PM-ISOmath
The Poor Man ISO math bundle

Claudio Beccari*

v.1.0.00 — 2017/08/22

Contents 5 The poor man solution 5

1 Introduction 1 6 Usage 6

2 The pdfETEX handicaps 2 7 Examples 8

3 ISO rules summary 3 8 Final remarks 9

4 Some existing solutions 5 9 The code 10
Abstract

The ISO regulation for typesetting math in the field of physics and tech-
nology are pretty stringent and imply legal questions that we do not treat
here; It suffices to say the an “Expertise” for a Legal Court that does not
fulfil such regulations in certain countries may be rejected by the Court,
independently from its expert contents.

Authors may not like them, but in the filed of applied sciences, or better,
of experimental sciences that use measured quantities and units of measure,
they are compulsory.

With Lual#TEX and XHI¥TEX, while using OpenType math fonts there
should not be any difficulty in fulfilling the regulations, but with pdfI¥TEX;
things are not so simple. There exist some facilities, but sometimes they do
not work.

This package provides some robust work-arounds to bypass the difficul-
ties experienced by some pdfI4TEX users.

1 Introduction

The ISO regulations (formerly ISO 31/XI, now ISO 80000) are stringent rules to
typeset mathematics in the domains of physics and applied sciences; their title
explicitly mentions “physics and technology”, but their careful reading let under-
stand that they apply to alla sciences that use the “mathematics of quantities”.

*E-mail: claudio dot beccari at gmail dot com

Such entities form a special group or space, where the elements are couples of two
ordered elements (x,y), where y represents the unit of measure and x represents
the ratio of the quantity to the unit of measure. Such paired elements may not
e separated, therefore some special mathematical rules are established in order to
operate on such entities.

Add to these special mathematical bases the facto that the measure component
of the quantity is pretty fuzzy and it is always accompanied by a certain degree of
uncertainty; metrologists are the the masters in measuring quantities and handling
their measures and uncertainties, but although for simplicity measures are handled
by lay people as rational numbers (after all aren’t the the ratio of something to
be measured and the unit of measure?) we are facing the domain of fuzzy sets.

Furthermore quantities are so many that any work in applied sciences should
contain a nomenclature list in order to explain which symbol is used for which
quantity. This is where the ISO regulations set some order and they published a
long list of named quantities with their preferred symbols and their “normal” units
according to the prescriptions of the Comité International des Pois et Mésures,
that established the the International System of measures (Systhéme International,
ST).

This ISO nomenclature is used uniformly by most, if not all, people involved in
applied sciences; therefore among the few letters of the Latin and Greek alphabets
almost none is free to be used for other purposes.

This means that the usual math italic alphabet can be used for very few sym-
bols if confusion is to be avoided. Other series and shapes must be judiciously
used and the ISO regulations say how.

There are no problems when typesetting applied science documents with
Lual®TEX or XgTEX, at least if the proper OpenType math fonts are used; Such
fonts have available so mani slots (code points) that may contain any variation of
any glyph; it suffices to specify the option math style = IS0 to the math han-
dling package unicode-math and to select an OpenType math font. The only
problem, if any, is to know which font series and shapes should be used according
to the ISO regulations.

These regulations can be purchased from the ISO site in Switzerland; they are
quite expensive and the cost is affordable by associated professional studios or
large academic and/or research institutions.

For private users I'd suggest to download the PDF document https://wuw.
nist.gov/pml/special-publication-811-extended-Y%contents. This docu-
ment has been produced by the National Institute for Science and Technology,
the Institutions that several years ago was appointed to replace the United States
National Bureau of Standards. Thei staff is made essentially by metrologists and
this guide is written to give precise instructions for handling the applied science
mathematics according to the ISO Regulations; Is establishes also several rules
for writing text about mathematics and metrology. It is extremely valuable for
anglophones, but, with the due differences concerning the mother languages, it is
extremely useful also for people using other languages than English.

2 The pdfEKTEX handicaps

Users of pdfIATEX, on the opposite are in trouble. In facts this typesetting program
suffers from an inherited limitation: math fonts are encoded with the old 128 glyph
encodings; this is not a limitation set forth by the underlying interpreter pdf TEX.
Matter of fact there exist the quite recent LibertinusT1math fonts for pdfTEX,
created by Michal Sharpe, that to my best knowledge are the only ones with 256
glyph encodings. Package libertinustimath accepts the ISO option that allows
to fulfil the ISO regulations; it accepts other options depending on which the
number of math groups, beyond the essential first four ones, increases by three to
six units, reaching a maximum of ten; there remains enough free math groups to
satisfy any user requirement.

