The physics package

Sergio C. de la Barrera

October 11, 2012

Contents

1 Before you start 1
1.1 The purpose of this package 1
1.2 Other required packages 1
1.3 Using physics in your EATEX document 2
2 List of commands 2
2.1 Automatic bracing 2
2.2 Vector notation 2
2.3 Operators 3
2.4 Quick quad text 3
2.5 Derivatives 4
2.6 Dirac bra-ket notation 4

1 Before you start

1.1 The purpose of this package

The goal of this package is to make typesetting equations for physics simpler, faster, and more humanreadable. To that end, the commands included in this package have names that make the purpose of each command immediately obvious and remove any ambiguity while reading and editing physics code. From a practical standpoint, it is handy to have a well-defined set of shortcuts for accessing the long-form of each of these commands. The commands listed below are therefore defined in terms of their long-form names and then shown explicitly in terms of the default shorthand command sequences. These shorthand commands are meant make it easy to remember both the shorthand names and what each one represents.

1.2 Other required packages

The physics package requires xparse and amsmath to work properly in your $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ document. The amsmath package comes standard with most $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ distributions and is loaded by physics for your convenience. You may also already have xparse installed on your system as it is a popular package for defining $\mathrm{IAT}_{\mathrm{E}} \mathrm{Xmacros}$, however, if you are unsure you can either install it again using your local package manager (comes with most distributions) or by visiting the CTAN online package database, or you could even just try to use physics without worrying about it. Many modern $\mathrm{IAT}_{\mathrm{E}} \mathrm{Xcompilers}$ will locate and offer to download missing packages for you.

1.3 Using physics in your $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ document

To use the physics package, simply insert kage\{physics\}inthepreambleofyourdocument,before\begin\{document\}andafter\documentclass\{class\}:}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
\documentclass{class}
```

\usepackage\{physics\}\begin\{document\}}content...\end\{document\}}undefinedundefinedundefinedundefinedundefined

2 List of commands

2.1 Automatic bracing

\quantity	$\backslash \mathrm{qty}(\mathrm{a}+\mathrm{b}) \rightarrow(a+b)$	automatic () braces		
	\qty $[\mathrm{a}+\mathrm{b}] \rightarrow[a+b]$	automatic [] braces		
	\backslash qty $\|\mathrm{a}+\mathrm{b}\| \rightarrow\|a+b\|$	automatic \|	braces	
	$\backslash \mathrm{qty}\{\mathrm{a}+\mathrm{b}\} \rightarrow\{a+b\}$	automatic \{ \} braces		
	$\backslash \mathrm{qty} \backslash \mathrm{big}\} \rightarrow\}$	manual sizing (works with any of the above bracket types)		
	$\backslash \mathrm{qty} \backslash \operatorname{Big}\} \rightarrow\}$			
	$\backslash \text { qty } \backslash \operatorname{bigg}\} \rightarrow\}$			
	$\backslash \operatorname{qty} \backslash \operatorname{Bigg}\} \rightarrow\}$			
\absolutevalue	$\backslash \mathrm{abs}\{\mathrm{a}\} \rightarrow\|a\|$	automatic sizing; equivalent to \qtyla\|		
	$\backslash \mathrm{abs} \backslash \mathrm{Big}\{\mathrm{a}\} \rightarrow\|a\|$	inherits manual sizing syntax from \qty		
\backslash norm	\backslash norm $\{\mathrm{a}\} \rightarrow\\|a\\|$	automatic sizing		
\order	\backslash order $\left\{\mathrm{x}^{\wedge} 2\right\} \rightarrow \mathcal{O}\left(x^{2}\right)$	order symbol; automatic sizing and space handling		
\backslash poissonbracket	$\backslash \mathrm{pb}\{\mathrm{A}\}\{\mathrm{B}\} \rightarrow\{A, B\}$	same as \anticommutator		
\commutator	$\backslash \operatorname{comm}\{\mathrm{A}\}\{\mathrm{B}\} \rightarrow[A, B]$	automatic sizing		
\anticommutator	$\backslash \mathrm{acomm}\{\mathrm{A}\}\{\mathrm{B}\} \rightarrow\{A, B\}$	same as \poissonbracket		
	\acommutator $\{\mathrm{A}\}\{\mathrm{B}\} \rightarrow\{A, B\}$			

2.2 Vector notation

