
The pstool package

Concept by Zebb Prime

Package by Will Robertson∗

v1.2a 2009/05/25

Abstract

This package defines the \psfragfig user command for including
eps files that use psfrag features in a pdfLATEX document. The command
\pstool can be used to define other commands with similar behaviour.

Contents

I User documentation 1
1 Introduction 1
2 Getting started 2
3 Package options 3
4 Miscellaneous details 5
5 Package information 6

II Implementation 7
6 Macros 8
7 Command parsing 12
8 User commands 13
9 The figure processing 13
10 User commands 16

Part I

User documentation

1 Introduction

While directly producing pdf output with pdfLATEX is a great improvement
in many ways over the ‘old method’ of dvi→ps→pdf, it loses the ability to
interface with a generic PostScript workflow, used to great effect in numerous
packages, most notably PSTricks and psfrag.

Until now, the best way to use these packages while running pdfLATEX

∗wspr81@gmail.com

1

has been to use the pst-pdf package, which processes the entire document
through a filter, sending the relevant PostScript environments (only) through
a single pass of LATEX producing dvi→ps→pdf. The resulting pdf versions of
each graphic are then included into the pdfLATEX document in a subsequent
compilation. The auto-pst-pdf package provides a wrapper to perform all of
this automatically.

The disadvantage with this method is that for every document compila-
tion, every graphic must be re-processed. The pstool package uses a different
approach to allow each graphic to be processed only as needed, speeding up
and simplifying the typesetting of the main document.

At present this package is designed solely as a replacement for pst-pdf in
the rôle of supporting the psfrag package (which it loads) in pdfLATEX.

More flexible usage to provide a complete replacement for pst-pdf (e.g.,
supporting the \begin{postscript} environment) is planned for a later re-
lease. If you simply need to automatically convert plain eps files to pdf, I
recommend using the epstopdf package with the [update,prepend] package
options (epstopdf and pstool should be completely compatible).

2 Getting started

Load the package as usual; no package options are required by default, but
there are a few useful options described later in section 3. Note that you do
not need to load psfrag separately.

The generic command provided by this package is

\pstool [〈graphicx options〉] {〈filename〉} {〈input definitions〉}

It converts the graphic 〈filename〉.eps to 〈filename〉.pdf through a unique
dvi→ps→pdf process for each graphic, using the preamble of the main docu-
ment. The resulting graphic is then inserted into the document, with optional
〈graphicx options〉. The third argument to \pstool allows arbitrary 〈input def-
initions〉 (such as \psfrag directives) to be inserted before the figure as it is
processed.

The command \pstool can take an optional * or ! suffix to change the
behaviour of the command:

\pstool Process the graphic 〈filename〉.eps if 〈filename〉.pdf does not already
exist, or if the eps file is newer than the pdf;

\pstool* Always process this figure; and,

\pstool! Never process this figure.

2

The behaviour in these three cases can be overridden globally by the package
option [process] as described in section 3.1.

It is useful to define higher-level commands based on \pstool for including
specific types of eps graphics that take advantage of psfrag. As an example,
this package defines the following command, which also supports the * or !
suffixes described above.

\psfragfig[〈opts〉]{〈filename〉} This is the catch-all macro to support a wide
range of graphics naming schemes. It inserts an eps file named either
〈filename〉-psfrag.eps or 〈filename〉.eps (in that order of preference), and
uses psfrag definitions contained within either 〈filename〉-psfrag.tex or
〈filename〉.tex.

This command can be used to insert figures produced by the Mathemat-
ica package MathPSfrag or the Matlab package matlabfrag. \psfragfig
also accepts an optional braced argument as shown next.

\psfragfig[〈opts〉]{〈filename〉}{〈input definitions〉} As above, but inserts the
arbitrary code 〈input definitions〉, which will usually be used to define
new or override existing psfrag commands.