But even while using such LibertinusT1math fonts, pdf TEX suffers from an-
other handicap derived from the knuthian original TEX-the-program and by the
NFSS (New FonT Selection Scheme, which is not new any more, because it dates
back to 1994, when KTEX 209 became obsolete and was substituted by TEX 2¢.).
I am not complaining about these pdf TEX and IXTEX limitations; for decades peo-
ple have been happily typesetting math with results that are much superior to any
other typesetting program if it does not use some TEX software.

The handicap I am talking about is the way math alphabets are handled at
the moment by pdf TpXand IXTEX; such alphabets are loaded in the form of math
groups, the number of which cannot exceed 16 (numbered from 0 to 15); each
group loads three sizes for normal math style, for script style and for script-script
style.

By default four groups are always loaded; group 0 for operators; group 1 for
letters; group 2 for symbols; group 3 for large operators and delimiters; users very
often load also the two symbol-fonts provided by the American Mathematical
Society, and this means two more math groups. Apparently there are ten more
groups for other math groups. It seems that this number is abundantly sufficient
to handle any situation, but it is not so. The author of this extension already
reached the limit of 16 without doing anything special — at least he thought so,
but he was evidently wrong. Users who use packages such as the Fourier or the
KPfonts have to pay special attention to their documentation because they might
specify options that imply loading up to 14 math groups.

Several authors provided packages to help users produce perfect documents
that fulfil the ISO regulations; I would like to cite the excellent PackageISOmath by
Giinter Milde, entitled “Mathematical style for science and technology”. It should
be the perfect package to use in order to fulfil the ISO regulations; sometimes
it succeeds with excellent results, but more often than not the results are just
partial, because of the limitations of the math fonts available to pdfIXTEX that
are in contrast with the requirements of the ISO regulations.

Therefore, dear reader, before using the poor man solutions of this package,
try ISOmath, if your font set passes all the requirements described in this package
documentation, you don’t need the poor man patches offered by this package.

3 ISO rules summary

This summary does not replace the original ISO document nor what is written in
the instructions published by NIST. It simply recalls those rules that this package
tries to implement. In the following the word “quantity” is used to represent any
physical entity that may be measured according to the metrological standards; the
word “variable” is used to represent a mathematical entity that represents variable
data.

1. All quantity and variable symbols are represented by one letter (with as
many appositions are needed); but no acronyms are allowed; in computer
science programming many strings are called variables, in the sense that they
may represent variable data; but computer programs are not mathematics,
rather they are a special language that tells the computer what to do, even
mathematics, but the language is not the one that represents math. Unfor-
tunately som acronyms have gained strong popularity and wide usage, but
they are forbidden by the ISO rules; example: CMRR is often used to mean
“common mode rejection ratio”, but this is an improper usage of mathe-
matics. Obviously this rule must be applied by the user, because BTEX is a
typesetting language and does not understand the real meaning of what it
typesets.

2. All quantity symbols must be set in italics, slanted type is allowed, but serifed
italics should be referred, unless the ISO rules prescribe a sans serif font. This
implies that the differential symbol be in upright font to avoid confusion with
the physical quantity d; the Napier number ‘e’ must be set in upright font to
avoid confusion with the elementary electric charge e; the imaginary unit j in
electrical engineering, i in other applied sciences) be in upright font in order
to avoid confusion with the electric current density j or the electric current i;
more difficult: the transcendental number n = 3.14159... be distinguished
from the plane angle 7; and similar other numerical constants represented
by Latin or Greek letters.

3. All symbols that do not represent quantities should be typeset in an upright
font, preferably a serifed font, except when the ISO rules require a sans serif
font. This rule include numbers and their digits, symbols that represent
constant numeric values, all appositions both in subscript and superscript
position. Appositions are not quantities or variables: for example in V;, the
subscript ¢ is a variable because it represents the ¢-th element in a sequence,
such as Vg, V4, Vo, ... ; on the opposite V; is an apposition because ‘i’ means,
say, ‘input’.

4. Upright bold roman or black board bold symbols represent sets.

5. Italic bold symbols represent matrices; une column matrices may represent
vectors in an algebraic way and should be treated as any other matrix; gener-
ally multirow and multicolumn matrices are typeset with uppercase letters,
while lowercase ones are reserved for vectors; but in some sciences also vec-
tors may have uppercase letters. Geometrical vectors that might be typeset
wit a medium series upper o lowercase italic letter with an arrow on top of

it are nor treated by the ISO regulations that speak of vectors irrespective if
they are considered as one column matrices od oriented segments; apparently
oriented segments should be treated the same as one column matrices.

6. Labels to geometrical entities, such as points, segments, angles (not their
measures) should be set in upright medium series sans serif fonts; the same
rule applies to labels used in sketches and drawings representing machinery,
electric circuitry, and the like when the label refers to an object and not to
its measure: “the lens L7, “the switch So”, “the planetary gear G3”, and so
on.

