
Latin support for polyglossia

Élie Roux

Version 1.03 dated 2016/09/10

Abstract

This file documents the three language variants for the Latin language,
as they should be used with XeLaTeX and LuaLaTeX; they describe each
variant as a different language so that even LuaTeX, that loads one pattern
file for each language used in a specific document, can use all the three
languages simultaneously in a specific document by calling them with their
specific names.

Contents
1 The Latin language 1

2 Usage 4

3 The code 7
3.1 Code for Latin 8
3.2 Code for classic Latin . . 16
3.3 Code for liturgical Latin . 19

1 The Latin language
This file gloss-latin.dtx defines all the language-specific macros for the Latin
language variants that include the modern, the medieval, the ecclesiastic, the
classic, and the liturgical ones.

The language description file gloss-latin.ldf describes what is required to
typeset in modern, medieval and ecclesiastic latin; the first variety is the one
commonly used in typesetting school books, dictionaries, grammars, and the like;
it manages also the medieval and ecclesiastic variants, because these variants share
the same pattern file; they differ mainly in the character set actually used in their
scripts; modern Latin uses only the 26 letter alphabet, commonly called Latin
Alphabet; the medieval variant in addition uses the ligated diphthongs ‘æ’ and
‘œ’, but does not use the capital ‘U’ and the lowercase ‘v’, as it was customary
in the medieval times and later on until about the XVII century; the ecclesiastic
variant uses the full 26 letter Latin alphabet, plus the ligated diphthongs ‘æ’ and
‘œ’, but uses also the accented vowels, always with an acute accent, to mark the
stress on the proper syllable so as to aid clergy coming from different countries
and with different mother languages to pronounce all wards with the same rhythm
when that attend collective liturgical activities; see table 1. Ecclesiastic Latin is
typeset with a French-like style for punctuation and footnote marks, although the

1

space introduced before the “tall’ punctuation marks is smaller than in French
typography.

Modern and medieval Latin are pronounced with a definite word stress; there-
fore it is possible to recognise other diphthongs beyond the traditional ‘ae’ or ‘æ’
and ‘oe’ or ‘œ’. Significantly there are the ascending and descending diphthongs
present today in most romance languages and some triphthongs; modern ascending
diphthongs are formed with an unstressed closed vowel ‘i’ or ‘u’ followed by another
vowel; descending diphthongs are formed with a vowel followed by an unstressed
closed vowel; triphthongs are formed by two (different) unstressed closed vowels
followed by another vowel (for example ‘quietus’), or an open vowel sandwiched
between two unstressed closed vowels (for example ‘ieu’ in ‘maieutica’); hiati may
appear as diphthongs, but they differ in the sense that the closed vowel is stressed;
if it is marked with an accent or with the diaeresis, the hyphenation algorithm
may distinguish them, but even with this capability good typography avoids line
breaks across hiati, even if the grammar allows them. This is why the hyphenation
algorithm avoids line breaking not only between the vowels that form a diphthong
or a triphthong, but also between the vowels that form a hiatus. Clusters of more
than two vowels are possibly divided before ascending diphthongs.

This long explanation about hyphenation is to stress the difference between
the next Latin variants, classic and liturgical.

The Language description file gloss-classiclatin.ldf describes what is
necessary in order to typeset (presumably philological) documents containing
stretches of classical Latin text. Of course the hyphenation that is defined by
the corresponding hyphenation pattern file was not used in classical times when
not only the written texts were not hyphenated, but were written with the lectio
continua, i.e. without even a space between words. In the first century AD Quin-
tilianus used to teach oratory skills to his students by suggesting them to separate
the various phrases with some kind of marks; these were supposed to delimit the
“comma”, the ‘colon” and the ‘periodus”; these names survive today in English to
denote certain modern punctuation marks. But no rules were given to hyphenate
words.

What is actually called today “classic Latin hyphenation” is a set of rules
agreed upon by scholars from different countries with different modern languages
that try to take into account the metrics of various poems, the pronunciation and
the etymology of each word so that prefixes and suffixes are divided from the word
stem, as well any suffixes that do not belong to the declination or the conjugation
of the word itself; within the word they try to follow a phonetic syllable division,
although with different phonetic bases from modern languages.

The classical Latin hyphenation is a practical necessity in order to typeset
texts that are justified on both sides; its rules are totally artificial, in the sense
that ancient Romans certainly used phonetic syllables while speaking, but the
Latin language, well spoken by the orators of the republican and of the initial
imperial era, probably did not sound as we pronounce it today, be it a scholar’s
speech or a prayer during some liturgy in christian churches. Ancient Latin had a
melodic rhythm based on long and short vowels reasonably without a stress accent
as we use it in most modern languages. Eventually Latin evolved into the romance

2

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

(a): modern Latin; letters j and w are only for latinised foreign modern names

a æ b c d e f g h i k l m n o œ p q r s t u x y z
A Æ B C D E F G H I K L M N O Œ P Q R S T V X Y Z

(b) medieval Latin

a á æ ǽ b c d e é f g h i í j k l m n o ó œ œ́ p q r s t u ú v w x y z
A Á Æ Ǽ B C D E É F G H I Í J K L M N O Ó Œ Œ́ P Q R S T U Ú V W X Y Z

(c) ecclesiastic Latin; j and w are used for latinised foreign names; all vowels and
diphthongs may be accented.

a b c d e f g h i k l m n o p q r s t u x y z
A B C D E F G H I K L M N O P Q R S T V X Y Z

(d) classic Latin

a á æ ǽ b c d e é f g h i í j k l m n o ó œ œ́ p q r s t u ú v w x y z
A Á Æ Ǽ B C D E É F G H I Í J K L M N O Ó Œ Œ́ P Q R S T U Ú V W X Y Z

(e) liturgical Latin; the character set is identical to the ecclesiastic Latin one,
but hyphenation is different

Table 1: Latin character sets: (a) modern Latin; (b) medieval Latin; (c) ecclesiastic
Latin; (d) classic Latin; (e) liturgical Latin. Notice that in this document that
uses OpenType fonts the accent over œ and Œ has been set with a macro; you
perceive the difference with regular accented chars, because the accent is set in a
slightly higher position; the macros have not been corrected, so as to show that
these glyphs are not precomposed.

