
prooftrees
Version v0.4 pgfmath branch (SVN Rev: 4931)

Clea F. Rees∗

2016/05/15

Abstract

prooftrees is a LATEX 2ε package, based on forest, designed to support the typesetting of proof trees in styles

sometimes used in teaching introductory logic courses, especially those aimed at students without a strong

background in mathematics. One textbook which uses proofs of this kind is Hodges (1977, 1991).

Note that this package requires version 2.0.2 (2016/03/04) of forest (Živanović 2016). It will

not work with versions prior to 2 and some features will not work correctly with versions prior

to 2.0.2.

I would like to thank Živanović both for developing forest and for considerable patience in answering my questions,
addressing my confusions and correcting my mistakes. The many remaining errors are, of course, entirely my
own. This package’s deficiencies would be considerably greater and more numerous were it not for his assistance.

∗reesc21 <at> cardiff <dot> ac <dot> uk

S↔¬T, T ↔¬R L S↔R

1.
2.
3.

4.
5.

6.
7.
8.
9.
10.
11.

S↔¬T X
T ↔¬R X
¬(S↔R) X

S
¬T

T
¬R
⊗

5, 6

¬T
¬¬R X

¬S
R
⊗

4, 9

S
¬R
R
⊗

10, 11

¬S
¬¬T X

T
¬R

¬S
R
⊗

7, 10

S
¬R
⊗

4, 9

¬T
¬¬R X

T
⊗

6, 8

pr.
pr.
¬ conc.

1 ↔E
1 ↔E

2 ↔E
2 ↔E
5 ¬¬E
3 ¬↔E
3 ¬↔E
7 ¬¬E

(∃x)((∀y)(Py ⇒ (x = y)) · Px) L1
(∃x)(∀y)(Py ⇔ (x = y))

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.
11.

12.
13.

(∃x)((∀y)(Py ⇒ (x = y)) · Px) Xd
∼(∃x)(∀y)(Py ⇔ (x = y)) \d
(∀y)(Py ⇒ (d = y)) · Pd X

(∀y)(Py ⇒ (d = y)) \c
Pd

∼(∀y)(Py ⇔ (d = y)) Xc
∼(Pc⇔ (d = c)) X

Pc
d 6= c

Pc⇒ (d = c) X

∼Pc
⊗

8, 12

d = c
d 6= d
⊗
13

∼Pc
d = c
Pc
⊗

8, 10

pr.
¬ conc.
1 ∃E
3 ·E
3 ·E
2 ∼∃E
6 ∼∀E

7 ∼ ⇔E
7 ∼ ⇔E
5,9 =
4 ∀E

11 ⇒E
9, 12 =

— 1 of 25 —

1 Raison d’être

Contents

1 Raison d’être 2

2 Assumptions & Limitations 6

3 Typesetting a Proof Tree 6

4 Loading the Package 15

5 Invocation 15

6 Proof Tree Anatomy 15

7 Options 16
7.1 Global Options . 16
7.2 Local Options . 21

8 Macros 24

9 Version History 24

1 Raison d’être

Suppose that we wish to typeset a typical proof tree demonstrating the following entailment

{P ∨ (Q ∨ ¬R), P →¬R, Q→¬R} ¬R

We start by typesetting the tree using forest’s default settings (box 1) and find our solution has several
advantages: the proof is specified concisely and the code reflects the structure of the tree. It is relatively
straightforward to specify a proof using forest’s bracket notation, and the spacing of nodes and branches is
automatically calculated.

Despite this, the results are not quite what we might have hoped for in a proof tree. The assumptions should
certainly be grouped more closely together and no edges (lines) should be drawn between them because these
are not steps in the proof — they do not represent inferences. Preferably, edges should start from a common
point in the case of branching inferences, rather than there being a gap.

Moreover, proof trees are often compacted so that non-branching inferences are grouped together, like as-
sumptions, without explicitly drawn edges. Although explicit edges to represent non-branching inferences are
useful when introducing students to proof trees, more complex proofs grow unwieldy and the more compact
presentation becomes essential.

Furthermore, it is useful to have the option of annotating proof trees by numbering the lines of the proof on
the left and entering the justification for each line on the right.

forest is a powerful and flexible package capable of all this and, indeed, a good deal more. It is not enormously
difficult to customise particular trees to meet most of our desiderata. However, it is difficult to get things
perfectly aligned even in simple cases, requires the insertion of ‘phantom’ nodes and management of several
sub-trees in parallel (one for line numbers, one for the proof and one for the justifications). The process
requires a good deal of manual intervention, trial-and-error and hard-coding of things it would be better to
have LATEX2ε manage for us, such as keeping count of lines and line references.

prooftrees aims to make it as easy to specify proof trees as it was to specify our initial tree using forest’s default
settings. The package supports a small number of options which can be configured to customise the output.
The code for a prooftrees proof tree is shown in box 2, together with the output obtained using the default
settings.

