
The pict2e package∗

Hubert Gäßlein†, Rolf Niepraschk‡ and Josef Tkadlec§

2008/06/29

Abstract

This package was described in the 2nd edition of “LATEX: A Document Preparation
System”, but the LATEX project team declined to produce the package. For a long time,
LATEX has included a “pict2e package” that merely produced an apologetic error message.

The new package extends the existing LATEX picture environment, using the familiar
technique (cf. the graphics and color packages) of driver files. In the user-level part of
this documentation there is a fair number of examples of use, showing where things are
improved by comparison with the Standard LATEX picture environment.

Contents

1 Introduction 2

2 Usage 2
2.1 Package options . 2

2.1.1 Driver options . 2
2.1.2 Other options . 3
2.1.3 Debugging options . 3

2.2 Configuration file . 3
2.3 Details: Changes to user-level commands . 3

2.3.1 Line . 4
2.3.2 Vector . 4
2.3.3 Circle and Dot . 5
2.3.4 Oval . 6
2.3.5 Bezier Curves . 7

2.4 Extensions . 8
2.4.1 Circle arcs . 8
2.4.2 Lines, polygons . 8
2.4.3 Path commands . 9
2.4.4 Ends of paths, joins of subpaths . 9

List of Figures

1 Line . 5
2 Vector . 6
3 Vector: shape variants of the arrow-heads . 6
4 Circle and Dot . 7
5 Oval: Radius argument for \oval vs. \maxovalrad 7

∗This document corresponds to pict2e.sty v0.2u, dated 2008/06/29, documentation dated 2008/06/29.
†HubertJG@open.mind.de
‡Rolf.Niepraschk@ptb.de
§j.tkadlec@email.cz

1

6 Oval: Radius argument for \oval: length vs. number 11
7 Quadratic Bezier curves . 12
8 Cubic Bezier curves . 12
9 Quadratic (green) and Cubic Bezier curves . 12

1 Introduction

Here’s a quote from the obsolete original official version of the pict2e package (1993–2003):

The package pict2e that is mentioned in the 2nd edition of “LATEX: A Document
Preparation System” has not yet been produced. It is unlikely that the LATEX3
Project Team will ever produce this package thus we would be very happy if some-
one else creates it.

Finally, someone has produced a working implementation of the pict2e package.:-)
This package redefines some of the drawing commands of the LATEX picture environment.

Like the graphics and color packages, it uses driver files.
Currently there are only back-ends for PostScript and PDF. (Other output formats may

be added in the future.)

Note/Warning:

• Documentation has been written somewhat “hastily” and may be inaccurate.

• The status of this package is currently somewhere between “beta” and “release” . . .
Users and package programmers should not rely on any feature sported by the internal
commands. (Especially, the internal control sequence names may change without notice
in future versions of this package.)

2 Usage

To use the pict2e package, you put a \usepackage[〈optionlist〉]{pict2e} instruction in the
preamble of your document. Likewise, class or package writers just say \RequirePackage
[〈optionlist〉]{pict2e} in an appropriate place in their class or package file. (Nothing unusual
here.)
Like the graphics and color packages, the pict2e package supports a configuration file (see
Section 2.2).

2.1 Package options

2.1.1 Driver options

driver notes driver notes
dvips x dvipsone x?
xdvi x dviwindo x?
pdftex x dvipdf x?
vtex x textures x?
dvipdfm x pctexps x?
oztex (x) pctex32 x?

x= supported; (x)= supported but untested;
x? =not yet implemented

The driver options are (mostly) implemented by means of definition files (p2e-〈driver〉
.def). For details, see file p2e-drivers.dtx.

Note: You should specify the same driver for pict2e you use with the graphics/x and color
packages. Otherwise, things may go haywire.

2

2.1.2 Other options

Currently, there are two options that allow you to choose between variants of the arrows-heads
generated by the \vector command. See Figure 3 in Section 2.3.2 for the difference.
option meaning
ltxarrows Draw LATEX style vectors (default).
pstarrows Draw PSTricks style vectors.