languages where the new derived words did not distinguish any more between long
and short vowels, but used a stress, generally on what remained of a long vowel.
With this in mind, it is difficult to think about diphthongs and triphthongs in
classical Latin; the hyphenation algorithm therefore divides clusters of more than
two vowels before what today we would interpret and pronounce a couple of vowels
as a diphthong, otherwise the hyphenation algorithm divides between any couple
of vowels except the couples ‘ae’ and ‘oe’. These vocalic pairs, on their side, might
be real diphthongs or hiati; ‘aeris’ (genitive of ‘aer’, air) and ‘aeris’ (genitive of
‘aes’, bronze) are written the same, ma in the former case they for a hiatus, while
in the second they for a diphthong. The hyphenation algorithm does not divide
either pair.

Classic Latin uses the full 23 letter Latin alphabet, with no ligated diphthongs,
no ‘U’ and no ‘’v; latinists pronounce the ‘ae’ and ‘oe’ diphthongs as two vowels,
and pronunce the ‘u’ as a vocalic /u/ or a semivowel /w/ according to its position
and its adjacency to another vowel. Of course the few infix words in the language

3

definition file must have a different spelling from modern ones, but what is more
important, the hyphenation patterns are much different from the modern ones, as
explained above.

The rules for classical Latin are taken from Raffaello Farina and Nino Mari-
none’s guide Metodologia published by Società Editrice Internazionale, Torino,
1979. In spite of the publication date of this guide, the hyphenation rules did not
change in the meanwhile.

The file liturgicallatin.ldf handles a special variant of the Latin language;
its spelling is similar to modern latin, but it uses the ligated diphthongs ‘æ’ and
‘œ’, and it uses accents even on composed letters such as ‘œ’; this sets forth some
problems because the precomposed character for œ́ is not defined in the UNICODE
standard; therefore it is necessary to use the self combining acute accent (U+0301);
unfortunately some fonts do not centre this accent over the ‘œ’ glyph, so it we
provide suitable macros to allow hyphenation in spite of their presence.

The hyphenation rules are similar partly to modern Latin, and partly to clas-
sical Latin; therefore they involve a different set of patterns.

See https://github.com/gregorio-project/hyphen-la for further docu-
mentation, patterns and tests.

2 Usage
With XeLaTeX and LuaLaTeX, polyglossia is the specific package used to deal
with languages.

There are two ways to handle Latin with XeLaTeX.

1. Handle three different languages, latin, classiclatin, and liturgicallatin as in
this example:

\usepackage{polyglossia}
\setmainlanguage{...}
\setotherlanguage[babelshorthands]{classiclatin}

2. Handle a single language, latin, with several variants, as in this example:

\usepackage{polyglossia}
\setmainlanguage{...}
\setotherlanguage[variant=classic,babelshorthands]{latin}

The second approach was defined as the first attempt to Latin, then the first
approach was defined and proved to be more effective.

Actually the first approach is the one that is necessary to use with LuaLa-
TeX, and you can manage the Latin varieties as different languages. With the
secondo approach, once a certain variant has bees specified, no other variants can
be selected; therefore the second approach is sort a fallback for backwards com-
patibility with a previous version of the language description file. At the same
time there are certain options that are not implemented for LuaLaTeX, therefore

4

" inserts a compound word mark where hyphenation
is legal; the next character must not be either a non-
letter token or an accented letter (for foreign names
and ecclesiastic or liturgical Latin).

"| inserts a compound word mark, but operates also
when the next token is not a letter or it is an ac-
cented character. This shorthand is required when
it is necessary to specify a break before and accented
diphthongs ǽ and œ́.

'a inserts an accented ǽ ligated diphthong in liturgical
Latin, without the need of curly braces; hyphenation
is allowed after this accented ligature by means of an
implied discretionary break command.

'o operates the same as the preceding shorthand, but
inserts an accented œ́ diphthong.

Table 2: Shorthands defined for the Latin language.

the full latin.ldf with all its variant options ha some utility by itself, although
some options can be used only with XeLaTeX.

For example, in a modern Latin grammar written for English students English
is set as the main language; if it was necessary to make examples with citations
or stretches of text in modern Latin and in liturgical Latin, with both XeLaTeX
and LuaLaTeX you would do the following:

\documentclass[...]{...}
...
\usepackage{polyglossia}
\setmainlanguage{english}
\setotherlanguage[babelshorthands]{latin}
\setotherlanguage[babelshorthands]{liturgicallatin}
...
\begin{document}
...
A modern Latin version of Julius Caesar's \emph{De bello gallico}
would appear as follows.
\begin{quote}\begin{latin}
Gallia est omnis divisa in partes tres, quarum unam
incolunt Belgae, aliam Aquitani, tertiam qui ipsorum
lingua Celtae, nostra Galli appellantur.
\end{latin}\end{quote}

Liturgical Latin would have instead the following text.
\begin{quote}\begin{liturgiccallatin}
Gállia est omnis divisa in partes tres, quarum unam
íncolunt Belgæ, áliam Aquitani, tértiam qui ipsorum
lingua Celtæ, nostra Galli appellantur.

5

XeLaTeX LuaLaTeX
Short hands babelshorthnads=false babelshorthnads=false

babelshorthands babelshorthands
babelshorthands=true babelshorthands=true

Variants variant=modern variant=modern
variant=medieval variant=medieval (See table 4)
variant=classic
variant=liturgical

Ecclesiastic ecclesiastic=false ecclesiastic=false
ecclesiastic
ecclesiastic=true

Table 3: Differences between XeLaTeX and LuaTeX behaviour when using the
options of file gloss-latin.ldf. Items in italics are the defaults.

