
The polytable package

Andres Löh
polytable@andres-loeh.de

2013/07/08

Abstract

This package implements a variant of tabular/tabbing-like environments
where columns can be given a name and entries can flexibly be placed be-
tween arbitrary columns. Complex alignment-based layouts, for example for
program code, are possible.

1 Introduction

This package implements a variant of tabular-like environments. We will call these
environments the poly-environments to distinguish them from the standard ones
as provided by the LATEX kernel or the array package.

Other than in standard tables, each column has a name. For instance, the
commands
\column{foo}{l}

\column{bar}{r}

– when used within a poly-environment – define a column with name foo that is
left-aligned, and a column with name bar that is right-aligned.

Once a couple of columns have been defined, the text is specified in a series
of \fromto commands. Instead of specifying text per column in order, separating
columns with &, we give the name of the column where the content should start,
and the name of the column before which the content should stop. To typeset the
text “I’m aligned!” in the column foo, we could thus use the command
\fromto{foo}{bar}{I’m aligned}

Several \fromto-commands can be used to typeset a complete line of the table.
A new line can be started with \\.

The strength of this approach is that it implicitly handles cases where different
lines have different alignment properties. Not all column names have to occur in
all lines.

2 A complete example

Figure 1 is an example that is designed to show the capabilities of this package.
In particular, it is not supposed to look beautiful.

1

left first of three second of three third of three right
left middle 1/2 middle 2/2 right
left middle 1/3 middle 2/3 middle 3/3 right
left first of two middle columns second of two middle columns right

Figure 1: Example table

The example table consists of four lines. All lines have some text on the left
and on the right, but the middle part follows two different patterns: the first and
the third line have three middle columnss that should be aligned, the second and
the fourth line have two (right-aligned) middle columns that should be aligned,
but otherwise independent of the three middle columns in the other lines.

Vertical bars are used to clarify where one column ends and the next column
starts in a particular line. Note that the first and the third line are completely
aligned. Likewise, the second and the fourth line are. However, the fact that
the bar after the text “middle 1/2” ends up between the two bars delimiting the
column with “second of three” in it is just determined by the length of the text
“first of two middle columns” in the last line. This text fragment is wider than
the first of the three middle columns, but not wider than the first two of the three
middle columns.

Let’s have a look at the input for the example table:

\begin{ptboxed}

\defaultcolumn{l|}\column{.}{|l|}

\> left

\=3 first of three \> second of three \> third of three

\=r right \\

\defaultcolumn{r|}\> left \=2 middle 1/2 \> middle 2/2 \=r right \\

\> left \=3 middle 1/3 \> middle 2/3 \> middle 3/3 \=r right \\

\> left

\=2 first of two middle columns \> second of two middle columns

\=r right \\

\end{ptboxed}

First, columns are declared, including the vertical lines. Note that there is a final
column end being declared that is only used as the end column in the \fromto

statements. A future version of this package will probably get rid of the need to
define such a column. After the column definitions, the lines are typeset by a series
of \fromto commands, separated by \\. Note that the first and third column do
not use m12, m22. Similarly, the second and fourth column do not use m13, m23,
and m33.

So far, one could achieve the same with an ordinary tabular environment. The
table would have 6 columns. One left and right, the other four for the middle:
the first and third line would use the first of the four columns, then place the
second entry in a \multicolumn of length 2, and then use the fourth column

2

for the third entry. Likewise, the other lines would place both their entries in a
\multicolumn of length 2. In fact, this procedure is very similar to the way the
ptabular environment is implemented.

The problem is, though, that we need the information that the first of the two
middle columns ends somewhere in the middle of the second of the three columns,
as observed above. If we slightly modify the texts to be displayed in the middle
columns, this situation changes. Figure 2 shows two variants of the example table.
The input is the same, only that the texts contained in some columns have slightly
changed. As you can see, the separator between the first and second middle column
in the second and fourth lines of the tables now once ends up within the first, once
within the third of the three middle columns of the other lines.

left first of three second of three third of three right
left middle 1/2 middle 2/2 right
left middle 1/3 middle 2/3 middle 3/3 right
left first of two second of two right

left first of three second of three third of three right
left middle 1/2 middle 2/2 right
left middle 1/3 middle 2/3 middle 3/3 right
left the first of two middle columns 2/2 right

Figure 2: Variants of the example table

If one wants the general case using the \multicolumn approach, one thus has
to measure the widths of the entries of the columns to compute their relative
position. In essence, this is what the package does for you.

3 Haskell code example

I have written this package mainly for one purpose: to be able to beautifully
align Haskell source code. Haskell is a functional programming language where
definitions are often grouped into several declarations. I’ve seen programmers
exhibit symmetric structures in different lines by adding spaces in their source code
files in such a way that corresponding parts in different definitions line up. On the
other hand, as Haskell allows user-defined infix operators, some programmers like
their symbols to be typeset as LATEX symbols, not as typewriter code. But using
LATEX symbols and a beautiful proportional font usually destroys the carefully
crafted layout and alignment.

With lhs2TEX, there is now a preprocessor available that preserves the source
code’s internal alignment by mapping the output onto polytable’s environments.
Figure 3 is an example of how the output of lhs2TEX might look like.

Of course, this could be useful for other programming languages as well. In
fact, lhs2TEX can be tweaked to process several experimental languages that are
based on Haskell, but I can imagine that this package could generally prove useful
to typeset program code.

3

class (Eq a)⇒ Ord a where
compare :: a → a → Ordering
(<), (≤), (≥), (>) :: a → a → Bool
max ,min :: a → a → Bool

— Minimal complete definition: (≤) or compare
— using compare can be more efficient for complex types
compare x y | x ≡ y = EQ

| x ≤ y = LT
| otherwise = GT

x ≤ y = compare x y 6≡ GT
x < y = compare x y ≡ LT
x ≥ y = compare x y 6≡ LT
x > y = compare x y ≡ GT
max x y | x ≤ y = y

| otherwise = x
min x y | x ≤ y = x

| otherwise = y

Figure 3: Haskell code example

4 Other applications

Although I have written this package for a specific purpose, I am very much
interested to hear of other potential application areas. Please tell me if you found
a use for this package and do not hesitate to ask for additional features that could
convince you to use the package for something.

5 The lazylist package

Internally, this package makes use of Alan Jeffrey’s excellent lazylist package, which
provides an implementation of the lambda calculus using fully expandable control
sequences. Unfortunately, lazylist.sty is not included in most common TEX
distributions, so you might need to fetch it from CTAN separately.

6 Reference

6.1 Setup

New in v0.8: We allow to implicitly define columns by just using the names during
table content specification, without having declared them formally using \column

(see below).
By default, though, this behaviour is turned off, because the use of a mis-\nodefaultcolumn

4

spelled column is often an error. Thus, by default or after the command
\nodefaultcolumn is used, all columns must be declared.

Using a statement of the form \defaultcolumn{〈spec〉}, implicit columns can\defaultcolumn

be activated. All undefined columns that are encountered will be assumed to have
format string 〈spec〉.

6.2 The environments

New in v0.8: There are now five environments that this package provides: in ad-pboxed

ptboxed

pmboxed

ptabular

parray

dition to the former ptabular, parray, and pboxed, there is now also ptboxed

and pmboxed. The environment pboxed typesets the material in boxes of the cal-
culated length, but in normal paragraph mode. The advantage is that there can
be page breaks within the table. Note that you should start a new (probably non-
indented) paragraph before beginning a pboxed. All lines that a pboxed produces
are of equal length, so it should be possible to center or right-align the material.

Both ptboxed and pbmoxed are like pboxed, but pre-wrapped in a tabular or
array environment, respectively, and thus not page-breakable but less fragile (or
should I just say: easier to use) than the unwrapped pboxed. With those, there is
no need for ptabular and parray anymore – which were directly based on (and
translated into) usual tabular and array environments as provided by the array

package. The environments are still supported, to ensure compatibility, but they
are mapped to ptboxed and pmboxed, respectively.

The pmboxed and parray environments assume math mode, whereas ptboxed
and ptabular assume text mode. The pboxed environment works in both text
and math modes and adapts to whatever is currently active.

I wrote in previous versions that one additional environment, namely plongtable,
a poly-version of the longtable environment, was planned. Page-breaking of
pboxed works fine, and I do not see a real need for a plongtable environment
anymore. If you would like it anyway, feel free to mail me and inform me about
the advantages it would have over pboxed.

The interface is the same for all of the environments.

6.3 The interface

(Note: this has changed significantly in v0.8!)

In each of the environments, the following commands can be used. All other
commands should be used with care if placed directly inside such an environment:
the contents of a polytable are processed multiple times; hence, if your commands
generate output, the output will end up multiple times in the final document, and
destroy your layout.

With \column[〈dimen〉]{〈columnid〉}{〈spec〉}, a new column 〈columnid〉 is\column

specified. The name of the column can be any sequence of alphanumerical charac-
ters. The 〈spec〉 is a format string for that particular column, and it can contain
the same constructs that can be used in format strings of normal tables or arrays.
However, it must only contain the description for one column.

