
The pseudo Package

Magnus Lie Hetland

July 4, 2019

Abstract

The pseudo package permits writing pseudocode without much fuss and
with quite a bit of configurability. Its main environment combines aspects
of enumeration, tabbing and tabular for nonintrusive line numbering,
indentation and highlighting, and there is functionality for typesetting
common syntactic elements such as keywords, identifiers and comments.

1 Introduction

The pseudo package lets you typeset pseudocode in a straightforward and not
all too opinionated manner. You don’t need to use separate commands for
different constructs; the indentation level is controlled in a manner similar to in
a tabbing environment:

1 while a 6= b
2 if a > b
3 a = a− b
4 else b = b− a
5 return a

\begin{pseudo}

while $a \neq b$ \\+

if $a > b$ \\+

$a = a - b$ \\-

else $b = b - a$ \\-

return a

\end{pseudo}

If you prefer having end at the end of blocks, or you’d rather wrap them in
C-style braces, you just put those in. Fonts, numbering, indentation levels, etc.,
may be configured. You import pseudo with:

\usepackage[〈options〉]{pseudo}

The only option usable here at the moment is kw (used in the example above),
as the \usepackage command is a bit too eager in expanding its arguments, but
there are several options that may be provided to the \pseudoset command,
to configure things (see section 3.2).

1

Alternatives

There are many ways of typesetting code and pseudocode in LATEX, so if you’re
unhappy with pseudo, you have several alternatives to choose from. I wrote
pseudo based on my needs and preferences, but yours may differ, of course. For
example, I’ve built on tabular layouts to get (i) automatic width calculations;
(ii) line/row highlighting; and (iii) easy embedding in tikz nodes and the like.
I have also set things up inspired by existing mechanisms for numbering and
indenting lines, and treat the pseudocode as a form of text, rather than as a
form of markup in itself. The latter point means that I don’t have separate
commands for conditionals, loops, etc.

The basic style of pseudocode is inspired by the standard reference Introduc-
tion to Algorithms by Cormen et al. [1] (i.e., similar to that of newalg, clrscode
and clrscode3e). Rather than locking down all aspects of pseudocode appear-
ance, however, I’ve tried to make pseudo highly configurable, but if it’s not
flexible enough, or just not to your liking, you might want to have a look at the
following packages:

alg, algobox, algorithm2e, algorithmicx, algorithms, clrscode, clrscode3e,
latex-pseudocode, newalg, program, pseudocode

There are also code-typesetting packages like listings and minted, of course.

2 Overview

The main component of the pseudo package is the pseudo environment, which
is, in a sense, a hybrid of enumerate, tabular and tabbing, in that it pro-
vides numbered lines, each placed in a tabular row (for ease of highlighting and
automatic column width calculation), with functionality for increasing and de-
creasing indentation similar to the tabbing commands \+ and \- (in pseudo,
combined with the row separator \\). Here, for example, is Euclid’s algorithm
for finding the gcd of a and b:

1 repeat the following while a 6= b
2 if a > b, let a = a− b
3 otherwise, let b = b− a

\begin{pseudo}

repeat the following while $a\neq b$ \\+

if $a > b$, let $a = a - b$ \\

otherwise, let $b = b - a$

\end{pseudo}

Spacing is handled similarly to in LATEX lists, with \topsep and \parskip added
before and after, as well as \partopsep whenever the environment starts a new
paragraph. The left margin (how much the pseudocode is indented wrt. the
surrounding text) is set by the left-margin key (initially 0pt).∗

∗ If pseudo occurs in a box such as fbox, or a tikz node, this spacing is dropped. See also the
compact key for overriding this behavior.

2

https://ctan.org/pkg/pgf
https://ctan.org/pkg/newalg
https://ctan.org/tex-archive/macros/latex/contrib/clrscode
https://ctan.org/pkg/clrscode3e
https://ctan.org/tex-archive/macros/latex/contrib/alg
https://ctan.org/pkg/algobox
https://ctan.org/pkg/algorithm2e
https://ctan.org/pkg/algorithmicx
https://ctan.org/pkg/algorithms
https://ctan.org/tex-archive/macros/latex/contrib/clrscode
https://ctan.org/pkg/clrscode3e
https://github.com/esneider/latex-pseudocode
https://ctan.org/pkg/newalg
https://ctan.org/tex-archive/macros/latex/contrib/program
https://ctan.org/tex-archive/macros/latex/contrib/pseudocode
https://ctan.org/tex-archive/macros/latex/contrib/listings
https://ctan.org/pkg/minted
https://ctan.org/pkg/pgf

There are also some styling commands for special elements of the pseudocode:

while, false, rank , “Hello!”, Euclid(a, b), length(A), (Important!)

\kw{while}, % or \pseudokw -- keywords

\cn{false}, % or \pseudocn -- constants

\id{rank}, % or \pseudoid -- identifiers

\st{Hello!}, % or \pseudost -- strings

\pr{Euclid}(a, b), % or \pseudopr -- procedures

\fn{length}(A), % or \pseudofn -- functions

\ct{Important!} % or \pseudoct -- comments

The longer names (\pseudokw, \pseudocn, etc.) are always available; the more
convenient short forms (\kw, \cn, etc.) are prone to name collisions, and are
only defined if the names are not already in use when pseudo is imported.

The indent-length option, which determines the length of each indentation
step, is initially set via the secondary indent-text key, so that the any code
after \kw{else} aligns with the indented text (a stylistic choice from clrscode3e):

1 if x < y
2 x = x+ 1
3 else x = x− 1

\begin{pseudo}

\kw{if} $x < y$ \\+

$x = x + 1$ \\-

\kw{else} $x = x - 1$

\end{pseudo}

If you want, you can certainly create shortcuts, e.g., \def\While{\kw{while}},
or using various declaration commands, such as \DeclarePseudoKeyword or
\DeclarePseudoConstant. Procedures and functions capture parenthesized ar-
guments and set them in math mode; this carries over in such shortcuts, so if you
define \Euclid to mean \pr{Euclid}, then \Euclid(a, b) yields Euclid(a, b).

These commands are not used in the internals of the package, so they may be
freely redefined for different styling, such as \let\id\textsf. They generally
do some extra work, though, such as wrapping the styled text in \textnormal to
avoid having the styles blend, adding quotes (\st) and handling parenthesized
arguments (\pr). To let you hook into their appearance without messing with
their definitions, each command has a corresponding font command (\kwfont,
\cnfont, \idfont, etc.), which you may redefine. These fonts may even be set
using correspondingly named options, either with \pseudoset or via optional
keyword arguments to the pseudo environment:∗

Euclid’s algorithm is initiated with the call Euclid(a, b).

∗ Because of LATEX expansion behavior, they can not be set globally when importing pseudo.

3

https://ctan.org/pkg/clrscode3e

\pseudoset{prfont=\textsf}

Euclid’s algorithm is initiated with the call \pr{Euclid}(a, b).

You can also configure the quotes and comment markers:

1 print ‘Hello, world! ’ //Greeting

\pseudoset{

st-left=‘, st-right=’, stfont=\textit,

ct-left=\texttt{/\!/}\,, ct-right=, ctfont=

}

\begin{pseudo}

\kw{print} \st{Hello, world!} \quad \ct{Greeting}

\end{pseudo}

Note that \stfont and friends may either be font-switching commands like
\itshape or formatting commands like \textit, though the latter are generally
preferable when available. They need not be restricted to actual fonts, but may
include color commands, for example.

You can also set the font for the entire code lines, using the font option.
The command you provide there should just switch the font (i.e., not take an
argument to typeset); initially, \kwfont is such a command:

1 while a 6= b
2 if a > b
3 a = a− b
4 else b = b− a

\begin{pseudo}[font=\kwfont]

while $a \neq b$ \\+

if $a > b$ \\+

$a = a - b$ \\-

else $b = b - a$

\end{pseudo}

Though not the default, this is in fact an intended configuration, to reduce the
markup noise for pseudocode that consists primarily of keywords and mathemat-
ics. The setting font = \kwfont is also available by using the kw option (with no
arguments), e.g., by importing the package with \usepackage[kw]{pseudo}. If
you need to typeset normal text in your pseudocode after using font, you can
use \textnormal or \normalfont, for which pseudo defines aliases \tn and \nf:

1 for each node v ∈ V
2 do something
3 for each edge e ∈ E
4 do something else

4

\begin{pseudo}[kw]

for \tn{each node} $v\in V$ \\+

\tn{do something} \\-

for \nf each edge $e \in E$ \\+

\nf do something else

\end{pseudo}

The row separator may have multiple pluses or (more commonly) multiple mi-
nuses appended, indicating multiple increments or decrements to the indentation
level:

1 for k = 1 to n
2 for i = 1 to n
3 for j = 1 to n
4 tij = tij ∨ (tik ∧ tkj)
5 return t

\begin{pseudo}[kw]

for $k = 1$ to n \\+

for $i = 1$ to n \\+

for $j = 1$ to n \\+

$t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$ \\---

return t

\end{pseudo}

The code is normally typeset in a two-column tabular (whose preamble, and
thus number of columns, is configurable via the option preamble), but the first
column is handled by an automatic prefix inserted before each line, containing
the numbering and column separator (&). You disable the prefix for the following
line by using *:

1 this line has an automatic prefix
this line does not

2 but this one does

\begin{pseudo}

this line has an automatic prefix \\+*

& this line does not \\+

but this one does

\end{pseudo}

This star also works after \begin{pseudo}. Note that in order to prevent
your code from ending up in the numbering column, you must insert a column
separator manually. A version of the \pr command, called \hd (or \pseudohd,
where \hd stands for header) instead wraps a procedure call in a multicolumn,
so it can be used, for example, as an unnumbered header line:

5

Euclid(a, b)
1 if b == 0
2 return a
3 else return Euclid(b, a mod b)

\begin{pseudo}[kw]*

\hd{Euclid}(a, b) \\

if $b \== 0$ \\+

return a \\-

else return \pr{Euclid}(b, a \bmod b)

\end{pseudo}

As can be seen in this example, \== (or \eqs) is a notational convenience defined
by pseudo, along with interval dots \.. (or \dts). Other special symbols may
be found in other packages. For example, if you want to use := for assignment,
you can use \coloneqq from mathtools (perhaps with \let\gets\coloneqq).∗

As can be seen, one use of * is to get an unnumbered line, but you could
also insert custom material in the first column. The lines are numbered by the
counter pseudoline, so you could, for example, do:

A Look!
B We’re using letters!

\begin{pseudo}*

\stepcounter{pseudoline}\Alph{pseudoline} & Look! *

\stepcounter{pseudoline}\Alph{pseudoline} & We’re using letters!

\end{pseudo}

This is a bit cumbersome, so there are some shortcuts. First of all, rather
than replacing the entire prefix, you can replace only a part of it, namely the
label, retaining counter increments and column separators. You can set this
key for each line individually with an optional argument to the row separator,
i.e., \\[label = 〈commands〉], or at some higher level. Within the pseudo

environment, there is also a counter named * that is simply a local clone of
pseudoline, letting you use starred versions of counter commands, similarly to
how label definitions work in enumitem:†

1: Look!
2: We’re using something custom!

\pseudoset{label=\small\arabic*:}

\begin{pseudo}

Look! \\

We’re using something custom! \label{custom-line}

\end{pseudo}

∗ Tip: If you want to use a left-arrow for assignment, but think it’s a bit large in Computer
Modern or Latin Modern, you can use the old-arrows package, so x \gets y yields x y.

† Also like in enumitem, there’s a start key for setting the first line number.

6

https://ctan.org/pkg/mathtools
https://ctan.org/pkg/enumitem
https://ctan.org/tex-archive/fonts/old-arrows
https://ctan.org/pkg/enumitem

Note that if I refer to the labeled line with \ref, I’ll just end up with 2, which
is probably what I’d want in this case. If you want a custom reference format as
well, you can set that with the ref key, in the same way as with label. If you
use the key without arguments, it’ll use the same format as the one provided to
label:

(i) Look!
(ii) We’re using Roman numerals!
(iii) And here’s a reference to line (ii).

\pseudoset{label=(\textit{\roman*}), label-align=l, ref}

\begin{pseudo}

Look! \\

We’re using Roman numerals! \label{roman-line} \\

And here’s a reference to line \ref{roman-line}.

\end{pseudo}

The label-align key sets the alignment of the label column, and can be l, r
or c (or really any other column type compatible with the array package; you
could use a p{...} column to get fixed width, for example).