7. Tensors should be set in slanted bold sans serif font.

8. The above rules apply to both Latin and Greek letters.

Such font rules for families, series and shapes are difficult to implement with
pdfIATEX for many reasons that do not imply only the limited number of math
groups, but also the categories of symbols; Greek letters in particular are trouble-
some for a couple of reasons connected with rule 8:

e Uppercase greek letters are taken from the “operators” alphabet and are
letter symbols; therefore they are upright; but if they represent quantities
they must be in italics, or at least slanted;

e Lowercase Greek letters are taken from the “letters” alphabet and are or-
dinary symbols; they are slanted, and this is fine, but as ordinary symbols
they cannot be modified by commands such as \mathrm; furthermore upright
lowercase Greek letters are not available.

4 Some existing solutions

Several packages to be used with pdf W TEX allow for upright Greek letters, espe-
cially those packages for French typography, where the national rules (in contrst
with the ISO regulations) require that all math entities typeset with Greek letters
be upright. Among these the fourier and the kpfont. Other packages such as
newpxmath and newtxmath are intended for general use, but with suitable options
and extra math groups let the user employ upright lowercase letters as well as
slanted uppercase ones.

Package libertinustimath allows the use of the 256 glyph encoded fonts and
are less sensitive to the limit of 16 math groups, Is many options allow to use the
various font styles without requiring the \boldmath declaration; this implies that
medium and bold series are both preloaded without actually using extra math
alphabets beyond the small number it uses for its full functionality. An option
IS0 is already available to fulfill the ISO regulations. Maybe the only drawback
of the fonts used is that they match text fonts that are blacker than the standard
Computer or Latin Modern fonts. The auxiliary font selection commands used in
the ISOmath package are already implemented with this 1ibertinustimath one.

Of course the ISOmath package might solve all problems if the user math
environment has the necessary functionalities, in particular all the math alphabets
needed for the task and there are no difficulties with the number of math groups.

5 The poor man solution

The poor man solution is very simple in theory; it handles text fonts in math
expressions through the \text command of the amsmath package; of course there
are functionalities to chose families series and shapes in a comfortable way by
means of the powerful command definition commands provided by the xparse
package; for Greek letters it uses the functionalities of the alphabeta package,
that allows to use in text mode the same control sequences that are used in math
mode. The default families for Latin and Greek letters are the Latin Modern ones
that allow a piecewise continuous scaling of any available particular font of the
collection.

Needless to say, this poor man solution has advantages and disadvantages over
the other indicated solutions.

The main advantage is that no math groups are involved, therefore the user may
couple any font family with any series and shape that family allows; the default
family for Greek fonts are the Latin Modern compliant LGR encoded collection
of CBfonts; they are always available with any updated and complete TEX system
installation.

This is also a disadvantage, in the sense that Latin Modern fonts might not be
the best ones to use with any specific text font; for example they have an x-height
smaller than the Palatino ones, and a larger ‘em’ unit compared to the Times
ones; they have also a slightly lighter ‘color’ than most other fonts.

Nevertheless they work very well with the ISO regulations and in spite of the
disadvantages listed above, they are usable without problems. ’This documen-
tation is typeset with Latin Modern fonts and this very package. The examples
shown in a following chapter show the ease with which the ISO regulations may
be fulfilled.

There are other Greek fonts that may be used in place if those of the CBfonts
collection, especially those distributed by the Greek Font Society (GFS) that are
already part of the TEX system distribution; they are LGR encoded and have their
specific .£d files. They are not so rich in series and shapes (some of them may
lack the bold extended series and sometimes lack also the bold series); I would say
the the GFS Bodoni family is sufficiently rich of series and shapes, and may be
used also for the Latin fonts.

There are also the Greek fonts that are “companions” to the Times fonts. So
the user is not limited to the Latin Modern fonts, but admittedly there is not a
great choice and, if it is necessary, the disadvantage of an unmatching Greek font
is the price to pay if the user has to use pdf XTEX.

6 Usage

The usage of the package is very simple; in your preamble add the line

\usebackage [engineer] {pm-isomath}

The engineer option is used to set the imaginary unit the way electrical engineers
usually do.

The main macros that support the whole package, and that may be used also
by the end user, are:

\MathLatin{(letter)}{(family)} [{series)] ({shape))
and
\MathGreek{(letter)}{(family)} [(series)] ({shape))

where \MathLatin sets the text encoding to T1, while \MathGreek set it to LGR. In
both commands the arguments specified with {(family)} [{series)] ({shape)) are
all optional, including the first one in spite of being surrounded by curly braces.
In both cases the default values for each argument are respectively 1lmr, m, and n
(normal upright).

Such default values, after loading pm-isomath, may be globally redefined by
using in the preamble:

\renewcommand{IS0fam}{(family)}
\renewcommand{ISOser}{(series)}
\renewcommand{ISOsha}{(shape)}

We discourage this global redefinitions unless the user really knows what s/he is
doing; in practice it must be checked that T1 encoded families and LGR encoded
ones have the same family names. If the encoding+family. fd files are not available
either they have to be created, or such default values should not be redefined.