5

As long as the save/restore feature (explained below) is not used, \column

definitions are local to one table. One can define a column multiple times within
one table: a warning will be produced, and the second format string will be used
for the complete table.

Columns must be defined before use when implicit columns using \defaultcolumn
are disabled.

A minimal horizontal position 〈dimen〉 (relative to the beginning of the table)
can be specified for a column, which defaults to 0pt.

The command \={〈fromid〉}[〈spec〉] instructs the package to prepare for a\=

new entry starting at column 〈fromid〉. Everything that follows the command, up
to the next interface-command (except \column) or the end of the environment
is interpreted as contents of the entry and can be arbitrary LATEX code that has
balanced grouping. The column specifier 〈spec〉 can be used to define a different
formatting for this particular entry. If the specifier starts with an exclamation
mark (!), it will be used as specifier for all entries of that column. The use of
multiple exclamation-mark specifiers for the same column name gives precedence
to the last one, but you should not rely on this behaviour as it may change in the
future.

Note that, contrary to normal LATEX behaviour, the second argument is the
optional argument. Therefore, if an entry starts with an opening bracket ([), and
the optional argument is omitted, a \relax should be inserted between command
and opening bracket, as otherwise the entry would be treated as the optional
argument.

The command \>[〈fromid〉][〈spec〉] is a variant of \= where both arguments\>

are optional. If no column name is given then the current column name, postfixed
by a dot (.), is assumed as column name. At the beginning of a line, a single dot
(.) will be assumed as a name. The 〈spec〉 argument has the same behaviour as
for \=. Note that if the specifier is given, the column name must be given as well,
but may be left empty if the default choice is desired. For instance, \>[][r], will
move to the next column, which will be typeset right-aligned.

The command \<[〈fromid〉] ends the current entry at the boundary specified\<

by 〈fromid〉. This macro can be used instead of \> or \= if an entry should be
ended without immediately starting a new one. Differences in behaviour occur if
〈fromid〉 is associated with a non-trivial column format string. TODO: Improve
this explanation.

The call \fromto{〈fromid〉}{〈toid〉}{〈text〉} will typeset 〈text〉 in the current\fromto

line, starting at column 〈fromid〉 and ending before column 〈toid〉, using the format
string specified for 〈fromid〉.

A line of a table usually consists of multiple \fromto statements. Each state-
ment’s starting column should be either the same as the end column of the previous
statement, or it will be assumed that the start column is located somewhere to
the right of the previous end column. The user is responsible to not introduce
cycles in the (partial) order of columns. If such a cycle is specified, the current
algorithm will loop, causing a dimension too large error ultimately. TODO:
catch this error.

The command \\ (or, now deprecated, \nextline) ends one line and begins\\

\nextline

6

the next. There is no need to end the last line. One can pass an optional argument,
as in \\[〈dimen〉], that will add 〈dimen〉 extra space between the lines.

6.4 A warning

The contents of the table are processed multiple times because the widths of
the entries are measured. Global assignments that modify registers and similar
things can thus result in unexpected behaviour. New in v0.7: LATEX counters (i.e.,
counters defined by \newcounter) are protected now. They will be reset after
each of the trial runs.

6.5 Saving column width information

Sometimes, one might want to reuse not only the same column, but exactly the
same alignment as in a previous table. An example would be a fragment of program
code, which has been broken into several pieces, with documentation paragraphs
added in between.

With \savecolumns[〈setid〉], one can save the information of the current table\savecolumns

\restorecolumns for later reuse. The name setid can be an arbitrary sequence of alphanumeric
characters. It does not share the same namespace as the column names. The
argument is optional; if it is omitted, a default name is assumed. Later, one can
restore the information (multiple times, if needed) in other tables, by issuing a
\restorecolumns[〈setid〉].

This feature requires to pass information backwards in the general case, as
column widths in later environments using one specific column set might influence
the layout of earlier environments. Therefore, information is written into the .aux
file, and sometimes, a warning is given that a rerun is needed. Multiple reruns
might be required to get all the widths right.

I have tried very hard to avoid producing rerun warnings infinitely except
if there are really cyclic dependencies between columns. Still, if it happens or
something seems to be broken, it often is a good idea to remove the .aux file and
start over. Be sure to report it as a bug, though.

Figure 4 is an example of the Haskell code example with several comments
inserted. The source of this file shows how to typeset the example.

7 The Code

1 〈∗package〉
2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesPackage{polytable}%

4 [2013/07/18 v0.8.5 ‘polytable’ package (Andres Loeh)]

New in v0.7.2: The amsmath package clashes with lazylist: both define the com-
mand \And. Although it would certainly be better to find another name in lazylist,
we take precautions for now. (Note that this will still fail if lazylist is already loaded
– but then it’s not our problem . . .

7

We introduce a new type class Ord for objects that admit an ordering. It is based
on the Eq class:

class (Eq a)⇒ Ord a where

The next three lines give the type signatures for all the methods of the class.

compare :: a → a → Ordering
(<), (≤), (≥), (>) :: a → a → Bool
max ,min :: a → a → Bool

— Minimal complete definition: (≤) or compare
— using compare can be more efficient for complex types

As the comment above says, it is sufficient to define either (≤) or compare to get
a complete instance. All of the class methods have default definitions. First, we
can define compare in terms of (≤). The result type of compare is an Ordering,
a type consisting of only three values: EQ for “equality”, LT for “less than”, and
GT for “greater than”.

compare x y | x ≡ y = EQ
| x ≤ y = LT
| otherwise = GT

All the other comparison operators can be defined in terms of compare:

x ≤ y = compare x y 6≡ GT
x < y = compare x y ≡ LT
x ≥ y = compare x y 6≡ LT
x > y = compare x y ≡ GT

Finally, there are default definitions for max and min in terms of (≤).

max x y | x ≤ y = y
| otherwise = x

min x y | x ≤ y = x
| otherwise = y

Figure 4: Commented Haskell code example

8

5 \let\PT@original@And\And

6 \let\PT@original@Not\Not

7 \RequirePackage{lazylist}

8 \let\PT@And\And

9 \let\PT@Not\Not

10 \def\PT@prelazylist

11 {\let\And\PT@And

12 \let\Not\PT@Not}

13 \def\PT@postlazylist

14 {\let\And\PT@original@And

15 \let\Not\PT@original@Not}

16 \PT@postlazylist

17 \RequirePackage{array}

The option debug will cause (a considerable amount of) debugging output to
be printed. The option info is a compromise, printing some status information
for each table, but no real debugging information. The option silent, on the other
hand, will prevent certain warnings from being printed.
18 \DeclareOption{debug} {\AtEndOfPackage\PT@debug}

19 \DeclareOption{info} {\AtEndOfPackage\PT@info}

20 \DeclareOption{silent}{\AtEndOfPackage\PT@silent}

First, we declare a couple of registers that we will need later.
21 \newdimen\PT@colwidth

22 \newcount\PT@cols

23 \newcount\PT@table

24 \newtoks\PT@toks

25 \newif\ifPT@changed

26 \newread\PT@in

27 \newwrite\PT@out

In \PT@allcols, we will store the list of all columns, as a list as provided by the
lazylist package. We initialise it to the empty list, which is represented by \Nil.
In v0.9, we will have a second list that only contains the public columns.
28 \def\PT@allcols{\Nil}

29 %\def\PT@allpubliccols{\Nil}

30 \let\PT@infromto\empty

These are flags and truth values. TODO: Reduce and simplify.
31 \let\PT@currentwidths\empty

32 \def\PT@false{0}

33 \def\PT@true{1}

34 \let\PT@inrestore\PT@false

\defaultcolumn

\nodefaultcolumn

\PT@defaultcolumnspec

The macro \PT@defaultcolumnspec contains, if defined, the current default spec-
ifier that is assumed for undefined columns. The other two commands can be used
to set the specifier.

35 \newcommand{\defaultcolumn}[1]{\gdef\PT@defaultcolumnspec{#1}}

36 \newcommand{\nodefaultcolumn}{\global\let\PT@defaultcolumnspec\undefined}

37 \DeclareOption{defaultcolumns}{\defaultcolumn{l}}

\memorytables

\disktables

\PT@add

\PT@split

\PT@prearewrite

\PT@preareread

\PT@finalize

These macros steer where the end-column queue is stored, which can be either in

9

memory or on disk. The default is on disk, because that’s more reliable for large
tables. There is a package option memory to make \memorytables the default.