Highlighting can also be done in a similar manner, by, e.g., inserting a
\rowcolor at the start of the first column. Rather than doing this manually,
you could use the bol key, which inserts a command at the beginning of the
line—or the hl key, which is equivalent to bol-prepend = \pseudohl:

I’m not highlighted
But I am!

\begin{pseudo*}

I’m not highlighted \\[hl]

But I am!

\end{pseudo*}

Initially, the \pseudohl command that is inserted is simply a \rowcolor that
uses hl-color, but you’re free to redefine this command to whatever you’d like.

In the previous example, there is no spacing to the sides of the table contents.
This is normally what you’d want, for example, to keep the pseudocode aligned
with the surrounding text. However, when using row highlighting (e.g., because
you are stepping through the code in some presentation), that alignment may
be less of an issue—and you’d rather widen the highlight a bit. The horizontal
padding on each side is controlled by the hpad key. You can either specify a
length, or just turn on the default, by not supplying an argument. There’s a
similar option, hsep, which controls the separation between the two columns.

1 let’s
2 use
3 some
4 padding!

7

https://ctan.org/pkg/array

\begin{pseudo}[hpad, hsep=1em, indent-length=1em]

let’s \\+

use \\-

some \\+ [hl]

padding!

\end{pseudo}

For ease of use with beamer, the various pseudo options support beamer overlay
specifications. For example, using hl<1> means that the hl specification would
only take effect on slide 1. If you use such an overlay specification on a key
when not using beamer, the key is simply ignored.

What is more, the row separator itself takes an overlay specification as
a shortcut for the one on hl, so \\<1,2-4> is equivalent to \\[hl<1,2-4>].
Just like with the optional arguments, space before the overlay specification is
ignored, so you’re free to put the specification in front of the line in question:

1 Go to line 3
2 Go to line 4
3 Go to line 2
4 Go to line 1

1 Go to line 3
2 Go to line 4
3 Go to line 2
4 Go to line 1

1 Go to line 3
2 Go to line 4
3 Go to line 2
4 Go to line 1

1 Go to line 3
2 Go to line 4
3 Go to line 2
4 Go to line 1

% In a beamer presentation

\begin{pseudo}

<1> Go to line 3 \\

<3> Go to line 4 \\

<2> Go to line 2 \\

<4> Go to line 1 \\

\end{pseudo}

You might have expected these overlay specifications to indicate visibility, as
they do for the \item command in \enumerate, for example. However, in step-
wise animations, highlighting patterns (showing which line is currently executed,
for example) tend to be more complex than, say, a gradual uncovering—and
therefore in greater need of abbreviation.

To control visibility, you could, for example, add \pause at the end of each
line, before the row separator. You can also do this using the eol key, either
per line or at the top level, with eol = \pause. There is even the shortcut key
pause for this specific purpose (equivalent to eol-append = \pause):

1 Eeny
2 Meeny
3 Miny
4 Moe

1 Eeny
2 Meeny
3 Miny
4 Moe

1 Eeny
2 Meeny
3 Miny
4 Moe

1 Eeny
2 Meeny
3 Miny
4 Moe

8

https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer

% In a beamer presentation

\setbeamercovered{transparent}

\begin{pseudo}[pause]

Eeny \\

Meeny \\

Miny \\

Moe \\

\end{pseudo}

The eol value is only inserted wherever \\ starts a new line (i.e., not at the end
of the environment), so in this case only three \pause commands are inserted.

The previously discussed configuration keys are described in more detail in
section 3. You can create your own presets or styles using \pseudodefinestyle.
This command takes two arguments; the first is the name of a key, and the
second is a key–value list, as you would have supplied it to \pseudoset. This
is exactly how the starred style is defined (see page 56), clearing the prefix
and reducing the preamble to a single column. This style is what’s used in the
starred, unnumbered version of the pseudo environment:

while a 6= b
if a > b

a = a− b
else b = b− a

return a

\begin{pseudo*}

while $a \neq b$ \\+

if $a > b$ \\+

$a = a - b$ \\-

else $b = b - a$ \\-

return a

\end{pseudo*}

3 Reference

This section gives an overview of all the moving parts of the package. A default
value is one used implicitly if the key is specified with no explicit value given,
while an initial value is one provided to the key at the point where pseudo is
imported. Several commands (such as, e.g., \pseudoprefix) may be modified
using corresponding keys (e.g., prefix). When the behavior of such commands
is described, the description references their initial behavior.

3.1 Line structure

Each line of a pseudo environment is (initially) structured as follows:

9

bol step label & save ind. font body eol \\

prefix setup

Inserted by \\ (not *) Part of preamble Inserted by \\ (not last)

The components in the prefix are populated by the \\ command (or the be-
ginning of the environment), the ones in the setup by the preamble, and the
actual body is supplied by the user, inside the environment, terminated by the
row separator \\ (which then goes on to populate the next row, and so on).
The eol part is also inserted by \\, except if it’s used after the last line (where
it doesn’t really do anything).∗ The following describes the default behavior,
which can be modified substantially by setting the appropriate options (e.g.,
prefix and setup).

bol This field is inserted by \\ (and \begin{pseudo}) at the beginning of the
following line, using the \pseudobol command. Because it’s a the very
beginning of the tabular row, it may be used for things like \rowcolor

when highlighting lines (as with the hl key).

step This refers to a call to \stepcounter* (where * is an alias for pseudoline),
getting the counter ready for the label itself. Note that this does not use
\refstepcounter, so at this point the counter has not been saved yet
(and so you should not use \label to refer to it at this point).

label This is where the numbering label is inserted, using \pseudolabel; ini-
tially, this inserts \arabic*.

& At the end of the prefix is the column separator, closing the label column
and beginning the code line column.

save Now that we’re in the column where the user will normally insert text and
code, we save pseudoline so it may be used with \label and \ref, etc.
This is done using \pseudosavelabel, which first decrements the counter
(to undo the increment before the label) and then calls \refstepcounter.

ind. Inserts the appropriate amount of indentation (with an indent step length
set by indent-length or indent-text and the indentation level set by
+/- flags or indent-level), using \pseudoindent.

font Inserts the base font, using \pseudofont.

body This is where the manually written body of the code line appears.

eol Inserted by the terminating \\ (using \pseudoeol), unless we’re at the
end of the environment. Useful, e.g., for taking actions such as a beamer
\pause (cf., pause) between the lines.†

\\ The row/line separator. Ends one line (inserting eol) and begins another
(inserting prefix). As in tabulars in general, this command is also per-
mitted after the final line of the environment, but there it does no real
work (i.e., it does not insert eol and does not start a new line).

∗ Thus, eol acts more as a line separator than a line terminator.
† If the same action must be taken after the last line, you can simply insert it there manually.

10

https://ctan.org/pkg/beamer

3.2 Command and key reference

In addition to descriptions of the various commands and options/keys (in al-
phabetical order), you’ll find definitions of a couple of counters here (* and
pseudoline).

*

This counter is a duplicate of pseudoline, available inside pseudo. It makes
it possible to simplify calls such as \arabic{pseudoline} to starred forms
such as \arabic*, like in enumitem. These short forms are available (and
intended) for use in label and ref.

\..

This is a shortcut that hijacks the normal \. accent command, so that
if it is called with . as an argument, the result is \dts. In other words,
the command \.. is really the call \.{.}. For any other arguments, the
original \. is used, so while $1\..n$ produces 1 . . n, \.o still yields ȯ.

\==

This is a shortcut that hijacks the normal \= accent command, so that
if it is called with = as an argument, the result is \eqs. In other words,
the command \== is really the call \={=}. For any other arguments, the
original \= is used, so while $x\==y$ produces x == y, \=o still yields ō.
In some contexts, this may not work because \= has reverted to its original
meaning (as is currently the case if you try to use it within a custom float,
as in section 4.7, or a standard one such as figure). In this case, you can
restore the pseudo meaning (and the \== shortcut) by using \pseudoeq. In
some cases, you may want to just use \eqs instead.

\\ + - * <〈overlay specification〉> [〈line options〉]
This row separator is the workhorse of the pseudo package. Just as in a
tabular environment, it signals the end of a line. It is optional after the
list line, where it doesn’t do any work. The command may be followed
by a series of one or more plus (+) signs, each of which will increment the
indentation level before starting a new line; similarly, it may be followed by
one or more minus (-) signs, each of which will decrement the indentation
level. Normally, the command will insert a prefix at the beginning of the
new line; if the star (*) flag is used, this prefix is not inserted.

The optional overlay specifications refer to the hl key, so \\<3> is equiv-
alent to \\[hl<3>]. This applies to the following line, as do other options
set explicitly as optional arguments. Note that options are set locally, be-
fore the new line (and a new scope) is started, so unless they are handled
specifically (in order to carry over), they will have no effect. Thus, even
though all options are available here, not all make sense. (Consult individ-
ual option keys for intended use.)

The pluses and minuses are conceptually part of the command name,
and there should be no whitespace before the star (*). You are, however,
free to insert whitespace before the overlay specification and the line op-
tions. This means that you may, for example, place the overlay specification
at the beginning of the following line in the source.

11

https://ctan.org/pkg/enumitem

\arabic*

See *.

begin-tabular = 〈commands〉 (no default)

The actual command for beginning the tabular or tabular-like environ-
ment used by pseudo. Normally not needed, as the tabular behavior may
be modified by other keys, but could be used to use some other tabular
environment, e.g., from packages such as tabularx or longtable.

bol = 〈commands〉 (no default, initially empty)

Used to set \pseudobol, which is inserted at the beginning of each line.
See also bol-append and bol-prepend.

bol-append = 〈commands〉 (no default)

Locally appends 〈commands〉 to bol.

bol-prepend = 〈commands〉 (no default)

Similar to bol-append, except that 〈commands〉 are added to the beginning
of bol.

\cn{〈name〉}
Indicates a constant (such as true or nil). First wraps the argument in
\textnormal and then uses \cnfont. See also \DeclarePseudoConstant.
This is a convenience for typesetting constants, and you may freely redefine
it to whatever you prefer. If some package defines \cn before pseudo is
loaded, pseudo will not overwrite it. The command will still be available,
as \pseudocn.

cnfont = 〈command〉 (no default, initially \textsc)

Used to set \cnfont, which is used as part of \cn. May be set to take a
single argument or none. Not restricted to actual font commands; you may
also mix in \textcolor or the like.

\cnfont

The command set by the cnfont option. Used as part of \cn.

compact = 〈boolean〉 (default true, initially false)

The pseudo environment emulates the built-in LATEX lists when it comes
to spacing above and below, in normal text. If the environment is part of
an ongoing paragraph, paragraphs will be inserted above and below, along
with whitespace specified by topsep and parskip. If the environment
begins a paragraph of its own, additional whitespace is added, as specified
by partopsep. It is also possible to specify space to insert to the left of the
environment, using left-margin.

However, these spacing commands don’t work well inside \mbox, \fbox,
etc. To avoid getting into trouble, pseudo determines that the environ-
ment should be compact, and drop this surrounding space, if we’re in inner
horizontal mode at the beginning of the environment.

12

https://ctan.org/pkg/tabularx
https://ctan.org/pkg/longtable

1 if we’re in a node
2 there’s no added space

% In preamble:

% \usepackage{tikz}

\begin{tikzpicture}

\draw (0,0) node [draw] {%

\begin{pseudo}

if we’re in a node \\+

there’s no added space

\end{pseudo}};

\end{tikzpicture}

This may not be enough, however. For example, if you’re using stan-
dalone to produce individual pseudocode images, this compactness will not
be triggered automatically. In such cases, you can override the behavior us-
ing the compact key, manually specifying whether you want the pseudocode
to be compact or not.

\ct{〈text〉}
Indicates that 〈text〉 is a comment, (typeset like this). You can customize
the comment appearance using ctfont, ct-left and ct-right:

1 y = 1
2 x = 2 /* this is a comment */

3 z = 345 /* this is another comment */

\pseudoset{

ctfont=\color{black!75},

ct-left=\unskip\qquad\texttt{/* },

ct-right=\texttt{ */}

}

\begin{pseudo}

$y=1$ \\

$x=2$ \ct{this is a comment} \\

$z=345$ \ct{this is another comment}

\end{pseudo}

An alternative to using \ct is to simply set comments in a separate column,
as demonstrated in section 4.4. Or even without a separate column, if you
use a tabularx as described there, and set the tabular width explicitly, you
could insert an \hfill into ct-right and get all end-markers aligned at
the right-hand side:

1 x = 1
2 y = 2 /* this is a comment */

3 z = 345 /* this is another comment */

13

https://ctan.org/pkg/standalone
https://ctan.org/pkg/standalone

Or if you’d rather have the comments right-aligned (like you can in, e.g., al-
gorithm2e), you could use insert the \hfill at the beginning of the ct-left:

1 x = 1
2 y = 2 /* this is a comment */

3 z = 345 /* this is another comment */

ct-left = 〈text〉 (no default, initially ()

Text or commands inserted at the start of a comment, when using \ct.

ct-right = 〈text〉 (no default, initially))

Text or commands inserted at the end of a comment, when using \ct.

ctfont (no default, initially \textit)

The font of the main text of a comment, when using \ct.