For Latin letters to use in the \MathLatin command mandatory argument
there are no problems.

For Greek letters you might use the math commands \alpha, \beta,...,
\Omega commands, but it is much simpler to use the package commands
\ISOalpha, \ISObeta,..., \ISOOmega. All these commands follow the syntax:

\IS0(lettername){(family)} [(series)] ({shape))

where all the arguments are optional, including the first in spite of being sur-
rounded by curly braces. Such optional arguments must follow that order but all
possible combinations are usable, for example:

\ISOalpha

\ISOalpha{(family)}
\ISOalphal[(series)]

\ISOalpha ({shape))
\ISOalpha{(family)} [(series)]
\ISOalpha{(family)} ({shape))
\ISOalphal(series)] ({shape))
\ISOalpha{(family)} [(series)] ({shape))

\ISOalpha o \ISObeta B \ISOgamma ¥ \ISOdelta 5
\ISOepsilon € \ISOzeta € \ISOeta 71 \ISOtheta 9
\ISOiota v \ISOkappa » \ISOlambda A \ISOmu "
\ISOnu v \ISOxi & \ISOomicron o \ISOpi T
\ISOrho e \ISOsigma o \ISOtau T \ISOupsilon v
\ISOphi ¢ \ISOchi x \ISOpsi ¢ \ISOomega I3
\IS0Gamma I' \ISODelta A \ISOEta H \ISOTheta ()]
\ISOLambda A \ISOXi = \ISOPi IT \ISORho P
\IS0Sigma 3 \ISQUpsilon Y \ISOPhi $ \ISOChi X
\ISOPsi ¥ \ISOOmega Q

Table 1: The \IS0(letter) macros and their rendering in bold style

This offers the maximum flexibility in using the necessary commands.

The package defines other macros for fulfilling the rules relative to the differ-
ential symbol and the numerical constants represented with letters; Furthermore
defines the commands for the \ohm unit of measure and the \micro SI prefix; this
latter macro uses a special shape of the CBfonts where an upright shape with
serifed lowercase Greek letters is available; if another family lacking this shape is
being used, then the normal upright shape is used. In typesetting this documen-
tation, evidently there are no problems, but with other font selections, especially
with Greek fonts, there might be some mismatching shapes.

Commands similar to those defined by the ISOmath package are also defined
so as to simplify the font selection for vectors, matrices and tensors.

7 Examples

ISO Greek letters In this example we typeset an array in math mode,
where we show all the Greek letters that can be typeset with the \IS0O(letter)
macros; the array is typeset in normal math style, but the ISO letters are in bold
style so that there is no confusion with a normal bold math setting; some letters,
equal to the Latin ones, are also defined because some users have experienced
difficulties in remembering the correct signs especially while labelling diagrams.
The array may be a useful reference, 1.

A small matrix equation
b= Ma
is typeset with the following code

\[\vectorsymbol{b} = \matrixsymbol{M}\vectorsymbol{a} \]

A resistivity value The resistivity of copper is 1.68 pQ2cm (1.68 pf2cm) is
typeset with the following code

$i.68\,\micro\ohm\, \mathrm{cm}$ (1.68\unit{\micro\ohm\,cm})

A tensor
D=¢ye, FE

is typeset with the following code

\ [
\vectorsymbol{D} = \epsilon_O\tensorsymbol{\epsilon}\ped{r}\vectorsymbol{E}
\]

Solid angle An energy flux of light form a isomorph source that irradiates
the power P through the solid angle {2 generates a flux
P

d=—
17}

is typeset with the following code
\[\Phi = \frac{P}{\Omegal}\]

where, as you see the uppercase Greek letters are slanted, as the ISO rules require,
instead of upright, as IWTEX sets them by default.

A bold formula This is the very important inverse Laplace transform

o—+ico

1
f@t) = — ePtdp for o > o
27 o—ioco

typeset with the following code

{\boldmath\[f(t)=
f(t) = \frac{1}{2\ISOpi\iu} -\mkern-19mu
\int_{\sigma-\iu\infty} {\sigma+\iu\infty}\eu {pt}\diff p
\qquad \text{for } \sigma > \sigma\ped{c}
\1}

Notice the the use of \boldmath does not imply the use of new math groups; but
the bold upright r is rendered without any problem.

Various styles of Greek fonts Here are some examples of Greek fonts in
various styles; within the same table bold and medium series fonts stay side by
side, as well as font coming from different families.