Language XeLaTeX LuaLaTeX
Modern gloss-latin gloss-latin
Medieval gloss-latin + variant=medieval gloss-latin + variant=medieval
Classic gloss-classiclatin gloss-classiclatin
Liturgical gloss-liturgicallatin gloss-liturgicallatin

Table 4: Use of gloss-latin/ldf, gloss-classiclatin.ldf,
and gloss-liturgicallatin.ldf when using single languages

\end{classiclatin}\end{quote}
...
\end{document}

It is worth repeating that with LuaLaTeX it is necessary to use only the first
procedure described for XeLaTeX. Please see table 3. The first procedure may
be used also with XeLaTeX so as to be able to use in the same document several
variants of Latin, as it is shown in table 4.

Each language definition file provides the babelshorthands option in order to
use the double straight quote as an active character that performs special actions
as described in table 2. The option withprosodicmarks, defined in the analogous
language description file for babel, was intended for easing the setting of the macron
and breve signs over single vowels, but since pdfLaTeX handles only 8-bit encoded
fonts, none of which includes the ten vocalic glyphs with macrons and breves,
it is necessary to build up such graphemes. Such artifices are not necessary with
XeLaTeX and LuaLaTeX that use UNICODE encoded fonts, where the ten glyphs
already exist.

At the same time accents on the Latin diphthongs are not generally easy to
set with a national keyboard, therefore these files provide the active ‘acute’ accent
(actually the usual ascii single straight quote), so that it is simpler to write 'a to

6

set ǽ, rather than writing \'{\ae} or \'\ae␣ in order to avoid attaching the ‘ǽ’
glyph to the following letters.

This self extracting documented TEX file produces both this documentation
and the desired three language description files to be used with XeLaTeX and
LuaLaTeX.

3 The code
This section defines three language description files.

1. File gloss-latin.ldf is for typeseting modern and medieval latin, possibly
with the ecclesiastic settings.

2. File gloss-classiclatin.ldf is for typesetting classic Latin.
3. File gloss-liturgicallatin.ldf is for typeseting liturgical Latin .

All these three language description files accept the option babelshorthands=true,
or simply babelshorthands; they have available the special features of the active
double quote and, except for gloss-classiclatin, the active single quote (ascii
apostrophe or single straight quote).

Only gloss-latin.ldf accepts the ecclesiastic=true or simply ecclesiastic,
option which is not available with the other two language description files.

While using XeLaTeX it is possible to specify the spelling and hyphenation
variety with an option, variant=〈language〉, where 〈language〉 may be any of the
five ones listed in table 1; if no variant is specified, the modern one is the default
one.

While using LuaLaTeX this possibility is not available (except possibly) for
variant=medieval; furthermore, even if it is possible to specify the ecclesiastic
option, nothing particular is done, because the special punctuation and footnote
styles have not been implemented for LuaLaTeX (and possibly they will never be).

The LuaLaTeX approach is interesting because it is possible to mix the various
language variants in the same document by simply selecting the language. This
approach is possible also with XeLaTeX by by omitting to specify the classic or
the liturgic variant name, but by specifying the specific language names as “other
languages”.

3.1 Code for gloss-latin
We start with the polyglossia settings of the main language, in particular by se-
lecting the pattern file with modern phonetic hyphenation rules.

1 % !TEX encoding = UTF-8 Unicode
2 \PolyglossiaSetup{latin}{%
3 hyphennames={latin},
4 hyphenmins={2,2},
5 frenchspacing=true,
6 fontsetup=true,
7 }

7

We define a macro that sets the proper values for the upper- and lower-casing of
the letters ‘u’ and ‘V’; this macro will be used for the medieval and classic variants
for the proper processing of the infix words and those strings that are uppercased
by certain classes, for example the contents of headers by the standard classes.
For the document text it is the users’ responsibility to use the proper spelling for
these variants.

8 \def\classicuclccodes{\lccode`\V=`\u \uccode`\u=`\V}
9 \def\noclassicuclccodes{\lccode`\V=`\v \uccode`\u=`\U}

10 %

We then define some service macros containing the names of the variants in
order to perform the necessary tests; we exclude such definitions when the luatex
engine is being used, because, as explained in the documentation, luatex loads
one pattern set per language, therefore changing pattern set according to the lan-
guage variant specified becomes meaningless. It is convenient to define switches to
distinguish modern form medieval or classic Latin spelling. These names are not
very meaningful, but they are maintained for backwards compatibility; in practice
switch \ifmedieval handles the treatment of ‘æ’ and ‘œ’ while \ifclassic han-
dles the treatment of the ‘u’ spelling in infix words. For modern Latin they are
both false; for medieval Latin they are both true’ for classic Latin \ifmedieval
is false, while \ifclassic is true; for liturgical Latin \ifmedieval is true while
\ifclassic is false.
11 \def\tmp@modern{modern}
12 \def\tmp@medieval{medieval}
13 \unless\ifluatex
14 \def\tmp@classic{classic}
15 \def\tmp@liturgical{liturgical}
16 \fi
17 \newif\ifmedieval\medievalfalse
18 \newif\ifclassic\classicfalse

For the ecclesiatic option we need to set a kvalue boolean key such that when
the option is specified the true value is assumed. The initial setting of this key,
though, is false so that without specifying this option no ecclesiastic typesetting
parameters are set.
19 \define@boolkey{latin}[latin@]{ecclesiastic}[true]{}
20
21

Now we start examining the variant options. We start by setting the default
language value to the \latin@variant macro; we then test if the luatex engine
is being used and if the latin pattern set has been loaded; if so a special LuaTeX
macro is used to define the latin language functionalities
22 \let\latin@variant\l@latin
23 \ifluatex
24 \ifcsname l@latin\endcsname\xpg@set@language@luatex@ii{latin}\fi
25 \fi
26 \def\captionslatin{\latincaptions}%
27 \def\datelatin{\latindate}%