2.1.3 Debugging options

These options are (mainly) for development and testing purposes.
option meaning
original Suppresses the new definitions.
debug Suppresses the compressing of pdfTEX output; marks the pict2e

generated code in the output files.
hide Suppresses all graphics output from pict2e.

2.2 Configuration file

Similar to the graphics and color packages, in most cases it is not necessary to give a driver
option explicitly withe the \usepackage (or \RequirePackage) command, if a suitable config-
uration file pict2e.cfg is present on your system (see the example file pict2e-example.cfg).
On many systems it may be sufficient to copy pict2e-example.cfg to pict2e.cfg; on others
you might need to modify your copy to suit your system.

2.3 Details: Changes to user-level commands

This section describes the improvements of the new implementation of (some of) the picture
commands. For details, look up “pict2e package” in the index of the LATEX manual [1].

Here’s a collection of quotes relevant to the pict2e package from the LATEX manual [1].
From [1, p. 118]:

However, the pict2e package uses device-driver support to provide enhanced ver-
sions of these commands that remove some of their restrictions. The enhanced
commands can draw straight lines and arrows of any slope, circles of any size, and
lines (straight and curved) of any thickness.

From [1, p. 179]:

pict2e Defines enhanced versions of the picture environment commands that
remove restrictions on the line slope, circle radius, and line thickness.

From [1, pp. 221–223]:

\qbezier
(With the pict2e package, there is no limit to the number of points plotted.)

\line and \vector Slopes |x|, |y| ≤ 6 or 4, with no common divisor except ±1:
(These restrictions are eliminated by the pict2e package.)

\line and \vector Smallest horizontal extent of sloped lines and vectors that
can be drawn:
(This does not apply when the pict2e package is loaded.)

\circle and \circle* Largest circles and disks that can be drawn:
(With the pict2e package, any size circle or disk can be drawn.)

\oval [〈rad〉]:
An explicit rad argument can be used only with the pict2e package; the
default value is the radius of the largest quarter-circle LATEX can draw without
the pict2e package.

3

2.3.1 Line

\line(〈X,Y 〉){〈LEN 〉}\line

In the Standard LATEX implementation the slope arguments (〈X,Y 〉) are restricted to integers
in the range −6 ≤ X, Y ≤ +6, with no common divisors except ±1. (I.e., X and Y must
be relatively prime.) Furthermore, only horizontal and vertical lines can assume arbitrary
thickness; sloped lines are restricted to the widths given by the \thinlines and \thicklines
declarations (i.e., 0.4pt and 0.8pt, respectively).

From [1, p. 222]:

These restrictions are eliminated by the pict2e package.

However, to avoid overflow of TEX’s dimens, the slope arguments are real numbers in the
range −16383 ≤ X, Y ≤ +16383. It is usually not a good idea to use slope arguments with the
absolute value less then 10−4 (the best accuracy is obtained if you use multiples of arguments
such that you eliminate as much decimal parts as possible). The slope greater then 16384
cannot be obtained.

Furthermore, unlike the Standard LATEX implementation, which silently converts the “im-
possible” slope to a vertical line extending in the upward direction ((0, 0) 7→ (0, 1)), the pict2e
package now treats this as an error.

In the Standard LATEX implementation the horizontal extent of sloped lines must be at
least 10 pt.

From [1, p. 222]:

This does not apply when the pict2e package is loaded.

Figure 1 shows the difference between the old and new implementations: The black lines in
the left half of each picture all have slopes that conform to the restrictions of Standard LATEX.
However, with the new implementation of pict2e sloped lines may assume any arbitrary width
given by the \linethickness declaration. The right half demonstrates that now arbitrary
slopes are possible.

