%%
%% This is file `implicit.tex',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% probsoln.dtx  (with options: `implicit.tex,package')
%% Copyright (C) 2006 Nicola Talbot, all rights reserved.
%% If you modify this file, you must change its name first.
%% You are NOT ALLOWED to distribute this file alone. You are NOT
%% ALLOWED to take money for the distribution or use of either this
%% file or a changed version, except for a nominal charge for copying
%% etc.
%% \CharacterTable
%%  {Upper-case    \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
%%   Lower-case    \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
%%   Digits        \0\1\2\3\4\5\6\7\8\9
%%   Exclamation   \!     Double quote  \"     Hash (number) \#
%%   Dollar        \$     Percent       \%     Ampersand     \&
%%   Acute accent  \'     Left paren    \(     Right paren   \)
%%   Asterisk      \*     Plus          \+     Comma         \,
%%   Minus         \-     Point         \.     Solidus       \/
%%   Colon         \:     Semicolon     \;     Less than     \<
%%   Equals        \=     Greater than  \>     Question mark \?
%%   Commercial at \@     Left bracket  \[     Backslash     \\
%%   Right bracket \]     Circumflex    \^     Underscore    \_
%%   Grave accent  \`     Left brace    \{     Vertical bar  \|
%%   Right brace   \}     Tilde         \~}

\newproblem{imd:circ}{%
Find the gradient of the unit circle ($x^2 + y^2 = 1$).}{%
Differentiating with respect to $x$ gives:
\begin{eqnarray*}
2x + 2y\frac{dy}{dx} & = & 0\\
\frac{dy}{dx} & = & \frac{-2x}{2y}\\
 & = & \frac{-x}{\sqrt{1-x^2}}.
\end{eqnarray*}}

\newproblem{imd:ysq:xcuov2mx}{%
Find $\frac{dy}{dx}$, given
\begin{displaymath}
y^2 = \frac{x^3}{2-x}
\end{displaymath}}{%
Differentiating both sides w.r.t.\ $x$:
\begin{eqnarray*}
2y\frac{dy}{dx} & = & \frac{(2-x)3x^2 - x^3(-1)}{(2-x)^2}\\
 & = & \frac{3x^2(2-x) + x^3}{(2-x)^2}\\
 & = & \frac{6x^2 - 3x^3 + x^3}{(2-x)^2}\\
 & = & \frac{6x^2-2x^3}{(2-x)^2}\\
 & = & 2x^2\frac{3-x}{(2-x)^2}
\end{eqnarray*}
Therefore
\begin{displaymath}
y\frac{dy}{dx} = x^2\frac{3-x}{(2-x)^2}
\end{displaymath}}

\newproblem{imd:exy:IIxay}{%
Differentiate w.r.t.\ $x$:
\begin{displaymath}
e^{xy} = 2x + y
\end{displaymath}}{%
Differentiating both sides w.r.t.\ $x$:
\begin{eqnarray*}
e^{xy}(1y + x\frac{dy}{dx}) & = & 2 + \frac{dy}{dx}\\
xe^{xy}\frac{dy}{dx} - \frac{dy}{dx} & = & 2 - ye^{xy} \\
\frac{dy}{dx}(xe^{xy}-1) & = & 2 - ye^{xy}\\
\frac{dy}{dx} & = & \frac{2-ye^{xy}}{xe^{xy}-1}
\end{eqnarray*}}
\endinput
%%
%% End of file `implicit.tex'.