In order to ensure
this, the external pdflatex compilation uses the -output-directory feature of
pdfTEX. This command line option is definitely supported on all platforms in
TeX Live 2008 and MiKTeX 2.7, but earlier distributions may not be supported.

One problem that pstool does not (currently) solve on its own is the in-
clusion of images that do not exist in subdirectories of the main document.
For example, \pstool{../Figures/myfig} will not process by default because
pdfTEX usually does not have permission to write into folders that are higher
in the heirarchy than the main document. This can be worked around presently
in two different ways: (although maybe only for Mac OS X and Linux)

1. Give pdflatex permission to write anywhere with the command:
openout_any=a pdflatex ...

2. Create a symbolic link in the working directory to a point higher in
the path: ln -s ../../PhD ./PhD, for example, and then refer to the
graphics through this symbolic link.

I hope to directly solve this problem in the future by using a caching folder for
the auxiliary processing in such cases.

5

5 Package information

The most recent publicly released version of pstool is available at CTAN:
http://tug.ctan.org/pkg/pstool/

Historical and developmental versions are available at GitHub:
http://github.com/wspr/pstool/

While general feedback at wspr81@gmail.com is welcomed, specific bugs should
be reported through the bug tracker at FogBugz: https://wspr.fogbugz.com/
(click ‘tasks: Enter a New Case’).

5.1 Licence

This package is freely modifiable and distributable under the terms and condi-
tions of the LATEX Project Public Licence, version 1.3c or greater (your choice).
The latest version of this license is available at: http://www.latex-project.
org/lppl.txt. This work is maintained by Will Robertson.

6

http://tug.ctan.org/pkg/pstool/
http://github.com/wspr/pstool/
wspr81@gmail.com
https://wspr.fogbugz.com/
http://www.latex-project.org/lppl.txt
http://www.latex-project.org/lppl.txt

Part II

Implementation
LaTeX2e file ‘pstool.sty’ generated by the ‘filecontents’ environment from
source ‘pstool’ on 2008/08/31.

1 \ProvidesPackage{pstool}[2008/08/31 v1.0
2 Wrapper for processing PostScript/psfrag figures]

External packages

3 \RequirePackage{%
4

catchfile,color,ifpdf,ifplatform,graphicx,psfrag,suffix,xkeyval}
5 \RequirePackage{inversepath}[2008/07/31 v0.2]

Allocations

6 \newif\if@pstool@always@\if@pstool@always@
7 \newif\if@pstool@never@\if@pstool@never@
8 \newif\if@pstool@pdfcrop@\if@pstool@pdfcrop@
9 \newif\if@pstool@verbose@\if@pstool@verbose@

10 \newwrite\pstool@out\pstool@out

These are cute

11 \providecommand\OnlyIfFileExists[2]{\IfFileExists{#1}{#2}{}}\OnlyIfFileExists
12 \providecommand\NotIfFileExists[2]{\IfFileExists{#1}{}{#2}}\NotIfFileExists

5.2 Package options

13 \define@choicekey*{pstool.sty}{crop}[\@tempa\@tempb]{%crop
preview,pdfcrop}{%

14 \ifcase\@tempb\relax
15 \@pstool@pdfcrop@false
16 \or
17 \@pstool@pdfcrop@true
18 \or
19 \fi
20 }

21 \define@choicekey*{pstool.sty}{process}[\@tempa\@tempb]{%

7

process all,none,auto}{%
22 \ifcase\@tempb\relax
23 \@pstool@always@true
24 \or
25 \@pstool@never@true
26 \or
27 \fi
28 }

29 \define@choicekey*{pstool.sty}{mode}mode
30 [\@tempa\@tempb]{errorstop,nonstop,batch}{%
31 \ifnum\@tempb=2\relax
32 \@pstool@verbose@false
33 \else
34 \@pstool@verbose@true
35 \fi
36 \edef\pstool@mode{\@tempa mode}%
37 }
38 \ExecuteOptionsX{mode=batch}

39 \DeclareOptionX{cleanup}{\def\pstool@rm@files{#1}}cleanup
\pstool@rm@files 40 \ExecuteOptionsX{cleanup={.tex,.dvi,.ps,.pdf,.log,.aux}}

41 \DeclareOptionX{suffix}{\def\pstool@suffix{#1}}suffix
\pstool@suffix 42 \ExecuteOptionsX{suffix={-pstool}}

43 \ifshellescape\else
44 \ExecuteOptionsX{process=none}
45 \PackageWarning{pstool}{^^J\space\space%
46 Package option [process=none] activated^^J\space\space
47 because -shell-escape is not enabled.^^J%
48 This warning occurred}
49 \fi

50 \ProcessOptionsX

6 Macros

Used to echo information to the console output. Can’t use ecause it’s asyn-
chronous with any \immediate\write18 processes (for some reason).