The blue lines represent “illegal” slopes specifications, i.e., with common divisors. Note the
funny effect Standard LATEX produces in such cases. (In LATEX releases prior to 2003/12/01,
some such “illegal” slopes might even lead to infinite loops! Cf. problem report latex/3570.)

The new implementation imposes no restriction with respect to line thickness, minimal
horizontal extent, and slope.

The red lines correspond to angles of 15◦, 30◦, 45◦, 60◦, and 75◦, respectively. This was
achieved by multiplying the sine and cosine of each angle by 1000 and rounding to the nearest
integer, like this:

\put(50,0){\line(966,259){25}}

\put(50,0){\line(866,500){25}}

\put(50,0){\line(707,707){25}}

\put(50,0){\line(500,866){25}}

\put(50,0){\line(259,966){25}}

2.3.2 Vector

\vector(〈X,Y 〉){〈LEN 〉}\vector

In the Standard LATEX implementation the slope arguments (〈X,Y 〉) are restricted to integers
in the range −4 ≤ X, Y ≤ +4, with no common divisors except ±1. (I.e., X and Y must be
relatively prime.) Furthermore, arrow heads come only in two shapes, corresponding to the
\thinlines and \thicklines declarations. (There’s also a flaw: the lines will be printed over
the arrow heads. See vertical vector in Figure 2.)

From [1, p. 222]:

These restrictions are eliminated by the pict2e package.

4

Original Commands New Commands

��
���

���

�
�

�
�

�
�

��

�
�
�
�
�
�
�
�
�
�
�
�
�
��

��
���

���

�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 1: Line

However, to avoid overflow of TEX’s dimen arithmetic, the current implementation restricts
the slope arguments to real numbers in the range −1000 ≤ X, Y ≤ +1000, which should be
enough. It is usually not a good idea to use slope arguments with the absolute value less then
10−4 (the best accuracy is obtained if you use multiples of arguments such that you eliminate
as much decimal parts as possible). The slope greater then 16384 cannot be obtained.

Furthermore, unlike the Standard LATEX implementation, which silently converts the “im-
possible” slope to a vertical vector extending in the upward direction ((0, 0) 7→ (0, 1)), the
pict2e package now treats this as an error.

In the Standard LATEX implementation the horizontal extent of sloped vectors must be at
least 10 pt.

From [1, p. 222]:

This does not apply when the pict2e package is loaded.

Figure 2 shows the difference between the old and new implementations: The black arrows
all have “legal” slopes. The red arrows have slope arguments out of the range permitted by
Standard LATEX. Slope arguments that are “illegal” in Standard LATEX produce results similar
to those with the \line command (this has not been demonstrated here).

The new implementation imposes no restriction with respect to line thickness, minimal
horizontal extent, and slope.

As with Standard LATEX, the arrow head will always be drawn. In particular, only the
arrow head will be drawn, if the total length of the arrow is less than the length of the arrow
head. See right hand side of Figure 3.

The current version of the pict2e package offers two variants for the shape of the arrow
heads, controlled by package options. One variant tries to mimic the fonts used in the Standard
LATEX implementation (package option ltxarrows, the default; see Figure 3, top row), though
it is difficult to extrapolate from just two design sizes. The other one is implemented like the
arrows of the PSTricks package [2] (package option pstarrows; see Figure 3, bottom row).

2.3.3 Circle and Dot

\circle{〈DIAM 〉}\circle

\circle* \circle*{〈DIAM 〉}
The (hollow) circles and disks (filled circles) of the Standard LATEX implementation had severe
restrictions on the number of different diameters and maximum diameters available.

From [1, p. 222]:

With the pict2e package, any size circle or disk can be drawn.

5

Original Commands New Commands

-�
����

���*

�
�

�
�

�
�

���

�
�
�
�
�
�
���6

@
@

@
@

@
@

@@I

�
�

�
�

�
�

��	

@
@

@
@

@
@

@@R

?
�I

Figure 2: Vector

Figure 3: Vector: shape variants of the arrow-heads. Top: LATEX style vectors. Bottom:
PSTricks style vectors.