38 \newcommand{\memorytables}{%

39 \let\PT@preparewrite\@gobble

40 \let\PT@add \PT@addmem

41 \let\PT@prepareread \PT@preparereadmem

42 \let\PT@split \PT@splitmem

43 \let\PT@finalize \relax

44 }

45 \newcommand{\disktables}{%

46 \let\PT@preparewrite\PT@preparewritefile

47 \let\PT@add \PT@addfile

48 \let\PT@prepareread \PT@preparereadfile

49 \let\PT@split \PT@splitfile

50 \let\PT@finalize \PT@finalizefile

51 }

52 \DeclareOption{memory}{\AtEndOfPackage\memorytables}

53 \ProcessOptions

\PT@debug

\PT@info

\PT@debug@

\PT@typeout@

\PT@silent

\PT@warning

Similar to the tabularx package, we add macros to print debugging information to
the log. Depending on package options, we can set or unset them.

54 \newcommand*{\PT@debug}

55 {\def\PT@debug@ ##1{\typeout{(polytable) ##1}}

56 \PT@info}

57 \newcommand*{\PT@info}

58 {\def\PT@typeout@ ##1{\typeout{(polytable) ##1}}}

59 \let\PT@debug@\@gobble

60 \let\PT@typeout@\@gobble

61 \def\PT@warning{\PackageWarning{polytable}}%

62 \def\PT@silent

63 {\let\PT@typeout@\@gobble\let\PT@warning\@gobble}

\PT@aligndim

\PT@aligncol

The first is (almost) stolen from the tabularx-package, to nicely align dimensions
in the log file. TODO: fix some issues. The other command is for column names.

64 \def\PT@aligndim#1#2#3\@@{%

65 \ifnum#1=0

66 \if #2p%

67 \PT@aligndim@0.0pt\space\space\space\space\space\@@

68 \else

69 \PT@aligndim@#1#2#3\space\space\space\space\space\space\space\space\@@

70 \fi

71 \else

72 \PT@aligndim@#1#2#3\space\space\space\space\space\space\space\space\@@

73 \fi}

74

75 \def\PT@aligndim@#1.#2#3#4#5#6#7#8#9\@@{%

76 \ifnum#1<10 \space\fi

77 \ifnum#1<100 \space\fi

78 \ifnum#1<\@m\space\fi

10

79 \ifnum#1<\@M\space\fi

80 #1.#2#3#4#5#6#7#8\space\space}

81

82 \def\PT@aligncol#1{%

83 \PT@aligncol@#1\space\space\space\space\space\space\space\space\@@}

84

85 \def\PT@aligncol@#1#2#3#4#5#6#7#8#9\@@{%

86 #1#2#3#4#5#6#7#8\space\space}

\PT@rerun This macro can be called at a position where we know that we have to rerun LATEX
to get the column widths right. It issues a warning at the end of the document.

87 \def\PT@rerun

88 {\PT@typeout@{We have to rerun LaTeX ...}%

89 \AtEndDocument

90 {\PackageWarning{polytable}%

91 {Column widths have changed. Rerun LaTeX.\@gobbletwo}}%

92 \global\let\PT@rerun\relax}

\PT@currentcol

\PT@currentcolumn

Both macros are used during typesetting to store the current column. The differ-
ences are subtle. TODO: remove one of the two, if possible. The \PT@currentcol

variant contains the internal name, whereas the \PT@currentcolumn variant con-
tains the external name.

7.1 Macro definition tools

\PT@listopmacro

\PT@consmacro

\PT@appendmacro

This assumes that #2 is a list macro and #3 is a new list element. The macro
#2 should, after the call, expand to the list with the new element #1ed. Because
we don’t know the number of tokens in #3, we use a temporary macro \PT@temp

(which is used frequently throughout the package).

93 \def\PT@listopmacro #1#2#3% #1 #3 to the list #2

94 {\def\PT@temp{#1{#3}}%

95 \expandafter\expandafter\expandafter

96 \def\expandafter\expandafter\expandafter

97 #2\expandafter\expandafter\expandafter

98 {\expandafter\PT@temp\expandafter{#2}}}

99

100 \def\PT@consmacro{\PT@listopmacro\Cons}

101 \def\PT@appendmacro{\PT@listopmacro\Cat}

The follwing macro can be used to add something to the end of a control structure.

102 \def\PT@gaddendmacro #1#2% add #2 to the end of #1

103 {\PT@expanded{\gdef #1}{#1#2}}

\PT@expanded This macro expands its second argument once before passing it to the first ar-
gument. It is like \expandafter, but works on grouped arguments instead of
tokens.

104 \def\PT@expanded #1#2%

105 {\expandafter\Twiddle\expandafter\Identity\expandafter{#2}{#1}}

11

\PT@enamedef This is much like \@namedef, but it expands #2 once.

106 \def\PT@enamedef #1% sets name #1 to the expansion of #2

107 {\PT@expanded{\@namedef{#1}}}

\PT@addoptargtomacro

\PT@addargtomacro 108 \def\PT@addoptargtomacro

109 {\PT@add@argtomacro\PT@makeoptarg}

110 \def\PT@addargtomacro

111 {\PT@add@argtomacro\PT@makearg}

112

113 \def\PT@add@argtomacro#1#2#3%

114 {\PT@expanded{\PT@expanded{\gdef\PT@temp}}{\csname #3\endcsname}%

115 #1%

116 \PT@expanded{\PT@gaddendmacro{#2}}{\PT@temp}}

117

118 \def\PT@makeoptarg%

119 {\PT@expanded{\def\PT@temp}{\expandafter[\PT@temp]}}

120 \def\PT@makearg%

121 {\PT@expanded{\def\PT@temp}{\expandafter{\PT@temp}}}

\PT@gobbleoptional Gobbles one optional argument. Ignores spaces.

122 \newcommand*{\PT@gobbleoptional}[1][]{\ignorespaces}

\PT@addmem

\PT@splitmem

\PT@addfile

\PT@splitfile

\PT@preparereadmem

\PT@preparereadfile

\PT@preparewrite

\PT@finalizefile

\PT@queuefilename

The following macros handle a simple queue of names. With \PT@addmem, a
name is added to the end of the queue. Using \PT@splitmem, the first element
of the queue is bound to another command. As a replacement, we also define
\PT@addfile and \PT@splitfile, that implement the queue in a file.

123 \def\PT@addmem#1#2{\PT@gaddendmacro #2{\PT@elt{#1}}}

124 \def\PT@splitmem#1#2{#1\PT@nil{#2}{#1}}

125

126 \def\PT@elt#1#2\PT@nil#3#4{\gdef #3{#1}\gdef #4{#2}}

127

128 \def\PT@queuefilename{\jobname.ptb}

129

130 % the \empty at the end consumes the newline space

131 \def\PT@addfile#1#2{%

132 \immediate\write #2{\string\def\string\PTtemp{#1}\string\empty}}

133

134 \def\PT@splitfile#1#2{%

135 \ifeof #1%

136 \let #2=\empty

137 \else

138 \read #1 to#2%

139 %\show #2%

140 #2% hack, because it essentially ignores #2

141 \PT@expanded{\def #2}{\PTtemp}%

142 %\show #2%

143 \fi}

144

12

145 %\def\strip#1{\def #1{\expandafter\@strip #1\@dummy}}

146 %\def\@strip#1\@dummy{#1}

147

148 \def\PT@preparereadmem#1#2{%

149 \global\let #1=#2}

150

151 \def\PT@preparewritefile#1{%

152 \immediate\openout\PT@out\PT@queuefilename\relax

153 \let #1\PT@out}

154

155 \def\PT@preparereadfile#1#2{%

156 \immediate\closeout\PT@out

157 \openin\PT@in\PT@queuefilename\relax

158 \let #1\PT@in}

159

160 \def\PT@finalizefile{%

161 \closein\PT@in}

162

163 \disktables

7.2 The environment

The general idea is to first scan the contents of the environment and store them
in a token register. In a few test runs, the positions of the column borders are
determined. After that, the table is typeset by producing boxes of appropriate
size.

\beginpolytable This macro starts the environment. It should, however, not be called directly, but
rather in a LATEX environment. We initialize the token register to the empty string
and then start scanning.

164 \newcommand*{\beginpolytable}%

We save the current enclosing LATEX environment in \PT@environment. This will
be the \end we will be looking for, and this will be the environment we manually
close in the end.

165 {\edef\PT@environment{\@currenvir}%

166 \begingroup

167 % new in v0.7: save counters

168 \PT@savecounters

169 \PT@toks{}% initialise token register

170 \PT@scantoend}

\endpolytable This is just defined for convenience.

171 \let\endpolytable=\relax

\PT@scantoend Whenenver an \end is encountered, we check if it really ends the current environ-
ment. We store the tokens we have read. Once we have found the end of the envi-
ronment, we initialize the column queue and column reference, \PT@columnqueue
and \PT@columnreference. The new interface commands build the queue during

13

the first test run, containing the end columns of specific entries of the table. Later,
the queue is copied to be the reference, and in the typesetting run, the information
is used to compute the correct box widths. We start with an empty queue, and
set the reference to \undefined, because it is not yet needed. TODO: queue and
reference must be global variables at the moment; try to change that.