3 Package options

3.1 Forcing/disabling graphics processing

While the suffixes * and ! can be used to force or disable (respectively) the
processing of each individual graphic, sometimes we want to do this on a
global level. The following package options override all \pstool (and related)
macros:

[process=auto] This is the default mode as described in the previous section,
in which graphics with suffixes are only (re-)processed if the eps file is
newer or the pdf file does not exist;

[process=all] Suffixes are ignored and all \pstool graphics are processed;

[process=none] Suffixes are ignored and no \pstool graphics are processed.1

Also note that it would be nice to detect the age of files other than the eps

and pdf graphics in order to affect the processing decisions. This is planned
for a possible future release.

1If pstool is loaded in a LATEX document in dvi mode, this is the option that is used since no
external processing is required for these graphics.

3

3.2 Cropping graphics

The default option [crop=preview] selects the preview package to crop graphics
to the appropriate size for each auxiliary process.

However, when an inserted label protrudes from the natural bounding
box of the figure, or when the original bounding box of the figure is wrong,
the preview package will not always produce a good result (with parts of the
graphic trimmed off the edge). A robust method to solve this problem is to
use the pdfcrop program instead.2 This can be activated in pstool with the
[crop=pdfcrop] package option.

In the future I plan to also support epstool for doing the same thing.

3.3 Temporary files & cleanup

Each figure that is processed spawns an auxiliary LATEX compilation through
dvi→ps→pdf. This process is named after the name of the figure with an ap-
pended string suffix; the default is [suffix={-pstool}]. All of these suffixed
files are “temporary” in that they may be deleted once they are no longer
needed.

As an example, if the figure is called ex.eps, the files that are created are
ex-pstool.tex, ex-pstool.dvi, The [cleanup] package option declares
via a list of filename suffixes which temporary files are to be deleted after
processing.

The default is [cleanup={.tex, .dvi, .ps, .pdf, .log, .aux}]. To delete
none of the temporary files, choose [cleanup={}] (useful for debugging).

3.4 Interaction mode of the auxiliary processes

Each graphic echoes the output of its auxiliary process to the console window;
unless you are trying to debug errors there is little interest in seeing this
information. The behaviour of these auxiliary processes are governed globally
by the [mode] package option, which takes the following parameters:

[mode=batch] hide almost all of the LATEX output (default);

[mode=nonstop] echo all LATEX output but continues right past any errors; and

[mode=errorstop] prompt for user input when errors in the source are en-
countered.

These three package options correspond to the LATEX command line options
-interaction=batchmode, =nonstopmode, and =errorstopmode, respectively.
When [mode=batch] is activated, then dvips is also run in ‘quiet mode’.

2pdfcrop requires a Perl installation under Windows, freely available from http://www.

4

http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex

3.5 Auxiliary processing command line options

The command line options passed to each program of the auxiliary processing
can be changed with the following package options:

[latex-options] ;

[dvips-options] ;

[ps2pdf-options] ; and,

[pdfcrop-options] .

For the most part these will be unnecessary, although passing the correct
options to ps2pdf can sometimes be a little obscure. For example, I use the
following for generating figures in my thesis:
ps2pdf-options={-dCompatibilityLevel=1.4 -dPDFSETTINGS=/prepress}

I believe this incantation forces fonts to be embedded within the individual
figure files, without which some printers and pdf viewers have trouble with
the textual labels.

4 Miscellaneous details

4.1 The \EndPreamble command

At present, pstool scans the preamble of the main document by redefining
\begin{document}, but this is rather fragile because many classes and packages
do their own redefining which overwrites pstool’s attempt. In this case, place
the command

\EndPreamble
where-ever you’d like the preamble in the auxiliary processing to end (although
is must be placed before \begin{document} for obvious reasons). This is also
handy to bypass anything in the preamble that will never be required for
the figures but which will slow down or otherwise conflict with the auxiliary
processing.

4.2 Cross-reference limitations

The initial release of this package does not support cross-references within
the psfrag labels of the included graphics. (If, say, you wish to refer to an
equation number within a figure.) A future release of pstool will hopefully lift
this limitation.

activestate.com/Products/activeperl/index.plex

5

http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex

4.3 A note on file paths

pstool does its best to ensure that you can put image files where-ever you like
and the auxiliary processing will still function correctly. In order to ensure
this, the external pdflatex compilation uses the -output-directory feature of
pdfTEX. This command line option is definitely supported on all platforms in
TeX Live 2008 and MiKTeX 2.7, but earlier distributions may not be supported.