```
\vectorbold \(\backslash v b\{a\} \rightarrow \mathbf{a}\)
    \(\backslash \mathrm{vb} *\{\mathrm{a}\}, \backslash \mathrm{vb} *\{\) theta\} \(\rightarrow \boldsymbol{a}, \boldsymbol{\theta}\)
\vectorarrow \(\backslash\) va \(\{a\} \rightarrow \overrightarrow{\mathbf{a}}\)
    \(\backslash\) va*\{a\}, \va*\{\theta\} \(\rightarrow \overrightarrow{\boldsymbol{a}}, \overrightarrow{\boldsymbol{\theta}}\)
\vectorunit \(\quad\) vú\{a\} \(\rightarrow \hat{\mathbf{a}}\)
    \(\backslash v u *\{a\}, \backslash v u *\{\backslash\) theta \(\} \rightarrow \hat{\boldsymbol{a}}, \hat{\boldsymbol{\theta}}\)
\dotproduct \(\quad\) vdot \(\rightarrow\) • as in \(\mathbf{a} \cdot \mathbf{b}\)
```

upright/no Greek
italic/Greek
upright/no Greek
italic/Greek
upright/no Greek
italic/Greek
note that $\backslash d p$ is a protected $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ primitive

\crossproduct	\backslash cross $\rightarrow \times$ as in $\mathbf{a} \times \mathbf{b}$	
	$\backslash \mathrm{cp} \rightarrow \times$ as in $\mathbf{a} \times \mathbf{b}$	alternate name
\vnabla	\vnabla $\rightarrow \boldsymbol{\nabla}$ versus ∇	low-level macro for bold version
\gradient	$\backslash \mathrm{grad} \rightarrow \nabla$	
	$\backslash \mathrm{grad}\{\backslash \mathrm{Psi}\} \rightarrow \nabla \Psi$	handles spacing
	$\backslash \mathrm{grad} *\{\backslash$ Psi+\Phi $\} \rightarrow \boldsymbol{\nabla}(\Psi+\Phi)$	long-form (handles spacing and brackets)
\divergence	$\backslash \mathrm{div} \rightarrow \boldsymbol{\nabla}$.	note amsmath symbol \div renamed \divisionsymbol
	$\backslash \operatorname{div}\{\backslash \mathrm{vb}\{\mathrm{a}\}\} \rightarrow \boldsymbol{\nabla} \cdot \mathbf{a}$	handles spacing
	$\backslash d i v *\{\backslash \mathrm{vb}\{\mathrm{a}\}+\backslash \mathrm{vb}\{\mathrm{b}\}\} \rightarrow \boldsymbol{\nabla} \cdot(\mathbf{a}+\mathbf{b})$	long-form
\curl	\curl \rightarrow - \times	
	$\backslash \operatorname{curl}\{\backslash \mathrm{vb}\{\mathrm{a}\}\} \rightarrow \boldsymbol{\nabla} \times \mathbf{a}$	handles spacing
	$\backslash \mathrm{curl} *\{\backslash \mathrm{vb}\{\mathrm{a}\}+\backslash \mathrm{vb}\{\mathrm{b}\}\} \rightarrow \boldsymbol{\nabla} \times(\mathbf{a}+\mathbf{b})$	long-form

2.3 Operators

```
\tr \tr\rho }->\operatorname{tr}\rho\quad\mathrm{ trace
\rank \rank M }->\mathrm{ rank M matrix rank
\erf \erf(x)->erf(x) Gauss error function
```


2.4 Quick quad text

This set of commands produces text in math-mode padded by \quad spacing on either side. This is meant to provide a quick way to insert simple words or phrases in a sequence of equations. Each of the following commands includes a starred version which pads the text only on the right side with \quad for use in aligned environments such as cases.

General text:


```
\qas
\qin
\qcc }->\mathrm{ c.c. complex conjugate
```


2.5 Derivatives

2.6 Dirac bra-ket notation

The following collection of macros for Dirac notation contains two fundamental commands, \bra and \backslash ket, along with a set of more specialized macros which are essentially combinations of the fundamental pair. The specialized macros are both useful and descriptive from the perspective of generating physics code, however, the fundamental commands are designed to contract with one another algebraically when appropriate and are thus suggested for general use. For instance, the following code renders correctly ${ }^{1}$

$$
\backslash \text { bra }\{\backslash \text { phi }\} \backslash \operatorname{ket}\{\backslash \text { psi }\} \rightarrow\langle\phi \mid \psi\rangle \quad \text { as opposed to } \quad\langle\phi||\psi\rangle
$$

whereas a similar construction with higher-level macros will not contract in a robust manner

$$
\backslash \text { bra }\{\backslash \mathrm{phi}\} \backslash \text { dyad }\{\backslash \mathrm{psi}\}\{\backslash \mathrm{xi}\} \rightarrow\langle\phi||\psi\rangle\langle\xi|
$$

On the other hand, the correct output can be generated by sticking to the fundamental commands,

$$
\backslash \text { bra }\{\backslash \text { phi }\} \backslash \text { ket }\{\backslash \text { psi }\} \backslash \text { bra }\{\backslash \text { xi }\} \rightarrow\langle\phi \mid \psi\rangle\langle\xi|
$$

[^0]allowing the user to type out complicated quantum mechanical expressions without worrying about bra-ket contractions. That being said, the high-level macros do have a place in convenience and readability, as long as the user is aware of rendering issues that may arise due to an absence of automatic contractions.

$\backslash \mathrm{ket}$	$\backslash \operatorname{ket}\{\backslash \mathrm{psi}\} \rightarrow\|\psi\rangle$	automatic sizing
	\backslash ket* $\backslash \backslash$ psi $\} \rightarrow\langle\psi\|$	complex conjugate (looks like \backslash bra but does not inherit contraction)
\bra	$\backslash \mathrm{bra} \backslash$ psi\} $\rightarrow\langle\psi\|$	automatic sizing
	$\backslash \mathrm{bra*}\{\backslash \mathrm{psi}\} \rightarrow\|\psi\rangle$	complex conjugate (looks like \ket but does not inherit contraction)
	$\backslash \mathrm{bra}\{\backslash \mathrm{phi}\} \backslash \mathrm{ket}\{\backslash \mathrm{psi}\} \rightarrow\langle\phi \mid \psi\rangle$	automatic contraction
\innerproduct	\backslash braket $\{\mathrm{a}\}\{\mathrm{b}\} \rightarrow\langle a \mid b\rangle$	two-argument contraction; automatic sizing
	\backslash braket $\{\mathrm{a}\} \rightarrow\langle a \mid a\rangle$	single-argument; produces norm
	\backslash braket*\{a\}\{b\} $\rightarrow\langle b \mid a\rangle$ $\backslash i p\{a\}\{b\} \rightarrow\langle a \mid b\rangle$	complex conjugate; swaps arguments shorthand name
\outerproduct	\backslash dyad $\{\mathrm{a}\}\{\mathrm{b}\} \rightarrow\|a\rangle\langle b\|$	two-argument dyad; automatic sizing
	\backslash dyad\{a\} $\rightarrow\|a\rangle\langle a\|$	single-argument; produces projector
	\backslash dyad*\{a\}\{b\} $\rightarrow\|b\rangle\langle a\|$	complex conjugate; swaps arguments
	\backslash ketbra\{a\}\{b\} $\rightarrow\|a\rangle\langle b\|$	alternative name
	$\backslash \mathrm{op}\{\mathrm{a}\}\{\mathrm{b}\} \rightarrow\|a\rangle\langle b\|$	shorthand name
\expectationvalue	$\backslash \mathrm{expval}\{\mathrm{A}\} \rightarrow\langle A\rangle$	implicit form
	\backslash expval $\{\mathrm{A}\}\{\backslash \mathrm{Psi}\} \rightarrow\langle\Psi\| A\|\Psi\rangle$	explicit form
	$\backslash \mathrm{ev}\{\mathrm{A}\}\{\backslash \mathrm{Psi}\} \rightarrow\langle\Psi\| A\|\Psi\rangle$	shorthand name
\matrixelement	$\begin{aligned} & \backslash \text { matrixel }\{\mathrm{n}\}\{\mathrm{A}\}\{\mathrm{m}\} \rightarrow\langle n\| A\|m\rangle \\ & \backslash \operatorname{mel}\{\mathrm{n}\}\{\mathrm{A}\}\{\mathrm{m}\} \rightarrow\langle n\| A\|m\rangle \end{aligned}$	requires all three arguments shorthand name

[^0]: ${ }^{1}$ Note the lack of a space between the bra and ket commands. This is necessary is order for the bra to find the corresponding ket and form a contraction.