\ctfont

The command set by the ctfont option. Used as part of \ct.

\DeclarePseudoComment{〈shortcut〉}{〈comment〉}
Used to declare a macro that expands to a comment. For example:

x = y (Important!)

\DeclarePseudoComment \Imp {Important!}

$x = y$ \qquad \Imp

See also \ct. (Note that \pseudoct is used internally here.)

\DeclarePseudoConstant{〈shortcut〉}{〈constant〉}
Used to declare a macro that expands to a constant. For example:

false

\DeclarePseudoConstant \False {false}

\False

See also \cn. (Note that \pseudocn is used internally here.)

\DeclarePseudoFunction{〈shortcut〉}{〈function〉}
Used to declare a macro that expands to a function. For example:

length(A) or length[A]

\DeclarePseudoFunction \Ln {length}

\Ln(A) or \Ln[A]

See also \fn. (Note that \pseudofn is used internally here.)

14

https://ctan.org/pkg/algorithm2e
https://ctan.org/pkg/algorithm2e

\DeclarePseudoIdentifier{〈shortcut〉}{〈identifier〉}
Used to declare a macro that expands to a identifier. For example:

rank

\DeclarePseudoIdentifier \Rank {rank}

\Rank

See also \id. (Note that \pseudoid is used internally here.)

\DeclarePseudoKeyword{〈shortcut〉}{〈keyword〉}
Used to declare a macro that expands to a keyword. For example:

while

\DeclarePseudoKeyword \While {while}

\While

See also \kw. (Note that \pseudokw is used internally here.)

\DeclarePseudoNormal{〈shortcut〉}{〈text〉}
Used to declare a macro that expands to normal text. For example:

if x == nil
halt with an error message

\DeclarePseudoNormal \Error {halt with an error message}

\begin{pseudo*}[kw]

if $x \== \cn{nil}$ \\+

\Error

\end{pseudo*}

See also \tn. (Note that \pseudotn is used internally here.)

\DeclarePseudoProcedure{〈shortcut〉}{〈procedure〉}
Used to declare a macro that expands to a procedure. For example:

Euclid(a, b)

\DeclarePseudoProcedure \Euclid {Euclid}

\Euclid(a, b)

See also \pr. (Note that \pseudopr is used internally here.)

\DeclarePseudoString{〈shortcut〉}{〈string〉}
Used to declare a macro that expands to a string. For example:

15

“Hello!”

\DeclarePseudoString \Hello {Hello!}

\Hello

See also \st. (Note that \pseudost is used internally here.)

dim

Dims the following line. Equivalent to:

\pseudodefinestyle{dim}{

bol-append = \color{\pseudodimcolor},

setup-append = \color{\pseudodimcolor}

}

May be used to dim out inactive or currently less relevant lines (possibly
using overlays; see page 8).

Gnome-Sort(A)
1 i = 1
2 while i ≤ length[A]
3 if i == 1 or A[i] ≥ A[i− 1]
4 i = i+ 1
5 else swap A[i] and A[i− 1]
6 i = i− 1

\begin{pseudo}[kw, dim-color=black!25]*

\hd{Gnome-Sort}(A) \\

[dim] $i = 1$ \\

[dim] while $i \leq \fn{length}[A]$ \\+

if $i \== 1$ or $A[i] \geq A[i-1]$ \\+

$i = i + 1$ \\-

[dim] else \nf swap $A[i]$ and $A[i-1]$ \\+

[dim] $i = i - 1$

\end{pseudo}

See also bol-append, setup-append and dim-color.

dim-color = 〈color〉 (no default, initially \pseudohlcolor)

Sets the color used by dim (available as \pseudodimcolor). The initial
value is the one set by hl-color.

\dts

A two-dot ellipsis, for use in the Wirth interval notation 1 . . n, typeset
as Graham, Knuth, and Patashnik did in Concrete Mathematics [2]. Its
definition is the same as in gkpmac. Also accessible via the \.. shortcut.

16

https://ctan.org/pkg/gkpmac

end-tabular (no default, initially \end{tabular})

The actual command for ending the tabular or tabular-like environment
used by pseudo. (See begin-tabular.)

eol = 〈commands〉 (no default, initially empty)

Sets \pseudoeol, which is inserted at the end of all but the last line by \\.
See also eol-append and eol-prepend.

eol-append = 〈commands〉 (no default)

Locally appends 〈commands〉 to eol.

eol-prepend = 〈commands〉 (no default)

Similar to eol-append, except that 〈commands〉 are added to the beginning
of eol.

\eqs

Two equality signs typeset together as a binary relation, as in x == y (as
opposed to the wider x == y, resulting from $x == y$). It emulates the stix
symbol \eqeq, but for use with Computer Modern (the default LATEX font)
or Latin Modern (available via the lmodern package). It should work just
fine with other fonts. Also accessible via the \== shortcut, and configurable
via eqs-pad, eqs-scale and eqs-sep.

eqs-pad = 〈length〉 (no default, initially 0.28mu)

The amount of space inserted on each side of \eqs.

eqs-scale = 〈number〉 (no default, initially 0.6785)

The amount of horizontal scaling applied to the = signs in \eqs.

eqs-sep = 〈length〉 (no default, initially 0.63mu)

The amount of space inserted between the two = signs in \eqs.

\fn{〈name〉}(〈arguments〉)
Indicates a function name, such as length, and is initially more or less an
alias for \id. The optional arguments (given in parentheses) are typeset
in math mode, so \fn{length}(A) yields length(A). Sometimes square
brackets are used with functions that are meant to indicate array lookups
or some property access or the like. This works in the same manner, so
\fn{length}[A] yields length[A]. This behavior of picking up arguments
carries over if you define a shortcut, of course:

We’re not in math mode, but the argument of length[A] is.

\def\Ln{\fn{length}}

We’re not in math mode, but the argument of \Ln[A] is.

See also \DeclarePseudoFunction. This is a convenience for typesetting
function names, and you may freely redefine it to whatever you prefer. If
some package defines \fn before pseudo is loaded, pseudo will not overwrite
it. The command will still be available, as \pseudofn.

17

https://ctan.org/pkg/stix
https://ctan.org/tex-archive/info/lmodern

fnfont = 〈font〉 (no default, initially \idfont)

Used to set \fnfont, which is used as part of \fn. May be set to take a
single argument or none. Not restricted to actual font commands; you may
also mix in \textcolor or the like.

\fnfont

The command set by the fnfont option. Used as part of \fn.

font = 〈command〉 (no default, initially \normalfont)

Sets the base font used in the code lines. Initially, this is just \normalfont,
but the kw switch is a convenient way to set it to the keyword font \kwfont.
This is presumed to be a common case, under the assumption that most
of the pseudocode will consist of either keywords or mathematics. If you’d
rather explicitly mark up your keywords, leaving font as it is, you could
use \kw (or \DeclarePseudoKeyword for common cases):

while pigs don’t fly
keep waiting

\begin{pseudo*}

\kw{while} pigs don’t fly \\+

keep waiting

\end{pseudo*}

\hd{〈name〉}(〈arguments〉)
Typesets a procedure signature, like \pr, but is intended for use as a header
for a procedure, rather than a procedure call. The difference is that \hd

wraps its contents in a \multicolumn, spanning two columns (i.e., both the
label column and the main code column, but not any additional columns
added using preamble or begin-tabular), using the preamble set with
hd-preamble. For this to work, you need to use the star flag (*) to suppress
the automatic insertion of the prefix:

Algorithm(x, y, z)
1 setup
2 while condition
3 iterative step
4 return result

\begin{pseudo}*

\hd{Algorithm}(x, y, z) \\

setup \\

\kw{while} condition \\+

iterative step \\-

\kw{return} result

\end{pseudo}

18

Note that the arguments are mandatory; in order to function properly,
\hd must be expandable, and therefore cannot end with an optional ar-
gument, the way \pr does. If some package defines \pr before pseudo is
loaded, pseudo will not overwrite it. The command will still be available,
as \pseudopr.

hd-preamble = 〈columns〉 (no default)

Sets the preamble used by \hd. Initially, a single left-aligned column
with \pseudohpad on either side (see page 49). If you introduce more
columns in preamble, you might want to increase the number of columns
in hd-preamble as well, or at least remove the right-hand \pseudohpad.

hl (takes no value)

Prepends \pseudohl to bol. Normally used with beamer (see page 8).

hl-color = 〈color〉 (no default, initially black!12)

Sets the color used by \pseudohl (available as \pseudohlcolor).

hpad = 〈length〉 (default 0.3em, initially 0em)

Horizontal padding on either side of the pseudocode. Useful, among other
things when highlighting lines, to have some of the highlighting (i.e., row
color) protrude beyond the text.

hsep = 〈length〉 (no default, initially 0.75em)

The space between the line labels and the code lines, i.e., between the two
columns of numbered pseudo environments.

\id{〈name〉}
Indicates an identifier, and is simply an alias for \textit wrapped in
\textnormal. See also \DeclarePseudoIdentifier. This is a convenience
for typesetting identifiers, and you may freely redefine it to whatever you
prefer. If some package defines \id before pseudo is loaded, pseudo will not
overwrite it. The command will still be available, as \pseudoid.

It might seem more natural to use \mathit (without \tn), but that may
not give the desired results. First of all, special characters will not behave
as if they’re parts of a name:

foo − bar : baz

$\mathit{foo-bar:baz}$

This may be remedied, e.g., by using the (internal) command \newmcodes@

from amsopn, but the kerning, spacing and font application in the result
still leaves something to be desired:

foo-bar : baz

19

https://ctan.org/pkg/beamer
https://ctan.org/pkg/amsopn

$\mathit{\newmcodes@ foo-bar:baz}$

Compare this to a simple \textit:

foo-bar:baz

$\textit{foo-bar:baz}$

The decision to use \textit means that you can’t use, say, subscripts or the
like as pars of an identifier, or mix in greek letters or other mathematical
symbols. Though you can still easily typeset things like foo-α, you’ll have to
mix in the math mode more explicitly (in this case, $\id{foo-$\alpha$}$).
If some package defines \id before pseudo is loaded, pseudo will not over-
write it. The command will still be available, as \pseudoid.

idfont = 〈font〉 (no default, initially \textit)

Used to set \idfont, which is used as part of \id. May be set to take a
single argument or none. Not restricted to actual font commands; you may
also mix in \textcolor or the like.

\idfont

The command set by the idfont option. Used as part of \id.

indent-length = 〈length〉 (no default, initially empty)

How large each indentation step is. If this key is not specified, indent-text
is used to calculate one the indent length instead.

indent-level = 〈length〉 (no default, initially 0)

Sets the current indentation level. This is most usefully set on pseudo

environment, in concert with start:∗

1 this is
2 the first part

This is some text interrupting the code.

3 this is the
4 second part

∗ The \strut here is just to even out spacing above and below the text, which doesn’t have
fixed-height lines like the pseudocode.

20

\begin{pseudo}

this is \\+

the first part

\end{pseudo}

\medskip \strut

This is some text interrupting the code.

\medskip

\begin{pseudo}[start=3, indent-level=1]

this is the \\-

second part

\end{pseudo}

indent-text = 〈text〉 (no default, initially \pseudofont\kw{else}\)

The size of each indentation step is set to the width of the 〈text〉. The
default is set up so that code following on the same line as else will be
properly aligned, as in:

if condition
something

else something else

If you’re not going to put code on the same line as else, for example, you
might want a different indentation size. To set it to some specific length,
you could use the indent-length key.

kw (takes no value)

Sets font to \kwfont.