One problem that pstool does not (currently) solve on its own is the in-
clusion of images that do not exist in subdirectories of the main document.
For example, \pstool{../Figures/myfig} will not process by default because
pdfTEX usually does not have permission to write into folders that are higher
in the heirarchy than the main document. This can be worked around presently
in two different ways: (although maybe only for Mac OS X and Linux)

1. Give pdflatex permission to write anywhere with the command:
openout_any=a pdflatex ...

2. Create a symbolic link in the working directory to a point higher in
the path: ln -s ../../PhD ./PhD, for example, and then refer to the
graphics through this symbolic link.

I hope to directly solve this problem in the future by using a caching folder for
the auxiliary processing in such cases.

5 Package information

The most recent publicly released version of pstool is available at CTAN:
http://tug.ctan.org/pkg/pstool/

Historical and developmental versions are available at GitHub:
http://github.com/wspr/pstool/

While general feedback at wspr81@gmail.com is welcomed, specific bugs should
be reported through the bug tracker at FogBugz: https://wspr.fogbugz.com/
(click ‘tasks: Enter a New Case’).

5.1 Licence

This package is freely modifiable and distributable under the terms and condi-
tions of the LATEX Project Public Licence, version 1.3c or greater (your choice).
The latest version of this license is available at: http://www.latex-project.
org/lppl.txt. This work is maintained by Will Robertson.

6

http://tug.ctan.org/pkg/pstool/
http://github.com/wspr/pstool/
wspr81@gmail.com
https://wspr.fogbugz.com/
http://www.latex-project.org/lppl.txt
http://www.latex-project.org/lppl.txt

Part II

Implementation
LaTeX2e file ‘pstool.sty’ generated by the ‘filecontents’ environment from
source ‘pstool’ on 2009/05/25.

1 \ProvidesPackage{pstool}[2009/05/25 v1.2a
2 Wrapper for processing PostScript/psfrag figures]

External packages

3 \RequirePackage{%
4 catchfile,color,ifpdf,ifplatform,
5 graphicx,psfrag,suffix,xkeyval}
6 \RequirePackage{inversepath}[2008/07/31 v0.2]

Allocations

7 \newif\if@pstool@pdfcrop@\if@pstool@pdfcrop@
8 \newif\if@pstool@verbose@\if@pstool@verbose@
9 \newwrite\pstool@out\pstool@out

These are cute

10 \providecommand\OnlyIfFileExists[2]{\IfFileExists{#1}{#2}{}}\OnlyIfFileExists
11 \providecommand\NotIfFileExists[2]{\IfFileExists{#1}{}{#2}}\NotIfFileExists

5.2 Package options

12 \define@choicekey*{pstool.sty}{crop}crop
13 [\@tempa\@tempb]{preview,pdfcrop}{%
14 \ifcase\@tempb\relax
15 \@pstool@pdfcrop@false
16 \or
17 \@pstool@pdfcrop@true
18 \or
19 \fi
20 }

21 \define@choicekey*{pstool.sty}{process}process
22 [\@tempa\pstool@process@choice]{all,none,auto}{}
23 \ExecuteOptionsX{process=auto}

24 \define@choicekey*{pstool.sty}{mode}

7

mode
25 [\@tempa\@tempb]{errorstop,nonstop,batch}{%
26 \ifnum\@tempb=2\relax
27 \@pstool@verbose@false
28 \else
29 \@pstool@verbose@true
30 \fi
31 \edef\pstool@mode{\@tempa mode}%
32 }
33 \ExecuteOptionsX{mode=batch}

34 \DeclareOptionX{cleanup}{\def\pstool@rm@files{#1}}cleanup
\pstool@rm@files 35 \ExecuteOptionsX{cleanup={.tex,.dvi,.ps,.pdf,.log,.aux}}

36 \DeclareOptionX{suffix}{\def\pstool@suffix{#1}}suffix
\pstool@suffix 37 \ExecuteOptionsX{suffix={-pstool}}