— 2 of 25 —

1 Raison d’être

1 forest: default settings

\begin{forest}
[$P \vee (Q \vee \lnot R)$

[$P \lif \lnot R$
[$Q \lif \lnot R$

[$\lnot\lnot R$
[P

[$\lnot P$]
[$\lnot R$]

]
[$Q \vee \lnot R$

[Q
[$\lnot Q$]
[$\lnot R$]

]
[$\lnot R$]

]
]

]
]

]
\end{forest}

P ∨ (Q ∨ ¬R)

P →¬R

Q→¬R

¬¬R

P

¬P ¬R

Q ∨ ¬R

Q

¬Q ¬R

¬R

2 prooftrees: default settings

\begin{prooftree}
{

to prove={\{P \vee (Q \vee \lnot R), P \lif
\lnot R, Q \lif \lnot R\} \sststile{}{} \lnot
R}

}
[P \vee (Q \vee \lnot R), just=Ass, checked

[P \lif \lnot R, just=Ass, checked
[Q \lif \lnot R, just=Ass, checked,

name=last premise
[\lnot\lnot R, just={\lnot Conc},

name=not conc
[P, just={\vee Elim:!uuuu}

[\lnot P, close={:!u,!c}]
[\lnot R, close={:not conc,!c},

just={\lif Elim:!uuuu}]]
[Q \vee \lnot R

[Q, move by=1
[\lnot Q, close={:!u,!c}]
[\lnot R, close={:not conc,!c},

just={\lif Elim:last premise}]]
[\lnot R, close={:not conc,!c},

move by=1, just={\vee Elim:!u}]]]]]]
\end{prooftree}

{P ∨ (Q ∨ ¬R), P →¬R, Q→¬R} ¬R

1.
2.
3.
4.

5.

6.
7.

8.

P ∨ (Q ∨ ¬R) X
P →¬R X
Q→¬R X
¬¬R

P

¬P
⊗

5, 6

¬R
⊗

4, 6

Q ∨ ¬R

Q

¬Q
⊗

7, 8

¬R
⊗

4, 8

¬R
⊗
4, 7

Ass
Ass
Ass
¬ Conc

1 ∨ Elim

2 → Elim
5 ∨ Elim

3 → Elim

— 3 of 25 —

1 Raison d’être

More extensive configuration can be achieved by utilising forest (Živanović 2016) and/or TikZ (Tantau 2015)
directly. A sample of supported proof tree styles are shown in box 3. The package is not intended for the
typesetting of proof trees which differ significantly in structure.

— 4 of 25 —

3 prooftrees: sample output

{P ∨ (Q ∨ ¬R), P →¬R, Q→¬R} ¬R

1.
2.
3.
4.

5.

6.
7.

8.

P ∨ (Q ∨ ¬R) X
P →¬R X
Q→¬R X
¬¬R

P

¬P
⊗

5, 6

¬R
⊗

4, 6

Q ∨ ¬R X

Q

¬Q
⊗

7, 8

¬R
⊗

4, 8

¬R
⊗
4, 7

Ass
Ass
Ass
Neg conc

1 ∨ Elim

2 → Elim
5 ∨ Elim

3 → Elim

1)
2)
3)
4)

5)

6)
7)

8)

P ∨ (Q ∨ ∼R) X
P ⊃ ∼R X
Q ⊃ ∼R X
∼∼R

P

∼P
∗

5, 6

∼R
∗

4, 6

Q ∨ ∼R X

Q

∼Q
∗

7, 8

∼R
∗

4, 8

∼R
∗

4, 7

Ass
Ass
Ass
Neg conc

1 ∨ Elim

2 ⊃ Elim
5 ∨ Elim

3 ⊃ Elim

4 P ∨ (Q ∨ ¬R)
4 P →¬R
4 Q→¬R
¬¬R

P

¬P
8

¬R
8

4 Q ∨ ¬R

Q

¬Q
8

¬R
8

¬R
8

Ass
Ass
Ass
Neg conc

∨ Elim

→ Elim

∨ Elim

→ Elim

{P ∨ (Q ∨ ¬R), P →¬R, Q→¬R} ∴ ¬R

1.
2.
3.
4.

5.

6.

7.
8.

P ∨ (Q ∨ ¬R) X
P →¬R X
Q→¬R X
¬¬R

P

¬P
×

5, 8

¬R
×

4, 8

Q ∨ ¬R X

Q

¬Q
×

6, 7

¬R
×
4, 7

¬R
×

4, 6

Ass
Ass
Ass
Neg conc

1 ∨ Elim

5 ∨ Elim

3 → Elim
2 → Elim

(∃x)(Lx ∨Mx) (∃x)Lx ∨ (∃x)Mx

1.
2.
3.
4.
5.
6.
7.

8.

(∃x)(Lx ∨Mx) Xa
¬((∃x)Lx ∨ (∃x)Mx) X

La ∨Ma X
¬(∃x)Lx \a
¬(∃x)Mx \a
¬La
¬Ma

La
⊗
6,8

Ma
⊗
7,8

Ass
Neg Conc
1 ∃E
2 ¬∨E

4 ¬∃E
5 ¬∃E

3 ∨E

Either Alice saw nobody
or she didn’t see nobody.

Alice saw nobody. \Jones
Alice didn’t see Jones.

Alice didn’t see nobody.
Alice saw somebody. XJones

Alice saw Jones.

∨E
∀E
∨E
¬¬E
∃E

— 5 of 25 —

3 Typesetting a Proof Tree

2 Assumptions & Limitations

prooftrees makes certain assumptions about the nature of the proof system, L, on which proofs are based.

• All derivation rules yield equal numbers of wff s on all branches.

wff

wff wff

wff

wff
wff

wff
wff

wff

wff wff
wff

wff

wff
wff

wff
4 4 8 8

If L fails to satisfy this condition, prooftrees is likely to violate the requirements of affected derivation
rules by splitting branches ‘mid-inference’.

• No derivation rule yields wff s on more than two branches.

• All derivation rules proceed in a downwards direction at an angle of -90° i.e. from north to south.

• Any justifications are set on the far right of the proof tree.

• Any line numbers are set on the far left of the proof tree.