172 \newcommand{\PT@scantoend}% LaTeX check

173 \long\def\PT@scantoend #1\end #2%

174 {\PT@toks\expandafter{\the\PT@toks #1}%

175 \def\PT@temp{#2}%

176 \ifx\PT@temp\PT@environment

177 \global\let\PT@columnqueue \empty

178 \global\let\PT@columnreference \undefined

179 \PT@preparewrite\PT@columnqueue

180 \expandafter\PT@getwidths

181 \else

182 \PT@toks\expandafter{\the\PT@toks\end{#2}}%

183 \expandafter\PT@scantoend

184 \fi}

\PT@getwidths Here, we make as many test runs as are necessary to determine the correct column
widths.

185 \def\PT@getwidths

We let the \column command initialize a column in the first run.

186 {\let\column \PT@firstrun@column

There is the possibility to save or restore columns. This is new in v0.4.

187 \let\savecolumns \PT@savewidths

188 \let\restorecolumns \PT@restorewidths

We always define a pseudo-column @begin@. This denotes the begin of a row. We
also define a pseudo-column @end@ denoting the end of a row (as of v0.8; and I’m
not sure if @begin@ is still needed).

189 \column{@begin@}{@{}l@{}}%

190 \column{@end@}{}%

191 \PT@cols=0\relax%

The two other commands that are allowed inside of the environment, namely
\fromto and \\ are initialized. The \fromto command may increase the current
widths of some columns, if necessary, whereas \\ just resets the counter that keeps
track of the “current” column, to 0. The command \nextline is an old name for
\\.

192 \let\fromto \PT@fromto

193 \let\PT@processentry \PT@checkwidth

194 \let\PT@scanbegin \PT@scanbeginfree

195 \let\\= \PT@resetcolumn

196 \let\nextline \PT@resetcolumn

197 \let\>= \PT@fromopt

198 \let\== \PT@from

199 \let\<= \PT@toopt

14

200 \global\PT@changedfalse % nothing has changed so far

201 \PT@resetcolumn % we are at the beginning of a line

Now we are ready for a test run.

202 \the\PT@toks

203 \@ifundefined{PT@scanning}%

204 {}{\PT@resetcolumn\relax}%

After the first run, we print extra information. We use the contents of the macro
\column to check whether we are in the first run, because it will be reset below
for all other runs to do nothing.

205 \ifx\column\PT@otherrun@column

206 \else

207 % we are in first run, print extra info

208 \PT@prelazylist

209 \PT@typeout@{\PT@environment: \the\PT@cols\space columns, %

210 \PT@Print\PT@allcols}%

211 \PT@postlazylist

212 \fi

The columns are initialised after the first run. Therefore, we make sure that the
\column command won’t do much in the other runs. Also, saving and restoring
columns is no longer needed.

213 \let\PT@firstrun@column \PT@otherrun@column

214 \let\savecolumns \PT@gobbleoptional

215 \let\restorecolumns \PT@gobbleoptional

216 \let\PT@savewidths \PT@gobbleoptional

217 \let\PT@restorewidths \PT@gobbleoptional

New in v0.7.1: restore counters after each trial run.

218 \PT@restorecounters

If some column widths have indeed changed in the test run, this will be indicated
by the flag \ifPT@changed. Depending on this flag, we will either loop and rerun,
or we will continue in \PT@sortcols.

219 \ifPT@changed

220 % we need to rerun if something has changed

221 \PT@typeout@{There were changes; another trial run needed.}%

222 \expandafter\PT@getwidths

223 \else

224 % we are done and can do the sorting

225 \PT@typeout@{There were no changes; reached fixpoint.}%

226 \expandafter\PT@sortcols

227 \fi}

\PT@savecounters Save all LATEX counters so that they can be restored after a trial run.

228 \def\PT@savecounters

229 {\begingroup

230 \def\@elt ##1%

231 {\global\csname c@##1\endcsname\the\csname c@##1\endcsname}%

232 \xdef\PT@restorecounters{\cl@@ckpt}%

233 \endgroup}

15

\PT@sortcols The column borders are sorted by their horizontal position on the page (width).
The they get numbered consecutively. After that, we are well prepared to typeset
the table.

234 \def\PT@sortcols

First, we sort the list. To make sure that the computation is only executed
once, we save the sorted list by means of an \edef. Sorting happens with
lazylist’s \Insertsort which expects an order and a list. As order, we provide
\PT@ltwidth, which compares the widths of the columns. To prevent expansion of
the list structure, given by \Cons and \Nil, we fold the list with the \noexpanded
versions of the list constructors.

235 {\PT@prelazylist

236 \edef\PT@sortedlist

237 {\Foldr{\noexpand\Cons}{\noexpand\Nil}%

238 {\Insertsort\PT@ltmax\PT@allcols}}%

239 \PT@typeout@{Sorted columns:}%

240 \PT@PrintWidth\PT@sortedlist

241 \PT@postlazylist

Now, each column is assigned a number, starting from zero.

242 \PT@cols=0\relax%

243 \PT@prelazylist

244 \PT@Execute{\Map\PT@numbercol\PT@sortedlist}%

245 \PT@postlazylist

246 \edef\PT@lastcol@{\PT@StripColumn\PT@lastcol}%

247 \PT@typeout@{Numbered successfully, %

248 last column is \PT@lastcol@}%

Now is a good time to save table information, if needed later. We will also compare
our computed information with the restored maximum widths.

249 \ifx\PT@currentwidths\empty

250 \else

251 \PT@typeout@{Saving table information for \PT@currentwidths .}%

252 \PT@expanded\PT@saveinformation\PT@currentwidths

253 \fi

Finally, we can typeset the table.

254 \PT@typeset}

\PT@typeset We redefine \fromto and \\ to their final meaning in the typesetting process.
The \fromto statements will be replaced by appropriate calls to \multicolumn,
whereas the \\ will again reset the counter for the current column, but also call
the table environment’s newline macro. Again, \nextline is allowed as an old
name for \\.

255 \def\PT@typeset

256 {\PT@typeout@{Typesetting the table ...}%

257 \let\PT@processentry \PT@placeinbox

258 \let\PT@scanbegin \PT@scanbeginwidth

259 \let\\= \PT@resetandcr

260 \let\nextline \PT@resetandcr

16

261 \PT@prepareread\PT@columnreference\PT@columnqueue

The environment that will be opened soon, can, if if happens to be tabular or
array, redefines \\ once more, and will redefine it to \@arraycr. To prevent this,
we also set \@arraycr to our command.

262 \let\@arraycr \PT@resetandcr

The array environments keep each line in a group; therefore \PT@resetcolumn,
when executed during the linebreak, will not affect the current column counters.
By having \PT@resetcolumn before entering the environment, we ensure that the
group reset will have the correct effect anyway.

263 \PT@resetcolumn % we are at the beginning of a line

Now we start the tabular environment with the computed preamble. We redefine
the \\ to whatever the environment dictates.

264 \PT@begin%

Run, and this time, typeset, the contents.

265 \the\PT@toks

266 \PT@fill% new in 0.7.3: balance the last line

End the array, close the group, close the environment. We are done!

267 \PT@finalize% finalize the queue (possibly close file)

268 \PT@end

269 \endgroup

270 \PT@typeout@{Finished.}%

271 \expandafter\end\expandafter{\PT@environment}}%

7.3 New interface

From v0.8 on, we offer a more convenient user interface for the programming of
the columns.

\PT@from

\PT@fromopt

\PT@toopt

The macro \PT@from is bound to \= in a polytable environment, and used to move
to the named column specified by its argument. The previous column is closed.
The variant \PT@fromopt is bound to \> and takes an optional argument instead
of a mandatory, which defaults to the current column name followed by a single
dot .. We use an empty default which is then redefined to make it easier for the
user to use the default definition (TODO: explain better). Otherwise, it is like
\PT@from.

The macro \PT@toopt is bound to \<. Where \PT@from ends an entry if one is
active, and starts a new one, the \PT@toopt variant only ends the currently active
entry.