38 \DeclareOptionX{latex-options}{\def\pstool@latex@opts{#1}}latex-options
dvips-options

ps2pdf-options
pdfcrop-options

39 \DeclareOptionX{dvips-options}{\def\pstool@dvips@opts{#1}}
40 \DeclareOptionX{ps2pdf-options}{\def\pstool@pspdf@opts{#1}}
41 \DeclareOptionX{pdfcrop-options}{\def\pstool@pdfcrop@opts{#1}}
42 \ExecuteOptionsX{%
43 latex-options={},
44 dvips-options={},
45 ps2pdf-options={},
46 pdfcrop-options={}}

47 \ifpdf
48 \ifshellescape\else
49 \ExecuteOptionsX{process=none}
50 \PackageWarning{pstool}{^^J\space\space%
51 Package option [process=none] activated^^J\space\space
52 because -shell-escape is not enabled.^^J%
53 This warning occurred}
54 \fi
55 \fi

56 \ProcessOptionsX

6 Macros

Used to echo information to the console output. Can’t use \typeout because
it’s asynchronous with any \immediate\write18 processes (for some reason).

8

57 \def\pstool@echo#1{%\pstool@echo
58 \if@pstool@verbose@
59 \pstool@echo@verbose{#1}%
60 \fi}

61 \def\pstool@echo@verbose#1{%\pstool@echo@verbose
62 \immediate\write18{echo "#1"}%
63 }

64 \let\pstool@includegraphics\includegraphics

Command line abstractions between platforms:

65 \edef\pstool@cmdsep{\ifwindows\string&\else\string;\fi\space}
66 \edef\pstool@rm@cmd{\ifwindows del \else rm -- \fi}

Delete a file if it exists:
#1: path
#2: filename

67 \newcommand\pstool@rm[2]{%\pstool@rm
68 \OnlyIfFileExists{#1#2}{%
69 \immediate\write18{%
70 cd "#1"\pstool@cmdsep\pstool@rm@cmd "#2"}}%
71 }

Generic function to execute a command on the shell and pass its exit status back
into LATEX. Any number of \pstool@exe statements can be made consecutively
followed by \pstool@endprocess, which also takes an argument. If any of the
shell calls failed, then the execution immediately skips to the end and expands
\pstool@error instead of the argument to \pstool@endprocess.
#1: ‘name’ of process
#2: relative path where to execute the command
#3: the command itself

72 \newcommand\pstool@exe[3]{%\pstool@exe
73 \pstool@echo{^^J=== pstool: #1 ===}%
74 \pstool@shellexecute{#2}{#3}%
75 \pstool@retrievestatus{#2}%
76 \ifnum\pstool@status > \z@
77 \PackageWarning{pstool}{Execution failed during

process:^^J\space\space#3^^JThis warning occurred}%
78 \expandafter\pstool@abort

9

79 \fi}

Edit this definition to print something else when graphic processing fails.

80 \def\pstool@error{%\pstool@error
81 \fbox{%
82 \parbox{0.8\linewidth}{%
83 \color{red}\raggedright\ttfamily\scshape\small
84 An error occured processing graphic \upshape‘%

\ip@directpath\ip@lastelement’}}}

85 \def\pstool@abort#1\pstool@endprocess{\pstool@error\@gobble}\pstool@abort
86 \let\pstool@endprocess\@firstofone

It is necessary while executing commands on the shell to write the exit status
to a temporary file to test for failures in processing. (If all versions of pdflatex
supported input pipes, things might be different.)

87 \def\pstool@shellexecute#1#2{%\pstool@shellexecute
88 \immediate\write18{%
89 cd "#1" \pstool@cmdsep
90 #2 \pstool@cmdsep
91 \ifwindows
92 call echo
93 \string^\@percentchar ERRORLEVEL\string^\@percentchar
94 \else
95 echo \detokenize{$?}
96 \fi
97 > \pstool@statusfile}%

That’s the execution; now we need to flush the write buffer to the status file.
This ensures the file is written to disk properly (allowing it to be read by
\CatchFileEdef). Not necessary on Windows, whose file writing is evidently
more crude/immediate.