• Justifications can refer only to earlier lines in the proof. prooftrees can typeset proofs if L violates
this condition, but the cross-referencing system explained in section 7.2 cannot be used for affected
justifications.

prooftrees does not support the automatic breaking of proof trees across pages. Proof trees can be manually
broken by using line no shift with an appropriate value for parts after the first (section 7.1). However,
horizontal alignment across page breaks will not be consistent in this case.

In addition, prooftrees almost certainly relies on additional assumptions not articulated above and certainly
depends on a feature of forest which its author classifies as experimental (do dynamics).

3 Typesetting a Proof Tree

After loading prooftrees in the document preamble:

% in document's preamble
\usepackage{prooftrees}

the prooftree environment is available for typesetting proof trees. This takes an argument used to specify a
〈tree preamble〉, with the body of the environment consisting of a 〈tree specification〉 in forest’s notation. The
〈tree preamble〉 can be as simple as an empty argument — {} — or much more complex.

Customisation options and further details concerning loading and invocation are explained in section 4, section 5,
section 6, section 7 and section 8. In this section, we begin by looking at a simple example using the default
settings.

Suppose that we wish to typeset the proof tree for

(∃x)((∀y)(Py→ x = y) ∧ Px) (∃x)(∀y)(Py↔ x = y)

and we would like to typeset the entailment established by our proof at the top of the tree. Then we should
begin like this:

\begin{prooftree}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
\end{prooftree}

— 6 of 25 —

3 Typesetting a Proof Tree

4 Nested structure of proof tree

(∃x)((∀y)(Py→ x = y) ∧ Px) (∃x)(∀y)(Py↔ x = y)

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.
11.

12.
13.

(∃x)((∀y)(Py→ x = y) ∧ Px) Xa
¬(∃x)(∀y)(Py↔ x = y) \a
(∀y)(Py→ a = y) ∧ Pa X

(∀y)(Py→ a = y) \b
Pa

¬(∀y)(Py↔ a = y) Xb
¬(Pb↔ a = b) X

Pb
a 6= b

Pb→ a = b X

¬Pb
⊗

8, 12

a = b
a 6= a
⊗
13

¬Pb
a = b
Pb
⊗

8, 10

Pr.
Conc. neg.
1 ∃E
3 ∧E
3 ∧E
2 ¬∃E
6 ¬∀E

7 ↔E
8 ↔E
5,9 = E
4 ∀E

11 →E
9, 12 = E

13
1212

11
10

9 9
8 8

7
6

5
4

3
2

1

That is all the preamble we want, so we move onto consider the 〈tree specification〉. forest uses square brackets
to specify trees’ structures. To typeset a proof, think of it as consisting of nested trees, trunks upwards, and
work from the outside in and the trunks down (box 4).

Starting with the outermost tree 1 and the topmost trunk, we replace the with square brackets and
enter the first wff inside, adding just=Pr. for the justification on the right and checked=a so that the line
will be marked as discharged with a substituted for x. We also use forest’s name to label the line for ease of
reference later. (Technically, it is the node rather than the line which is named, but, for our purposes, this
doesn’t matter. forest will create a name if we don’t specify one, but it will not necessarily be one we would
have chosen for ease of use!)

\begin{prooftree}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr
]

\end{prooftree}

We can refer to this line later as pr.

We then consider the next tree 2 . Its goes inside that for 1 , so the square brackets containing the next
wff go inside those we used for 1 . Again, we add the justification with just, but we use subs=a rather than
checked=a as we want to mark substitution of a for x without discharging the line. Again, we use name so

— 7 of 25 —

3 Typesetting a Proof Tree

that we can refer to the line later as neg conc.

\begin{prooftree}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
]

]
\end{prooftree}

Turning to tree 3 , we again note that its is nested within the previous two, so the square brackets for its
wff need to be nested within those for the previous wff s. This time, we want to mark the line as discharged
without substitution, so we simply use checked without a value. Since the justification for this line includes
mathematics, we need to ensure that the relevant part of the justification is surrounded by $. . . $ or \(. . . \).
This justification also refers to an earlier line in the proof. We could write this as just=1 $\exists\elim$,
but instead we use the name we assigned earlier with the referencing feature provided by prooftrees. To
do this, we put the reference, pr after the rest of the justification, separating the two parts by a colon
i.e. $\exists\elim$:pr and allow prooftrees to figure out the correct number.

\begin{prooftree}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr
]

]
]

\end{prooftree}

Continuing in the same way, we surround each of the wff s for 4 , 5 , 6 and 7 within square brackets nested
within those surrounding the previous wff since each of the trees is nested within the previous one. Where
necessary, we use name to label lines we wish to refer to later, but we also use forest’s relative naming system when
this seems easier. For example, in the next line we add, we specify the justification as just=$\land\elim$:!u.
! tells forest that the reference specifies a relationship between the current line and the referenced one,
rather than referring to the other line by name. !u refers to the current line’s parent line — in this case,
{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr. !uu refers to the current
line’s parent line’s parent line and so on.

\begin{prooftree}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u
]

]
]

]

— 8 of 25 —

3 Typesetting a Proof Tree

]
]

]
\end{prooftree}

Reaching 8 , things get a little more complex since we how have not one, but two nested within 7 . This
means that we need two sets of square brackets for 8 — one for each of its two trees. Again, both of these
should be nested within the square brackets for 7 but neither should be nested within the other because the
trees for the two branches at 8 are distinct.

\begin{prooftree}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
]
[\lnot Pb
]

]
]

]
]

]
]

]
\end{prooftree}

At this point, we need to work separately or in parallel on each of our two branches since each constitutes its
own tree. Turning to trees 9 , each needs to be nested within the relevant tree 8 , since each is nested
within the applicable branch’s tree. Hence, we nest square brackets for each of the wff s at 9 within the
previous set.