With the new implementation there are no more restrictions to the diameter argument. (How-
ever, negative diameters are now trapped as an error.)

Furthermore, hollow circles (like sloped lines) can now be drawn with any line thickness.
Figure 4 shows the difference.

2.3.4 Oval

\oval[〈rad〉](〈X,Y 〉)[〈POS 〉]\oval

In the Standard LATEX implementation, the user has no control over the shape of an oval
besides its size, since its corners would always consist of the “quarter circles of the largest
possible radius less than or equal to rad” [1, p. 223].

From [1, p. 223]:

An explicit rad argument can be used only with the pict2e package; the default
value is the radius of the largest quarter-circle LATEX can draw without the pict2e
package.

This default value is 20 pt, a length. However, in an early reimplementation of the picture
commands [3], there is such an optional argument too, but it is given as a mere number, to be
multiplied by \unitlength.

Since both alternatives may make sense, we left the choice to the user. (See Figure 6 for
the differences.) I.e., this implementation of \oval will “auto-detect” whether its [〈rad〉]

6

Original Commands New Commands

������
��
"!

&%
'$
&%
'$
&%
'$
&%
'$
&%
'$

~~~~~|x s
Figure 4: Circle and Dot

Original Commands New Commands$

%

$

%
�
�

�
��	����

'

&

'

&
�
�
�
��
����

Figure 5: Oval: Radius argument for \oval vs. \maxovalrad

argument is a length or a number. Furthermore, the default value is not hard-wired either;\maxovalrad

the user may access it under the moniker \maxovalrad, by the means of \renewcommand*.
(Names or values of length and counter registers may be given as well, both as an explicit
[〈rad〉] argument and when redefining \maxovalrad.)

(Both [〈rad〉] and the default value \maxovalrad are ignored in “standard LATEX mode”).
The behaviour of \oval in the absence of the [〈rad〉] argument is shown in Figure 5, left

half of each picture. Note that in the Standard LATEX implementation there is a minimum
radius as well (innermost “salami” is “broken”). In the right half of each picture, a [〈rad〉]
argument has been used: it has no effect with the original \oval command.

Both [〈rad〉] and \maxovalrad may be given as an explicit (rigid) length (i.e., with unit)
or as a number. In the latter case the value is used as a factor to multiply by \unitlength.
(A length or counter register will do as well, of course.)

If a number is given, the rounded corners of an oval will scale according to the current
value of \unitlength. (See Figure 6, first row.)

If a length is specified, the rounded corners of an oval will be the same regardless of the
current value of \unitlength. (See Figure 6, second row.)

The default value is 20 pt as specified for the [〈rad〉] argument of \oval by the LATEX
manual [1, p. 223]. (See Figure 6, third row.)

2.3.5 Bezier Curves

\bezier{〈N 〉}(〈AX,AY 〉)(〈BX,BY 〉)(〈CX,CY 〉)\bezier

\qbezier

\cbezier

\qbeziermax

\qbezier[〈N 〉](〈AX,AY 〉)(〈BX,BY 〉)(〈CX,CY 〉)
\cbezier[〈N 〉](〈AX,AY 〉)(〈BX,BY 〉)(〈CX,CY 〉)(〈DX,DY 〉)

7



In Standard LATEX, the N argument specifies the number of points to plot, with the maximum
defined by \qbeziermax. With LATEX versions prior to 2003/12/01, the quadratic Bezier curves
plotted by this package will not match those of the Standard LATEX implementation exactly,
due to a bug in positioning the dots used to produce a curve (cf. latex/3566).

\bezier is the obsolescent variant from the old bezier package of vintage LATEX2.09.
The \cbezier command draws a cubic Bezier curve; see [4]. (This is not mentioned in [1]

and has been added to the package deliberately.)
From [1, p. 221–223]:

With the pict2e package, there is no limit to the number of points plotted.

More accurately, the argument specifying the maximum number of points to plot is simply