98 \ifwindows\else
99 \immediate\write18{%

100 touch #1\pstool@statusfile}%
101 \fi}
102 \def\pstool@statusfile{pstool-statusfile.txt}\pstool@statusfile

Read the exit status from the temporary file and delete it.
#1 is the path
Status is recorded in \pstool@status.

10

103 \def\pstool@retrievestatus#1{%\pstool@retrievestatus
104 \CatchFileEdef{\pstool@status}{#1\pstool@statusfile}{}%
105 \pstool@rm{#1}{\pstool@statusfile}%
106 \ifx\pstool@status\pstool@statusfail
107 \PackageWarning{pstool}{%
108 Status of process unable to be determined:^^J #1^^J%
109 Trying to proceed... }%
110 \def\pstool@status{0}%\pstool@status
111 \fi}
112 \def\pstool@statusfail{\par }% what results when TEX reads an empty\pstool@statusfail

file

6.1 File age detection

Use ls (or dir) to detect if the EPS is newer than the PDF.

113 \def\pstool@IfnewerEPS{%\pstool@IfnewerEPS
114 \edef\pstool@filenames{\ip@lastelement.eps\space %

\ip@lastelement.pdf\space}%
115 \immediate\write18{%
116 cd "\ip@directpath"\pstool@cmdsep
117 \ifwindows
118 dir /T:W /B /O-D "\ip@lastelement.eps" "%

\ip@lastelement.pdf" > \pstool@statusfile
119 \else
120 ls -t "\ip@lastelement.eps" "\ip@lastelement.pdf" > %

\pstool@statusfile
121 \fi
122 }%
123 \pstool@retrievestatus{\ip@directpath}%
124 \ifx\pstool@status\pstool@filenames
125 \expandafter\@firstoftwo
126 \else
127 \expandafter\@secondoftwo
128 \fi
129 }

A wrapper for \inversepath*. Long story short, always need a relative path
to a filename even if it’s in the same directory.

130 \def\pstool@getpaths#1{%\pstool@getpaths
131 \edef\@tempa{\unexpanded{\inversepath*}{#1}}%

11

132 \@tempa% calculate filename, path & inverse path
133 \ifx\ip@directpath\@empty
134 \def\ip@directpath{./}%\ip@directpath
135 \fi

Strip off a possible wayward .eps suffix.

136 \edef\ip@lastelement{%
137 \expandafter\pstool@stripEPS\ip@lastelement.eps\@nil
138 }%
139 }

140 \def\pstool@stripEPS#1.eps#2\@nil{#1}\pstool@stripEPS

test.eps\@nil->test
test.eps.eps\@nil->test

7 Command parsing

User input is \pstool (with optional * or ! suffix) which turns into one of the
following three macros depending on the mode.

141 \newcommand\pstool@alwaysprocess[3][]{%\pstool@alwaysprocess
142 \pstool@getpaths{#2}%
143 \pstool@process{#1}{#3}}

144 \ifpdf
145 \newcommand\pstool@neverprocess[3][]{%\pstool@neverprocess
146 \pstool@includegraphics[#1]{#2}}
147 \else
148 \newcommand\pstool@neverprocess[3][]{%\pstool@neverprocess
149 \begingroup
150 #3%
151 \pstool@includegraphics[#1]{#2}%
152 \endgroup}
153 \fi

For regular operation, which processes the figure only if the command is
starred, or the PDF doesn’t exist.

154 \newcommand\pstool@maybeprocess[3][]{%\pstool@maybeprocess
155 \pstool@getpaths{#2}%

12

156 \IfFileExists{#2.pdf}{%
157 \pstool@IfnewerEPS{% needs info from \pstool@getpaths
158 \pstool@process{#1}{#3}%
159 }{%
160 \pstool@includegraphics[#1]{#2}%
161 }%
162 }{%
163 \pstool@process{#1}{#3}%
164 }}

8 User commands

Finally, define \pstool as appropriate for the mode: (all, none, auto, respec-
tively)