\kw{〈name〉}
Indicates a keyword. First wraps the argument in \textnormal and then
adds \kwfont. See also \DeclarePseudoKeyword. This is a convenience
for typesetting keywords, and you may freely redefine it to whatever you
prefer. If some package defines \kw before pseudo is loaded, pseudo will not
overwrite it. The command will still be available, as \pseudokw.

kwfont = 〈font〉 (no default, initially \fontseries{b}\selectfont)

Used to set \kwfont, which is used as part of \kw. May be set to take
a single argument or none. Not restricted to actual font commands; you
may also mix in \textcolor or the like. Note, however, that with the kw

switch, you set font = \kwfont, which is then applied as a font-switching
command for each entire line, taking no argument. If you provide an com-
mand requiring an argument, the \kw command will still work, but the kw

switch won’t:

21

foo bar

vs.

foo bar

\pseudoset{kw}

\begin{pseudo*}[kwfont=\textsf] % breaks kw option

foo \kw{bar}

\end{pseudo*}

vs.\

\begin{pseudo*}[kwfont=\sffamily] % works with kw option

foo \kw{bar}

\end{pseudo*}

\kwfont

The command set by the kwfont option. Used as part of \kw.

label = 〈commands〉 (no default, initially \arabic*)

1: print “Hello, label!”
2: goto 1

\pseudoset{kw, label=\footnotesize\arabic*:}

\begin{pseudo}

print \st{Hello, label!} \label{li:label} \\

goto \tn{\ref{li:label}}

\end{pseudo}

Note that \label should be used in the actual code line, as here, and not
in the number cell (which is generally not explicitly written, anyway).

As kan be seen from the example, \ref is unaffected by label, and in many
cases that’s what you want—as apposed to, say, “goto 1:”. In some cases,
however (especially when using one of the other formatting commands,
such as \alph or \roman), you do want the reference format to reflect the
original, or be similar in some way. To do that, you use the ref key.

label-align = 〈column〉 (no default, initially r)

Used to specify the alignment of the label of each line. Whatever is pro-
vided is stored as a column type (named \pseudolabelalign), which is a
part of the default preamble. In other words, beyond the basic l and r (for
left- and right-justified), you can supply anything that would be valid as
part of the preamble (possibly using functionality from the array package).
If you want to get creative here, though, it might be easier to get the results
you want by specifying your own preamble in full.

22

https://ctan.org/pkg/array

left-margin = 〈length〉 (no default, initially 0pt)

Sets the left margin of the pseudo environment, i.e., how far it is indented
wrt. the surrounding text:

Lorem ipsum dolor sit amet:

1 consetetur sadipscing elitr
2 sed diam nonumy eirmod tempor

Invidunt ut labore et dolore magna.

Lorem ipsum dolor sit amet:

\begin{pseudo}[left-margin=1.25em]

consetetur sadipscing elitr \\

sed diam nonumy eirmod tempor

\end{pseudo}

Invidunt ut labore et dolore magna.

To have the environment indented as (the beginning of) any normal para-
graph, you could use left-margin = \parindent. Note that left-margin,
as well as the spacing above and below the pseudo environment, is turned
off inside \mbox and the like:

I’m a livin’ in a box
I’m a livin’ in a cardboard box

\pseudoset{left-margin=1cm} % Won’t affect box contents

\fbox{\begin{pseudo*}

I’m a livin’ in a box \\

I’m a livin’ in a cardboard box

\end{pseudo*}}

Note that as opposed to topsep, parskip and partopsep, we are not work-
ing with one of the built-in list spacing commands; \leftmargin has no
effect on this key (which is why the hyphenated naming style of other keys
such as label-align or indent-text is also adopted for left-margin).
See also compact.

line-height = 〈factor〉 (no default, initially 1)

The 〈factor〉 with which to multiply the ordinary line height. For simple,
sparse pseudocode, the oridnary line height works well, but if your code gets
too crowded with text and notation, you may wish to increase line-height.
To emulate, e.g., the \jot set by amsmath (which is 0.25\baselineskip),
you could use 1.25, though even 1.1 should help in many cases.

\nf

23

https://ctan.org/pkg/amsmath

Switch to the normal font (i.e., without bold or italics, etc.). If some
package defines \nf before pseudo is loaded, pseudo will not overwrite it.
The command will still be available, as \normalfont. See also \tn.

parskip = 〈length〉 (no default, initially \parskip)

Sets a pseudo-local copy of \parskip for use in vertical spacing above and
below the pseudo environment. See also compact.

partopsep = 〈length〉 (no default, initially \partopsep)

Sets a pseudo-local copy of \partopsep for use in vertical spacing above
and below the pseudo environment. See also compact.

pause (takes no value)

Equivalent to eol-append = \pause (see section 2).

\pr{〈name〉}(〈arguments〉)
Indicates a procedure name, such as Quicksort, and is initially more or
less an alias for \cn. The optional arguments (in parentheses) are type-
set in math mode, so \pr{Quicksort}(A,p,r) yields Quicksort(A, p, r).
See also \DeclarePseudoProcedure. This is a convenience for typesetting
procedure names, and you may freely redefine it to whatever you prefer. If
some package defines \pr before pseudo is loaded, pseudo will not overwrite
it. The command will still be available, as \pseudopr.

preamble = 〈columns〉 (no default)

Sets the preamble to be used by the internal tabular. The result is available
as the column type with name \pseudopreamble. (Note that this is the
literal column name, and not a macro containing the name. Initially, pseudo
uses a tabular as redefined by the array, which prevents the expansion of
whatever is provided as its preamble, and so we supply the preamble in the
form of a single “column” instead.) For the default value, see the actual
implementation on page 48 as well as the explanation in section 3.1.

prefix = 〈commands〉 (no default)

This is the text inserted at the beginning of the following line by \\ (and
by \begin{pseudo}), unless you use the star (*) flag. Unless modified, it
inserts the code necessary to label the line and to move into the second
column, where the actual code is inserted by the user. For the default
value, see the actual implementation on page 49 as well as the explanation
in section 3.1.

prfont = 〈font〉 (no default, initially \cnfont)

Used to set \prfont, which is used as part of \pr. May be set to take a
single argument or none. Not restricted to actual font commands; you may
also mix in \textcolor or the like.

\prfont

The command set by the prfont option. Used as part of \pr.

24

https://ctan.org/pkg/array

\begin{pseudo}[〈options〉] * <〈overlay specification〉> [〈line options〉]
〈pseudocode〉

\end{pseudo}

The actual environment in which the pseudocode is typeset. The 〈options〉
are local to the environment, while the 〈line options〉 are local to the fol-
lowing line (in the same manner as those set in \\; i.e., only some will
actually have any effect). The star (*) and 〈overlay specification〉 act just
like those on \\. Note that if you wish to specify 〈line options〉 without
the star or the 〈overlay specification〉, you need to supply at least an empty
pair of brackets for the global options:

1 First line
2 Second line

vs.

1 First line
2 Second line

\begin{pseudo}[][hl]

First line \\

Second line

\end{pseudo}

vs.\

\begin{pseudo}[hl]

First line \\

Second line

\end{pseudo}

There are no +/- flags here, unlike for \\; if needed, you can use indent-level.

\begin{pseudo*}[〈options〉] * <〈overlay specification〉> [〈line options〉]
〈pseudocode〉

\end{pseudo*}

An unnumbered version of the pseudo environment. Equivalent to pseudo,
but with the starred style applied (see page 56). Unless this style is
altered, this means that the label column is removed from the preamble,
and the prefix is reduced to only bol.

\pseudobol

The command set by the bol option. Used as part of \pseudoprefix.

\pseudodefinestyle{〈name〉}{〈options〉}
Used to define “styles” or meta-keys, i.e., shortcuts for setting several keys
to given values (used, e.g., to define starred). The 〈name〉 is simply the
name of the new meta-key, and the 〈options〉 are just what you’d provide
to, e.g., \pseudoset.

\pseudoeol

The command set by the eol option. Used as part of \\. It is inserted
between lines, but not after the last one.

25

\pseudoeq

Similar to \pseudoslash. Switches the definition of \= to the one used by
pseudo. Useful if \= reverts to its original definition in some context (see
\==).

\pseudofont

The command set by the font option. Used as part of \pseudosetup. It
is used to set up the font for each pseudocode line. (See also kw.)

\pseudohl

This is the command inserted as bol by the hl switch. Initially, it’s just
a \rowcolor using the color set by hl-color, but you could redefine it to
whatever you wish.

\pseudohpad

Used on the left- and right-hand sides of preamble. Conceptually, it in-
serts the horizontal space specified by hpad. To play nice with \rowcolor,
however, it is not used in a @{...} column; rather, it’s placed in >{...}

and <{...} modifiers, and the actual space inserted has \tabcolsep sub-
tracted.

\pseudoindent

The command set by the indent-length option. Used in \pseudosetup.
More precisely, indent-length is stored textually, and is converted to the
length \pseudoindentlength when entering a pseudo environment (so that
units like em and ex adapt to the current font). The \pseudoindent com-
mand then inserts a horizontal space of length \pseudoindentlength×
current indent level.

\pseudolabel

The command set by the label option. Used as part of \pseudoprefix.

pseudoline

Counter for pseudocode lines. See also *.

\pseudoprefix

The command set by the prefix option. Used as part of \\.

\pseudosavelabel

Used as part of \pseudosetup to save the pseudoline counter for use in
\label and \ref. The pseudoline counter is incremented as part of the
\pseudolabel command, but that’s done using a plain \stepcounter, as
any use of \label will presumably be placed in the pseudocode line (i.e., the
next column). To save the value there, \pseudosavelabel first decrements
the counter, and then uses \refstepcounter.

26

\pseudoset{〈options〉}
Used to set the configuration keys of the pseudo package (using l3keys with
pseudo as the module). These may also be set as optional arguments to
the pseudo and pseudo* environments. For example, if you’d like to switch
to \rm as your base font, you could use \pseudoset{font = \rm}.

\pseudosetup

The command set by the setup option. Used as part of the preamble.

Not to be confused with \pseudoset.

\pseudoslash

Command similar to the \arrayslash of the array package. Switches the
definition of \\ to the one used by pseudo. Useful if you’ve used some code
that modifies \\ for its own purposes (such as \raggedleft or the like).

ref = 〈commands〉 (initially empty, default \pseudolabel)

Shortcut for setting the \thepseudoline command. If used without argu-
ments, it will use the value supplied to label.

(a) print “Hello, ref!”
(b) goto A

\pseudoset {

label = (\textsc{\alph*}),

ref = \Alph*,

hsep = .5em

}

\begin{pseudo}

print \st{Hello, ref!} \label{li:ref} \\

goto \tn{\ref{li:ref}}

\end{pseudo}

setup = 〈commands〉 (no default)

The setup part of each pseudocode line: Save the line counter (using
the \pseudosavelabel command), insert the proper indentation (with
\pseudoindent) and switch to the correct font (\pseudofont).

Rather than setting setup directly, you may wish to add commands using
setup-append or setup-prepend.

setup-append = 〈commands〉 (no default)

Locally appends 〈commands〉 to setup.

setup-prepend = 〈commands〉 (no default)

Similar to setup-append, except that 〈commands〉 are added to the begin-
ning of setup.

27

https://ctan.org/pkg/l3kernel
https://ctan.org/pkg/array

\st{〈string〉}
Typesets 〈string〉 with added quotes using \stfont. (The entire thing is
wrapped in \textnormal.) For example, print \st{42} yields

print “42”

. See also \DeclarePseudoString. This is a convenience for typesetting
strings, and you may freely redefine it to whatever you prefer. If some
package defines \st before pseudo is loaded, pseudo will not overwrite it.
The command will still be available, as \pseudost.

st-left = 〈text〉 (no default, initially ‘‘)

Text or commands inserted at the start of a string, when using \st.

st-right = 〈text〉 (no default, initially ’’)

Text or commands inserted at the end of a string, when using \st.

starred (takes no value)

The style (defined by \pseudodefinestyle) used by the pseudo* envi-
ronment. You may modify this (again using \pseudodefinestyle) if you
wish.

start = 〈number〉 (no default, initially 1)

Sets the starting line number:

10 Maybe we’re continuing from some earlier code?
11 Anyway, let’s keep going!

\begin{pseudo}[start=10]

Maybe we’re continuing from some earlier code? \\

Anyway, let’s keep going!

\end{pseudo}

See also indent-level.

stfont

Used to set \stfont, which is used as part of \st. May be set to take a
single argument or none. Not restricted to actual font commands; you may
also mix in \textcolor or the like.

\stfont

The command set by the stfont option. Used as part of \st.