ignored in this new implementation of pict2e, as is \qbeziermax, since the pict2e package uses
primitive operators of the output (back-end) format, using only the given “control points”.
(For details, see the implementation part.)

2.4 Extensions

This section desribe new commands that extend the possibilities of the picture environment.
It is not our aim to create a powerful collection of macros (like pstricks or pgf). The main
goal of this package is to eliminate the limitations of the standard picture commands. But this
is done by PostScript and PDF operators that might be easily used for user-level commands
and hence significantly improve the drawing possibilities.

2.4.1 Circle arcs

\arc[〈ANGLE1,ANGLE2 〉]{〈RAD〉}\arc

\arc* \arc*[〈ANGLE1,ANGLE2 〉]{〈RAD〉}
These commands are generalizations of \circle and \circle* commands except that the
radius instead of the diameter is given. The optional argument is a comma separated pair
of angles given in degrees (implicit value is [0, 360]). The arc starts at the point given by
ANGLE1. If ANGLE2 is greater than ANGLE1 the arc is drawn in the positive orientation
(anticlockwise), if the ANGLE2 is smaller than ANGLE1 the arc is drawn in the negative
orientation (clockwise). The angle of the arc is the absolute value the difference of ANGLE1
and ANGLE2. Hence the pair [−10, 80] gives the same arc as [80,−10] (a quarter of a circle)
while the pairs [80, 350] and [350, 80] give the complementary arc.

In fact, the arc is approximated by cubic Bezier curves with an inaccuracy smaller than
0.0003 (it seems to be sufficiently good).

If \squarecap is active then \arc{〈RAD 〉} produces a circle with a square.

2.4.2 Lines, polygons

\Line(〈X1,Y1 〉)(〈X2,Y2 〉)\Line

\polyline

\polygon

\polygon*

\polyline(〈X1,Y1 〉)(〈X2,Y2 〉). . . (〈Xn,Yn〉)
\polygon(〈X1,Y1 〉)(〈X2,Y2 〉). . . (〈Xn,Yn〉)
\polygon*(〈X1,Y1 〉)(〈X2,Y2 〉). . . (〈Xn,Yn〉)
A natural way how to describe a line segment is to give the coordinates of the endpoints. The
syntax of the \line is different because the lines in the standard picture environment are
made from small line segments of a limited number of slopes given in a font. However, this
package changes the \line command computing the coordinates of the endpoints and using an
internal macro for drawing a line segment with given endpoints. Hence it would be crazy do not
use this possibility directly. This is done by the command \Line. The command \polyline
draws a stroken line connecting points with given coordinates. The command \polygon draws
a polygon with given vertices, the star variant gives filled polygon. At least two points should
be given.

These command need not be used within a \put command (if the coordinates are absolute).

8



2.4.3 Path commands

\moveto(〈X,Y 〉)\moveto

\lineto

\curveto

\circlearc

\lineto(〈X,Y 〉)
\curveto(〈X2,Y2 〉)(〈X3,Y3 〉)(〈X4,Y4 〉)
\circlearc[〈N 〉]{〈X 〉}{〈Y 〉}{〈RAD〉}{〈ANGLE1 〉}{〈ANGLE2 〉}
These commands directly correspond to the PostScript and PDF path operators. You start
defining a path giving its initial point by \moveto. Then you can consecutively add a line
segment to a given point by \lineto, a cubic Bezier curve by \curveto (two control points
and the endpoint are given) or an arc by \circlearc (mandatory parameters are coordinates
of the center, radius, initial and final angle).

Drawing arcs is a bit more complicated. There is a special operator only in PostScript (not
in PDF) but also in PostScript it is approximated by cubic Bezier curves. Here we use common
definition for PostScript and PDF. The arc is drawn such that the initial point given by the
initial angle is rotated by ANGLE2−ANGLE1 (anticlockwise for positive value and clockwise