51 \def\pstool@echo#1{%

8

\pstool@echo
52 \if@pstool@verbose@
53 \pstool@echo@verbose{#1}%
54 \fi}

55 \def\pstool@echo@verbose#1{%\pstool@echo@verbose
56 \immediate\write18{echo "#1"}%
57 }

58 \let\pstool@includegraphics\includegraphics

Command line abstractions between platforms:

59 \edef\pstool@cmdsep{\ifwindows\string&\else\string;\fi\space}
60 \edef\pstool@rm@cmd{\ifwindows del \else rm -- \fi}

Delete a file if it exists (only the filename is supplied and the path is inferred):

61 \newcommand\pstool@rm[2]{%\pstool@rm
62 \OnlyIfFileExists{#1#2}{%
63 \immediate\write18{%
64 cd "#1"\pstool@cmdsep\pstool@rm@cmd "#2"}}%
65 }

Generic function to execute a command on the shell and pass its exit status back
into LATEX. Any number of \pstool@exe statements can be made consecutively
followed by \pstool@endprocess, which also takes an argument. If any of the
shell calls failed, then the execution immediately skips to the end and expands
\pstool@error instead of the argument to \pstool@endprocess.
#1: ‘name’ of process
#2: relative path where to execute the command
#3: the command itself

66 \newcommand\pstool@exe[3]{%\pstool@exe
67 \pstool@echo{^^J=== pstool: #1 ===}%
68 \pstool@shellexecute{#2}{#3}%
69 \pstool@retrievestatus{#2}%
70 \ifnum\pstool@status > \z@
71 \PackageWarning{pstool}{Execution failed during

process:^^J\space\space#3^^JThis warning occurred}%
72 \expandafter\pstool@abort
73 \fi}

Edit this definition to print something else when graphic processing fails.

74 \def\pstool@error{\fbox{\parbox{0.8\linewidth}{\color{red}%

9

\pstool@error \raggedright\ttfamily\scshape\small
75 An error occured processing graphic \upshape‘\ip@directpath%

\ip@lastelement’}}}

76 \def\pstool@abort#1\pstool@endprocess{\pstool@error\@gobble}\pstool@abort
77 \let\pstool@endprocess\@firstofone

It is necessary while executing commands on the shell to write the exit status
to a temporary file to test for failures in processing. (If all versions of pdflatex
supported input pipes, things might be different.)

78 \def\pstool@shellexecute#1#2{%\pstool@shellexecute
79 \immediate\write18{%
80 cd "#1" \pstool@cmdsep
81 #2 \pstool@cmdsep
82 \ifwindows
83 call echo
84 \string^\@percentchar ERRORLEVEL\string^\@percentchar
85 \else
86 echo \detokenize{$?}
87 \fi
88 > \pstool@statusfile}%

That’s the execution; now we need to flush the write buffer to the status file.
This ensures the file is written to disk properly (allowing it to be read by
\CatchFileEdef). Not necessary on Windows, whose file writing is evidently
more crude/immediate.

89 \ifwindows\else
90 \immediate\write18{%
91 touch #1\pstool@statusfile}%
92 \fi}
93 \def\pstool@statusfile{pstool-statusfile.txt}\pstool@statusfile

Read the exit status from the temporary file and delete it.
#1 is the path
Status is recorded in \pstool@status.

94 \def\pstool@retrievestatus#1{%\pstool@retrievestatus
95 \CatchFileEdef{\pstool@status}{#1\pstool@statusfile}{}%
96 \pstool@rm{#1}{\pstool@statusfile}%
97 \ifx\pstool@status\pstool@statusfail

10

98 \PackageWarning{pstool}{%
99 Status of process unable to be determined:^^J #1^^J%

100 Trying to proceed... }%
101 \def\pstool@status{0}%\pstool@status
102 \fi}
103 \def\pstool@statusfail{\par }% what results when TEX reads an empty\pstool@statusfail

file

6.1 File age detection

Use ls (or dir) to detect if the EPS is newer than the PDF.

104 \def\pstool@IfnewerEPS{%\pstool@IfnewerEPS
105 \edef\pstool@filenames{\ip@lastelement.eps\space %

\ip@lastelement.pdf\space}%
106 \immediate\write18{%
107 cd "\ip@directpath"\pstool@cmdsep
108 \ifwindows
109 dir /T:W /B /O-D "\ip@lastelement.eps" "%

\ip@lastelement.pdf" > \pstool@statusfile
110 \else
111 ls -t "\ip@lastelement.eps" "\ip@lastelement.pdf" > %

\pstool@statusfile
112 \fi
113 }%
114 \pstool@retrievestatus{\ip@directpath}%
115 \ifx\pstool@status\pstool@filenames
116 \expandafter\@firstoftwo
117 \else
118 \expandafter\@secondoftwo
119 \fi
120 }

A wrapper for \inversepath*. Long story short, always need a relative path
to a filename even if it’s in the same directory.