\ISOgamma, \ISOzeta, \ISOeta, \ISOOmega v,4,m, Q2
\ISOgamma|bx], \ISOzeta[bx], \ISOeta[bx], \ISOOmega |bx] ¥, %,m,Q
\ISOgamma{lmss}, \ISOzeta{lmss}, \ISOeta{lmss}, \ISOOmega{lmss} Y,4,m,Q
\ISOgamma{artemisia}, \ISOzeta{artemisia}, \ISOeta{artemisia}, \ISOOmega{artemisia} vy,g,n,Q
\ISOgamma(rs), \ISOzeta(rs), \ISOeta(rs), \ISOOmega(rs) Y,4,1, Q2

8 Final remarks

This package pm-isomath is far from perfect, and its results are questionable; of
course poor man solutions are just patches; incomplete solutions; But the results
are not so bad. It has the indubitable advantage that is does not use any math
group, therefore there is no risk to exceed the limit of 16 math groups.

9 The code

This package was loosely inspired by the ISOmath package by Giinter Milde, but
tacles the problem of insuffiente maximum number of math font groups so as
to avoid any problem with such groups, and therfore all the caveats in Milde’s
package. That package is much more comfortable to use then this one; but it is
subject to a number of conditions the, depending on the user environment, may
even result in a complete failure. This package avoids problema with math font
groups because it does not use any, but it is not so comfortable to use because
often the user has to specify optional settings.

The preliminary lines have been already defined; therefore we start with real
code.

The trick of this package is that all fonts different from the four or six (includ-
ing the AMS symbol fonts) are textual fonts used in math typesetting through
the intermediate action of the \text command defined by the amsmath package.
Therefore we start by verifying if packages amsmath, alphabeta and xparse have
already been loaded by in the preamble document; this implies a weak loading
order, that is this package must be loaded after all the above packages are loaded;
in facts of such packages are not loaded, they are by this package, and they are
loaded without options. The package loading mechanism assures avoiding conflicts
if packages are loaded without options; this is why if one of the three packages is
loaded after this one but with some option specified an “Option clash"" error flag
is raised; this is where the “weak” loading error becomes an very “strong” one.

1% The we verify if the document is being typeset with \pdfLaTeX;

2% it it is not; and error flag is raised and reading of this

3 % package is immediately interrupted. For this purpose we need

47 an engine-detecting package, and we generally use the |iftex| one.
5 \@ifpackageloaded{iftex}{}{\RequirePackage{iftex}}

6 \unless\ifPDFTeX

7 \PackageError{ISOrules4pdfLaTeX}{%

8 HoRkkoRkk Rk KRk KRRk kRk KRk koRk kR kKR kKR ok k Rk kk \MessageBreak
9 This package should be used only when \MessageBreak
10 typesetting with pdfLaTeX. \MessageBreak
11 Skipping loading the package \MessageBreak
12 ok Rk KRRk R Rk kKRR R kR kR kR ko k \MessageBreak
13 Ho%

14 HoRkkoRkR Rk KRk KRRk Rk Rk KRk kR kR Rk Rk Rk Rk kk \MessageBreak
15 Press the X key and restart typesetting \MessageBreak
16 while using pdfLaTeX\MessageBreak

10

17 Hokokkokk kKR KRRk KRR ok oR Rk Rk Rk Rk Kk kR kR kR xRk \Mes sageBreak
18 }

19 \expandafeter\@firstoftwo

20 \else

21 \PackageInfo{ISOrules4pdfLaTeX}{%

22 stk kol ok sk sk ki sk kol ok sk kot kool \Me s sageBreak
23 Typesetting this document with pdfLaTeX! \MessageBreak
24 sk okkokokloloR R okokkoklooR Rk iok Rk ook ook \Me s sageBreak
25 }

26 \expandafter\@secondoftwo

27 \fi

28 {\endinput}{\relax}

Actually this package accepts an option: engineer. This option is for deciding if
the imaginary uit should be defined as ‘i’ or ‘j’. As we have remarked in the previous
documentation, engineers, especially those who deal with electricity and electrical
quantities, but also electronics and telecommunications engineers, use only ‘j’; all
these varieties of engineers could not do anything in their profession if they don’t
use complex numbers and quantities (the latter called phasors). possible they are
the applied scientists who use complex numbers more than any other scientist.
This option has not been used to prepare this documented TEX file.

29 \newif\ifengineer \engineerfalse

30 \DeclareOption{engineer}{\engineertrue}

31 \ProcessOptions*\relax

Are the necessary packages already loaded?
32 \@ifpackageloaded{amsmath}{}{\RequirePackage{amsmath}}

33 \@ifpackageloaded{etoolbox}{}{\RequirePackage{etoolbox}}
34 \@ifpackageloaded{xparse}{}{\RequirePackage{xparse}}

Now we have almost alla software instruments available. We define a macro to
switch the definitions of certain math Greek symbols; some of these are defined
in the BTEX kernel: the lowercase Greek variant letters; some others are defined
in the amsmath package: the uppercase slanted greek letters. all these variant
lettere have a name identical to the regular ones but prefixed with the string var;
example \epsilon and \varepsilon, \Omega and \varOmega. We switch the
control sequence definitions between the var-less ones and the var-prefixed ones.
The first group of lowercase letters is switched because the glyphs give a better
match with those produced with the textual Greek glyphs obtained when the ISO
macros are used.