\tn{〈text〉}
An alias for \textnormal, to break out of the font set using the font key,
for inserting ordinary prose between the keywords. For example, to get the
result “for every node v ∈ V ”, one might write:

28

for \tn{every node} $v\in V$

This is equivalent to using \textnormal{every node}. If some package
defines \tn before pseudo is loaded, pseudo will not overwrite it. The com-
mand will still be available, as \textnormal.

topsep = 〈length〉 (no default, initially \topsep)

Sets a pseudo-local copy of \topsep for use in vertical spacing above and
below the pseudo environment. See also compact.

unknown

Unknown keys are checked for beamer overlay specifications. That is, if an
unknown key has the form

〈name〉<〈overlay specification〉> = 〈value〉

then it does not trigger an error, but, if beamer is used, is rewritten to:

\only<〈overlay specification〉>{\pseudoset{〈name〉 = 〈value〉}}

If beamer is not used, the key is simply ignored. Note that because of
current limitations on how keys are handled, unknown keys cannot have
defaults, and so there is no way to insert a marker for when no value is pro-
vided, which could be used to determine whether to use \pseudoset{〈name〉
= 〈value〉} or simply \pseudoset{〈name〉}. Instead, if an empty value is
provided to the unknown key, that is treated in the same way as when the
key is used without a value, resulting in \pseudoset{〈name〉} rather than
\pseudoset{〈name〉 = }.

4 But how do I . . .

Some functionality is not built in, but is still fairly easy to achieve. Some
streamlining may be added in future versions.

4.1 . . . prevent paragraph indentation after pseudo?

If you want to keep the pseudocode as part of a surrounding paragraph, you
could have it not start its own, i.e., not have an empty line before it. This will
reduce the amount of spacing as well; if you’d rather have that reduced, you
could simply drop the empty line after the environment:

Text before

\begin{pseudo}

pseudocode

\end{pseudo}

%

Text after

The effect would then be the following:

1 pseudocode

29

https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer

No indentation here, and normal spacing. If, however, you wish to suppress in-
dentation after all instances of pseudo, you could use the noindentafter package,
as follows:

\usepackage{noindentafter}

\NoIndentAfterEnv{pseudo}

If you wish to override this, and indent a given paragraph after all, you can
simply use the \indent command.

4.2 . . . get log-like functions?

There’s no built-in command for math-roman function names, as used in log and
sin, etc. (other than just setting fnfont, if you want it everywhere). If you wish
to define your own, you could use \operatorname or \DeclareMathOperator.
For example:

1 if my-funcx == 1
2 y = my-func(z + 1)

% In preamble:

% \usepackage{amsmath}

% \DeclareMathOperator{\MyFunc}{my-func}

\begin{pseudo}[kw]

if $\MyFunc x \== 1$ \\+

$y = \MyFunc(z + 1)$

\end{pseudo}

The spacing is then correct whether you enclose the arguments in parentheses
or not.

4.3 . . . unbold punctuation?

If you use the kw key, all pseudocode not in math mode will end up using the
keyword font (\kwfont), which initially is bold. Though some do typeset, e.g.,
grouping braces in boldface, you might not want to do that; the same goes for,
say, line-terminating semicolons. The theoremfont option of, e.g., newtx does
something similar (for italics), but uses a custom font for that. Packages like
emrac rely on straightforward textual substitution, replacing certain characters
with marked-up ones, but the way things are set up at the moment, our font
command won’t have access to the entire line when it’s executed.

If you’re adventurous, it’s not hard (using the xparse argument type u) to
make a version that does gobble up the entire line, up to and including \\ (and
you could then use the regular expression functionality from expl3, presumably
also reinserting \\). A simpler solution is to just use \DeclarePseudoNormal.
Here’s an example based on pseudocode from Knuth [3]:

30

https://ctan.org/pkg/noindentafter
https://ctan.org/pkg/newtx
https://ctan.org/pkg/embrac
https://ctan.org/pkg/xparse
https://ctan.org/pkg/expl3

procedure printstatistics;

begin integer j;

write(“Closed sets for rank”, r, “:”);

j := L[h];

while j 6= h do

begin writeon(S[j]); j := L[j] end;

end;

% \usepackage{mathtools}

\let\gets\coloneqq

\pseudoset{kw, indent-length=2em, line-height=1.1}

\DeclarePseudoNormal \; ;

\begin{pseudo*}

procedure \id{printstatistics}\; \\

begin integer j\; \\+

$\id{write}(\st{Closed sets for rank}, r, \st{:})$\; \\

$j \gets L[h]$\; \\

while $j \neq h$ do \\+

begin $\id{writeon}(S[j])$\; $j\gets L[j]$ end\; \\--

end\;

\end{pseudo*}

If you’d really like to avoid the extra backslashes, you could make the relevant
punctuation active (though that’s probably a bit risky; make sure to only do it
locally, at the very least):

begin integer j;

\DeclarePseudoNormal \semi ;

\catcode‘\;=\active

\let;\semi

\begin{pseudo*}[kw]

begin integer j; % Look! The semicolon isn’t bold!

\end{pseudo*}

4.4 . . . use tabularx?

You can use other tabular packages such as tabularx via begin-tabular and
end-tabular. Let’s say, for example, that you wish to extend the pseudo

environment to fill out the entire line, and set up a new column for comments.
You could achieve that as follows:

31

https://ctan.org/pkg/tabularx

Counting-Sort(A, k) Find positions by counting

1 C = an array of k zeros Element frequencies

2 for i = 1 to A.length Count all elements

3 . . . Etc.

\pseudodefinestyle{fullwidth}{

begin-tabular =

\tabularx{\linewidth}{@{}

r % Labels

>{\pseudosetup} % Indent, font, ...

X % Code (flexible)

>{\leavevmode\small\color{black!60}} % Comment styling

p{0.45\linewidth} % Comments (fixed)

@{}},

end-tabular = \endtabularx,

setup-append = \pseudoeq

}

\begin{pseudo}[kw, fullwidth, line-height=1.1]*

\hd{Counting-Sort}(A, k) & Find positions by counting \\

$C = \tn{an array of k zeros}$ & Element frequencies \\

for $i = 1$ to $A.\id{length}$ & Count all elements \\+

\dots & Etc.

\end{pseudo}

Note that using the \color command in a >{...} modifier with a p column
places the text in a new paragraph, on the next line; you’ll need to insert
\leavevmode or the like to prevent that. This is true also of normal tabular
environments. Also note that tabularx environments with X columns don’t
interact nicely with \=; so i you wish to use \==, you can reassert the definition
by adding >{\pseudoeq} before each column.

See the tabularx documentation (page 4) for an explanation of why we can’t
use \begin{tabularx} and \end{tabularx}. Also note that because tabularx
passes its contents as the argument to a macro, the parsing pseudo uses to
determine if \\ is at the end of the last line doesn’t work; if you add \\ at the
end here, you’ll introduce an empty line.

For simplicity, I’ve used @{} to remove space on either side. For hpad to
work, you should use >{\pseudohpad} and <{\pseudohpad} instead, as in the
standard preamble (see page 48). To keep things configurable, you might also
want to use \pseudolabelalign, rather than r.

4.5 . . . get tab stops?

Some packages, such as clrscode3e, use an actual tabbing environment inter-
nally. While this may be a bit brittle (e.g., creating problems if you wish to
insert your pseudocode into a tikz node—one of the goals of pseudo), it does
mean that you can use the tabbing command \> manually, to align various
construct.

If all your tabbing is done before the text on a given code line, you can
achieve this in pseudo as well, by using the + and - modifiers. (For example, the

32

https://ctan.org/pkg/tabularx
https://ctan.org/pkg/tabularx
https://ctan.org/pkg/clrscode3e
https://ctan.org/pkg/pgf

tab stops in clrscode3e are set at fixed intervals, just like in pseudo.) But what
i you’d like to align something that comes later, such as comments after code
lines? You can’t simply use \hspace, of course, unless the code lines themselves
have exactly the same length.

One solution is to use an additional column, as discussed in section 4.4, but
you could also make creative use of the \rlap command, which prevents its
contents from taking up horizontal space:∗

This is some textAnd here is some more

\noindent\rlap{This is some text}%

And here is some more

By using \rlap on the code lines in question, you can insert \hspace that begins
at the beginning of the code line (here with an example convenience command
defined using xparse):

1 x = 42 (first comment)
2 y = sinx (second comment)

\NewDocumentCommand \C { +u{/* } +u{ */} } {%

\rlap{#1}\hspace{3cm}\ct{#2}\\%

}

\begin{pseudo}

\C $x = 42$ /* first comment */

\C $y = \sin x$ /* second comment */

\end{pseudo}

See also the discussion of the \ct command for ideas on typesetting comments.
If you wish to align things across different indentation levels, you’ll have to add
or subtract multiples of \pseudoindentlength (see \pseudoindent).

4.6 . . . use horizontal lines?

Many opt for a table-like appearance when typesetting algorithms, with hori-
zontal lines above and below, and generally a header row on top. While this
may be part of a surrounding floating environment (see section 4.7), you may
also wish to include such lines in your actual pseudocode. In this case, you
can simply use existing tabular-based tools such as booktabs, making sure to
suppress the pseudo prefix using the star flag (*):

∗ Note that \rlap doesn’t start a new paragraph, which is why I use \noindent, here. You
could replace \noindent\rlap{...} with \makebox[0pt][l]{...}. This isn’t an issue in
pseudo code lines, however.

33

https://ctan.org/pkg/clrscode3e
https://ctan.org/pkg/xparse
https://ctan.org/pkg/booktabs

Bor̊uvka(G,w)

1 while E(G) is not empty
2 for each u ∈ V (G)
3 add light uv ∈ E(G) to T
4 for each e ∈ T
5 contract e

% \usepackage{booktabs}

\begin{pseudo}*

\toprule

\hd{Bor\r{u}vka}(G, w) \\

%

[bol=\midrule]

\kw{while} $E(G)$ is not empty \\+

\kw{for} each $u\in V(G)$ \\+

add light $uv \in E(G)$ to T \\-

\kw{for} each $e \in T$ \\+

contract e *

\bottomrule

\end{pseudo}

Rather than \\[bol=\midrule], you could also have used *, followed by
\midrule\pseudoprefix. (Note that the paragraph break between \\ and its
argument has been commented out.)

4.7 . . . get an algorithm float?

There are (at least) two different ways of viewing a block of pseudocode: As an
inline element, like equations, or as a float, like figures and tables. For example,
Cormen et al. [1] place their pseudocode inline, and refer to the algorithms
by name (e.g., Dijkstra), while Williamson and Shmoys [4] place them in
floats, and refer to them by number (e.g., Algorithm 3.1).∗ Some pseudocode
packages have a custom float environment (à la table and figure) for use
with algorithms described by pseudocode. Beyond having a new float name
(such as “Algorithm”) with its own numbering and the like, they at times have
rather distinct styling (horizontal lines in algorithms and algorithmicx, and a
surrounding box in algorithm2e), which may or may not suit the styling of the
rest of your document.

Rather than getting into the business of float environments, I leave such
things to separate packages designed for that use. A basic solution would be to
simply use the float package (which also provides ruled and boxed floats, should
you wish to have those), but a quick ctan search for “float”, or a look at the
recommendations related to the float package, will give you many options, with
varying functionality.

∗ A third option that is sometimes used is to use a theorem-like environment for your algo-
rithms. There are many packages to help with this; just search ctan for “theorem”.

34

https://ctan.org/pkg/algorithms
https://ctan.org/pkg/algorithmicx
https://ctan.org/pkg/algorithm2e
https://ctan.org/pkg/float
https://ctan.org
https://ctan.org/search/?phrase=float
https://ctan.org/recommendations/float
https://ctan.org/pkg/float
https://ctan.org
https://ctan.org/search/?phrase=theorem

Algorithm 4.1: Bor̊uvka’s algorithm for finding minimum spanning trees. For a node
u, a light edge is an edge uv of minimum weight w(u, v). Contracting uv deletes it,
identifies u and v, and removes resulting loops. The result T is initially empty.

Bor̊uvka(G,w) Construct MST T for G wrt. w

1 while E(G) is not empty Not all are contracted yet

2 for each u ∈ V (G) One light edge per node

3 add light uv ∈ E(G) to T T is the tree we’re building

4 for each e ∈ T These edges are already used

5 contract e We focus on the remaining ones

Note: The definition of \== doesn’t properly carry over into floats. It’s properly
redefined inside pseudo, so you probably won’t notice, but if you wish to use the
symbol outside the pseudo environment, but in a float (e.g., inside \caption),
you’ll need to either call \pseudoeq to re-establish the definition of \= or simply
use \eqs instead of \==.