8

At this point we are ready for testing the variants vs the specified one; first we
define the keyvalue key with the default value modern, then we proceed with the
tests. We start with variant=medieval where we we set the \ifmedieval and
\ifclassic switches that are used within the captions and date definitions, and
we use the already defined macro \classicuclccodes in order to set the proper
correspondence between the lower and upper case letters ‘u’ and ‘V’.
28 \define@key{latin}{variant}[modern]{%
29 \def\@tempa{#1}%
30 %************* medieval
31 \ifx\@tempa\tmp@medieval
32 \ifluatex
33 \ifcsname l@latin\endcsname\xpg@set@language@luatex@ii{latin}\fi
34 \fi
35 \let\latin@variant\l@latin
36 \xpg@set@language@luatex@ii{latin}
37 \medievaltrue \classictrue
38 \classicuclccodes
39 \xpg@info{Option: Medieval Latin}%
40 \else

Then we test the classic variant; we proceed in a similar way; but for backwards
compatibility we test to check if the suitable classic Latin patterns have been
loaded; for XeLaTeX this should be redundant, but in past distributions of the
TeX system, such patterns were not available.
41 %************* classic
42 \ifx\@tempa\tmp@classic
43 \unless\ifluatex
44 \unless\ifcsname l@classiclatin\endcsname
45 \xpg@nopatterns{Classic Latin}%
46 \adddialect\l@classiclatin\l@latin
47 \let\latin@variant\l@latin
48 \else
49 \let\latin@variant\l@classiclatin
50 \fi
51 \fi
52 \medievalfalse\classictrue\classicuclccodes
53 \xpg@info{Option: Classic Latin}%
54 \else

Eventually we do similar actions for the liturgical Latin variant; again we must
check for backwards compatibility, since in past distributions liturgical latin pat-
terns were not available.
55 %************** liturgical
56 \ifx\@tempa\tmp@liturgical\unless\ifluatex
57 \unless\ifcsname l@liturgicallatin\endcsname
58 \xpg@nopatterns{Liturgical Latin}%
59 \adddialect\l@liturgicallatin\l@latin
60 \def\latin@variant{\l@latin}%
61 \else

9

62 \let\latin@variant\l@liturgicallatin
63 \fi
64 \medievaltrue\classicfalse
65 \xpg@info{Option: Liturgical Latin}\fi
66 \else

Even if the modern variant is the default one, we must test also for this variant in
case the users specified this value to the key variant. Some of this code might be
redundant, but it is better than nothing.
67 %************* modern
68 \ifx\@tempa\tmp@modern
69 \let\latin@variant\l@latin
70 \ifluatex\xpg@set@language@luatex@ii{latin}\fi
71 \xpg@info{Option: Modern Latin}%
72 \else
73 \def\latin@variant{\l@nohyphenation}%
74 \PackageWarning{polyglossia}{%
75 *******************\MessageBreak
76 No hyphenation set for \@tempa
77 *******************\MessageBreak
78 }{}%
79 \fi
80 \fi
81 \fi
82 \fi
83 }
84

After these different language variants we need to assign the correct value to the
internal macro \latin@language.
85 \def\latin@language{\language=\latin@variant}%

At this point we define the option ecclesiastic; for XeLaTeX we use a set of
little known commands to define character classes to be handled the same way; for
LuaLaTeX we do not do the same, therefore the ecclesiastic option with LuaLaTeX
remains ineffective, without even a ‘Warning’ message. The main reason is that
liturgical Latin is used mainly for typesetting liturgical texts containing many
hymns, psalms, and such musical contents, often composed with the GregorioTeX
package; in such books the French like punctuation and footnote styles are often
attentively avoided, therefore the ecclesiastic style is not used. Since GregorioTeX
works only with LuaLaTeX, the ecclesiastic option appears to be superfluous.
In any case there is always the possibility to typeset in the ecclesiastic style with
XeLaTeX.

Let us remember that the \iflatin@ecclesiastic switch is set to true only
at runtime when the Latin language is selected and the ecclesiastic option is spec-
ified. The definitions that follow are skipped if the document is typeset with
Lua(La)Tex, but they are defined when XelaTeX is being used since the special
internals necessary to do the job are available only with XeLaTeX.

We start defining a long named macro \ecclesiasticlatin@punctuation; its
substitution text contains some macros that set all the spacing parameters; such

10

macro will be used in practice to set all the necessary parameters; its opposite
macro \noecclesiasticlatin@punctuation is used to reset all parameters.

Notice that three new ‘intercharclasses’ are defined and the various punctua-
tions marks involved are assigned to such classes; then the tokens to be inserted
between chars of different classes are set according to the classes they belong to.
86 \ifluatex
87 \PackageWarning{polyglossia}{\MessageBreak\MessageBreak
88 *****************\MessageBreak
89 The ecclesiastic option is not active\MessageBreak
90 when typesetting with LuaLaTeX\MessageBreak
91 *****************\MessageBreak
92 \MessageBreak}{}
93 \else
94 % The following code is disabled for use with luatex
95 %**
96 \def\ecclesiasticlatin@punctuation{%
97 \def\xpg@unskip{\ifhmode\ifdim\lastskip>\z@\unskip\fi\fi}
98 \lccode\string"2019=\string"2019
99 %

100 \newXeTeXintercharclass\ecclesiasticlatin@punctthin
101 \newXeTeXintercharclass\ecclesiasticlatin@punctguillstart
102 \newXeTeXintercharclass\ecclesiasticlatin@punctguillend
103 \XeTeXinterchartokenstate=1
104 \XeTeXcharclass `\! \ecclesiasticlatin@punctthin
105 \XeTeXcharclass `\? \ecclesiasticlatin@punctthin
106 \XeTeXcharclass `\; \ecclesiasticlatin@punctthin
107 \XeTeXcharclass `\: \ecclesiasticlatin@punctthin
108 \XeTeXcharclass `\« \ecclesiasticlatin@punctguillstart
109 \XeTeXcharclass `\» \ecclesiasticlatin@punctguillend
110 \XeTeXinterchartoks \z@ \ecclesiasticlatin@punctthin = {\penalty\@M
111 \hskip.2\fontdimen2\font \@plus\z@\@minus\z@}%
112 \XeTeXinterchartoks 255 \ecclesiasticlatin@punctthin = {\xpg@unskip}
113 \XeTeXinterchartoks \ecclesiasticlatin@punctguillstart \z@ = {\penalty\@M
114 \hskip.2\fontdimen2\font \@plus\z@\@minus\z@\ignorespaces}
115 \XeTeXinterchartoks \z@ \ecclesiasticlatin@punctguillend = {\xpg@unskip
116 \penalty\@M\hskip.2\fontdimen2\font \@plus\z@\@minus\z@}
117 }
118
119 \def\noecclesiasticlatin@punctuation{%
120 \lccode\string"2019=\z@
121 %
122 \XeTeXcharclass `\! \z@
123 \XeTeXcharclass `\? \z@
124 \XeTeXcharclass `\; \z@
125 \XeTeXcharclass `\: \z@
126 \XeTeXcharclass `\« \z@
127 \XeTeXcharclass `\» \z@
128 \XeTeXinterchartokenstate=0
129 }

11

Eventually we redefine certain internal macros in order to set footnotes the way
that has been established for this ecclesiastic footnote style.