\begin{prooftree}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
]

]
[\lnot Pb
[{a = b}
]

— 9 of 25 —

3 Typesetting a Proof Tree

]
]

]
]

]
]

]
]

\end{prooftree}

We only have one tree 10 as there is no corresponding tree in the left-hand branch. This isn’t a problem: we
just need to ensure that we nest it within the appropriate tree 9 . There are two additional complications
here. The first is that the justification contains a comma, so we need to surround the argument we give just
with curly brackets. That is, we must write just={5,9 $=\elim$} or just={$=\elim$:{simple,!u}}. The
second is that we wish to close this branch with an indication of the line numbers containing inconsistent wff s.
We can use close={8,10} for this or we can use the same referencing system we used to reference lines when
specifying justifications and write close={:to Pb or not to Pb,!c}. In either case, we again surrounding
the argument with curly brackets to protect the comma. !c refers to the current line — something useful in
many close annotations, but not helpful in specifying non-circular justifications.

\begin{prooftree}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
]

]
[\lnot Pb
[{a = b}

[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
]

]
]

]
]

]
]

]
]

]
\end{prooftree}

This completes the main right-hand branch of the tree and we can focus solely on the remaining left-hand one.
Tree 11 is straightforward — we just need to nest it within the left-hand tree 9 .

\begin{prooftree}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

— 10 of 25 —

3 Typesetting a Proof Tree

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
[{Pb \lif a = b}, checked, just=$\forall\elim$:mark%, move by=1
]

]
]
[\lnot Pb
[{a = b}

[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
]

]
]

]
]

]
]

]
]

]
\end{prooftree}

At this point, the main left-hand branch itself branches, so we have two trees 12 . Treating this in the same
way as the earlier branch at 8 , we use two sets of square brackets nested within those for tree 12 , but
with neither nested within the other. Since we also want to mark the leftmost branch as closed, we add
close={:to Pb or not to Pb,!c} in the same way as before.
\begin{prooftree}

{
to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(

Py \liff x = y)}
}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
[{Pb \lif a = b}, checked, just=4 $\forall\elim$

[\lnot Pb, close={:to Pb or not to Pb,!c}, just=$\lif\elim$:!u
]
[{a = b}
]

]
]
]
[\lnot Pb
[{a = b}

[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
]

]
]

]

— 11 of 25 —

3 Typesetting a Proof Tree

]
]

]
]

]
]

\end{prooftree}

We complete our initial specification by nesting 13 within the appropriate tree 12 , again marking closure
appropriately.

\begin{prooftree}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
[{Pb \lif a = b}, checked, just=4 $\forall\elim$

[\lnot Pb, close={:to Pb or not to Pb,!c}, just=$\lif\elim$:!u
]
[{a = b}

[a \neq a, close={:!c}, just={$=\elim$:{!uuu,!u}}
]

]
]

]
]
[\lnot Pb
[{a = b}

[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
]

]
]

]
]

]
]

]
]

]
\end{prooftree}

Compiling our code, we find that the line numbering is not quite right:

— 12 of 25 —

3 Typesetting a Proof Tree

(∃x)((∀y)(Py→ x = y) ∧ Px) (∃x)(∀y)(Py↔ x = y)

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.

11.
12.

(∃x)((∀y)(Py→ x = y) ∧ Px) Xa
¬(∃x)(∀y)(Py↔ x = y) \a
(∀y)(Py→ a = y) ∧ Pa X

(∀y)(Py→ a = y) \b
Pa

¬(∀y)(Py↔ a = y) Xb
¬(Pb↔ a = b) X

Pb
a 6= b

Pb→ a = b X

¬Pb
⊗

8, 11

a = b
a 6= a
⊗
12

¬Pb
a = b
Pb
⊗

8, 10

Pr.
Conc. neg.
1 ∃E
3 ∧E
3 ∧E
2 ¬∃E
6 ¬∀E

7 ↔E
8 ↔E
4 ∀E; 5,9 = E

10 →E
9, 11 = E

prooftrees warns us about this:

Package prooftrees Warning: Merging conflicting justifications for line 10! Please examine the output
carefully and use "move by" to move lines later in the proof if required. Details of how to do this

are included in the documentation.

We would like line 10 in the left-hand branch to be moved down by one line, so we add move by=1 to the
relevant line of our proof. That is, we replace the line

[{Pb \lif a = b}, checked, just=4 $\forall\elim$

by

[{Pb \lif a = b}, checked, just=$\forall\elim$:mark, move by=1

giving us the following code:

\begin{prooftree}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
[{Pb \lif a = b}, checked, just=$\forall\elim$:mark, move by=1

[\lnot Pb, close={:to Pb or not to Pb,!c}, just=$\lif\elim$:!u
]
[{a = b}

[a \neq a, close={:!c}, just={$=\elim$:{!uuu,!u}}
]

]
]

]
]

— 13 of 25 —

3 Typesetting a Proof Tree

[\lnot Pb
[{a = b}

[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
]

]
]

]
]

]
]

]
]

]
\end{prooftree}

which produces our desired result:

(∃x)((∀y)(Py→ x = y) ∧ Px) (∃x)(∀y)(Py↔ x = y)

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.
11.

12.
13.