272 \newcommand{\PT@from}[1]%

273 {\PT@checkendentry{#1}\PT@dofrom{#1}}

274

275 \newcommand{\PT@fromopt}[1][]%

276 {\def\PT@temp{#1}%

277 \ifx\PT@temp\empty

278 % set default column name

17

279 \def\PT@temp{\PT@currentcolumn .}%

280 \fi

281 \PT@expanded\PT@from\PT@temp}

282

283 \newcommand{\PT@toopt}[1][]%

284 {\def\PT@temp{#1}%

285 \ifx\PT@temp\empty

286 % set default column name

287 \def\PT@temp{\PT@currentcolumn .}%

288 \fi

289 \PT@expanded\PT@checkendentry\PT@temp

290 \let\PT@scanning\undefined}

\PT@dofrom

291 \newcommand*{\PT@dofrom}[1]%

292 {\edef\PT@currentcolumn{#1}%

293 \let\PT@scanning\PT@currentcolumn

294 \let\PT@currentpreamble\relax% necessary for preparescan

295 \@ifnextchar[%]

296 {\PT@expanded\PT@dospecfrom\PT@currentcolumn}%

297 {\PT@expanded\PT@dodofrom \PT@currentcolumn}}

298

299 \newcommand*{\PT@dospecfrom}{}% LaTeX check

300 \def\PT@dospecfrom #1[#2]%

301 {\PT@checkglobalfrom #2\PT@nil{#1}%

302 \PT@dodofrom{#1}}

303

304 \newcommand*{\PT@checkglobalfrom}{}% LaTeX check

305 \def\PT@checkglobalfrom

306 {\@ifnextchar!\PT@getglobalfrom\PT@ignorefrom}

307

308 \newcommand*{\PT@getglobalfrom}{}% LaTeX check

309 \def\PT@getglobalfrom!#1\PT@nil#2%

310 {\column{#2}{#1}}

311

312 \newcommand*{\PT@ignorefrom}{}% LaTeX check

313 \def\PT@ignorefrom #1\PT@nil#2%

314 {\def\PT@currentpreamble{#1}}

315

316 \newcommand*{\PT@dodofrom}[1]%

317 {\@ifundefined{PT@columnreference}%

318 {% trial run

319 \ifx\column\PT@otherruncolumn

320 \else

321 % first run

322 \let\PT@storeendcolumn\PT@add

323 \fi

324 \def\PT@temp{@end@}}%

325 {% final run

326 \PT@split\PT@columnreference\PT@temp

18

327 %\PT@typeout@{splitted: \PT@temp}

328 }%

329 \PT@expanded{\PT@expanded\PT@preparescan\PT@currentcolumn}\PT@temp

330 \PT@scanbegin}

331

332 \let\PT@storeendcolumn\@gobbletwo

Here, \PT@scanbegin will scan free or using the width, depending on the run we
are in.

\PT@fromto This is the implementation for the old explicit \fromto macro. It takes the start
and end columns, and the contents. It can be used for all runs.

333 \newcommand*{\PT@fromto}[3]%

We allow a \fromto to follow a new-style command, but we reset the current
column to undefined, so no text may immediately follow a \fromto command.

334 {\PT@checkendentry{#1}%

335 \let\PT@scanning\undefined

We check a switch to prevent nested \fromtos.

336 \PT@infromto

337 \def\PT@infromto{%

338 \PackageError{polytable}{Nested fromto}{}}%

Here, the real work is done:

339 \let\PT@currentpreamble\relax% necessary for preparescan

340 \PT@preparescan{#1}{#2}%

341 \PT@scanbegin #3\PT@scanend% defines \@curfield

342 \PT@processentry{#1}{#2}%

The commands \PT@scanbegin and \PT@processentry will perform different
tasks depending on which run we are in.

We ignore spaces after the \fromto command.

343 \let\PT@infromto\empty

344 \ignorespaces}

\PT@checkendentry This macro checks if we are currently scanning an entry. If so (this is detected
by checking if \PT@scanning is defined), we close the entry and handle it (in
\PT@endentry) before returning. The argument is the name of the column from
which this macro is called.

345 \newcommand*{\PT@checkendentry}% takes one argument

346 {\@ifundefined{PT@scanning}%

347 {\let\PT@temp\@gobble}%

348 {\let\PT@temp\PT@endentry}%

349 \PT@temp}

350 %\newcommand*{\PT@checkendentry}% takes one argument

351 % {\@ifundefined{PT@post@preamble}%

352 % {\let\PT@temp\PT@discardentry}%

353 % {\let\PT@temp\PT@endentry}%

354 % \PT@temp}

355

19

356 %\newcommand*{\PT@discardentry}[1]%

357 % {\let\PT@postpreamble=\empty\PT@scanend}

358

359 \newcommand*{\PT@endentry}[1]%

360 {\PT@scanend

361 \edef\PT@temp{#1}%

362 \PT@expanded\PT@storeendcolumn\PT@temp\PT@columnqueue

363 \let\PT@storeendcolumn\@gobbletwo

364 \PT@expanded{\PT@expanded\PT@processentry\PT@currentcolumn}\PT@temp}

7.4 The trial runs

For each column, we store information in macros that are based on the column
name. We store a column’s type (i.e., its contribution to the table’s preamble), its
current width (i.e., its the horizontal position where the column will start on the
page), and later, its number, which will be used for the \multicolumn calculations.

\PT@firstrun@column During the first trial run, we initialise all the columns. We store their type, as
declared in the \column command inside the environment, and we set their initial
width to 0pt. Furthermore, we add the column to the list of all available columns,
increase the column counter, and tell TEX to ignore spaces that might follow the
\column command. New in v0.4.1: We make a case distinction on an empty type
field to prevent warnings for columns that have been defined via \PT@setmaxwidth

– see there for additional comments. New in v0.4.2: We allow redefinition of width
if explicitly specified, i.e., not equal to 0pt.

365 \newcommand\PT@firstrun@column[3][0pt]%

366 {\@ifundefined{PT@col@#2.type}%

367 {\PT@typeout@{Defining column \PT@aligncol{#2} at #1.}%

368 \@namedef{PT@col@#2.type}{#3}%

369 \@namedef{PT@col@#2.width}{#1}% initialize the width of the column

370 % add the new column to the (sortable) list of all columns

371 \PT@consmacro\PT@allcols{PT@col@#2}%

372 \advance\PT@cols by 1\relax}%

373 {\expandafter\ifx\csname PT@col@#2.type\endcsname\empty

374 \relax % will be defined in a later table of the same set

375 \else

376 \begingroup

377 \def\PT@temp{PT@col@#2}%

378 \ifx\PT@temp\PT@endcol

379 \relax % end column is always redefined

380 \else

381 \PT@warning{Redefining column #2}%

382 \fi

383 \endgroup

384 \fi

385 \@namedef{PT@col@#2.type}{#3}%

386 \expandafter\ifdim#1>0pt\relax

387 \PT@typeout@{Redefining column #2 at #1.}%

388 \@namedef{PT@col@#2.width}{#1}%

20

389 \fi

390 }%

For the case that we are saving and there is not yet information from the .aux

file, we define the .max and .trusted fields if they are undefined. If information
becomes available later, it will overwrite these definitions.

391 \@ifundefined{PT@col@#2.max}%

392 {\@namedef{PT@col@#2.max}{#1}%

393 \expandafter\let\csname PT@col@#2.trusted\endcsname\PT@true}{}%

394 \ignorespaces}

\PT@otherrun@column In all but the first trial run, we do not need any additional information about the
columns any more, so we just gobble the two arguments, but still ignore spaces.

395 \newcommand\PT@otherrun@column[3][]%

396 {\ignorespaces}

\PT@checkcoldefined This macro verifies that a certain column is defined and produces an error message
if it is not. New in v0.8: this macro implicitly defines the column if we have a
default column specifier.

397 \def\PT@checkcoldefined #1%

398 {\@ifundefined{PT@col@#1.type}%

399 {\@ifundefined{PT@defaultcolumnspec}%

400 {\PackageError{polytable}{Undefined column #1}{}}

401 {\PT@debug@{Implicitly defining column #1}%

402 \PT@expanded{\column{#1}}{\PT@defaultcolumnspec}}}{}%

We also have to define columns with empty specifiers. This situation can occur if
save/restoring columns that are defined by default specifiers.

403 \expandafter\ifx\csname PT@col@#1.type\endcsname\empty\relax

404 \@ifundefined{PT@defaultcolumnspec}{}%

405 {\PT@debug@{Implicitly defining column #1}%

406 \PT@expanded{\column{#1}}{\PT@defaultcolumnspec}}%

407 \fi}

\PT@checkwidth Most of the work during the trial runs is done here. We increase the widths of
certain columns, if necessary. Note that there are two conditions that have to hold
if \fromto{A}{B} is encountered:

• the width of A has to be at least the width of the current (i.e., previous)
column.

• the width of B has to be at least the width of A, plus the width of the entry.

408 \def\PT@checkwidth #1#2%

409 {\PT@checkcoldefined{#2}% first column should have been checked before

Here, we check the first condition.

410 \def\PT@temp{PT@col@#1}%

411 \ifx\PT@currentcol\PT@temp

412 \PT@debug@{No need to skip columns.}%

21

413 \else

414 \PT@colwidth=\expandafter\@nameuse\expandafter

415 {\PT@currentcol.width}\relax

416 \ifdim\PT@colwidth>\csname PT@col@#1.width\endcsname\relax

417 % we need to change the width

418 \PT@debug@{s \PT@aligncol{#1}: %

419 old=\expandafter\expandafter\expandafter

420 \PT@aligndim\csname PT@col@#1.width\endcsname\@@%

421 new=\expandafter\PT@aligndim\the\PT@colwidth\@@}%

422 \PT@changedtrue

423 \PT@enamedef{PT@col@#1.width}{\the\PT@colwidth}%

424 \fi

The same for the untrusted .max values.