130 \let\latin@original@makefntext\@makefntext
131 \newcommand\latin@ecclesiastic@makefntext[1]{%
132 \parindent 1em \noindent
133 \latin@Makefnmark{\enspace #1}}
134 \newcommand\latin@Makefnmark{\hbox{\normalfont\@thefnmark.}}
135 \fi
136 \setkeys{latin}{variant,ecclesiastic=false}

This is the right position to define the various captions and dates; notice that
these are similar for medieval and classical Latin, and, respectively, for modern
and liturgical Latin; therefore we handle these similarities by means of the switches
\ifmedieval and \ifclassic without any duplication of code.

137 \def\latincaptions{%
138 \def\prefacename{\ifmedieval Præfatio\else Praefatio\fi}%
139 \def\refname{Conspectus librorum}%
140 \def\abstractname{Summarium}%
141 \def\bibname{Conspectus librorum}%
142 \def\chaptername{Caput}%
143 \def\appendixname{Additamentum}%
144 \def\contentsname{Index}%
145 \def\listfigurename{Conspectus descriptionum}%
146 \def\listtablename{Conspectus tabularum}%
147 \def\indexname{Index rerum notabilium}%
148 \def\figurename{Descriptio}%
149 \def\tablename{Tabula}%
150 \def\partname{Pars}%
151 \def\enclname{Additur}%
152 \def\ccname{Exemplar}%
153 \def\headtoname{\ignorespaces}%
154 \def\pagename{charta}%
155 \def\seename{cfr.}%
156 \def\alsoname{cfr.}%
157 \def\proofname{Demonstratio}%
158 \def\glossaryname{Glossarium}%
159 }
160
161 \def\latindate{%
162 \def\today{\uppercase\expandafter{\romannumeral\day}%
163 \space \ifcase\month%
164 \or Januarii\or Februarii\or Martii\or Aprilis\or Maji\or
165 Junii\or Julii\or Augusti\or Septembris\or Octobris\or
166 \ifclassic Nouembris\else Novembris\fi
167 \or Decembris\fi%
168 \space \uppercase\expandafter{\romannumeral\year}}}

We now define the settings and the definitions for the few babel-style short-
hands that are used with Latin. First we need some settings useful for polyglossia.
Actually it is possible that the module for the babel-style shorthands gets loaded

12

by default, but all language gloss-*.ldf files that use such shorthands, make
these tests.

169 %%%%%%%%% Latin shorthands
170
171 \define@boolkey{latin}[latin@]{babelshorthands}[true]{}
172
173 \ifsystem@babelshorthands
174 \setkeys{latin}{babelshorthands=true}
175 \else
176 \setkeys{latin}{babelshorthands=false}
177 \fi

After this we can initialise the active chars " and '.
178 \ifcsundef{initiate@active@char}{%
179 \input{babelsh.def}%
180 \initiate@active@char{"}%
181 \initiate@active@char{'}%
182 }{}

We define both \latin@shorthands and \nolatin@shorthands to be used in
the latin-extras and -noextras macros in order to turn on and off such shorthands
whenever a language change takes place. The service macros \xpgla@cwm and
xpgla@putacute are actually the ones that do the respective jobs, but the active
" and ' must refer to them through other service macros subject to the math
mode testing so as to behave in a different way while in math mode vs text mode.

183 \def\latin@shorthands{%
184 \def\language@group{latin}%
185 \bbl@activate{"}%
186 \declare@shorthand{latin}{"}{\relax
187 \ifmmode
188 \def\xpgla@nextdq{''}%
189 \else
190 \def\xpgla@nextdq{\futurelet\xpgla@temp\xpgla@cwm}%
191 \fi
192 \xpgla@nextdq}%
193 %
194 \bbl@activate{'}%
195 \declare@shorthand{latin}{'}{\relax
196 \ifmmode
197 \def\xpgla@nextsq{'}%
198 \else
199 \def\xpgla@nextsq{\futurelet\xpgla@temp@A\xpgla@putacute}%
200 \fi
201 \xpgla@nextsq}%
202 }

We need also a \xpgla@allowhyphens resorting to the babel system macro
\bbl@allowhyphens in order to use a breakable hyphen sign. In facts we re-
member the normal hyphen sign forms a legal line break point, but both word
connected by the hyphen sign cannot be hyphenated; on the opposite we want a

13

situation where both words connected by the hyphen may be hyphenated.
203 \def\xpgla@allowhyphens{\bbl@allowhyphens
204 \discretionary{-}{}{}\bbl@allowhyphens}

Now we make a multistage set of conditionals: first we test if the next character
is a letter; if it is a breakable hyphen point is inserted; otherwise if it is a ligated
diphthong æ this is treated as a normal ascii letter; otherwise the same test is made
to test if the next letter is a ligated diphthong œ; otherwise eventually the next
char is tested against | the discretionary break is inserted, but the | is gobbled.
Through these operations we can insert into a word a discretionary break, without
forbidding other legal line breaks.