(∃x)((∀y)(Py→ x = y) ∧ Px) Xa
¬(∃x)(∀y)(Py↔ x = y) \a
(∀y)(Py→ a = y) ∧ Pa X

(∀y)(Py→ a = y) \b
Pa

¬(∀y)(Py↔ a = y) Xb
¬(Pb↔ a = b) X

Pb
a 6= b

Pb→ a = b X

¬Pb
⊗

8, 12

a = b
a 6= a
⊗
13

¬Pb
a = b
Pb
⊗

8, 10

Pr.
Conc. neg.
1 ∃E
3 ∧E
3 ∧E
2 ¬∃E
6 ¬∀E

7 ↔E
8 ↔E
5,9 = E
4 ∀E

11 →E
9, 12 = E

— 14 of 25 —

6 Proof Tree Anatomy

4 Loading the Package

To load the package simply add the following to your document’s preamble.

\usepackage{prooftrees}

The package will load forest automatically. No options are currently supported but any given will
be passed to forest.

Example: \usepackage[debug]prooftrees

would enable forest’s debugging.

If one or more of forest’s libraries are to be loaded, it is recommended that these be loaded
separately and their defaults applied, if applicable, within a local TEX group so that they do not
interfere with prooftree’s environment.

5 Invocation

\begin{prooftree}{〈tree preamble〉}〈tree specification〉\end{prooftree}prooftree
environment

The 〈tree preamble〉 is used to specify any non-default options which should be applied to the
tree. It may contain any code valid in the preamble of a regular forest tree, in addition to
setting prooftree options. The preamble may be empty, but the argument is required1. The 〈tree
specification〉 specifies the tree in the bracket notation parsed by forest.

Users of forest should note that the environments prooftree and forest differ in

important ways.

• prooftree’s argument is mandatory.

• The tree’s preamble cannot be given in the body of the environment.

• \end{prooftree} must follow the 〈tree specification〉 immediately.

6 Proof Tree Anatomy

The following diagram provides an overview of the configuration and anatomy of a prooftrees
proof tree. Detailed documentation is provided in section 7 and section 8.

1Failure to specify a required argument does not always yield a compilation error in the case of environments.

However, failure to specify required arguments to environments often fails to achieve the best consequences, even

when it does not result in compilation failures, and will, therefore, be avoided by the prudent.

— 15 of 25 —

7 Options

Theorem/Entailment

Line Numbers

Justifications

wffs

• specified with to prove
• format controlled by proof statement format
• named proof statement

• content & location automatic
• existence controlled by line numbering
• global format controlled by line no format & \linenumberstyle
• local format controlled by highlight line no & line no options
• named line no n for proof line n

• location automatic
• existence controlled implicitly or with
justifications
• content specified with just
• cross-references supported
• global format controlled by just format &
just refs left
• local format controlled by highlight just &
just options
• named just n for proof line n

• from 〈tree specification〉
• global format controlled by
wff format
• local format controlled by
highlight wff & wff options
• highlight line and line
options control the format of
the current wff ’s proof line

Anatomy & Ontology
• forest trees consist of (TikZ) nodes
• prooftrees places wff s, line numbers, justi-

fications & proof statements into nodes

• the content & location of each node de-

pends on its type: line number, wff , justific-
ation or proof statement

• the proof’s structure & appearance is

determined by the 〈tree preamble〉 & 〈tree
specification〉
• node content, existence & location is con-

trolled by one or both of these, depending

on the node type

Meaning & Reference
• nodes for the proof statement, justifications & line num-

bers are given standard names for ease of reference

• the proof statement node is the root
• wff nodes may be named as required

• a cross-referencing system supports annotations in justific-

ations and closures

Discharge & Substitution
• location & annotation content controlled by checked and subs within the 〈tree
specification〉
• discharge & substitution symbols controlled by check with & subs with
• check right & subs right control relative location

proof statement

1.
2.
3.

4.
5.
6.
7.
8.
9.
10.
11.
12.

wff X
wff Xa
wff \a,b

wff
wff
wff

wff
⊗

n, m

wff
⊗

n, m

wff
wff

wff

wff
wff
⊗

n, m

wff
wff
wff
⊗

n, m

wff

wff
⊗

n, m

justification
justification
justification

justification
justification
justification
justification
justification
justification
justification
justification
justification

Closure
• closure symbol & optional annotation
• location & annotation content controlled by close
within the 〈tree specification〉
• annotations support cross-references
• closure symbol controlled by close with and close
with format
• global annotation format controlled by close format
& close sep

7 Options

Most configuration uses the standard key/value interface provided by TikZ and extended by
forest. These are divided into those which determine the overall appearance of the proof as a
whole and those with more local effects.

7.1 Global Options

The following options affect the global style of the tree and should typically be set in the tree’s
preamble if non-default values are desired. The default values for the document can be set outside

— 16 of 25 —

7 Options 7.1 Global Options

the prooftree environment using \forestset{〈settings〉}. If only proof trees will be typeset, a
default style can be configured using forest’s default preamble.

= true|falseline numbering
not line numbering
Forest boolean register Default: true

This determines whether lines should be numbered. The default is to number lines. The following
are equivalent to the default setting:

line numbering
line numbering=true

Either of the following will turn line numbering off:

not line numbering
line numbering=false

= true|falsejustifications
not justifications
Forest boolean register This determines whether justifications for lines of the proof should be typeset to the right of

the tree. It is rarely necessary to set this option explicitly as it will be automatically enabled
if required. The only exception concerns a proof for which a line should be moved but no
justifications are specified. In this case either of the following should be used to activate the
option:

justifications
justifications=true

This is not necessary if just is used for any line of the proof.

= true|falsesingle branches
not single branches
Forest boolean register Default: false

This determines whether inference steps which do not result in at least two branches should draw
and explicit branch. The default is to not draw single branches explicitly. The following are
equivalent to the default setting:

not single branches
single branches=false

Either of the following will turn line numbering off:

single branches
single branches=true

= 〈dimension〉line no width
Forest dimension register

The maximum width of line numbers. By default, this is set to the width of the formatted line
number 99.