425 \PT@colwidth=\expandafter\@nameuse\expandafter

426 {\PT@currentcol.max}\relax

427 \ifdim\PT@colwidth>\csname PT@col@#1.max\endcsname\relax

428 % we need to change the width

429 \PT@debug@{S \PT@aligncol{#1}: %

430 old=\expandafter\expandafter\expandafter

431 \PT@aligndim\csname PT@col@#1.max\endcsname\@@%

432 new=\expandafter\PT@aligndim\the\PT@colwidth\@@}%

433 \PT@changedtrue

434 \PT@checkrerun

435 \PT@enamedef{PT@col@#1.max}{\the\PT@colwidth}%

436 \fi

437 \ifnum\csname PT@col@#1.trusted\endcsname=\PT@false\relax

438 \ifdim\PT@colwidth=\csname PT@col@#1.max\endcsname\relax

439 \PT@debug@{#1=\the\PT@colwidth\space is now trusted}%

440 \expandafter\let\csname PT@col@#1.trusted\endcsname\PT@true%

441 \fi

442 \fi

443 \fi

We assume that the current field is typeset in \@curfield; we can thus measure
the width of the box and then test the second condition.

444 \PT@expanded{\def\PT@temp}{\the\wd\@curfield}%

445 \global\PT@colwidth=\@nameuse{PT@col@#1.width}%

446 \global\advance\PT@colwidth by \PT@temp\relax%

447 \ifdim\PT@colwidth>\csname PT@col@#2.width\endcsname\relax

448 % we need to change the width

449 \PT@debug@{#2 (width \PT@temp) starts after #1 (at \csname PT@col@#1.width\endcsname)}%

450 \PT@debug@{c \PT@aligncol{#2}: %

451 old=\expandafter\expandafter\expandafter

452 \PT@aligndim\csname PT@col@#2.width\endcsname\@@%

453 new=\expandafter\PT@aligndim\the\PT@colwidth\@@}%

454 \PT@changedtrue

455 \PT@enamedef{PT@col@#2.width}{\the\PT@colwidth}%

456 \fi

And again, we have to do the same for the untrusted maximums.

22

457 \global\PT@colwidth=\@nameuse{PT@col@#1.max}%

458 \global\advance\PT@colwidth by \PT@temp\relax%

459 \ifdim\PT@colwidth>\csname PT@col@#2.max\endcsname\relax

460 % we need to change the width

461 \PT@debug@{C \PT@aligncol{#2}: %

462 old=\expandafter\expandafter\expandafter

463 \PT@aligndim\csname PT@col@#2.max\endcsname\@@%

464 new=\expandafter\PT@aligndim\the\PT@colwidth\@@}%

465 \PT@changedtrue

466 \PT@checkrerun

467 \PT@enamedef{PT@col@#2.max}{\the\PT@colwidth}%

468 \fi

469 \ifnum\csname PT@col@#2.trusted\endcsname=\PT@false\relax

470 \ifdim\PT@colwidth=\csname PT@col@#2.max\endcsname\relax

471 \PT@debug@{#2=\the\PT@colwidth\space is now trusted}%

472 \expandafter\let\csname PT@col@#2.trusted\endcsname\PT@true%

473 \fi

474 \fi

Finally, we update the current column to #2.

475 \def\PT@currentcol{PT@col@#2}}

\PT@checkrerun If we have changed something with the trusted widths, we have to check whether
we are in a situation where we are using previously defined columns. If so, we
have to rerun LATEX.

476 \def\PT@checkrerun

477 {\ifnum\PT@inrestore=\PT@true\relax

478 \PT@rerun

479 \fi}

\PT@resetcolumn If the end of a line is encountered, we stop scanning the current entry, and reset
the current column.

480 \newcommand*{\PT@resetcolumn}[1][]%

481 {\PT@checkendentry{@end@}%

482 \let\PT@currentcolumn\empty%

483 \let\PT@scanning\undefined

484 \let\PT@currentcol\PT@nullcol

485 % TODO: remove these lines if they don’t work

486 %\let\PT@pre@preamble\empty

487 %\PT@scanbeginfree

488 }

\PT@nullcol The name of the @begin@ column as a macro, to be able to compare to it with
\ifx; dito for the @end@ column.

489 \def\PT@nullcol{PT@col@@begin@}

490 \def\PT@endcol{PT@col@@end@}

23

7.5 Sorting and numbering the columns

Not much needs to be done here, all the work is done by the macros supplied by
the lazylist package. We just provide a few additional commands to facilitate their
use.

\PT@Execute

\PT@Sequence

With \PT@Execute, a list of commands (with sideeffects) can be executed in se-
quence. Usually, first a command will be mapped over a list, and then the resulting
list will be executed.

491 \def\PT@Execute{\Foldr\PT@Sequence\empty}

492 \def\PT@Sequence #1#2{#1#2}

\PT@ShowColumn This is a debugging macro, that is used to output the list of columns in a pretty
way. The columns internally get prefixes to their names, to prevent name conflicts
with normal commands. In the debug output, we gobble this prefix again.

493 \def\PT@ShowColumn #1#2%

494 {\PT@ShowColumn@{#1}#2\PT@ShowColumn@}

495 \def\PT@ShowColumn@ #1PT@col@#2\PT@ShowColumn@

496 {#1{#2} }

497 \def\PT@ShowColumnWidth #1%

498 {\PT@typeout@{%

499 \PT@ShowColumn\PT@aligncol{#1}:

500 \expandafter\expandafter\expandafter

501 \PT@aligndim\csname #1.max\endcsname\@@}}

502 \def\PT@StripColumn #1%

503 {\expandafter\PT@StripColumn@#1\PT@StripColumn@}

504 \def\PT@StripColumn@ PT@col@#1\PT@StripColumn@

505 {#1}

\PT@Print Prints a list of columns, using \PT@ShowColumn.

506 \def\PT@Print#1{\PT@Execute{\Map{\PT@ShowColumn\Identity}#1}}

507 \def\PT@PrintWidth#1{\PT@Execute{\Map\PT@ShowColumnWidth#1}}

\PT@TeXif This is an improved version of lazylist’s \TeXif. It does have an additional \relax
to terminate the condition. The \relax is gobbled again to keep it fully expand-
able.

508 \def\PT@TeXif #1%

509 {\expandafter\@gobble#1\relax

510 \PT@gobblefalse

511 \else\relax

512 \gobbletrue

513 \fi}

514 \def\PT@gobblefalse\else\relax\gobbletrue\fi #1#2%

515 {\fi #1}

\PT@ltmax The order by which the columns are sorted is given by the order on their (un-
trusted) widths.

516 \def\PT@ltmax #1#2%

517 {\Not{\PT@TeXif{\ifdim\csname #1.max\endcsname>\csname #2.max\endcsname}}}

24

\PT@numbercol This assigns the next consecutive number to a column. We also reassign
PT@lastcol to remember the final column.

518 \def\PT@numbercol #1%

519 {%\PT@typeout@{numbering #1 as \the\PT@cols}%

520 \PT@enamedef{#1.num}{\the\PT@cols}%

521 \def\PT@lastcol{#1}%

522 \advance\PT@cols by 1\relax}

7.6 Typesetting the table

Remember that there are three important macros that occur in the body of the
polytable: \column, \fromto, and \\. The \column macro is only really used in
the very first trial run, so there is nothing new we have to do here, but the other
two have to be redefined.

\PT@resetandcr This is what \\ does in the typesetting phase. It resets the current column, but
it also calls the surrounding environment’s newline macro \PT@cr . . . If we are
not in the last column, we insert an implicit fromto. This is needed for the
boxed environment to make each column equally wide. Otherwise, if the boxed
environment is typeset in a centered way, things will go wrong.

523 \newcommand{\PT@resetandcr}%

524 {\PT@expanded\PT@checkendentry\PT@lastcol@%

525 \ifx\PT@currentcol\PT@lastcol

526 \else

527 \ifx\PT@currentcol\PT@nullcol

528 \edef\PT@currentcol{\Head{\Tail\PT@sortedlist}}%

529 \fi

530 \edef\PT@currentcol@{\PT@StripColumn\PT@currentcol}%

531 \PT@typeout@{adding implicit fromto at eol from \PT@currentcol@

532 \space to \PT@lastcol@}%

533 \PT@expanded{\PT@expanded\fromto\PT@currentcol@}\PT@lastcol@

534 \fi

535 \PT@typeout@{Next line ...}%

536 \let\PT@scanning\undefined% needed for resetcolumn

537 \PT@resetcolumn\PT@cr}

\PT@fill This variant of \PT@resetandcr is used at the end of the environment, to insert
a blank box for the pboxed environment to balance the widths of all lines. It does
not start a new line, and does nothing if the current column is @begin@. TODO:
extract commonalities with \PT@resetandcr into a separate macro.