121 \def\pstool@getpaths#1{%\pstool@getpaths
122 \edef\@tempa{\unexpanded{\inversepath*}{#1}}%
123 \@tempa% calculate filename, path & inverse path
124 \ifx\ip@directpath\@empty
125 \def\ip@directpath{./}%\ip@directpath
126 \fi

Strip off a possible wayward .eps suffix.

11

127 \edef\ip@lastelement{%
128 \expandafter\pstool@stripEPS\ip@lastelement.eps\@nil
129 }%
130 }

131 \def\pstool@stripEPS#1.eps#2\@nil{#1}\pstool@stripEPS

test.eps\@nil->test
test.eps.eps\@nil->test

7 Command parsing

User input is \pstool (with optional * or ! suffix) which turns into one of the
following three macros depending on the mode.

132 \newcommand\pstool@alwaysprocess[3][]{%\pstool@alwaysprocess
133 \pstool@getpaths{#2}%
134 \pstool@process{#1}{#3}}

135 \newcommand\pstool@neverprocess[3][]{%\pstool@neverprocess
136 \pstool@includegraphics[#1]{#2}}

For regular operation, which processes the figure only if the command is
starred, or the PDF doesn’t exist.

137 \newcommand\pstool@maybeprocess[3][]{%\pstool@maybeprocess
138 \pstool@getpaths{#2}%
139 \IfFileExists{#2.pdf}{%
140 \pstool@IfnewerEPS{% needs info from \pstool@getpaths
141 \pstool@process{#1}{#3}%
142 }{%
143 \pstool@includegraphics[#1]{#2}%
144 }%
145 }{%
146 \pstool@process{#1}{#3}%
147 }}

8 User commands

Finally, define \pstool as appropriate for the mode:

148 \ifpdf

12

149 \if@pstool@always@
150 \let\pstool\pstool@alwaysprocess
151 \WithSuffix\def\pstool!{\pstool@alwaysprocess}\pstool
152 \WithSuffix\def\pstool*{\pstool@alwaysprocess}\pstool*
153 \else\if@pstool@never@
154 \let\pstool\pstool@neverprocess
155 \WithSuffix\def\pstool!{\pstool@neverprocess}\pstool
156 \WithSuffix\def\pstool*{\pstool@neverprocess}\pstool*
157 \else
158 \let\pstool\pstool@maybeprocess
159 \WithSuffix\def\pstool!{\pstool@neverprocess}\pstool
160 \WithSuffix\def\pstool*{\pstool@alwaysprocess}\pstool*
161 \fi\fi
162 \else
163 \let\pstool\pstool@neverprocess
164 \WithSuffix\def\pstool!{\pstool@neverprocess}\pstool
165 \WithSuffix\def\pstool*{\pstool@neverprocess}\pstool*
166 \fi

9 The figure processing

\ip@lastelement is the filename of the figure stripped of its path (if any)

167 \def\pstool@jobname{\ip@lastelement\pstool@suffix}\pstool@jobname

And this is the main macro.

168 \newcommand\pstool@process[2]{%\pstool@process
169 \pstool@echo@verbose{^^J=== pstool: begin processing ===}%
170 \pstool@write@processfile{#1}{\ip@directpath%

\ip@lastelement}{#2}%
171 \pstool@exe{auxiliary process: \ip@lastelement\space}
172 {./}{latex
173 -shell-escape
174 -output-format=dvi
175 -output-directory="\ip@directpath"
176 -interaction=\pstool@mode\space
177 "\pstool@jobname.tex"}%

Execute dvips in quiet mode if latex is run in (non/error)stop mode:

178 \pstool@exe{dvips}{\ip@directpath}{%

13

179 dvips \if@pstool@verbose@\else -q \fi -Ppdf "%
\pstool@jobname.dvi"}%

180 \if@pstool@pdfcrop@
181 \pstool@exe{ps2pdf}{\ip@directpath}{%
182 ps2pdf "\pstool@jobname.ps" "\pstool@jobname.pdf"}%
183 \pstool@exe{pdfcrop}{\ip@directpath}{%
184 pdfcrop "\pstool@jobname.pdf" "\ip@lastelement.pdf"}%
185 \else
186 \pstool@exe{ps2pdf}{\ip@directpath}{%
187 ps2pdf "\pstool@jobname.ps" "\ip@lastelement.pdf"}%
188 \fi
189 \pstool@echo{^^J=== pstool: end processing ===^^J}%
190 \pstool@endprocess{%
191 \pstool@cleanup
192 \pstool@includegraphics[#1]{\ip@directpath%

\ip@lastelement}}}

The file that is written for processing is set up to read the preamble of the
original document and set the graphic on an empty page (cropping to size is
done either here with preview or later with pdfcrop).