205 \newcommand*{\xpgla@cwm}{\let\xpgla@@nextdq\relax
206 \ifcat\noexpand\xpgla@temp a%
207 \let\xpgla@@nextdq\xpgla@allowhyphens
208 \else
209 \ifx\xpgla@temp\ae
210 \let\xpgla@@nextdq\xpgla@allowhyphens
211 \else
212 \ifx\xpgla@temp\oe
213 \let\xpgla@@nextdq\xpgla@allowhyphens
214 \else
215 \if\noexpand\xpgla@temp\string|%
216 \def\xpgla@@nextdq{\xpgla@allowhyphens\@gobble}%
217 \fi
218 \fi
219 \fi
220 \fi
221 \xpgla@@nextdq}%

For the active ‘apostrophe’, to be used as an acute accent, we test the first char
after the active apostrophe; if it is an a or an o or an æ or an œ, we gobble it
and insert into the input reading stream the proper accented ligated diphthong;
actually we insert the proper unaccented diphthong followed by the self combining
acute accent with UNICODE address 0301. Beware: this procedure is technically
correct, but the result sometimes is not so good as expected, because it depends
on the OpenType fonts being used. With the OpenType UCM (Unicode encoded
Computer Modern) and other fonts the accent sets itself over the middle of the
base diphthong; with other fonts it sets itself on the ‘e’ part of the diphthong;
it is acceptable, but certainly on the middle is much better. Therefore we avoid
setting the accent this way on the æ diphthong but, if it’ is available in the font,
use the correct code point for the accented æ1; on the œ and Œ diphthongs this is
impossible, because there is no code point in UNICODE pointing to œ́ and Œ́.

1You may use also the traditional TEX way by inserting \'\ae␣ or \'{\ae} in the source file.
With XeLaTeX and LuaLaTeX, when dealing with œ, this used to fail, because the traditional
TEX accent macros are mapped to real code points, and there is no code point for œ.́ Actually,
when using a well updated TeXLive installation, with the lowercase œ it works the same as when
the self combining acute accent "0301 is used, possibly shifting the accent on the ‘e’ component
of the ligature; but this does not work with the capital Œ ligature; this is why in table 1 we used
a macro to set the acute accent on both glyphs.

14

222 \def\xpgla@putacute#1{\let\xpgla@nextsq\relax%
223 \if a\xpgla@temp@A
224 æ\kern-0.175em^^^^0301\kern0.175em\xpgla@allowhyphens
225 \else
226 \if o\xpgla@temp@A
227 œ\kern-0.175em^^^^0301\kern0.175em\xpgla@allowhyphens
228 \else
229 \if æ\xpgla@temp@A
230 æ^^^^0301%
231 \else
232 \if œ\xpgla@temp@A
233 œ^^^^0301%
234 \else
235 \string'%
236 \fi
237 \fi
238 \fi
239 \fi}%
240
241 \def\nolatin@shorthands{%
242 \@ifundefined{initiate@active@char}{}{\bbl@deactivate{"}}%
243 \@ifundefined{initiate@active@char}{}{\bbl@deactivate{'}}%
244 }

Eventually we save the settings for Latin into the \xpgla@savedvalues macro,
delaying the operation until the end of the preamble, so we are sure that the correct
values are saved, since the default ones might have been changed by the user or
by the used document class.

245
246 \let\xpgla@savedvalues\empty
247 \AtEndPreamble{%
248 \edef\xpgla@savedvalues{%
249 \clubpenalty=\the\clubpenalty\space
250 \@clubpenalty=\the\@clubpenalty\space
251 \widowpenalty=\the\widowpenalty\space
252 \finalhyphendemerits=\the\finalhyphendemerits}
253 }

The final actions are to define the \noextras@latin, \blockextras@latin and
\inlineextras@latin so as to set or reset the Latin settings when typesetting a
stretch of Latin text.

254 \def\noextras@latin{%
255 \lccode\string"2019=\z@
256 \nolatin@shorthands
257 \xpgla@savedvalues
258 \noclassicuclccodes
259 \iflatin@ecclesiastic
260 \unless\ifluatex\noecclesiasticlatin@punctuation
261 \let\@makefntext\latin@original@makefntext\fi
262 \fi

15

263 }
264
265 \def\blockextras@latin{%
266 \lccode\string"2019=\string"2019
267 \clubpenalty=3000 \@clubpenalty=3000 \widowpenalty=3000
268 \finalhyphendemerits=50000000
269 \iflatin@babelshorthands\latin@shorthands\fi
270 \iflatin@ecclesiastic\unless\ifluatex\ecclesiasticlatin@punctuation
271 \let\@makefntext\latin@ecclesiastic@makefntext\fi
272 \fi
273 }
274
275 \def\inlineextras@latin{%
276 \lccode\string"2019=\string"2019
277 \iflatin@babelshorthands\latin@shorthands\fi
278 \iflatin@ecclesiastic
279 \unless\ifluatex\ecclesiasticlatin@punctuation
280 \let\@makefntext\latin@ecclesiastic@makefntext\fi
281 \fi
282 }

3.2 Code for gloss-classiclatin
The standalone language description file for polyglossia gloss-classiclatin.ldf
is very similar to the “plain” latin one, except for the following differences.

1. This file is a standalone one, and does not deal with other Latin varieties.
This implies that no options are set, except those for the babel-style short-
hands.

2. Only one pattern file is being loaded, therefore there is no need to save
settings for other hyphenation patterns. And there is no need to make any
tests to check the specific pattern file name; either it exists, or it is replaced
by the nohyphenation pseudo language, as it is customary with polyglossia.

3. The uccodes are those specific for classic Latin where only ‘u’ is used for
lower case and only ‘V’ is used for upper case and this has an influence on
the spelling of dates; on the opposite ‘captions’ are equal to those of modern
Latin, because the ligated diphthongs are not used at all in classical spelling.

The \PolyglossiaSetup differs from the “plain” Latin one because only
the classiclatin language is called with the specific name used to associate
a language to a specific pattern file as it is done in the language setting files
language.dat, language.def, and language.dat.lua.

