\subsection{Specifying the Plotted Range} \begin{pgfplotsxykeylist}{\x min=\marg{coord},\x max=\marg{coord},min=\marg{coord},max=\marg{coord}} These options allow to define the axis limits, i.e.\ the lower left and the upper right corner. Everything outside of the axis limits will be clipped away. Each of these keys is optional, and missing limits will be determined automatically from input data. Here, the |min| and |max| keys set limits for $x$, $y$ and $z$ to the same \meta{coord}. If $x$-limits have been specified explicitly and $y$-limits are computed automatically, the automatic computation of $y$-limits will only considers points which fall into the specified $x$-range (and vice--versa). The same holds true if, for example, only |xmin| has been provided explicitly: in that case, |xmax| will be updated only for points for which $x \ge \,$|xmin| holds. This feature can be disabled using |clip limits=false|. Axis limits can be increased automatically using the |enlargelimits| option. \begin{codeexample}[] \begin{tikzpicture} \begin{axis}[title=Auto Limits] \addplot {x^2}; \end{axis} \end{tikzpicture} \end{codeexample} \begin{codeexample}[] \begin{tikzpicture} \begin{axis}[title={\texttt{xmin=0}},xmin=0] \addplot {x^2}; \end{axis} \end{tikzpicture} \end{codeexample} \begin{codeexample}[] \begin{tikzpicture} \begin{axis}[title={\texttt{ymax=10}},ymax=10] \addplot {x^2}; \end{axis} \end{tikzpicture} \end{codeexample} Note that even if you provide |ymax=10|, data points with $y>10$ will still be visualized -- producing a line which leaves the plotted range. See also the |restrict x to domain| and |restrict x to domain*| keys -- they allow to discard or clip input coordinates which are outside of some domain, respectively. During the visualization phase, i.e.\ during |\end{axis}|, these keys will be set to the final axis limits. You can access the values by means of |\pgfkeysvalueof{/pgfplots/xmin}|, for example: \begin{codeexample}[] \begin{tikzpicture} \begin{axis}[ % Show (automatically) computed limits: title={ Axis limits are $ [\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/xmin}} :\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/xmax}} ] \times [\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/ymin}} :\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/ymax}} ]$ }, ] \addplot {x^2}; \end{axis} \end{tikzpicture} \end{codeexample} \label{page:access:limits} This access is possible inside of any axis description (like |xlabel|, |title|, |legend entries| etc.) or any annotation (i.e. inside of |\node|, |\draw| or |\path| and coordinates in |(axis cs:|\meta{x}|,|\meta{y}|)|), but not inside of |\addplot| (limits may not be complete at this stage). \end{pgfplotsxykeylist} \begin{pgfplotsxykey}{\x mode=\mchoice{normal,linear,log} (initially normal)} Allows to choose between linear (=normal) or logarithmic axis scaling or logplots for each $x,y,z$-combination. Logarithmic plots use the current setting of |log basis x| and its variants to determine the basis (default is $e$). % FIXME : replicated in pgfplots.reference.scaling.tex \end{pgfplotsxykey} \begin{pgfplotsxykey}{\x\ dir=\mchoice{normal,reverse} (initially normal)} \pgfkeys{/pdflinks/search key prefixes in/.add={/pgfplots/,}{}} Allows to reverse axis directions such that values are given in decreasing order. \label{key:pgfplots:xydir} \begin{codeexample}[] \begin{tikzpicture} \begin{axis}[ xlabel=$x$ \emph{decreasing} $\to$, x dir=reverse] \addplot {x+rand*0.3}; \end{axis} \end{tikzpicture} \end{codeexample} \begin{codeexample}[] \begin{tikzpicture} \begin{axis}[ ylabel=$y$ \emph{decreasing} $\to$, y dir=reverse] \addplot {x^2}; \end{axis} \end{tikzpicture} \end{codeexample} Note that axis descriptions and relative positioning macros will stay at the same place as they would for non--reversed axes. \begin{codeexample}[] \begin{tikzpicture} \begin{axis}[ ylabel=$y$ \emph{decreasing} $\to$, xlabel=$x$ normal, title=reversed axis, y dir=reverse, colorbar, colorbar style={y dir=reverse}] \addplot+[mesh,scatter] {x^15}; \end{axis} \end{tikzpicture} \end{codeexample} Note that |colorbar|s won't be reversed automatically, you will have to reverse the sequence of color bars manually in case this is required as in the preceding example. \end{pgfplotsxykey} \begin{pgfplotskey}{clip limits=\mchoice{true,false} (initially true)} Configures what to do if some, but not all axis limits have been specified explicitly. In case |clip limits=true|, the automatic limit computation will \emph{only} consider points which do not contradict the explicitly set limits. This option has nothing to do with path clipping, it only affects how the axis limits are computed. \end{pgfplotskey} \begin{pgfplotsxykeylist}{% enlarge \x\ limits=\mchoice{auto,true,false,upper,lower,\meta{val},value=\meta{val},abs