Example: line no width=20pt

= 〈dimension〉just sep
Forest dimension register

Default: 1.5em

Amount by which to shift justifications away from the tree. A larger value will shift the
justifications further to the right, increasing their distance from the tree, while a smaller one will
decrease this distance. Note that a negative value ought never be given. Although this will not
cause an error, it may result in strange things happening. If you wish to decrease the distance

— 17 of 25 —

7 Options 7.1 Global Options

between the tree and the justifications further, please set just sep to zero and use the options
provided by forest and/or TikZ to make further negative adjustments.

Example: just sep=.5em

= 〈dimension〉line no sep
Forest dimension register

Default: 1.5em

Amount by which to shift line numbers away from the tree. A larger value will shift the line
numbers further to the left, increasing their distance from the tree, while a smaller one will
decrease this distance. Note that a negative value ought never be given. Although this will not
cause an error, it may result in strange things happening. If you wish to decrease the distance
between the tree and the line numbers further, please set line no sep to zero and use the options
provided by forest and/or TikZ to make further negative adjustments.

Example: line no sep=5pt

= 〈dimension〉close sep
Forest dimension register

Default: .75\baselineskip

Distance between the symbol marking branch closure and any following annotation. If the format
of such annotations is changed with close format, this dimension may require adjustment.

Example: close sep=\baselineskip

= 〈integer〉line no shift
Forest count register

Default: 0

This value increments or decrements the number used for the first line of the proof. By default,
line numbering starts at 1.

Example: line no shift=3

would begin numbering the lines at 4.

Start line numbering from 0 rather than 1. The following are equivalent:zero start
Forest style

zero start
line no shift=-1

= 〈wff 〉to prove
Forest style

Statement of theorem or entailment to be typeset above the proof. In many cases, it will be
necessary to enclose the statement in curly brackets.

Example: to prove={\sststile{}{} P \lif P}

By default, the content is expected to be suitable for typesetting in maths mode and should not,
therefore, be enclosed by dollar signs or equivalent.

= 〈symbol〉check with
Forest toks register

Default: \ensuremath{\checkmark} (X)

Symbol with which to mark discharged lines.

Example: check with={\text{\ding{52}}}

Within the tree, checked is used to identify discharged lines.

= true|falsecheck right
not check right

Forest boolean register Default: true

— 18 of 25 —

7 Options 7.1 Global Options

Determines whether the symbol indicating that a line is discharged should be placed to the right
of the wff . The alternative is, unsurprisingly, to place it to the left of the wff . The following are
equivalent to the default setting:

check right
check right=true

Set check right=false. The following are equivalent ways to place the markers to the left:check left
Forest style

check right=false
not check right
check left

= 〈symbol〉close with
Forest toks register

Default: \ensuremath{\otimes} (⊗)

Symbol with which to close branches.

Example: close with={\ensuremath{\ast}}

Within the tree, close is used to identify closed branches.

= 〈key-value list〉close with format
Forest keylist register

Additional TikZ keys to apply to the closure symbol. Empty by default.

Example: close with format={red, font=}

To replace a previously set value, rather than adding to it, use close with format' rather than
close with format.

= 〈key-value list〉close format
Forest keylist register

Default: font=\scriptsize

Additional TikZ keys to apply to any annotation following closure of a branch.

Example: close format={font=\footnotesize\sffamily, text=gray!75}

To replace the default value of close format, rather than adding to it, use close format'
rather than close format.

Example: close format'={text=red}

will produce red annotations in the default font size, whereas

Example: close format={text=red}

will produce red annotations in \scriptsize.

= 〈symbol〉subs with
Forest toks register

Default: \ensuremath{\backslash} (\)

Symbol to indicate variable substitution.

Example: \text{:}

Within the tree, subs is used to indicate variable substitution.

= true|falsesubs right
not subs right

Forest boolean register Default: true

Determines whether variable substitution should be indicated to the right of the wff . The
alternative is, again, to place it to the left of the wff . The following are equivalent to the default
setting:

— 19 of 25 —

7 Options 7.1 Global Options

subs right
subs right=true

Set subs right=false. The following are equivalent ways to place the annotations to the left:subs left
Forest style

subs right=false
not subs right
subs left

= true|falsejust refs left
not just refs left
Forest boolean register Default: true

Determines whether line number references should be placed to the left of justifications. The
alternative is to place them to the right of justifications. The following are equivalent to the
default setting:

just refs left
just refs left=true

Set just refs left=false. The following are equivalent ways to place the references to thejust refs right
Forest style right:

just refs left=false
not just refs left
just refs right

Note that this setting only affects the placement of line numbers specified using the cross-referencing
system explained in section 7.2. Hard-coded line numbers in justifications will be typeset as is.

= 〈key-value list〉just format
Forest keylist register

Additional TikZ keys to apply to line justifications. Empty by default.

Example: just format={red, font=}

To replace a previously set value, rather than adding to it, use just format' rather than just
format.

= 〈key-value list〉line no format
Forest keylist register

Additional TikZ keys to apply to line numbers. Empty by default.

Example: line no format={align=right, text=gray}

To replace a previously set value, rather than adding to it, use line no format' rather than
line no format. To change the way the number itself is formatted — to eliminate the dot, for
example, or to put the number in brackets — redefine \linenumberstyle (see section 8).

= 〈key-value list〉wff format
Forest keylist register

Additional TikZ keys to apply to wff s. Empty by default.

Example: wff format={draw=orange}

To replace a previously set value, rather than adding to it, use wff format' rather than wff
format.