35 \newcommand\switchvarsymbols[1]{%

36 \letcs{\tempA}{#1}\csletcs{#1}{var#i}\cslet{var#1}{\tempA}}

37 Whhh

38 \switchvarsymbols{epsilon}

39 \switchvarsymbols{theta}

40 \switchvarsymbols{rho}

41 \switchvarsymbols{phi}

42 Bhhhh

43 \switchvarsymbols{Gamma}

11

44 \switchvarsymbols{Delta}

45 \switchvarsymbols{Theta}

46 \switchvarsymbols{Lambda}

47 \switchvarsymbols{Xi}

48 \switchvarsymbols{Pi}

49 \switchvarsymbols{Sigma}

50 \switchvarsymbols{Upsilon}

51 \switchvarsymbols{Phi}

52 \switchvarsymbols{Psi}

53 \switchvarsymbols{Omega}

Eventually we load the alphabeta package; this package allows using the same
macros used in math mode while typesetting in text mode. We find it very useful
in this package.

54 \@ifpackageloaded{alphabeta}{}{\RequirePackage{alphabetal}}

The next line defines the default family, series and shape to be used in the macros
that follow; as it can be seen the default family is the Latin Modern regular (or
roman); the series i medium and the shape is normal (or upright). The codes used
are the same used in the font description files with extension .fd. their name
if obtained by merging the encoding name with the family name; Therefore the
default font description file for Latin Characters is t1lmr.fd, while the one for
Greek characters is 1grlmr.fd; these files define the series the contains that are
identified with codes such as m (medium); bx (bold extended); b (bold). Other
fonts, with different series may have also other codes. For each series the .fd
defines the codes for shapes, and for every valid combination of series, shape and
sizes it defines the specific font file to use.

We should not care for the font names, but in order to use different font families,
series, and shapes the user should know their codes. this is generally a difficult
task, but not impossible; is “suffices” to open the packages that allow to use the
desired fonts, read the code and fin out the names of the .fd files; then search
this file on the trees of the TEX system, and eventually find out the codes for the
available series and shapes.

for the Latin and Greek . fd file we havethe series and shapes shown in table 2.

Queste sono le impostazioni di default per la famiglia, la serie e la forma:

55 \def\ISOfam{1lmr}\def\ISOser{m}\def\ISOsha{n}

As explained in the initial documentation all fonts changing commands are
constructed in such a way as to have a default family, series and shape common to
both Latin and Greek fonts; therefore with thre optional arguments that the user
can specify with different delimiters but respecting their order, the user can get
eight different choice combinations that allow the selection of an almost limited
less number of different looks.

We now define the mains macros and service macros that allow such font
selection; We have ti create similar macros that mostly differ in the choice of the
encoding for Latin or for Greek letters.

The user macros are defined by meanso of the defining commands provided by
the xparse package, while the service macros use normal IMTEX commands. The
user commands follow this special syntax:

12

Latin (T1) Greek (LGR)

Series Code Shape Code Shape Code
medium m normal n normal n
italics it italics it
slanted sl slanted sl
lipsian li
serif s
serif oblique ro
upright italics ui upright italics ui
small caps sc small caps sc
bold b lipsian li
normal n

slanted sl

bold extended bx normal n normal n
italics it italics it
slanted sl slanted sl

lipsian li
serif s
serif oblique S
upright italics ui

small caps sc

Table 2: Seres and shapes available with the Latin Modern regular family with
Latin and Greek fonts

\MathLatin{(Latin letter)}{(family)} [{series)] ({shape))
\MathGreek{(Greek letter)} (family)} [{series)] ({shape))

where in both cases the last three arguments are differently delimited values, even
the first one of the three, in spite of being delimited by curly braces. In both
cases the only mandatory argument is the Latin or Greek letter; the latter one
my be specified by the macros \alpha, \beta,..., \Omega, the same ones that are
normally used in math.