538 \newcommand{\PT@fill}%

539 {\PT@expanded\PT@checkendentry\PT@lastcol@%

540 \ifx\PT@currentcol\PT@lastcol

541 \else

542 \ifx\PT@currentcol\PT@nullcol

543 \else

544 \edef\PT@currentcol@{\PT@StripColumn\PT@currentcol}%

545 \PT@typeout@{adding implicit fromto from \PT@currentcol@

25

546 \space to \PT@lastcol@}%

547 \PT@expanded{\PT@expanded\fromto\PT@currentcol@}\PT@lastcol@

548 \fi\fi}

\PT@placeinbox This macro is the final-run replacement for \PT@checkwidth. We use the pre-
computed width information to typeset the contents of the table in aligned boxes.
The arguments are the same as for \PT@checkwidth, i.e., the start and the end
columns, and the assumption that the entry is contained in the box \@curfield.

549 \def\PT@placeinbox#1#2%

We start by computing the amount of whitespace that must be inserted before the
entry begins. We then insert that amount of space.

550 {\PT@colwidth=\@nameuse{PT@col@#1.max}%

551 \advance\PT@colwidth by -\expandafter\csname\PT@currentcol.max\endcsname

552 \leavevmode

553 \edef\PT@temp{\PT@StripColumn\PT@currentcol}%

554 \PT@typeout@{adding space of width %

555 \expandafter\PT@aligndim\the\PT@colwidth\@@

556 (\expandafter\PT@aligncol\expandafter{\PT@temp} %

557 -> \PT@aligncol{#1})}%

558 \hb@xt@\PT@colwidth{%

559 {\@mkpream{@{}l@{}}\@addtopreamble\@empty}%

560 \let\CT@row@color\relax% colortbl compatibility

561 \let\@sharp\empty%

562 %\show\@preamble

563 \@preamble}%

The important part is to use the pre-typeset box \@curfield. This produces real
output!

564 \PT@typeout@{adding box \space\space of width %

565 \expandafter\PT@aligndim\the\wd\@curfield\@@

566 (\PT@aligncol{#1} -> \PT@aligncol{#2})}%

567 \box\@curfield

Finally, we have to reset the current column and ignore spaces.

568 \def\PT@currentcol{PT@col@#2}%

569 \ignorespaces}%

\PT@preparescan The macro \PT@preparescan sets the two macros \PT@scanbegin and \PT@scanend

in such a way that they scan the input between those two macros and place it in
a box. The width of the box is determined from the given column names. The
name @end@ can be used as a column name is a free scan (a scan without knowing
the real end column) is desired. To allow redefinition of the preamble, we assume
that \PT@currentpreamble is defined to \relax if we want it set normally dugin
\PT@preparescan.

570 \def\PT@preparescan#1#2%

571 % First, we check that both columns are defined. This will

572 % actually define the columns if implicit column definitions are

573 % enabled.

574 % \begin{macrocode}

26

575 {\PT@checkcoldefined{#1}%

576 \PT@checkcoldefined{#2}%

577 \PT@colwidth=\@nameuse{PT@col@#2.max}%

578 \advance\PT@colwidth by -\@nameuse{PT@col@#1.max}\relax%

579 \ifmmode

580 \PT@debug@{*math mode*}%

581 \let\d@llarbegin=$%$

582 \let\d@llarend=$%$

583 \let\col@sep=\arraycolsep

584 \else

585 \PT@debug@{*text mode*}%

586 \let\d@llarbegin=\begingroup

587 \let\d@llarend=\endgroup

588 \let\col@sep=\tabcolsep

589 \fi

590 \ifx\PT@currentpreamble\relax

591 \PT@expanded{\PT@expanded{\def\PT@currentpreamble}}%

592 {\csname PT@col@#1.type\endcsname}%

593 \fi

Now, we make a preamble using the macro \@mkpream from the array package.
This macro takes a format string as argument, and defines \@preamble as a re-
sult, where \@sharp occurs in the positions of the column contents. We perform
the operation in a group to prevent certain redefinitions from escaping. The
\@preamble is set globally anyway.

594 {\PT@expanded\@mkpream\PT@currentpreamble%

595 \@addtopreamble\@empty}%

596 \let\CT@row@color\relax% colortbl compatibility

We split the preamble at the position of the \@sharp, using some tricks to
make sure that there really is precisely one occurrence of \@sharp in the re-
sulting preamble code, and producing an error otherwise. The splitting de-
fines \PT@pre@preamble and \PT@post@preamble. With those and the computed
\PT@colwidth, the scan is successfully prepared.

597 \expandafter\PT@splitpreamble\@preamble\@sharp\PT@nil}

We now define the splitting of the preamble.

598 \def\PT@splitpreamble #1\@sharp #2\PT@nil{%

599 \let\@sharp=\relax% needed for the following assignment

600 \def\PT@terp{#2}%

601 \ifx\PT@terp\empty%

602 \PackageError{polytable}{Illegal preamble (no columns)}{}%

603 \fi

604 \PT@splitsplitpreamble{#1}#2\PT@nil}

605

606 \def\PT@splitsplitpreamble #1#2\@sharp #3\PT@nil{%

607 \def\PT@temp{#3}%

608 \ifx\PT@temp\empty%

609 \else

610 \PackageError{polytable}{Illegal preamble (multiple columns)}{}%

27

611 \fi

612 \def\PT@pre@preamble{#1}%

613 \def\PT@post@preamble{#2}}%

Finally, we can define the scan environment, which depends on all the other
macros being defined correctly. The macro \PT@scanbegin is not defined di-
rectly, but will be set to \PT@scanbeginfree during the trial runs and to
\PT@scanbeginwidth during the final run.

614 \def\PT@scanbeginwidth

615 {\PT@scanbegin@{\hbox to \PT@colwidth}}

616

617 \def\PT@scanbeginfree

618 {\PT@scanbegin@{\hbox}}

619

620 \def\PT@scanbegin@#1%

621 {\setbox\@curfield #1%

622 \bgroup

623 \PT@pre@preamble\strut\ignorespaces}

624

625 \def\PT@scanend

626 {\PT@post@preamble

627 \egroup}

7.7 Saving and restoring column widths

Column width information can be saved under a name and thus be reused in
other tables. The idea is that the command \savecolumns can be issued inside
a polytable to save the current column information, and \restorecolumns can
be used to make that information accessible in a later table. All tables using the
same information should have the same column widths, which means that some
information might need to be passed back. Therefore, we need to write to an
auxiliary file.

Both \savecolumns and \restorecolumns are mapped to the internal com-
mands \PT@savewidths and \PT@restorewidths. Both take an optional argu-
ment specifying a name for the column width information. Thereby, multiple sets
of such information can be used simultaneously.

One important thing to consider is that the widths read from the auxiliary file
must not be trusted. The user may have edited the source file before the rerun,
and therefore, the values read might actually be too large (or too small, but this
is less dangerous).

The way we solve this problem is to distinguish two width values per column:
the trusted width, only using information from the current run, and the untrusted
width, incorportating information from the .aux file. An untrusted width can
become (conditionally) trusted if it is reached in the computation with respect to
an earlier column. (Conditionally, because its trustworthiness still depends on the
earlier columns being trustworthy.) In the end, we can check whether all untrusted
widths are conditionally trusted.

28

We write the final, the maximum widths, into the auxiliary file. We perform
the write operation when we are sure that a specific set is no longer used. This
is the case when we save a new set under the same name, or at the end of the
document. The command \PT@verifywidths takes care of this procedure. This
command will also check if a rerun is necessary, and issue an appropriate warning
if that should be the case.

\PT@setmaxwidth First, we need a macro to help us interpreting the contents of the .aux file. New
v0.4.1: We need to define the restored columns with the \column command, be-
cause otherwise we will have problems in the case that later occurences of tables in
the document that belong to the same set, but define additional columns. (Rerun
warnings appear ad infinitum.) In v0.4.2: columns with width 0.0 are now always
trusted.

628 \newcommand*{\PT@setmaxwidth}[3][\PT@false]% #2 column name, #3 maximum width

629 {\@namedef{PT@col@#2.max}{#3}%

630 \ifdim#3=0pt\relax

631 \expandafter\let\csname PT@col@#2.trusted\endcsname=\PT@true%

632 \else

633 \expandafter\let\csname PT@col@#2.trusted\endcsname=#1%

634 \fi

635 \column{#2}{}}%

\PT@loadtable Now, we can load table information that has been read from the .aux file. Note
that a \csname construct expands to \relax if undefined.

636 \def\PT@loadtable#1% #1 table id number

637 {%\expandafter\show\csname PT@restore@\romannumeral #1\endcsname

638 %\show\column

639 \PT@typeout@

640 {Calling \expandafter\string

641 \csname PT@restore@\romannumeral #1\endcsname.}%

642 \let\maxcolumn\PT@setmaxwidth

643 %\expandafter\show\csname PT@load@\romannumeral #1\endcsname

644 \csname PT@restore@\romannumeral #1\endcsname}

\PT@loadtablebyname Often, we want to access table information by a column width set name.