= 〈key-value list〉proof statement format
Forest keylist register

Additional TikZ keys to apply to the proof statement. Empty by default.

Example: proof statement format={text=gray, draw=gray}

— 20 of 25 —

7 Options 7.2 Local Options

To replace a previously set value, rather than adding to it, use proof statement format' rather
than proof statement format.

= 〈key-value list〉highlight format
Forest autowrapped toks register

Default: draw=gray, rounded corners

Additional TikZ keys to apply to highlighted wff s.

Example: highlight format={text=red}

To apply highlighting, use the highlight wff, highlight just, highlight line no and/or
highlight line keys (see section 7.2).

= 〈punctuation〉merge delimiter
Forest toks register

Default: \text{; } (;)

Punctuation to separate distinct justifications for a single proof line. Note that prooftrees will
issue a warning if it detects different justifications for a single proof line and will suggest using
move by to avoid the need for merging justifications. In general, justifications ought not be
merged because it is then less clear to which wff (s) each justification applies. Moreover, later
references to the proof line will be similarly ambiguous. That is, merge delimiter ought almost
never be necessary because it is almost always better to restructure the proof to avoid ambiguity.

7.2 Local Options

The following options affect the local structure or appearance of the tree and should typically be
passed as options to the relevant node(s) within the tree.

Indicate that a line is not an inference. When single branches is false, as it is with the defaultgrouped
not grouped

Forest boolean option
settings, this key is applied automatically and need not be given in the specification of the tree.
When single branches is true, however, this key must be specified for any line which ought not
be treated as an inference.

Example: grouped

Mark a complex wff as resolved, discharging the line.checked
Forest style

Example: checked

= 〈name〉checked
Forest style

Existential elimination, discharge by substituting 〈name〉.

Example: checked=a

Close branch.close
Forest style

Example: close

= 〈annotation〉close
Forest style

= 〈annotation prefix〉:〈references〉

Close branch with annotation. In the simplest case, 〈annotation〉 contains no colon and is typeset
simply as it is. Any required references to other lines of the proof are assumed to be given
explicitly.

Example: close={12,14}

If 〈annotation〉 includes a colon, prooftrees assumes that it is of the form 〈annotation
prefix〉:〈references〉. In this case, the material prior to the colon should include material to be
typeset before the line numbers and the material following the colon should consist of one or
more references to other lines in the proof. In typical cases, no prefix will be required so that the

— 21 of 25 —

7 Options 7.2 Local Options

colon will be the first character. In case there is a prefix, prooftrees will insert a space prior to the
line numbers. 〈references〉 may consist of either forest names (e.g. given by name= 〈name label〉
and then used as 〈name label〉) or forest relative node names (e.g. 〈nodewalk〉) or a mixture.

Example: close={:negated conclusion}

where name=negated conclusion was used to label an earlier proof line negated conclusion.
If multiple references are given, they should be separated by commas and either 〈references〉 or
the entire 〈annotation〉 must be enclosed in curly brackets, as is usual for TikZ and forest values
containing commas.

Example: close={:!c,!uuu}

= 〈name〉/〈names〉subs
Forest style

Universal instantiation, instantiate with 〈name〉 or 〈names〉.

Example: subs={a,b}

= 〈justification〉just
Forest autowrapped toks option

= 〈justification prefix/suffix〉:〈references〉

Justification for inference. This is typeset in text mode. Hence, mathematical expressions must
be enclosed suitably in dollar signs or equivalent. In the simplest case, 〈justification〉 contains
no colon and is typeset simply as it is. Any required references to other lines of the proof are
assumed to be given explicitly.

Example: just=3 \lorD

If 〈justification〉 includes a colon, prooftrees assumes that it is of the form 〈justification
prefix/suffix〉:〈references〉. In this case, the material prior to the colon should include ma-
terial to be typeset before or after the line numbers and the material following the colon should
consist of one or more references to other lines in the proof. Whether the material prior to the
colon is interpreted as a 〈justification prefix〉 or a 〈justification suffix〉 depends on the value of
just refs left. 〈references〉 may consist of either forest names (e.g. given by name= 〈name
label〉 and then used as 〈name label〉) or forest relative node names (e.g. 〈nodewalk〉) or a mixture.
If multiple references are given, they should be separated by commas and 〈references〉 must be
enclosed in curly brackets. If just refs left is true, as it is by default, then the appropriate
line number(s) will be typeset before the 〈justification suffix〉.

Example: just=$\lnot\exists$\elim:{!uu,!u}

If just refs left is false, then the appropriate line number(s) will be typeset after the
〈justification prefix〉.

Example: just=From:bertha

= 〈positive integer〉move by
Forest style

Move the content of the current line 〈positive integer〉 lines later in the proof. If the current line
has a justification and the content is moved, the justification will be moved with the line. Later
lines in the same branch will be moved appropriately, along with their justifications.

Example: move by=3

Note that, in many cases, prooftrees will automatically move lines later in the proof. It does this
when it detects a condition in which it expects conflicting justifications may be required for a
line while initially parsing the tree. Essentially, prooftrees tries to detect cases in which a branch
is followed closely by asymmetry in the structure of the branches. This happens, for example,
when the first branch’s first wff is followed by a single wff , while the second branch’s first wff is
followed by another branch. Diagrammatically:

— 22 of 25 —

7 Options 7.2 Local Options

wff

wff
wff

wff

wff wff

wff

wff
wff
wff

wff

wff wff

In this case, prooftrees tries to adjust the tree by moving lines appropriately if required.