value=\meta{val},\\ abs=\meta{val},rel=\meta{val}} (initially auto), enlargelimits=\meta{common value}} Enlarges the axis size for one axis (or all of them for |enlargelimits|) somewhat if enabled. You can set |xmin|, |xmax| and |ymin|, |ymax| to the minimum/maximum values of your data and |enlarge x limits| will enlarge the canvas such that the axis doesn't touch the plots. \begin{itemize} \item The value \declaretext{true} enlarges the lower and upper limit. \item The value \declaretext{false} uses tight axis limits as specified by the user (or read from input coordinates). \item The value \declaretext{auto} will enlarge limits only for axis for which axis limits have been determined automatically. For three--dimensional figures, the \declaretext{auto} mechanism applies only for the $z$ axis. The $x$ and $y$ axis won't be enlarged. \item The value \declaretext{upper} enlarges only the upper axis limit while \declaretext{lower} enlarges only the lower axis limit. \item Values like `|enlarge x limits=0.1|' will enlarge lower and upper axis limit relatively (in this example, $10\%$ of the axis limits will be added on both sides). \item It is also possible to change just the relative threshold using the \declaretext{value=}\marg{val} key. It can be combined with any of the other possible values. For example, |\pgfplotsset{enlarge x limits={value=0.2,upper}}| will enlarge (only) the upper axis limit by $20\%$ of the axis range. Another example is |\pgfplotsset{enlarge x limits={value=0.2,auto}}| which changes the default threshold of the \declaretext{auto} value to $20\%$. \item While |value| uses relative thresholds, \declaretext{abs value} is used in the same way with absolute values. \paragraph{Attention:} |abs value| is applied \emph{multiplicative} for logarithmic axes! That means |abs value=10| for a logarithmic axis adds $\log 10$ to upper and/or lower axis limits. \item Finally, \declaretext{abs=}\marg{value} is the same as |true,abs value=|\marg{value} and \declaretext{rel=}\marg{value} is the same as |true,value=|\marg{value}. \end{itemize} \begin{codeexample}[] \begin{tikzpicture} \begin{axis} \addplot {5 * x^3 - x^2 + 4*x -2}; \end{axis} \end{tikzpicture} \end{codeexample} \begin{codeexample}[] \begin{tikzpicture} \begin{axis}[enlarge x limits=0.2] \addplot {5 * x^3 - x^2 + 4*x -2}; \end{axis} \end{tikzpicture} \end{codeexample} \begin{codeexample}[] \begin{tikzpicture} \begin{axis}[minor x tick num=4, enlarge x limits={rel=0.5,upper} ] \addplot {5 * x^3 - x^2 + 4*x -2}; \end{axis} \end{tikzpicture} \end{codeexample} \begin{codeexample}[] \begin{tikzpicture} \begin{axis}[minor x tick num=4, enlarge x limits={abs=3} ] \addplot {5 * x^3 - x^2 + 4*x -2}; \end{axis} \end{tikzpicture} \end{codeexample} \begin{codeexample}[] \begin{tikzpicture} \begin{loglogaxis}[enlarge x limits={abs=11}] \addplot+[domain=1:100000] {x^-2}; \end{loglogaxis} \end{tikzpicture} \end{codeexample} Note that |enlargelimits| is applied before any changes to axis limits are considered as part of |scale mode|: |enlargelimits| will always be applied. Afterwards, the choice |scale mode=scale uniformly| will enlarge limits once more in order to satisfy all scaling constraints. The two limit enlargements are independent of each other, i.e.\ even if you say |enlargelimits=false|, |scale mode| will still increase axis limits if this seems to be necessary. See |scale mode| (especially |scale mode=units only|) and |unit rescale keep size| for detail on how to disable limit enlargement caused by |scale mode|. \end{pgfplotsxykeylist} \begin{pgfplotsxykeylist}{% log origin \x=\mchoice{0,infty} (initially infty),% log origin=\mchoice{0,infty} (initially infty)}% Allows to choose which coordinate is the logical ``origin'' of a logarithmic plot (either for a particular axis or for all of them). The choice |log origin=infty| is probably useful for stacked plots: it defines the ``origin'' in log--coordinates to be $-\infty$. To be compatibly with older versions, this is the default. The choice |log origin=0| defines the logarithmic origin to be the natural choice $\log(1)=0$. This is particularly useful for |ycomb| plots. \end{pgfplotsxykeylist} \begin{pgfplotskey}{update limits=\mchoice{true,false} (initially true)} Can be used to interrupt updates of the data limits (for example, for single |\addplot| commands). This has the same effect as |\pgfplotsinterruptdatabb| ... |\endpgfplotsinterruptdatabb|. \end{pgfplotskey} \begin{environment}{{pgfplotsinterruptdatabb}} \index{Bounding Box Control!Disable \protect\emph{data} bounding box modifications} Everything in \meta{environment contents} will not contribute to the data bounding box. The same effect can be achieved with |update limits=false| inside curly braces. \end{environment}