283 % !TEX encoding = UTF-8 Unicode
284 \PolyglossiaSetup{classiclatin}{%
285 hyphennames={classiclatin},
286 hyphenmins={2,2},
287 frenchspacing=true,
288 fontsetup=true,
289 }

16

290 \def\classicuclccodes{\lccode`\V=`\u \uccode`\u=`\V}
291 \def\noclassicuclccodes{\lccode`\V=`\v \uccode`\u=`\U}

Then the captions and date are defined.
292 \def\classiclatincaptions{%
293 \def\prefacename{Praefatio}%
294 \def\refname{Conspectus librorum}%
295 \def\abstractname{Summarium}%
296 \def\bibname{Conspectus librorum}%
297 \def\chaptername{Caput}%
298 \def\appendixname{Additamentum}%
299 \def\contentsname{Index}%
300 \def\listfigurename{Conspectus descriptionum}%
301 \def\listtablename{Conspectus tabularum}%
302 \def\indexname{Index rerum notabilium}%
303 \def\figurename{Descriptio}%
304 \def\tablename{Tabula}%
305 \def\partname{Pars}%
306 \def\enclname{Additur}%
307 \def\ccname{Exemplar}%
308 \def\headtoname{\ignorespaces}%
309 \def\pagename{charta}%
310 \def\seename{cfr.}%
311 \def\alsoname{cfr.}%
312 \def\proofname{Demonstratio}%
313 \def\glossaryname{Glossarium}%
314 }
315
316 \def\classiclatindate{%
317 \def\today{\uppercase\expandafter{\romannumeral\day}%
318 \space \ifcase\month
319 \or Januarii\or Februarii\or Martii\or Aprilis\or Maii\or Junii\or
320 Julii\or Augusti\or Septembris\or Octobris\or Nouembris\or
321 Decembris\fi
322 \space \uppercase\expandafter{\romannumeral\year}}}

Then, again, the necessary tests are made for setting the babel shorthands for the
proper definition of the babelshorthands option.

323
324 \define@boolkey{classiclatin}[classiclatin@]{babelshorthands}[true]{}
325
326 \ifsystem@babelshorthands
327 \setkeys{classiclatin}{babelshorthands=true}
328 \else
329 \setkeys{classiclatin}{babelshorthands=false}
330 \fi
331

Again the ascii straight double quote " is initialised as an active character.
332 \ifcsundef{initiate@active@char}{%
333 \input{babelsh.def}\initiate@active@char{"}}{}

17

334

And the definitions for the active " are repeated as for “plain” Latin.
335 \def\classiclatin@shorthands{%
336 \def\language@group{classiclatin}%
337 \bbl@activate{"}%
338 \declare@shorthand{classiclatin}{"}{\relax
339 \ifmmode
340 \def\xpgcla@next{''}%
341 \else
342 \def\xpgcla@nextdq{\futurelet\xpgla@temp\xpgla@cwm}%
343 \fi
344 \xpgcla@nextdq}%
345 }
346
347 \def\xpgcla@allowhyphens{\bbl@allowhyphens\discretionary{-}{}{}\bbl@allowhyphens}
348 \newcommand*{\xpgcla@cwm}{\let\xpgcla@@nextdq\relax
349 \ifcat\noexpand\xpgcla@temp a%
350 \let\xpgcla@@nextdq\xpgcla@allowhyphens
351 \else
352 \ifx\xpgcla@temp\ae
353 \let\xpgcla@@nextdq\xpgcla@allowhyphens
354 \else
355 \ifx\xpgcla@temp\oe
356 \let\xpgcla@@nextdq\xpgcla@allowhyphens
357 \else
358 \if\noexpand\xpgla@temp\string|%
359 \def\xpgcla@@nextdq{\xpgcla@allowhyphens\@gobble}%
360 \fi
361 \fi
362 \fi
363 \fi
364 \xpgla@@nextdq}%

As in “plain” Latin the \noclassiclatin@shorthands is defined so as to use it
within the setting and unsetting of the language parameters.

365 \def\noclassiclatin@shorthands{%
366 \@ifundefined{initiate@active@char}{}{\bbl@deactivate{"}}%
367 }
368
369 \let\xpgcla@savedvalues\empty
370 \AtEndPreamble{%
371 \edef\xpgcla@savedvalues{%
372 \clubpenalty=\the\clubpenalty\space
373 \@clubpenalty=\the\@clubpenalty\space
374 \widowpenalty=\the\widowpenalty\space
375 \finalhyphendemerits=\the\finalhyphendemerits}%
376 }
377
378 \def\noextras@classiclatin{%
379 \lccode\string"2019=\z@

18

380 \noclassiclatin@shorthands
381 \noclassicuclccodes
382 \xpgcla@savedvalues
383 }
384
385 \def\blockextras@classiclatin{%
386 \lccode\string"2019=\string"2019
387 \clubpenalty=3000 \@clubpenalty=3000 \widowpenalty=3000
388 \finalhyphendemerits=50000000
389 \classicuclccodes
390 \ifclassiclatin@babelshorthands\classiclatin@shorthands\fi
391 }
392
393 \def\inlineextras@classiclatin{%
394 \lccode\string"2019=\string"2019
395 \classicuclccodes
396 \ifclassiclatin@babelshorthands\classiclatin@shorthands\fi
397 }

3.3 Code for gloss-liturgicallatin
For liturgical Latin we do similar things as we did for “plain” Latin in the previous
section; the main differences are the following.

1. This file is a standalone one, and does not deal with other Latin varieties.
This implies that no options are set, except those for the babel-style short-
hands.

2. Only one pattern file is being loaded, therefore there is no need to save
settings for other hyphenation patterns. And there is no need to make any
tests to check the specific pattern file name; either it exists, or it is replaced
by the nohyphenation pseudo language, as it is customary with polyglossia.

3. The uccodes are identical with the modern Latin ones, while the ‘captions’
are equal to those of medieval Latin, because of the widespread use of the
ligated diphthongs.

The \PolyglossiaSetup differs from the “plain” Latin one because only the
liturgicallatin language is called with the specific name used to associate
a language to a specific pattern file as it is done in the language setting files
language.dat, language.def, and language.dat.lua.