However, this detection is merely structural — prooftrees does not examine the content of
the wff s or justifications for this purpose. Nor does it look for slightly more distant structural
asymmetries, conflicting justifications in the absence of structural asymmetry or potential conflicts
with justifications for lines in other, more distant parallel branches. Although it is not that
difficult to detect the need to move lines in a greater proportion of cases, the problem lies in
providing general rules for deciding how to resolve such conflicts. (Indeed, some such conflicts
might be better left unresolved e.g. to fit a proof on a single Beamer slide.) In these cases, a
human must tell prooftrees if something should be moved, what should be moved and how far it
should be moved.

Because simple cases are automatically detected, it is best to typeset the proof before deciding
whether or where to use this option since prooftrees will assume that this option specifies movements
which are required in addition to those it automatically detects. Attempting to move a line ‘too
far’ is not advisable. prooftrees tries to simply ignore such instructions, but the results are likely
to be unpredictable.

Not moving a line far enough — or failing to move a line at all — may result in the content of
one justification being combined with that of another. This happens if just is specified more
than once for the same proof line with differing content. prooftrees does examine the content of
justifications for this purpose. When conflicting justifications are detected for the same proof line,
the justifications are merged and a warning issued suggesting the use of move by.

Highlight wff .highlight wff
not hightlight wff
Forest boolean option Example: highlight wff

Highlight justification.highlight just
not hightlight just

Forest boolean option Example: highlight just

Highlight line number.highlight line no
not highlight line no

Forest boolean option Example: highlight line no

Highlight proof line.highlight line
not highlight line
Forest boolean option Example: highlight line

= 〈key-value list〉line no options
Forest autowrapped toks option

Additional TikZ keys to apply to the line number for this line.

Example: line no options={blue}

= 〈key-value list〉just options
Forest autowrapped toks option

Additional TikZ keys to apply to the justification for this line.

— 23 of 25 —

References

Example: just options={draw, font=\bfseries}

= 〈key-value list〉wff options
Forest autowrapped toks option

Additional TikZ keys to apply to the wff for this line.

Example: wff options={magenta, draw}

Note that this key is provided primarily for symmetry as it is faster to simply give the options
directly to forest to pass on to TikZ. Unless wff format is set to a non-default value, the following
are equivalent:

wff options={magenta, draw}
magenta, draw

= 〈key-value list〉line options
Forest autowrapped toks option

Additional TikZ keys to apply to this proof line.

Example: line options={draw, rounded corners}

8 Macros

{〈number〉}\linenumberstyle
macro

This macro is responsible for formatting the line numbers. The default definition is

\newcommand*\linenumberstyle[1]{#1.}

It may be redefined with \renewcommand* in the usual way. For example, if for some reason you
would like bold line numbers, try

\renewcommand*\linenumberstyle[1]{\textbf{#1.}}

9 Version History

0.4

Bug fix release:

• line no shift was broken;

• in some cases, an edge was drawn where no edge belonged.

0.3

First CTAN release.

References

Hodges, Wilfred (1977, 1991). Logic: An Introduction to Elementary Logic. Penguin.
Tantau, Till (2015). The TikZ and PGF Packages. Manual for Version 3.0.1a. 3.0.1a. 29th Aug.

2015. url: http://sourceforge.net/projects/pgf.
Živanović, Sašo (2016). Forest: A PGF/TikZ-Based Package for Drawing Linguistic Trees. 2.0.2.

4th Mar. 2016. url: http://spj.ff.uni-lj.si/zivanovic/.

— 24 of 25 —

http://sourceforge.net/projects/pgf
http://spj.ff.uni-lj.si/zivanovic/

Index

Features are sorted by kind. Page references are given for both definitions and comments on use.

Forest autowrapped toks options
just, 6, 9, 16, 21, 22
just options, 15, 22
line no options, 15, 22
line options, 15, 23
wff options, 15, 23

Forest autowrapped toks registers
highlight format, 20

Forest boolean options
grouped, 20
highlight just, 15, 20, 22
highlight line, 15, 20, 22
highlight line no, 15, 20, 22
highlight wff, 15, 20, 22
not grouped, 20
not highlight line, 22
not highlight line no, 22
not hightlight just, 22
not hightlight wff, 22

Forest boolean registers
check right, 15, 17, 18
just refs left, 15, 19, 21
justifications, 16
line numbering, 16
not check right, 17
not just refs left, 19
not justifications, 16
not line numbering, 16
not single branches, 16
not subs right, 18
single branches, 16, 20
subs right, 15, 18, 19

Forest count registers
line no shift, 5, 17, 23

Forest dimension registers
close sep, 15, 17
just sep, 16, 17
line no sep, 17
line no width, 16

Forest keylist registers
close format, 15, 17, 18
close format', 18
close with format, 15, 18
close with format', 18
just format, 15, 19
just format', 19
line no format, 15, 19
line no format', 19
proof statement format, 15, 19, 20
proof statement format', 20
wff format, 15, 19, 23

wff format', 19
Forest styles

check left, 18
checked, 7, 15, 17, 20
close, 15, 18, 20
just refs right, 19
move by, 20–22
subs, 15, 18, 21
subs left, 19
to prove, 17
zero start, 17

Forest toks registers
check with, 15, 17
close with, 15, 18
merge delimiter, 20
subs with, 15, 18

environments
prooftree, 14

macros
\linenumberstyle, 23

— 25 of 25 —

	1 Raison d'être
	2 Assumptions & Limitations
	3 Typesetting a Proof Tree
	4 Loading the Package
	5 Invocation
	6 Proof Tree Anatomy
	7 Options
	7.1 Global Options
	7.2 Local Options

	8 Macros
	9 Version History