for negative value) after reducing this difference to the interval [−720, 720]. Implicitely (the
optional parameter N = 0) before drawing an arc a \lineto to the initial point of the arc is
added. For N = 1 \moveto instead of \lineto is executed—it is useful if you start the path
by an arc and do not want to compute and set the initial point. For N = 2 the \lineto before
drawing the arc is omitted—it leads to a bit shorter code for the path but you should be sure
that the already defined part of the path ends precisely at the initial point of the arc.

The command \closepath is equivalent to \lineto to the initial point of the path. After\closepath

\strokepath

\fillpath

defining paths you might use either \strokepath to draw them or, for closed paths, \fillpath
to draw an area bounded by them.

The path construction need not be used within a \put command (if the coordinates are
absolute).

2.4.4 Ends of paths, joins of subpaths

The shape of ends of paths is controlled by the following commands: \buttcap (implicit)\buttcap

\roundcap

\squarecap

define the end as a line segment, \roundcap adds a halfdisc, \squarecap adds a halfsquare.
While \squarecap is ignored for the path with zero length, \roundcap places a disc to the
given point. These commands do not apply to \vector and to closed paths (\circle, full
\oval, path constructions ended by \closepath).

The shape of joins of subpaths is controlled by the following commands: \mitterjoin\mitterjoin

\roundjoin

\beveljoin

(implicit) might be defined in such a way that “boundaries” of subpaths are prolonged until
they intersect (it might be a rather long distance for lines with a small angle between them);
\roundjoin corresponds to \roundcap for both subpaths; \beveljoin adds a convex hull of
terminal line segments of both subpaths.

Acknowledgements

We would like to thank Michael Wichura for granting us permission to use his implementation
of the algorithm for “pythagorean addition” from his PICTEX package. Thanks go to Michael
Vulis (MicroPress) for hints regarding a driver for the VTEX system. Walter Schmidt has
reviewed the documentation and code, and has tested the VTEX driver. The members of the
“TEX-Stammtisch” in Berlin, Germany, have been involved in the development of this package
as our guinea pigs, i.e., alpha-testers; Jens-Uwe Morawski and Herbert Voss have also been
helpful with many suggestions and discussions. Thanks to Claudio Beccari (curve2e) for some
macros and testing. Thanks to Petr Oľsák for some macros.

Finally we thank the members of The LATEX Team for taking the time to evaluate our new
implementation of the picture mode commands, and eventually accepting it as the “official”
pict2e package, as well as providing the README file.

9



References

[1] Leslie Lamport: LATEX – A Document Preparation System, 2nd ed., 1994

[2] Timothy Van Zandt: The pstricks bundle. CTAN: graphics/pstricks/, 1993, 1994, 2000

[3] David Carlisle: The pspicture package. CTAN: macros/latex/contrib/carlisle/, 1992

[4] Gerhard A. Bachmaier: The ebezier package. CTAN: macros/latex/contrib/ebezier/,
2002

10



Original Commands, [〈rad〉] or \maxovalrad ignored

'

&

$

%
2.5

'

&

$

%
2

'

&

$

%
1.5
#
"
 
!1

New Commands, [〈rad〉] or \maxovalrad depends on \unitlength

2.5
2

1.5
1

New Commands, [〈rad〉] or \maxovalrad a fixed length

2.5
2

1.5
1

Figure 6: Oval: Radius argument for \oval: length vs. number. The number at the centre of
each oval gives the relative value of \unitlength.

11



Original Commands New Commands

s

c s

s

c

s
Figure 7: Quadratic Bezier curves

Original Commands New Commands

s

c c

s

cc
s

s c
c

s
c
c s

Figure 8: Cubic Bezier curves

Original Commands New Commands

s

c s c

s

s

c

c

s

Figure 9: Quadratic (green) and Cubic Bezier curves

12