165 \ifpdf
166 \ifcase\pstool@process@choice
167 \let\pstool\pstool@alwaysprocess
168 \WithSuffix\def\pstool!{\pstool@alwaysprocess}\pstool
169 \WithSuffix\def\pstool*{\pstool@alwaysprocess}\pstool*
170 \or
171 \let\pstool\pstool@neverprocess
172 \WithSuffix\def\pstool!{\pstool@neverprocess}\pstool
173 \WithSuffix\def\pstool*{\pstool@neverprocess}\pstool*
174 \or
175 \let\pstool\pstool@maybeprocess
176 \WithSuffix\def\pstool!{\pstool@neverprocess}\pstool
177 \WithSuffix\def\pstool*{\pstool@alwaysprocess}\pstool*
178 \fi
179 \else
180 \let\pstool\pstool@neverprocess
181 \WithSuffix\def\pstool!{\pstool@neverprocess}\pstool
182 \WithSuffix\def\pstool*{\pstool@neverprocess}\pstool*
183 \fi

9 The figure processing

\ip@lastelement is the filename of the figure stripped of its path (if any)

184 \def\pstool@jobname{\ip@lastelement\pstool@suffix}\pstool@jobname

And this is the main macro.

185 \newcommand\pstool@process[2]{%
13

\pstool@process
186 \pstool@echo@verbose{%
187 ^^J^^J=== pstool: begin processing ===}%
188 \pstool@write@processfile{#1}
189 {\ip@directpath\ip@lastelement}{#2}%
190 \pstool@exe{auxiliary process: \ip@lastelement\space}
191 {./}{latex
192 -shell-escape
193 -output-format=dvi
194 -output-directory="\ip@directpath"
195 -interaction=\pstool@mode\space
196 \pstool@latex@opts\space
197 "\pstool@jobname.tex"}%

Execute dvips in quiet mode if latex is not run in (non/error)stop mode:

198 \pstool@exe{dvips}{\ip@directpath}{%
199 dvips \if@pstool@verbose@\else -q \fi -Ppdf
200 \pstool@dvips@opts\space "\pstool@jobname.dvi"}%
201 \if@pstool@pdfcrop@
202 \pstool@exe{ps2pdf}{\ip@directpath}{%
203 ps2pdf \pstool@pspdf@opts\space
204 "\pstool@jobname.ps" "\pstool@jobname.pdf"}%
205 \pstool@exe{pdfcrop}{\ip@directpath}{%
206 pdfcrop \pstool@pdfcrop@opts\space
207 "\pstool@jobname.pdf" "\ip@lastelement.pdf"}%
208 \else
209 \pstool@exe{ps2pdf}{\ip@directpath}{%
210 ps2pdf \pstool@pspdf@opts\space
211 "\pstool@jobname.ps" "\ip@lastelement.pdf"}%
212 \fi
213 \pstool@endprocess{%
214 \pstool@cleanup
215 \pstool@includegraphics[#1]{%
216 \ip@directpath\ip@lastelement}%
217 }%
218 \pstool@echo@verbose{^^J=== pstool: end processing ===^^J}%
219 }

The file that is written for processing is set up to read the preamble of the
original document and set the graphic on an empty page (cropping to size is
done either here with preview or later with pdfcrop).

220 \def\pstool@write@processfile#1#2#3{%

14

\pstool@write@processfile
221 \immediate\openout\pstool@out #2\pstool@suffix.tex\relax
222 \immediate\write\pstool@out{%

Input the main document; redefine the document environment so only the
preamble is read:

223 \unexpanded{%
224 \pdfoutput=0^^J% force DVI mode if not already
225 \let\origdocument\document^^J%
226 \let\EndPreamble\endinput^^J%
227 \def\document{\endgroup\endinput}^^J}%\document
228 \noexpand\input{\jobname}^^J%

Now the preamble of the process file: (restoring document’s original meaning;
empty \pagestyle removes the page number)

229 \if@pstool@pdfcrop@\else
230 \noexpand\usepackage[active,tightpage]{preview}^^J%
231 \fi
232 \unexpanded{%
233 \let\document\origdocument^^J%
234 \pagestyle{empty}^^J}%

And the document body to place the graphic on a page of its own:

235 \unexpanded{%
236 \begin{document}^^J%
237 \centering\null\vfill^^J}%
238 \if@pstool@pdfcrop@\else
239 \noexpand\begin{preview}^^J%
240 \fi
241 \unexpanded{#3^^J}% this is the "psfrag" material
242 \noexpand\includegraphics[#1]{\ip@lastelement}^^J%
243 \if@pstool@pdfcrop@\else
244 \noexpand\end{preview}^^J%
245 \fi
246 \unexpanded{%
247 \vfill\end{document}}^^J%
248 }%
249 \immediate\closeout\pstool@out}

250 \def\pstool@cleanup{%

15

\pstool@cleanup
251 \@for\@ii:=\pstool@rm@files\do{%
252 \pstool@rm{\ip@directpath}{\pstool@jobname\@ii}%
253 }}

254 \providecommand\EndPreamble{}\EndPreamble

10 User commands

These all support the suffixes * and !, so each user command is defined as a
wrapper to \pstool.

for EPS figures with psfrag:

255 \newcommand\psfragfig[2][]{\pstool@psfragfig{#1}{#2}{}}\psfragfig
256 \WithSuffix\newcommand\psfragfig*[2][]{\pstool@psfragfig{#1}{%\psfragfig*

#2}{*}}
257 \WithSuffix\newcommand\psfragfig![2][]{\pstool@psfragfig{#1}{%\psfragfig

#2}{!}}

Parse optional 〈input definitions〉

258 \newcommand\pstool@psfragfig[3]{%\pstool@psfragfig
259 \@ifnextchar\bgroup{%
260 \pstool@@psfragfig{#1}{#2}{#3}%
261 }{%
262 \pstool@@psfragfig{#1}{#2}{#3}{}%
263 }%
264 }

Search for both 〈filename〉 and 〈filename〉-psfrag inputs.
#1: possible graphicx options
#2: graphic name (possibly with path)
#3: \pstool suffix (i.e., ! or * or empty
#4: possible psfrag macros

265 \newcommand\pstool@@psfragfig[4]{%\pstool@@psfragfig

Find the.eps file to use.

266 \IfFileExists{#2-psfrag.eps}{%
267 \edef\pstool@eps{#2-psfrag}%
268 \OnlyIfFileExists{#2.eps}{%

16

269 \PackageWarning{pstool}{Graphic "#2.eps" exists but
"#2-psfrag.eps" is being used}%

270 }%
271 }{%
272 \IfFileExists{#2.eps}{%
273 \edef\pstool@eps{#2}%
274 }{%
275 \PackageError{pstool}{%
276 No graphic "#2.eps" or "#2-psfrag.eps" found%
277 }{%
278 Check the path and whether the file exists.%
279 }%
280 }%
281 }%

Find the .tex file to use.

282 \IfFileExists{#2-psfrag.tex}{%
283 \edef\pstool@tex{#2-psfrag.tex}%
284 \OnlyIfFileExists{#2.tex}{%
285 \PackageWarning{pstool}{%
286 File "#2.tex" exists that may contain macros
287 for "\pstool@eps.eps"^^J%
288 But file "#2-psfrag.tex" is being used instead.%
289 }%
290 }%
291 }{%
292 \IfFileExists{#2.tex}{%
293 \edef\pstool@tex{#2.tex}%
294 }{%
295 \let\pstool@tex\@empty
296 \PackageWarning{pstool}{%
297 No file "#2.tex" or "#2-psfrag.tex" can be found
298 that may contain macros for "\pstool@eps.eps"%
299 }%
300 }%
301 }%
302 \ifx\pstool@tex\@empty
303 \pstool#3[#1]{\pstool@eps}{#4}%
304 \else
305 \expandafter\pstool@@@psfragfig
306 \expandafter{\pstool@tex}{#3[#1]}{#4}%

17

307 \fi
308 }

Break out the separate function in order to expand \pstool@tex before writing
it.

309 \newcommand\pstool@@@psfragfig[3]{%\pstool@@@psfragfig
310 \pstool#2{\pstool@eps}{%
311 \csname @input\endcsname{#1}%
312 #3%
313 }%
314 }

〈eof 〉

18

	I User documentation
	Introduction
	Getting started
	Package options
	Miscellaneous details
	Package information

	II Implementation
	Macros
	Command parsing
	User commands
	The figure processing
	User commands