193 \def\pstool@write@processfile#1#2#3{%\pstool@write@processfile
194 \immediate\openout\pstool@out #2\pstool@suffix.tex\relax
195 \immediate\write\pstool@out{%
196 \noexpand\pdfoutput=0^^J% force DVI mode if not already

Input the main document; redefine the document environment so only the
preamble is read:

197 \unexpanded{%
198 \let\origdocument\document^^J%
199 \let\EndPreamble\endinput^^J%
200 \def\document{\endgroup\endinput}^^J}%\document
201 \noexpand\input{\jobname}^^J%

Now the preamble of the process file: (restoring document’s original meaning;
empty \pagestyle removes the page number)

202 \if@pstool@pdfcrop@\else
203 \noexpand\usepackage[active,tightpage]{preview}^^J%
204 \fi
205 \unexpanded{%

14

206 \let\document\origdocument^^J%
207 \pagestyle{empty}^^J}%

And the document body to place the graphic on a page of its own:

208 \unexpanded{%
209 \begin{document}^^J%
210 \centering\null\vfill^^J}%
211 \if@pstool@pdfcrop@\else
212 \noexpand\begin{preview}^^J%
213 \fi
214 \unexpanded{#3^^J}% this is the "psfrag" material
215 \noexpand\includegraphics[#1]{\ip@lastelement}^^J%
216 \if@pstool@pdfcrop@\else
217 \noexpand\end{preview}^^J%
218 \fi
219 \unexpanded{%
220 \vfill\end{document}}^^J%
221 }%
222 \immediate\closeout\pstool@out}

223 \def\pstool@cleanup{%\pstool@cleanup
224 \@for\@ii:=\pstool@rm@files\do{%
225 \pstool@rm{\ip@directpath}{\pstool@jobname\@ii}%
226 }}

227 \providecommand\EndPreamble{}\EndPreamble

10 User commands

These all support the suffixes * and !, so each user command is defined as a
wrapper to \pstool.

for EPS figures with psfrag:

228 \newcommand\psfragfig[2][]{\pstool@psfragfig{#1}{#2}{}}\psfragfig
229 \WithSuffix\newcommand\psfragfig*[2][]{\pstool@psfragfig{#1}{%\psfragfig*

#2}{*}}
230 \WithSuffix\newcommand\psfragfig![2][]{\pstool@psfragfig{#1}{%\psfragfig

#2}{!}}

Parse optional 〈input definitions〉

231 \newcommand\pstool@psfragfig[3]{%

15

\pstool@psfragfig
232 \@ifnextchar\bgroup{%
233 \pstool@@psfragfig{#1}{#2}{#3}%
234 }{%
235 \pstool@@psfragfig{#1}{#2}{#3}{}%
236 }%
237 }

Search for both 〈filename〉 and 〈filename〉-psfrag inputs.

238 \newcommand\pstool@@psfragfig[4]{%\pstool@@psfragfig
239 \IfFileExists{#2-psfrag.eps}{%
240 \def\pstool@eps{#2-psfrag}%\pstool@eps
241 \OnlyIfFileExists{#2.eps}{%
242 \PackageWarning{pstool}{Graphic "#2.eps" exists but

"#2-psfrag.eps" is being used}%
243 }%
244 }{%
245 \IfFileExists{#2.eps}{%
246 \def\pstool@eps{#2}%\pstool@eps
247 }{%
248 \PackageError{pstool}{%
249 No graphic "#2.eps" or "#2-psfrag.eps" found%
250 }{%
251 Check the path and whether the file exists.%
252 }%
253 }%
254 }%
255 \pstool#3[#1]{\pstool@eps}{%
256 \InputIfFileExists{#2-psfrag.tex}{%
257 \OnlyIfFileExists{#2.tex}{%
258 \PackageWarning{pstool}{%
259 File "#2.tex" exists that may contain macros for "%

\pstool@eps.eps"^^J%
260 But file "#2-psfrag.tex" is being used instead.%
261 }%
262 }%
263 }{%
264 \InputIfFileExists{#2.tex}{}{}%
265 }%
266 #4%
267 }%

16

268 }

〈eof 〉

17

	I User documentation
	Introduction
	Getting started
	Package options
	Miscellaneous details
	Package information

	II Implementation
	Macros
	Command parsing
	User commands
	The figure processing
	User commands