398 % !TEX encoding = UTF-8 Unicode
399 \PolyglossiaSetup{liturgicallatin}{%
400 hyphennames={liturgicallatin},
401 hyphenmins={2,2},
402 frenchspacing=true,
403 fontsetup=true,
404 }

Then the captions and date are defined.
405 \def\liturgicallatincaptions{%

19

406 \def\prefacename{Præfatio}%
407 \def\refname{Conspectus librorum}%
408 \def\abstractname{Summarium}%
409 \def\bibname{Conspectus librorum}%
410 \def\chaptername{Caput}%
411 \def\appendixname{Additamentum}%
412 \def\contentsname{Index}%
413 \def\listfigurename{Conspectus descriptionum}%
414 \def\listtablename{Conspectus tabularum}%
415 \def\indexname{Index rerum notabilium}%
416 \def\figurename{Descriptio}%
417 \def\tablename{Tabula}%
418 \def\partname{Pars}%
419 \def\enclname{Additur}%
420 \def\ccname{Exemplar}%
421 \def\headtoname{\ignorespaces}%
422 \def\pagename{charta}%
423 \def\seename{cfr.}%
424 \def\alsoname{cfr.}%
425 \def\proofname{Demonstratio}%
426 \def\glossaryname{Glossarium}%
427 }
428
429 \def\liturgicallatindate{%
430 \def\today{\uppercase\expandafter{\romannumeral\day}%
431 \space \ifcase\month%
432 \or Januarii\or Februarii\or Martii\or Aprilis\or Maji\or Junii\or%
433 Julii\or Augusti\or Septembris\or Octobris\or Novembris\or%
434 Decembris\fi%
435 \space \uppercase\expandafter{\romannumeral\year}}}
436

Then, again, the necessary tests are made for setting the babel shorthands for the
proper definition of the babelshorthands option.

437 \define@boolkey{liturgicallatin}[liturgicallatin@]{babelshorthands}[true]{}
438
439 \ifsystem@babelshorthands
440 \setkeys{liturgicallatin}{babelshorthands=true}
441 \else
442 \setkeys{liturgicallatin}{babelshorthands=false}
443 \fi
444

Again the " and ' characters are initialised as active ones.
445 \ifcsundef{initiate@active@char}{%
446 \input{babelsh.def}%
447 \initiate@active@char{"}%
448 \initiate@active@char{'}%
449 }{}

And the definitions for the active " and ' characters are repeated as for “plain”

20

Latin.
450
451 \def\liturgicallatin@shorthands{%
452 \def\language@group{liturgicallatin}%
453 \bbl@activate{"}%
454 \declare@shorthand{liturgicallatin}{"}{\relax
455 \ifmmode
456 \def\xpglla@next{''}%
457 \else
458 \def\xpglla@nextdq{\futurelet\xpglla@temp\xpglla@cwm}%
459 \fi
460 \xpglla@nextdq}%
461 \bbl@activate{'}%
462 \declare@shorthand{liturgicallatin}{'}{\relax
463 \ifmmode
464 \def\xpglla@nextsq{'}%
465 \else
466 \def\xpglla@nextsq{\futurelet\temp@A\xpglla@putacute}%
467 \fi
468 \xpgla@nextsq}%
469 }
470
471 \def\xpglla@allowhyphens{\bbl@allowhyphens
472 \discretionary{-}{}{}\bbl@allowhyphens}
473
474 \newcommand*{\xpglla@cwm}{\let\xpglla@@nextdq\relax
475 \ifcat\noexpand\xpglla@temp a%
476 \let\xpglla@@nextdq\xpglla@allowhyphens
477 \else
478 \ifx\xpglla@temp\ae
479 \let\xpglla@@nextdq\xpglla@allowhyphens
480 \else
481 \ifx\xpglla@temp\oe
482 \let\xpglla@@nextdq\xpglla@allowhyphens
483 \else
484 \if\noexpand\xpglla@temp\string|%
485 \def\xpglla@@nextdq{\xpglla@allowhyphens\@gobble}%
486 \fi
487 \fi
488 \fi
489 \fi
490 \xpglla@@nextdq}%
491
492 \def\xpglla@putacute#1{\let\xpglla@nextsq\relax%
493 \if a\xpglla@temp@A
494 æ\kern-0.175em^^^^0301\kern0.175em\xpglla@allowhyphens
495 \else
496 \if o\xpglla@temp@A
497 œ\kern-0.175em^^^^0301\kern0.175em\xpglla@allowhyphens

21

498 \else
499 \if æ\xpglla@temp@A
500 æ^^^^0301%
501 \else
502 \if œ\xpglla@temp@A
503 œ^^^^0301%
504 \else
505 \string'%
506 \fi
507 \fi
508 \fi
509 \fi}%

As in “plain” Latin the \noliturgicallatin@shorthands is defined so as to use
it within the setting and unsetting of the language parameters.

510 \def\noliturgicallatin@shorthands{%
511 \@ifundefined{initiate@active@char}{}{\bbl@deactivate{"}}%
512 \@ifundefined{initiate@active@char}{}{\bbl@deactivate{'}}%
513 }
514
515 \let\xpglla@savedvalues\empty
516 \AtEndPreamble{%
517 \edef\xpglla@savedvalues{%
518 \clubpenalty=\the\clubpenalty\space
519 \@clubpenalty=\the\@clubpenalty\space
520 \widowpenalty=\the\widowpenalty\space
521 \finalhyphendemerits=\the\finalhyphendemerits}%
522 }
523
524 \def\noextras@liturgicallatin{%
525 \lccode\string"2019=\z@
526 \noliturgicallatin@shorthands
527 \xpglla@savedvalues
528 }
529
530 \def\blockextras@liturgicallatin{%
531 \lccode\string"2019=\string"2019
532 \clubpenalty=3000 \@clubpenalty=3000 \widowpenalty=3000
533 \finalhyphendemerits=50000000
534 \ifliturgicallatin@babelshorthands\liturgicallatin@shorthands\fi
535 }
536
537 \def\inlineextras@liturgicallatin{%
538 \lccode\string"2019=\string"2019
539 \ifliturgicallatin@babelshorthands\liturgicallatin@shorthands\fi
540 }

22