Here’s a simple example using the float and caption packages, reusing the fullwidth
style example from section 4.4 and the horizontal line ideas from section 4.6:

% \usepackage{float}

% \usepackage{caption}

\floatstyle{plaintop}

\newfloat{algorithm}{tbp}{alg}[section]

\floatname{algorithm}{Algorithm}

\begin{algorithm}

\begin{pseudo}[fullwidth]*

% Insert pseudocode and comments

\end{pseudo}

\caption{...}

\end{algorithm}

You can see the result in algorithm 4.1.

4.8 . . . handle object attributes?

In the clrscode3e package, you’ll find an assortment of commands for handling
object attributes such as A.length. The manual says (here with emulated kerning
of the dot operator):

You might think you could typeset A.length by $A.\id{length}$,
but that would produce A.length, which has not quite enough space
after the dot. (page 3)

However, this is a font issue, more than anything. If, for example, if you want
Times New Roman (like Cormen et al.) and use mathptm, you at times run

35

https://ctan.org/pkg/float
https://ctan.org/pkg/caption
https://ctan.org/pkg/clrscode3e
https://ctan.org/pkg/mathptm

into the problem described; with newtx it’s less pronounced. With other fonts
(e.g., fourier, mathpple or newtxmath with libertine), or even without any font
packages (or possibly using lmodern), the kerning works just fine.

In general, then, I suggest you try to use $A.\id{length}$ and the like,
and see if the result is satisfactory:

v.prev .next = v.next

$v.\id{prev}.\id{next} = v.\id{next}$

If you do need to adjust the kerning (with \mkern commands or perhaps using
microtype), you may of course do so, but pseudo does not (at present) include
any special attribute lookup commands that do it for you.

4.9 . . . get vertical lines or braces?

Some packages (such as algorithm2e) have support for using vertical lines to
indicate the block structure; pseudocode uses large braces. At least in the current
version, there is no such built-in functionality in pseudo. This could be added in
a future version, but if you want to play around with it yourself, you could use
tikz. For example, you could add a node at the start of each code line, containing
an \@arstrut, the (array) strut used to indicate the extent of a tabular row:

% \usepackage{xparse,tikz}

% \usetikzlibrary{decorations.pathreplacing,calligraphy}

\makeatletter

\NewDocumentCommand \pseudoanchor { m } {%

\tikz[baseline, overlay, remember picture]

\node[anchor=base, inner sep=0] (#1) {\@arstrut};%

\ignorespaces

}

\makeatother

We can then use the resulting nodes to draw braces or lines or whatever. First
some example setup:

\pseudoset{

kw,

indent-length = 3.5em,

setup-append = {\pseudoanchor{L-\arabic*}}

}

\tikzset{

braces/.style =

{thick, decoration = {calligraphic brace, raise=.2em}},

label/.style =

{midway, left=3em, anchor=west, font=\strut\kwfont}

}

36

https://ctan.org/pkg/newtx
https://ctan.org/pkg/fourier
https://ctan.org/pkg/mathpple
https://ctan.org/pkg/newtx
https://ctan.org/pkg/libertine
https://ctan.org/pkg/microtype
https://ctan.org/pkg/algorithm2e
https://ctan.org/tex-archive/macros/latex/contrib/pseudocode
https://ctan.org/pkg/pgf
https://ctan.org/pkg/array

You would then get something like the following:

1 if x < y
2 x = y
3 y = 0

then

\begin{pseudo}

if $x < y$ \\+

$x = y$ \\

$y = 0$

\end{pseudo}

\tikz[overlay, remember picture, braces] {

\draw[decorate] (L-3.south) -- (L-2.north) node[label] {then};

}

If multiple blocks are closed at the same time, the bottom coordinates could be
things like (L-2.north |- L-3.south) instead. To adjust the end points, you
could also use things like ($(L-3.south)+(0,.2em)$).

The actual drawing of the brace (or line or whatever) isn’t automated here,
of course. This could be done by some hook triggered by the - flags in \\. If it
turns out there’s a demand for something like that, I might add it in a future
version.

5 Implementation

Note: In the following, _@@ and @@ represent an internal prefix (__pseudo), the
same way they do with l3docstrip.

First, we just define some metadata:

\def \pseudoversion {1.1.1}

\def \pseudodate {2019-07-04}

The pseudo package is implemented using experimental LATEX 3, so we start by
importing expl3:

\RequirePackage{expl3}

Then we’re ready start the package:

\ProvidesExplPackage

{pseudo}

{\pseudodate}

{\pseudoversion}

{Straightforward pseudocode}

Tools for defining user commands:

37

https://ctan.org/pkg/l3docstrip
https://ctan.org/pkg/expl3

\RequirePackage{xparse}

The pseudo environment is built upon tabular functionality, and we’re using
some extensions:

\RequirePackage{array, xcolor, colortbl}

Though most keys aren’t available as \usepackage arguments, we still use the
mechanism:

\RequirePackage{l3keys2e}

Inside the pseudo environment, * is an alias for pseudoline. To perform the
proper aliasing, we use aliascnt:

\RequirePackage{aliascnt}

As part of the initial setup, we also record whether we’re part of a beamer
presentation; this will affect the overlay functionality:

\bool_new:N \c_@@_beamer_bool

\@ifclassloaded{beamer}

{\bool_set_true:N \c_@@_beamer_bool}

{\bool_set_false:N \c_@@_beamer_bool}

We’re now ready to begin the actual implementation.

5.1 Variable declarations

Many variables are created as needed by various set commands, but some are
declared initially. First, we create a plain-vanilla LATEX counter for the line
number, as well as an outer one for the environment, the latter just to avoid
duplicate labels:

\newcounter{pseudoenv}

\newcounter{pseudoline}[pseudoenv]

Eventually, we’ll be saving the line counter so that \label commands will work,
but we’ll only do so if the counter has changed (again, to avoid duplicate labels).
To determine whether, in fact, it has, we keep the previous one we saved:

\int_new:N \g_@@_last_saved_line_int

Normally a counter is just saved when it’s incremented (with \refstepcounter),
but in our case, we want to increment and typeset it based on a (potentially)
user-configured label, and then actually save it and make it the target of
\label commands in a different scope (i.e., the next cell in the tabular row).

The indent size is set through the configuration key indent-length (or in-
directly through indent-text), while the current indent level is manipulated
by \\; their product determines the actual length by which the current line is
indented. The initial indent level may be set using indent-level.

38

https://ctan.org/pkg/aliascnt
https://ctan.org/pkg/beamer

\dim_new:N \pseudoindentlength

\int_new:N \g_@@_indent_level_int

\int_new:N \l_@@_initial_indent_level_int

5.2 Utilities

Variants. First, let’s just generate a couple of expansion variants we’ll need of
some standard commands:

\cs_generate_variant:Nn \tl_if_novalue:nTF { VTF }

\cs_generate_variant:Nn \regex_extract_once:nnNTF { nVNTF }

Defining columns. The preamble is is configurable, but the array package
makes sure it doesn’t expand any part of its preamble. One way of inserting a
dynamically generated one is to simply define it all as a single column type. To
avoid getting an error when overwriting this definition through the configura-
tion, we’ll also need to be able to un-define column types:

\cs_new:Nn \@@_undef_col:n {

\tl_set_eq:cN { NC@find@ \token_to_str:N #1 } \scan_stop:

}

Note that the implementation specifically targets the array package. The fol-
lowing command then will either define or re-define a column type:

\cs_new:Nn \@@_def_col:nn {

\@@_undef_col:n { #1 }

\newcolumntype { #1 } { #2 }

}

Defining commands. This command creates a new command with a pseudo

prefix, and defines the prefixless version as well, if the name is available (i.e.,
undefined):

\cs_new:Nn \@@_meta_new_cmd:NNnn {

\tl_set:Nn \l_tmpa_tl {pseudo \cs_to_str:N #2}

\exp_args:Nc

#1 \l_tmpa_tl {#3} {#4}

\cs_if_free:NT #2 {\cs_gset_eq:Nc #2 \l_tmpa_tl}

}

\cs_new:Nn \@@_new_cmd:Nnn {

\@@_meta_new_cmd:NNnn

\NewDocumentCommand #1 {#2} {

#3

}

}

\cs_new:Nn \@@_new_ecmd:Nnn {

39

https://ctan.org/pkg/array
https://ctan.org/pkg/array

\@@_meta_new_cmd:NNnn

\NewExpandableDocumentCommand #1 {#2} {

#3

}

}

This is for defining commands that declare styled shortcuts:

\cs_new:Nn \@@_new_dec:nn {

\tl_set:Nn \l_tmpa_tl { DeclarePseudo #1 }

\exp_args:Nc

\DeclareDocumentCommand \l_tmpa_tl { mm } {

\DeclareDocumentCommand ##1 { } {

\use:c { #2 } { ##2 }

}

}

}

You use this with a capitalized name for the kind of thing you’re declaring, and
the name of the style command to use. For example,

\@@_new_dec:nn{Keyword}{kw}

will create the command \DeclarePseudoKeyword, which takes a csname and
a word, and binds the csname as a shortcut for the word, properly styled as a
keyword.

Argument parsing. In processing the multiple + and - arguments to \\, we’ll
gobble up one character at a time, each time performing some action. We also
supply code to be performed once we’re done.

\cs_new:Nn \@@_per_char:nnn {

\peek_charcode_remove:NTF { #1 } {

#2 % body

\@@_per_char:nnn{#1}{#2}{#3}

} {

#3 % tail

}

}

Indentation. The indent size (i.e., the length of a single step of indentation) is
either set directly through indent-length, or indirectly through indent-text.
The latter is there the default is provided, but indent-text is only used if there
is no indent-length.

\cs_new:Nn \@@_set_indent_length: {

\tl_if_novalue:VTF \l_@@_indent_length_tl {

\hbox_set:Nn \l_tmpa_box { \l_@@_indent_text_tl }

\dim_set:Nn \pseudoindentlength { \box_wd:N \l_tmpa_box }

} {

40

\dim_set:Nn \pseudoindentlength \l_@@_indent_length_tl

}

}

Note that the configured indent length is stored in a tl, which is expanded in
the pseudo environment.

The indent size is subsequently used by the indent command, which takes
the number of indentation steps as its only argument:

\cs_new:Nn \@@_indent:N {

\skip_horizontal:n{ \pseudoindentlength * #1 }

\ignorespaces

}

Counter copying. Inside the pseudo environment, we want * to be a duplicate
of pseudoline, for convenience. This requires a bit of work. We use the aliascnt
package to deal with much of the book-keeping, but in order for \newaliascnt
to work whenever a counter already exists, we need to undefine it first. (Here
we’re relying on the internal LATEX convention of using c@ as a prefix to counter
names.)

\cs_new:Nn \@@_drop_ctr:n {

\cs_undefine:c { c@ #1 }

}

\cs_new:Nn \@@_copy_ctr:nn {

\@@_drop_ctr:n { #1 }

\newaliascnt { #1 } { #2 }

}

\cs_new:Nn \@@_star_setup: {

\cs_if_exist:cT { c@ * } {

\@@_copy_ctr:nn { @@_orig_* } { * }

}

\@@_copy_ctr:nn { * } { pseudoline }

\group_insert_after:N \@@_star_reset:

}

\cs_new:Nn \@@_star_reset: {

\cs_if_exist:cT { c@ @@_orig_* } {

\@@_copy_ctr:nn { * } { @@_orig_* }

\cs_undefine:c { c@ @@_orig_* }

}

}

Label saving. In the body of each line, we make sure to save the counter, so
it’s available for the \label command. We’ve aready incremented pseudoline

41

https://ctan.org/pkg/aliascnt

with \stepcounter in the label, so we first need to decrement it before we
again increment it, this time with \refstepcounter. However, we only do so
if the counter actually was incremented, i.e., if it’s different from the last one
we saved.

\cs_new:Nn \@@_save_label: {

\int_set:Nn \l_tmpa_int {\arabic{pseudoline}}

\int_compare:nF {\l_tmpa_int = \g_@@_last_saved_line_int} {

\addtocounter{pseudoline}{-1}

\refstepcounter{pseudoline}

\int_gset_eq:NN \g_@@_last_saved_line_int \l_tmpa_int

}

}

\DeclareDocumentCommand \pseudosavelabel { } {

\@@_save_label:

}

Saving and restoring. In general, we could just use local variables and trust
the scope mechanism, but if we use global assignments inside the scope (e.g.,
because of where in a tabular we must assign things and use them), the original
meaning won’t be restored. Of course, this should not be used if assignments
are local, as it will globally set the original name to the meaning it had when
we entered the scope.

In saving a macro, we also supply a name for the original, which may then
be used to refer to it until it’s restored.

