
A demonstration of the program environment

Martin Ward
martin@gkc.org.uk

July 17, 2007

Contents

1 Example with first set and first set. 1

2 Procedures and Functions 3

3 A Reverse Engineering Example 4

1 Example with first set and first set.

if x �= 0 then long name123 = xy fi

The program style defines two environments, program and programbox for
typesetting programs and algorithms. Within the program environment:

1. Newlines are significant;

2. Each line is in math mode, so for example spaces in the input file are not
significant;

3. The command \\ within a line causes an extra linebreak in the output;

4. The indentation of each line is calculated automatically;

5. To cause extra indentation, use the commands \tab to set a new tab, and
\untab to remove it (see the examples below);

6. Vertical bars are used to delimit long variable names with underscores
(and other unusual characters).

testing | in verbatim

testing | and @ in verbatim

1



Here is a small program: first set :=
{

x | x2 + y1 > 0
}

It shows how to
typeset mathematics as part of a program. Since each line is typeset in maths
mode, all spacing is done automatically. The set brackets expand automatically,
for example in this program (which also demonstrates the \tab and \untab
commands):

t :=
{

x | x

y
= z

}
;

t := t \ u;
z := a + b + c + d

+ e + f + g
+ h + i + j;

if x = 0 then y := 0 fi

You can use variable names in text or math mode: variable name2 = 2. Names
can have odd characters:!@#$%ˆ&*:; like this!.

Note that \( and \) are redefined to typeset a program in a minipage. (This
is useful in running text, or to keep a short program all on one page). There is
some notation for sequences: 〈x1, x2, . . . , xn〉 and for universal and existential
quantifiers: ∀x. ∃y. y > x (yes, I use these in my programs!)

I often use bold letters to represent program fragments, formulas etc. so I
have set up commands S, R etc. for the most common ones. The commands
have one argument (a subscript, eg S1, S2, S23) or a sequence of “prime” charac-
ters: S′, S′′′′′ etc. If you want both a subscript and one or more primes, then you
must use maths mode, eg S′

2 Consider the difference between typing ‘‘\S2’’
which gives “S2” and ‘‘$\S2’’$’’ which gives “S′′

2”. Outside maths mode, \S
assumes any primes after a subscript are either closing quotes or apostrophes.

Here are two program examples with different indentation styles. Note that
all indentation is calculated automatically in either style:

if T1

then if T2

then if T3

then S4

else S3

fi
else S2

fi
else S1

fi;

if T1 then if T2 then if T3 then S4

else S3 fi
else S2 fi

else S1 fi;

Note that then and else should be at the start of a line (as in the exam-

2



ples above), not at the end. This is so that you can line them up in short if
statements, for example:

if x = 1 then a long procedure name(arg1, arg2, . . . )
else another long procedure name(arg1, arg2, . . . ) fi

If the test is long, then you probably want an extra linebreak:

if a long boolean function name?(arg1, arg2, . . . )
then a long procedure name(arg1, arg2, . . . )
else another long procedure name(arg1, arg2, . . . ) fi

Compare this with the following (which has linebreaks in the “wrong” places):

if a long boolean function name?(arg1, arg2, . . . ) then
a long procedure name(arg1, arg2, . . . )

else
another long procedure name(arg1, arg2, . . . ) fi

Just to show that | still works normally to indicate the placing of vertical
lines) in the preamble of a tabular (or array) environment:

Statement Conditions
S1 B1

S2 B2

2 Procedures and Functions

Turning on line numbering here. Also using the algoritm enviroment to number
the algorithms within the sections.

Algorithm 2.1

(1) A fast exponentiation function:
(2) begin for i := 1 to 10 step 1 do
(3) print(expt(2, i));
(4) newline() od
(5) where
(6) funct expt(x, n) ≡
(7) z := 1;
(8) while n �= 0 do
(9) while even(n) do

(10) n := n/2; x := x ∗ x od;
(11) n := n − 1; z := z ∗ x od;
(12) z .
(13) end

3



First line is line 1, last is line 13. Line 10 is what makes this function fast!

Algorithm 2.2

(1) A fast exponentiation procedure:
(2) begin for i := 1 to 10 step 1 do
(3) expt(2, i);
(4) newline() od This text will be set flush to the right margin
(5) where
(6) proc expt(x, n) ≡
(7) z := 1;
(8) do if n = 0 then exit fi;
(9) do if odd(n) then exit fi;

(10) comment: This is a comment statement;
(11) n := n/2; x := x ∗ x od;
(12) {n > 0};
(13) n := n − 1; z := z ∗ x od;
(14) print(z).
(15) end

An action system equivalent to a while loop:

(1) actions A :
(2) A ≡ if B then S; call A
(3) else call Z fi.
(4) endactions

≈ (1) while B do S od

Note the use of \( and \) to enclose the two program boxes. Turning off line
numbers here.

Dijkstra conditionals and loops:

if x = 1 → y := y + 1
�� x = 2 → y := y2

. . .

�� x = n → y :=
n∑

i=1

yi fi

do 2|x ∧ x > 0 → x := x/2
�� ¬2|x → x := |x + 3| od

Loops with multiple exits:

do do if B1 then exit fi;
S1;
if B2 then exit(2) fi od;

if B1 then exit fi od

I hope you get the idea!

4



3 A Reverse Engineering Example

Here’s the original program:

Algorithm 3.1

var 〈m := 0, p := 0, last := “ ”〉;
actions prog :
prog ≡
〈line := “ ”, m := 0, i := 1〉;
call inhere.

l ≡
i := i + 1;
if (i = (n + 1)) then call alldone fi;
m := 1;
if item[i] �= last

then write(line); line := “ ”; m := 0;
call inhere fi;

call more.
inhere ≡

p := number[i]; line := item[i];
line := line ++ “ ” ++ p;
call more.

more ≡
if (m = 1) then p := number[i];

line := line ++ “, ” ++ p fi;
last := item[i];
call l.

alldone ≡
write(line); call Z. endactions end

And here’s the transformed and corrected version:

Algorithm 3.2

〈line := “ ”, i := 1〉;
while i �= n + 1 do

line := item[i] ++ “ ” ++ number[i];
i := i + 1;
while i �= n + 1 ∧ item[i] = item[i − 1] do

line := line ++ “, ” ++ number[i]);
i := i + 1 od;

write(line) od

Below are the same programs in a bold serif style with underlined keywords,
using the command \bfvariables:

5



var 〈m := 0, p := 0, last := “ ”〉;
actions prog :
prog ≡
〈line := “ ”, m := 0, i := 1〉;
call inhere.

l ≡
i := i + 1;
if (i = (n + 1)) then call alldone fi;
m := 1;
if item[i] �= last

then write(line); line := “ ”; m := 0;
call inhere fi;

call more.
inhere ≡

p := number[i]; line := item[i];
line := line ++ “ ” ++ p;
call more.

more ≡
if (m = 1) then p := number[i];

line := line ++ “, ” ++ p fi;
last := item[i];
call l.

alldone ≡
write(line); call Z. endactions end

〈line := “ ”, i := 1〉;
while i �= n + 1 do

line := item[i] ++ “ ” ++ number[i];
i := i + 1;
while i �= n + 1 ∧ item[i] = item[i − 1] do

line := line ++ “, ” ++ number[i]);
i := i + 1 od;

write(line) od

In my opinion, the \sfvariables style looks much better. The \bfvariables
style was the default, but this was changed with version 3.3.11.

6