56 \NewDocumentCommand\MathLatin{m gO{m}D(){it}}{\bgroup
57 \edef\y{\IfNoValueTF{#2}{\ISOfam}{#2}}7

58 \edef\x{\noexpand\egroup\noexpand\MLatin{\noexpand#1}{\y} F\x{#3}{#4}}
59

60 \providecommand\MLatin[4]{\text{}

61 \def\ISOfam{#2}\def\ISOser{#3}\def\ISOsha{#4}/

62 \ifcsstring{math@version}{bold}{\def\ISOser{bx}}{}%
63 \usefont{T1}{\ISOfam}{\ISOser}{\ISOsha}#1}}

64

65 \NewDocumentCommand\MathGreek{ m g 0{m} dO}{%

66 \edef\y{\IfNoValueTF{#2}{\ISOfam}{#2}}7

67 \edef\x{\IfNoValueTF{#4}{\IS0sha}{#4}}

13

68 \MGreek{#1}{\y{#3}{\x}}

69

70 \newcommand{\MGreek} [4] {\text{%

71 \def\ISOfam{#2}\def\ISOser{#3}\def\ISOsha{#4}}

72 \ifcsstring{math@version}{bold}{\def\ISOser{bx}}{}/
73 {\usefont{LGR}{\IS0fam}{\ISOser}{\ISOsha}#1}}}

74

We now define the macros for all lowercase Greek letters and several Uppercase
ones (even some that are identical to some Latin Letters) that should save several
keystrokes when entering Greek letters in the source file. The shorter the code to
type in, the smaller the the number of typos.

75 \newcommand\ISOalpha{\MathGreek{\alphal}}

76 \newcommand\ISObeta{\MathGreek{\betal}}

77 \newcommand\ISOgamma{\MathGreek{\gamma}}

78 \newcommand\ISOdelta{\MathGreek{\deltal}}

79 \newcommand\ISOepsilon{\MathGreek{\epsilon}}
80 \newcommand\ISO0zeta{\MathGreek{\zetal}}

81 \newcommand\ISOeta{\MathGreek{\etal}}

82 \newcommand\ISOtheta{\MathGreek{\thetal}}

83 \newcommand\ISOiota{\MathGreek{\iotal}}

84 \newcommand\ISOkappa{\MathGreek{\kappal}

85 \newcommand\IS0lambda{\MathGreek{\lambda}}
86 \newcommand\ISOmu{\MathGreek{\mu}}

87 \newcommand\ISOnu{\MathGreek{\nu}}

88 \newcommand\IS0xi{\MathGreek{\xi}}

89 \newcommand\ISOomicron{\MathGreek{\omicron}}
90 \newcommand\ISOpi{\MathGreek{\pi}}

91 \newcommand\ISOrho{\MathGreek{\rho}}

92 \newcommand\ISOsigma{\MathGreek{\sigma}}

93 \newcommand\ISOtau{\MathGreek{\tau}}

94 \newcommand\ISOupsilon{\MathGreek{\upsilon}}
95 \newcommand\ISOphi{\MathGreek{\phil}}

96 \newcommand\ISOchi{\MathGreek{\chi}}

97 \newcommand\ISOpsi{\MathGreek{\psil}}

98 \newcommand\ISOomega{\MathGreek{\omegal}}

99 \newcommand\IS0Gamma{\MathGreek{\Gamma}}

100 \newcommand\ISODelta{\MathGreek{\Deltal}}

101 \newcommand\ISOEta{\MathGreek{\Eta}}

102 \newcommand\ISOTheta{\MathGreek{\Thetal}}

103 \newcommand\ISOLambda{\MathGreek{\Lambda}}
104 \newcommand\ISOXi{\MathGreek{\Xi}}

105 \newcommand\ISOPi{\MathGreek{\Pi}}

106 \newcommand\ISORho{\MathGreek{\Rho}}

107 \newcommand\ISOSigma{\MathGreek{\Sigma}}

108 \newcommand\IS0Upsilon{\MathGreek{\Upsilon}}
109 \newcommand\ISOPhi{\MathGreek{\Phi}}

110 \newcommand\ISOChi{\MathGreek{\Chi}}

111 \newcommand\ISOPsi{\MathGreek{\Psi}}

112 \newcommand\ISOOmega{\MathGreek{\Omega}}

14

We redefine also the \mathrm and \mathit so that if they have to contain Greek
letters the default shape is set equal to that of the enclosing command. Such
macros are just those defined in the IATEX kernel where the \ISOsha redefinition
is added.

113 \DeclareRobustCommand{\mathrm}%

114 {\relax\ifmmode\else\expandafter\non@alpherr

115 \csname mathrm \endcsname\fi

116 \def\ISOsha{n}\expandafter\use@mathgroup

117 \csname M@OT1\endcsname\symoperators}

118

119 \DeclareRobustCommand{\mathit}%

120 {\relax\ifmmode\expandafter\non@alpherr

121 \csname mathit \endcsname\fi

122 \def\ISOsha{it}\expandafter\use@mathgroup

123 \csname M@OT1\endcsname{9}}

Imitating the ISOmath package we define also the macros for selecting the bold
italics (produces results similar to those obtained with packagebm, but it does not
require any math group), and sans serif in both normal and bold slanted shape.
124 \newcommand\mathbfit [1]{\MathLatin{#1}{1mr} [bx] (it)}

125 \newcommand\mathsfit [1]{\MathLatin{#1}{1lmss} [m] (s1)}

126 \newcommand\mathsfbfit [1]{\MathLatin{#1}{1lmss}[bx] (s1)}

Package ISOmath defines macros for typesetting vectors, matrices and tensors; we
do the same, but avoid the abbreviation sym in place of symbol.