\cs_new:Nn \@@_gsave_as:NN {

\cs_gset_eq:NN #2 #1

\group_insert_after:N \cs_gset_eq:NN

\group_insert_after:N #1

\group_insert_after:N #2

}

5.3 Styles

The first text styling commands are only straight-up shortcuts for normal font
commands:

\@@_new_cmd:Nnn \nf { } { \normalfont }

\@@_new_cmd:Nnn \tn { m } { \textnormal { #1 } }

\@@_new_cmd:Nnn \kw { m } { \textnormal {\kwfont { #1 } } }

\@@_new_cmd:Nnn \cn { m } { \textnormal {\cnfont { #1 } } }

\@@_new_cmd:Nnn \id { m } { \textnormal {\idfont { #1 } } }

(As a side-effect, we’ve now also defined \pseudonf and \pseudotn, which we
don’t really need.) The \pr command is also a font shortcut, but in addition
takes optional parenthesis-delimited arguments, which are set in math mode:

42

\cs_new:Nn \@@_fmt_pr:n {

\textnormal{\prfont{ #1 }}

}

\cs_new:Nn \@@_fmt_pr:nn {

\@@_fmt_pr:n { #1 }

\ensuremath{ (#2) }

}

\@@_new_cmd:Nnn \pr { m !+d() } {

\IfNoValueTF { #2 } {

\@@_fmt_pr:n { #1 }

} {

\@@_fmt_pr:nn { #1 } { #2 }

}

}

The \fn command is similar, but alternatively permits arguments in square
brackets.

\cs_new:Nn \@@_fmt_fn:n {

\textnormal{\fnfont{ #1 }}

}

\cs_new:Nn \@@_fmt_fn:nn {

\@@_fmt_fn:n { #1 }

\ensuremath{ (#2) }

}

\cs_new:Nn \@@_fmt_ar:nn {

\@@_fmt_fn:n { #1 }

\ensuremath{ [#2] }

}

\@@_new_cmd:Nnn \fn { m !+o !+d() } {

\IfNoValueTF { #2 } {

\IfNoValueTF { #3 } {

\@@_fmt_fn:n { #1 }

} {

\@@_fmt_fn:nn { #1 } { #3 }

}

} {

\@@_fmt_ar:nn { #1 } { #2 }

\IfNoValueF { #3 } {

(#3)

}

}

}

The \hd command is similar to \pr command, except that it spans two columns
(effectively ignoring the labeling column). Because it needs to be expandable
in order to insert the multicolumn, the final, parenthesis-enclosed argument can
not be optional (unlike for \pr).

\@@_new_ecmd:Nnn \hd { m +r() } {

\multicolumn{2}

{\@@_hd_preamble}

43

{\@@_fmt_pr:nn{#1}{#2}}

}

Finally, \st and \ct add quotes and comment delimiters, respectively, to the
typeset string, keeping it all in \textnormal:

\@@_new_cmd:Nnn \st { +m } {

\textnormal {

\l_@@_st_left_tl {\stfont{#1}} \l_@@_st_right_tl }

}

\@@_new_cmd:Nnn \ct { +m } {

\textnormal {

\l_@@_ct_left_tl {\ctfont{#1}} \l_@@_ct_right_tl }

}

Beyond text styling, we also have styling for entire rows, i.e., highlighting:

\NewExpandableDocumentCommand \pseudohl { } {

\rowcolor{\pseudohlcolor}

}

Declarations. To declare shortcuts using the various styles, commands à la
DeclareMathOperator and DeclareDocumentCommand are provided:

\@@_new_dec:nn { Comment } { ct }

\@@_new_dec:nn { Constant } { cn }

\@@_new_dec:nn { Function } { fn }

\@@_new_dec:nn { Identifier } { id }

\@@_new_dec:nn { Keyword } { kw }

\@@_new_dec:nn { Normal } { tn }

\@@_new_dec:nn { Procedure } { pr }

\@@_new_dec:nn { String } { st }

5.4 Notation

Here we’ll define a couple of symbols that are useful for pseudocode but that
are not necessarily entirely standard mathematical notation. First, the double
equals sign, ubiquitous in modern programming languages, and useful if = is
used for assignment. The horizontal scaling of the equals signs, as well as the
space between them and the padding on both sides may be adjusted by using
the keys eqs-scale, eqs-sep and eqs-pad. Initially, these are set to emulate
the \eqeq symbol from stix when used with Computer Modern, Latin Modern
or the like (though the command works just fine with other fonts as well).

\NewDocumentCommand \eqs { } {

\group_begin:

\muskip_set:Nn \l_tmpa_muskip \l_@@_eqs_pad_tl

\muskip_set:Nn \l_tmpb_muskip \l_@@_eqs_sep_tl

44

https://ctan.org/pkg/stix

\hbox_set:Nn \l_tmpa_box {\(=\)}

\box_scale:Nnn \l_tmpa_box {\l_@@_eqs_scale_fp}{1}

\mathrel{

\tex_mskip:D \l_tmpa_muskip

\box_use:N \l_tmpa_box

\tex_mskip:D \l_tmpb_muskip

\box_use_drop:N \l_tmpa_box

\tex_mskip:D \l_tmpa_muskip

}

\group_end:

}

For convenience and source-code clarity, the following shortcut (i.e., \==) is
defined (hijacking the \= accent command):

\cs_gset_eq:NN \c_@@_orig_eq_cs \=

\DeclareDocumentCommand \= { m } {

\tl_if_eq:nnTF { #1 } { = } {

\eqs

} {

\c_@@_orig_eq_cs{#1}

}

}

\cs_gset_eq:NN \@@_eq: \= % Stored for \pseudoeq

Similarly, there’s the Pascal two-dot interval notation, whose implementation
mirrors Knuth’s \dts command from Concrete Mathematics (see gkpmac.tex).

\cs_new:Nn \@@_dts: {

\mathinner {

\ldotp

\ldotp

}

}

\NewDocumentCommand \dts { } { \@@_dts: }

There’s a shortcut (\..) defined for this as well (this time hijacking \.):

\cs_gset_eq:NN \c_@@_dot_cs \.

\DeclareDocumentCommand \. { m } {

\tl_if_eq:nnTF { #1 } { . } {

\dts

} {

\c_@@_dot_cs{#1}

}

}

45

https://proofwiki.org/wiki/Definition:Real_Interval/Notation/Wirth
https://ctan.org/pkg/gkpmac

5.5 Options

Much of the behavior of pseudo may be configured through various options, and
these are defined below. You provide these either through \pseudoset or (where
applicable) as optional arguments to \\ or the pseudo environment itself.

The \usepackage options (handled by l3keys2e) are subject to full expansion,
an so many options simply won’t work. In order to make the kw option as easily
available as possible, however, we permit it here, by way of a bool that triggers
the actual key later on:

\keys_define:nn { pseudo/package } {

kw .bool_gset:N = \g_@@_kw_bool,

kw .default:n = true

}

\ProcessKeysOptions{ pseudo/package }

We now define the actual keys used by \pseudoset. Note that hpad and hsep

do not use .dim_set:N. This is because the dim would then be interpreted at
the point where it’s set, and not where it’s used. If we use units like em and ex,
which depend on the font and font size, the spacing would not be updated if
we change these things between setting hpad and hsep and actually typesetting
the pseudocode.

\keys_define:nn { pseudo } {

font .tl_set:N = \pseudofont,

font .initial:n = \normalfont,

hpad .tl_set:N = \l_@@_hpad_tl,

hpad .initial:n = 0.0em,

hpad .default:n = 0.3em,

hsep .tl_set:N = \l_@@_hsep_tl,

hsep .initial:n = .75em,

left-margin .tl_set:N = \l_@@_left_margin_tl,

left-margin .initial:n = 0pt,

label .tl_set:N = \l_@@_label_tl,

label .initial:n = \arabic*,

label-align .code:n =

\@@_def_col:nn{ \pseudolabelalign }{#1},

label-align .initial:n = r,

ref .tl_set:N = \thepseudoline,

ref .default:n = \l_@@_label_tl,

indent-length .tl_set:N = \l_@@_indent_length_tl,

indent-length .initial:V = \c_novalue_tl,

indent-text .tl_set:N = \l_@@_indent_text_tl,

46

https://ctan.org/pkg/l3keys2e

indent-text .initial:n = { \pseudofont\kw{else}\ },

indent-level .int_set:N =

\l_@@_initial_indent_level_int,

kwfont .tl_set:N = \kwfont,

kwfont .initial:n = \fontseries{b}\selectfont,

kw .meta:n = { font = \kwfont },

kw .value_forbidden:n = true,

hl .meta:n = { bol-prepend = \pseudohl },

hl .value_forbidden:n = true,

bol .tl_set:N = \l_@@_bol_tl,

bol-append .code:n = {

\tl_put_right:Nn \l_@@_bol_tl {#1}

},

bol-prepend .code:n = {

\tl_put_left:Nn \l_@@_bol_tl {#1}

},

eol .tl_set:N = \l_@@_eol_tl,

eol-append .code:n = {

\tl_put_right:Nn \l_@@_eol_tl {#1}

},

eol-prepend .code:n = {

\tl_put_left:Nn \l_@@_eol_tl {#1}

},

% Defined differently in beamer -- see below

pause .meta:n = ,

pause .value_forbidden:n = true,

cnfont .tl_set:N = \cnfont,

cnfont .initial:n = \textsc,

idfont .tl_set:N = \idfont,

idfont .initial:n = \textit,

stfont .tl_set:N = \stfont,

stfont .initial:n = \textnormal,

st-left .tl_set:N = \l_@@_st_left_tl,

st-left .initial:n = ‘‘,

st-right .tl_set:N = \l_@@_st_right_tl,

st-right .initial:n = ’’,

prfont .tl_set:N = \prfont,

prfont .initial:n = \cnfont,

fnfont .tl_set:N = \fnfont,

47

fnfont .initial:n = \idfont,

ctfont .tl_set:N = \ctfont,

ctfont .initial:n = \textit,

ct-left .tl_set:N = \l_@@_ct_left_tl,

ct-left .initial:n = (,

ct-right .tl_set:N = \l_@@_ct_right_tl,

ct-right .initial:n =),

hl-color .tl_set:N = \pseudohlcolor,

hl-color .initial:n = black!12,

dim-color .tl_set:N = \pseudodimcolor,

dim-color .initial:n = \pseudohlcolor,

dim .meta:n = {

bol-append = \color{\pseudodimcolor},

setup-append = \color{\pseudodimcolor}

},

line-height .fp_set:N = \l_@@_line_height_fp,

line-height .initial:n = 1,

start .tl_set:N = \l_@@_start_tl,

start .initial:n = 1,

Line structure. The preamble for the internal tabular is defined as a single
column type, to make it easier to apply it despite the array protections against
expansion.

preamble .code:n =

\@@_def_col:nn{ \pseudopreamble }{#1},

The preamble is laid out as described in section 3:

preamble .initial:n = {

>{ \pseudohpad }

\pseudolabelalign

>{ \pseudosetup }

l

<{ \pseudohpad }

},

setup .tl_set:N = \l_@@_setup_tl,

setup .initial:n = {

\pseudoindent \pseudofont \pseudosavelabel

},

setup-append .code:n = {

\tl_put_right:Nn \l_@@_setup_tl {#1}

48

https://ctan.org/pkg/array

},

setup-prepend .code:n = {

\tl_put_left:Nn \l_@@_setup_tl {#1}

},

The preamble used for multicolumns is treated similarly:

hd-preamble .code:n =

\@@_def_col:nn{ \@@_hd_preamble }{#1},

hd-preamble .initial:n = {

>{\pseudohpad} l <{\pseudohpad}

},

The prefix is inserted by the row separator command.

prefix .tl_set:N = \pseudoprefix,

prefix .initial:n = {

\pseudobol \stepcounter* \pseudolabel &

},

begin-tabular .tl_set:N = \l_@@_begin_tabular_tl,

begin-tabular .initial:n =

\begin{tabular}{\pseudopreamble},

end-tabular .tl_set:N = \l_@@_end_tabular_tl,

end-tabular .initial:n = \end{tabular},

List-like spacing. Space above and below is handled similarly to in the built-
in LATEX lists, with the option of locally overriding \topsep, \parskip and
\partopsep, with compact used to control the presence of this spacing (over-
riding the ordinary automatic choice based on the current mode).

topsep .tl_set:N = \l_@@_topsep_tl,

topsep .initial:n = { \topsep },

parskip .tl_set:N = \l_@@_parskip_tl,

parskip .initial:n = { \parskip },

partopsep .tl_set:N = \l_@@_partopsep_tl,

partopsep .initial:n = { \partopsep },

compact .meta:n = {

compact-val = #1,

compact-def = true,

},

compact .default:n = true,

% For internal use:

compact-val .bool_set:N = \l_@@_compact_bool,

compact-def .bool_set:N = \l_@@_compact_def_bool,

49

Details. Finally, some tweakable parameters.

eqs-scale .fp_set:N = \l_@@_eqs_scale_fp,

eqs-scale .initial:n = 0.6785,

eqs-sep .tl_set:N = \l_@@_eqs_sep_tl,

eqs-sep .initial:n = 0.63mu,

eqs-pad .tl_set:N = \l_@@_eqs_pad_tl,

eqs-pad .initial:n = 0.28mu,

}

Now that we’ve defined the real kw key, we reexamine the placeholder handled
by l3keys2e:

\bool_if:NT \g_@@_kw_bool {

\keys_set:nn { pseudo } { kw }

}

Beamer overlays. We redefine the pause key if we’re using beamer:

\bool_if:NT \c_@@_beamer_bool {

\keys_define:nn { pseudo } {

pause .meta:n = { eol-append = \pause }

}

}

There’s also the mechanism for handling overlay specifications on keys. Here
we handle unknown keys by checking if they end with an overlay specification,
and if they do, and we’re in beamer, we extract it. Outside beamer, keys with
overlays are simply ignored.