645 \def\PT@loadtablebyname#1% #1 set name

646 {\PT@typeout@{Loading table information for column width set #1.}%

647 \PT@loadtable{\csname PT@widths@#1\endcsname}}%

\PT@saveinformation In each table for which the widths get reused (i.e., in all tables that use either
\savecolumns or \restorecolumns, we have to store all important information
for further use.

648 \def\PT@saveinformation#1% #1 set name

649 {\PT@expanded{\def\PT@temp}{\csname PT@widths@#1\endcsname}%

650 \PT@expanded{\def\PT@temp}%

651 {\csname PT@restore@\romannumeral\PT@temp\endcsname}%

652 \expandafter\gdef\PT@temp{}% start empty

653 % this is: \PT@Execute{\Map{\PT@savecolumn{\PT@temp}}{\Reverse\PT@allcols}}

29

654 \expandafter\PT@Execute\expandafter{\expandafter

655 \Map\expandafter{\expandafter\PT@savecolumn

656 \expandafter{\PT@temp}}{\Reverse\PT@allcols}}}

\PT@savecolumn A single column is saved by this macro.

657 \def\PT@savecolumn#1#2% #1 macro name, #2 column name

658 {\PT@typeout@{saving column #2 in \string #1 ...}%

659 \def\PT@temp{#2}%

660 \ifx\PT@temp\PT@nullcol

661 \PT@typeout@{skipping nullcol ...}%

662 % This was a bug: end column cannot be skipped, because

663 % it can change.

664 % \else\ifx\PT@temp\PT@endcol

665 % \PT@typeout@{skipping endcol ...}%

666 \else

667 \PT@typeout@{max=\csname #2.max\endcsname, %

668 width=\csname #2.width\endcsname, %

669 trusted=\csname #2.trusted\endcsname}%

670 % we need the column command in here

671 % we could do the same in \column, but then the location of

672 % \save / \restore matters ...

673 \PT@gaddendmacro{#1}{\maxcolumn}%

674 \ifnum\csname #2.trusted\endcsname=\PT@true\relax

675 \PT@gaddendmacro{#1}{[\PT@true]}%

676 \fi

677 \edef\PT@temp{\PT@StripColumn{#2}}%

678 \PT@addargtomacro{#1}{PT@temp}%

679 \PT@addargtomacro{#1}{#2.max}%

680 \PT@gaddendmacro{#1}{\column}%

681 \PT@addoptargtomacro{#1}{#2.width}%

682 \edef\PT@temp{\PT@StripColumn{#2}}%

683 \PT@addargtomacro{#1}{PT@temp}%

684 \PT@addargtomacro{#1}{#2.type}%

685 %\show#1%

686 % \fi

687 \fi

688 }

\PT@savewidths If we really want to save column width information, then the first thing we should
worry about is that there might already have been a set with the name in question.
Therefore, we will call \PT@verifywidths for that set. In the case that there is
no set of this name yet, we will schedule the set for verification at the end of
document.

689 \newcommand*{\PT@savewidths}[1][default@]

690 {\PT@typeout@{Executing \string\savecolumns [#1].}%

691 \def\PT@currentwidths{#1}%

692 \PT@verifywidths{#1}%

We now reserve a new unique number for this column width set by increasing the
\PT@table counter. We then associate the given name (or default@) with the

30

counter value and restore the widths from the .aux file if they are present.

693 \global\advance\PT@table by 1\relax

694 \expandafter\xdef\csname PT@widths@#1\endcsname

695 {\the\PT@table}%

696 \PT@loadtable{\PT@table}%

697 \ignorespaces}

\PT@restorewidths Restoring information is quite simple. We just load all information available.

698 \newcommand*{\PT@restorewidths}[1][default@]

699 {\PT@typeout@{Executing \string\restorecolumns [#1].}%

700 \def\PT@currentwidths{#1}%

701 \let\PT@inrestore\PT@true

702 \PT@loadtablebyname{#1}%

703 \ignorespaces}

\PT@comparewidths

704 \def\PT@comparewidths#1% #1 full column name

705 {\@ifundefined{#1.max}%

706 {\PT@typeout@{computed width for #1 is fine ...}}%

707 {\ifdim\csname #1.max\endcsname>\csname #1.width\endcsname\relax

708 \PT@typeout@{Preferring saved width for \PT@StripColumn{#1}.}%

709 \PT@changedtrue

710 \PT@colwidth=\@nameuse{#1.max}\relax

711 \PT@enamedef{#1.width}{\the\PT@colwidth}%

712 \fi}}

\PT@trustedmax

713 \def\PT@trustedmax#1%

714 {\PT@TeXif{\ifnum\csname #1.trusted\endcsname=\PT@true}}

\PT@equalwidths

715 \def\PT@equalwidths#1% #1 full column name

716 {\@ifundefined{#1.max}{}%

717 {\ifdim\csname #1.max\endcsname=\csname #1.width\endcsname\relax

718 \PT@typeout@{col #1 is okay ...}%

719 \else

720 \PT@rerun% a rerun is needed

721 \fi}}

\PT@verifywidths

722 \def\PT@verifywidths#1% #1 column width set name

723 {\@ifundefined{PT@widths@#1}%

724 {\PT@typeout@{Nothing to verify yet for set #1.}%

725 \PT@typeout@{Scheduling set #1 for verification at end of document.}%

726 \AtEndDocument{\PT@verifywidths{#1}}}%

727 {\PT@typeout@{Verifying column width set #1.}%

728 \PT@expanded\PT@verify@widths{\csname PT@widths@#1\endcsname}{#1}}}

729

730 \def\PT@verify@widths#1#2% #1 set id number, #2 set name

31

731 {\@ifundefined{PT@restore@\romannumeral #1}{}%

732 {\begingroup

733 \let\column\PT@firstrun@column

734 \PT@cols=0\relax%

735 \def\PT@allcols{\Nil}%

736 \PT@loadtablebyname{#2}%

737 \PT@table=#1\relax

738 % nullcolumn is not loaded, therefore:

739 \@namedef{\PT@nullcol .width}{0pt}%

740 % checking trust

741 \PT@prelazylist

742 \All{\PT@trustedmax}{\PT@allcols}%

743 {\PT@typeout@{All maximum widths can be trusted -- writing .max!}%

744 \PT@save@table{.max}}%

745 {\PT@typeout@{Untrustworthy maximums widths -- writing .width!}%

746 \PT@rerun

747 \PT@save@table{.width}}%

748 \PT@postlazylist

749 \endgroup}%

750 \PT@typeout@{Verification for #2 successful.}}

\PT@save@table Here we prepare to write maximum column widths to the .aux file.

751 \def\PT@save@table#1%

752 {\PT@typeout@{Saving column width information.}%

753 \if@filesw

754 \PT@prelazylist

755 {\immediate\write\@auxout{%

756 \gdef\expandafter\noexpand

757 \csname PT@restore@\romannumeral\PT@table\endcsname

758 {\PT@Execute{\Map{\PT@write@column{#1}}{\Reverse\PT@allcols}}}}}%

759 \PT@postlazylist

760 \fi}

\PT@write@column We define the column command to write to the file.

761 \def\PT@write@column #1#2%

762 {\noexpand\maxcolumn^^J%

763 {\PT@StripColumn{#2}}%

764 {\@nameuse{#2#1}}}%

7.8 The user environments

It remains to define the environments to be called by the user. New in v0.8: we
add the environments ptboxed and pmboxed for text-mode and math-mode boxed
environments. In turn, we remove ptabular and parray, and make the point to
their new counterparts.

765 \def\pboxed{%

766 \let\PT@begin \empty

767 \let\PT@end \empty

32

The following assignment is a hack. If pboxed is called from within another
tabular- or array-environment, then this sometimes does the right thing.

768 \ifx\\\PT@arraycr

769 \let\PT@cr \PT@normalcr

770 \else

771 \let\PT@cr \\%

772 \fi

773 \expandafter\beginpolytable\ignorespaces}

774

775 \let\endpboxed\endpolytable

776

777 \def\ptboxed{%

778 \def\PT@begin {\tabular{@{}l@{}}}%

779 \let\PT@end \endtabular

780 \let\PT@cr \@arraycr

781 \expandafter\beginpolytable\ignorespaces}

782

783 \let\endptboxed\endpolytable

784

785 \def\pmboxed{%

786 \def\PT@begin {\array{@{}l@{}}}%

787 \let\PT@end \endarray

788 \let\PT@cr \@arraycr

789 \expandafter\beginpolytable\ignorespaces}

790

791 \let\endpmboxed\endpolytable

792

793 \let\ptabular \ptboxed

794 \let\endptabular \endptboxed

795 \let\parray \pmboxed

796 \let\endparray \endpmboxed

797

That is all.

798 〈/package〉

33