127 \let\vectorsymbol\mathbfit

128 \let\matrixsymbol\mathbfit

129 \let\tensorsymbol\mathsfbfit

We now define some macros for setting some elements in the proper fonts;
the ideaa is the same as that for vectors, matrices and tensors, except that these
macros produce directly the desired symbol without using arguments, if possible.

The imaginary unit is subject to the state of the engineer switch, set with the
proper option on calling the package. If such option has been specifies in calling
this package, the \iu command is let to \junit, otherwise it’s let to \iunit. In
spite of this option driven aliases, both commands \iunit and \junit are stille
available to the user.

The Napier number ‘e’ is defined in roman type, but as an operator; this
number is not an operator in the mathematical sense, but it is most often uses as
the base of an exponential; therefore such mathematica “atom” must be treated
as an operator as well as when the official operator macro \exp is used.

The transcendental number w, different from the plane angle 7, is defined so as
to be typeset in upright style; similar definitions may be used for other numerical
constants; we define just \uppi because we think it is the most used symbol in any
kind of mathematics. The w Greek letter in upright sans serif font may indicate the
subatomic particle “pion” so that a similar macro, say, \sspi or, more expressively,
\pion may be given a suitable definition.

The differential symbol is not an operator, but it requires a special treatment;
a macro \diff for the differential symbol uses an empty‘operator’ and a negative

15

shift to typeset an upright letter ‘d’ with an operator spacing on its left, so that
proper spacing is used in math typesetting; Notice that the given definition does
not perform as the direct use of a thin math space before the upright ‘d’, because
spacing bteween math atoms depends on their category, while the thin space \,
is absolute and does not change depending on the preceding math atom.

The command \unit for appending the units of measure to the numerical value
of the measure is added if no packages have already defined it; package siunitx is
a particularly recommended one. Similar considerations hold true for the \ap and
\ped (apex and pedex, respectively; i.e superscript and subscript); therefore such
command definitions are deferred to the start of the document so as to be sure
to avoid damaging other package settings. All these commands may be used in
both text and math modes; therefore a robust macro \textormath is (re)defined
even if often such command is already available; the \DeclareRobustCommand
unconditionally declares and redeclares robust commands even if they are already
defined; possibly an information line is written in the . log file in case a redefinition
takes palace. These commands typeset their arguments in upright math fonts, but
with the current font in text mode.

The \ohm and \micro macros produce their symbols in upright style while in
math mode, and with the current font and shape in text mode.

130 \newcommand\iunit{\MathLatin{i}(n)}

131 \newcommand\ junit{\MathLatin{j}(n)}

132 \ifengineer

133 \let\iu\junit

134 \else

135 \let\iu\iunit

136 \fi

137 % 1

138 \let\eu\undefined

139 \DeclareMathOperator\eu{\MathLatin{e}(n)}

140 \providecommand\uppi{}

141 \renewcommand\uppi{\ISOpi(n)}

142 %

143 \providecommand*\diff{}

144 \renewcommand*\diff{\ensuremath{\mathop{}\!\MathLatin{d}(n)}}
145 %

146 \providecommand*\micro{}

147 \renewcommand*\micro{\textormath{\ifcsdef{textmicrol}y,

148 {\textmicro}{\ISOmu(rs) }}{\ISOmu(rs)}}

149 %

150 \providecommand*\ohm{}

151 \AtBeginDocument{\@ifpackageloaded{textcomp}{%

152 \renewcommand*\ohm{\textormath{{\textohm}}{\IS00mega (n) }}}%
153 {\renewcommand*\ohm{\textormath{\ISOOmega (\f@shape) }{\IS00mega(n)}}}}
154 %

155 \global\csletcs{bbl@it@ped}{undefined}

156 \global\csletcs{bbl@it@ap}{undefined}

157 %

158 \DeclareRobustCommand\textormath{%

16

159 \unless\ifmmode\expandafter\@firstoftwo

160 \else\expandafter\@secondoftwo\fi}

161 %

162 \AfterEndPreamble{\let\ped\undefined\let\ap\endefined
163 \DeclareRobustCommand*\ped [1]{}

164 \textormath{\textsubscript{#1}}{_{\mathrm{#1}}}}%

165 %

166 \providecommand\ap{}

167 \DeclareRobustCommand\ap [1]{%

168 \textormath{#1}{ " {\mathrm{#1}3}}}%
169 %

170 \unless\ifcsname unit\endcsname

171 \DeclareRobustCommand{\unit} [1]{\, \textormath{#1}{\mathrm{#1}}}
172 \fi}

173

174 \endinput

This is the end

HAPPY TgXing!

17