Note that because unknown keys currently can’t have a default (which we
could, in this case, use for some kind of marker, indicating no value was sup-
plied), the only solution is to treat an empty value the same way as no value, in
this case. This means that foo<1> and foo<1>={} are equivalent, and both will
trigger the default of foo, even though the latter of the two really shouldn’t.∗

\cs_new:Nn \@@_keys_set_overlay:nnn {

\bool_if:NT \c_@@_beamer_bool {

\only<#1>{ \keys_set:nn { #2 } { #3 } }

}

}

\cs_generate_variant:Nn \@@_keys_set_overlay:nnn { VnV }

\msg_new:nnn { pseudo } { unknown-key } {

Unknown~key~’#1’~ignored.

}

\keys_define:nn { pseudo } {

unknown .code:n = {

\tl_set_eq:NN \l_tmpa_tl \l_keys_key_tl

∗ See https://github.com/latex3/latex3/issues/67.

50

https://ctan.org/pkg/l3keys2e
https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer
https://github.com/latex3/latex3/issues/67

\regex_extract_once:nVNTF {\A (.*) < (.*) > \Z}

\l_tmpa_tl \l_tmpa_seq {

\seq_pop_right:NN \l_tmpa_seq \l_tmpb_tl

\seq_pop_right:NN \l_tmpa_seq \l_tmpa_tl

\tl_if_blank:nF{#1} {

\tl_put_right:Nn \l_tmpa_tl {= #1}

}

\@@_keys_set_overlay:VnV

\l_tmpb_tl { pseudo } \l_tmpa_tl

}{

\msg_error:nnx

{ pseudo } { unknown-key } { \l_keys_path_tl }

}

}

}

Option processing. To let the user work with the options (other than when
they’re available as optional arguments to other commands), we supply a com-
mand for setting them.

\cs_new:Nn \@@_set:n { \keys_set:nn { pseudo } { #1 } }

5.6 The row separator

Much of the work of the pseudo environment is performed by the row separator,
that is, the \\ command; whatever part of the line structure (see section 3) that’s
not in the preamble must be handled by \\. For example, this is where the
prefix gets inserted. One reason for this is that there is no straightforward way
to insert the column separator (&) from the preamble itself; and if you want
to prevent the column separator insertion because you need to to some custom
work in the first column, you’ll probably want to suppress other parts of the
prefix as well, so they might as well be collected in one place.

Beyond inserting material such as \tabularnewlines and prefix contents,
\\ is also an entrypoint for local customization, i.e., modifying the indentation
level and setting any locally meaningful keys.

Indentation utilities. First we have some functions for modifying the indenta-
tion level—essentially just incrementing, decrementing and setting it to zero.

\cs_new:Nn \@@_inc_indent: {

\int_gincr:N \g_@@_indent_level_int

}

\cs_new:Nn \@@_dec_indent: {

If the user happens to dedent too much, we might as well be a bit forgiving,
and clamp the indent level to non-negative values:

51

\int_compare:nNnT \g_@@_indent_level_int > \c_zero_int {

\int_gdecr:N \g_@@_indent_level_int

}

}

The actual row separator. The command consists of a few interacting macros.
The implementation of \\ is @@_eol:, but that is just a thin wrapper that counts
pluses and minuses, before handing the control over to @@_eol_tail. This is
where the remaining argument parsing takes place, and the \tabularnewline

is inserted, after which controll is passed to \@@_bol: in order to begin a new
line—unless we’re at the end of the environment.

\cs_new:Nn \@@_eol_handle_args:nnn {

\@@_keys_set_overlay:nnn { #2 } { pseudo } { hl }

\keys_set:nn { pseudo } { #3 }

The variables underlying the keys (\l_@@_label_tl, etc.) are kept local, so
they’ll be restored after the environment, but in order to carry over to the next
line and its preamble, we need to perform some global assignments here.

\tl_gset_eq:NN \pseudolabel \l_@@_label_tl

\tl_gset_eq:NN \pseudobol \l_@@_bol_tl

\tl_gset_eq:NN \pseudoeol \l_@@_eol_tl

\tl_gset_eq:NN \pseudosetup \l_@@_setup_tl

If starred, clear out the prefix:

\IfBooleanTF { #1 } {

\tl_gclear:N \g_@@_cur_prefix_tl

} {

\tl_gset_eq:NN \g_@@_cur_prefix_tl \pseudoprefix

}

}

\NewDocumentCommand \@@_eol_tail { !s d<> +O{ } } {

\@@_eol_handle_args:nnn{#1}{#2}{#3}

A new line is begun only if we’re not at the end of the (or, at least of some)
environment. (We could have put the \tabularnewline outside, but then we’d
have a conditional at the beginning of the next line, which would mess up
\bottomrule or the like. We need to keep \@@_bol: alone at the start of the
line.)

\peek_meaning_ignore_spaces:NF \end {

\pseudoeol

\tabularnewline

\@@_bol:

}

}

And here is the actual \@@_eol: command:

52

\cs_new:Nn \@@_eol: {

\@@_per_char:nnn { + } {

\@@_inc_indent:

} {

\@@_per_char:nnn { - } {

\@@_dec_indent:

} {

\@@_eol_tail

} }

}

The \@@_bol: command (currently) just inserts the prefix:

\cs_new:Nn \@@_bol: {

\g_@@_cur_prefix_tl

}

5.7 Various user commands

A few user-level wrappers around internal commands. First, a couple primarily
for use in the preamble, together with \pseudosavelabel and \pseudofont:

\NewDocumentCommand \pseudohpad { } {

\skip_horizontal:n { \l_@@_hpad_tl - \tabcolsep }

}

\NewDocumentCommand \pseudoindent { } {

\@@_indent:N { \g_@@_indent_level_int }

}

The \pseudoslash command simply redefines the row separator, and is used
at the start of the pseudo environment. It may be useful for the user if some
other construct redefines \\ as well. (This is similar to the \arraycr command
of the array package.)

\NewDocumentCommand \pseudoslash { } {

\cs_gset_eq:NN \\ \@@_eol:

}

We also have a command for restoring our definition of \= if it has been over-
written:

\NewDocumentCommand \pseudoeq { } {

\cs_gset_eq:NN \= \@@_eq:

}

Finally, two utilities for working with options. The first (\pseudoset) directly
sets a collection of keys, while the second (\pseudodefinestyle) defines a new
key which can be used as a shortcut for setting multiple keys at some later point:

53

https://ctan.org/pkg/array

\NewDocumentCommand \pseudoset { +m }

{ \@@_set:n { #1 } }

\NewDocumentCommand \pseudodefinestyle { m +m } {

\keys_define:nn { pseudo } {

#1 .meta:n = {

#2

}

}

}

5.8 The pseudo environment

While this is the main attraction, it’s essentially just an augmented tabular

environment, which does a bit of setup initially, using the various macros already
described.

\NewDocumentEnvironment { pseudo } { !+o !s d<> +O{ } } {

\group_begin:

\@@_gsave_as:NN \\ \c_@@_saved_cr_cs

\@@_gsave_as:NN \= \c_@@_saved_eq_cs

% \pseudoslash is inside the tabular

\pseudoeq

\int_set:Nn \g_@@_last_saved_line_int {\arabic{pseudoline}}

\@@_star_setup:

\IfNoValueF { #1 } {

\pseudoset { #1 }

}

\@@_set_indent_length:

% If not manually set as compact/noncompact, set

automatically:

\bool_if:NF \l_@@_compact_def_bool {

\bool_set:Nn \l_@@_compact_bool {

\mode_if_horizontal_p: && \mode_if_inner_p:

}

}

\bool_if:nF { \l_@@_compact_bool } {

\skip_set:Nn \l_tmpa_skip {

\l_@@_topsep_tl + \l_@@_parskip_tl

}

\mode_if_vertical:TF {

\skip_add:Nn \l_tmpa_skip { \l_@@_partopsep_tl }

54

} {

\unskip \par

}

\addvspace { \l_tmpa_skip }

\noindent

\skip_horizontal:n{ \dim_eval:n { \l_@@_left_margin_tl } }

}

\dim_set:Nn \tabcolsep { \l_@@_hsep_tl / 2 }

\tl_set:Nn \arraystretch

{ \fp_to_decimal:n { \l_@@_line_height_fp } }

\stepcounter{pseudoenv}

\setcounter{pseudoline}{\l_@@_start_tl}

\addtocounter{pseudoline}{-1}

\tl_use:N \l_@@_begin_tabular_tl

We use \noalign to be able to place these definitions inside the tabular, without
messing up \multicolumn or \hline or the like. It’s not really supposed to be
used in expl3; the alternative would be to create an extra dummy line, like:

\skip_vertical:n{ -\dim_eval:n{ \box_ht:N \@arstrutbox +

\box_dp:N \@arstrutbox } }

\tabularnewline

This would give us a fresh start, without moving vertically. It’s probably more
hacky than just using \noalign here, though, so . . .

\tex_noalign:D {

We keep the \\-definition inside the tabular, to override the redefinition placed
there by array, without patching any internals:

\pseudoslash

In a tabularx, for example, the body is executed multiple times, so we must
make sure that any resets that are performed—such as setting the initial inden-
tation level—are performed each time:

\int_gset_eq:NN \g_@@_indent_level_int

\l_@@_initial_indent_level_int

Finally, we handle the line arguments, just like with the row separator:

55

https://ctan.org/pkg/expl3
https://ctan.org/pkg/array

\@@_eol_handle_args:nnn{#2}{#3}{#4}

}

Definitions and setup are done, we’ve left the \noalign, and we can start the
line:

\@@_bol:

} {

\tl_use:N \l_@@_end_tabular_tl

\bool_if:nF { \l_@@_compact_bool } {

\mode_if_vertical:F {

\unskip \par

\group_insert_after:N \@endparenv

}

\addvspace{ \l_tmpa_skip }

}

\group_end:

}

The starred version of the environment is just a wrapper that uses the custom
(and overridable) starred style:

\pseudodefinestyle{starred}{

preamble={

>{\pseudohpad\pseudoindent\pseudofont}

l

<{\pseudohpad}

},

prefix={\pseudobol},

}

\NewDocumentEnvironment { pseudo* } { +O{} } {

\begin{pseudo}[starred, #1]

% \begin{pseudo} will "eat" any remaining arguments to pseudo*

} {

\end{pseudo}

}

References

[1] T. H. Cormen et al. Introduction to Algorithms. third. MIT Press, 2009.

56

[2] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A
Foundation for Computer Science. Addison-Wesley Professional, 1994.

[3] D. E. Knuth. “Random Matroids”. Discrete Mathematics 12.4 (1975), pp. 341–
358.

[4] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge University Press, 2011.

57

	Introduction
	Overview
	Reference
	Line structure
	Command and key reference

	But how do I…
	…prevent paragraph indentation after pseudo?
	…get log-like functions?
	…unbold punctuation?
	…use tabularx?
	…get tab stops?
	…use horizontal lines?
	…get an algorithm float?
	…handle object attributes?
	…get vertical lines or braces?

	Implementation
	Variable declarations
	Utilities
	Styles
	Notation
	Options
	The row separator
	Various user commands
	The pseudo environment

