\subsection{Error Bars} \label{sec:errorbars} {% \def\pgfplotserror#1{\ensuremath{\epsilon_{#1}}}% \PGFPlots\ supports error bars for normal and logarithmic plots. Error bars are enabled for each plot separately, using \meta{options} after |\addplot|: \pgfmanualpdflabel{/pgfplots/error bars}{}% \begin{codeexample}[code only] \addplot+[error bars/.cd,x dir=both,y dir=both] ... \end{codeexample} Error bars inherit all drawing options of the associated plot, but they use their own marker and style arguments additionally. \begin{codeexample}[] \begin{tikzpicture} \begin{axis} \addplot+[error bars/.cd, y dir=plus,y explicit] coordinates { (0,0) +- (0.5,0.1) (0.1,0.1) +- (0.05,0.2) (0.2,0.2) +- (0,0.05) (0.5,0.5) +- (0.1,0.2) (1,1) +- (0.3,0.1)}; \end{axis} \end{tikzpicture} \end{codeexample} \begin{codeexample}[] \begin{tikzpicture} \begin{axis} \addplot+[error bars/.cd, y dir=both,y explicit, x dir=both,x fixed=0.05, error mark=diamond*] coordinates { (0,0) +- (0.5,0.1) (0.1,0.1) +- (0.05,0.2) (0.2,0.2) +- (0,0.05) (0.5,0.5) +- (0.1,0.2) (1,1) +- (0.3,0.1)}; \end{axis} \end{tikzpicture} \end{codeexample} \pgfplotsset{anchor=center,/tikz/every picture/.append style={baseline}} \begin{codeexample}[] \pgfplotstabletypeset{pgfplots.testtable2.dat} \begin{tikzpicture} \begin{loglogaxis} \addplot+[error bars/.cd, x dir=both,x fixed relative=0.5, y dir=both,y explicit relative, error mark=triangle*] table[x=x,y=y,y error=errory] {pgfplots.testtable2.dat}; \end{loglogaxis} \end{tikzpicture} \end{codeexample} %-------------------------------------------------- % coordinates { % (32,32) % (64,64) % (128,128) +- (0,0.3) % (1024,1024) +- (0,0.2) % (32068,32068) +- (0,0.6) % (64000,64000) +- (0,0.6) % (128000,128000) +- (0,0.6) % }; %-------------------------------------------------- \begin{codeexample}[] \begin{tikzpicture} \begin{axis}[enlargelimits=false] \addplot[red,mark=*] plot[error bars/.cd, y dir=minus,y fixed relative=1, x dir=minus,x fixed relative=1, error mark=none, error bar style={dotted}] coordinates {(0,0) (0.1,0.1) (0.2,0.2) (0.5,0.5) (1,1)}; \end{axis} \end{tikzpicture} \end{codeexample} \begin{pgfplotsxykey}{error bars/\x\ dir=\mchoice{none,plus,minus,both} (initially none)} Draws either no error bars at all, only marks at $x+\pgfplotserror x$, only marks at $x-\pgfplotserror x$ or marks at both, $x+\pgfplotserror x$ and $x-\pgfplotserror x$. The $x$-error $\pgfplotserror x$ is acquired using one of the following options. The same holds for the |y dir| option. \end{pgfplotsxykey} \begin{pgfplotsxykey}{error bars/\x\ fixed=\marg{value} (initially 0)} Provides a common, absolute error $\pgfplotserror x=\text{\meta{value}}$ for all input coordinates. For linear $x$~axes, the error mark is drawn at $x \pm \pgfplotserror x$ while for logarithmic $x$~axes, it is drawn at $\log( x \pm \pgfplotserror x)$. Computations are performed in \PGF's floating point arithmetics. \end{pgfplotsxykey} \begin{pgfplotsxykey}{error bars/\x\ fixed relative=\marg{percent} (initially 0)} Provides a common, relative error $\pgfplotserror x = \text{\meta{percent}} \cdot x$ for all input coordinates. The argument \meta{percent} is thus given relatively to input $x$ coordinates such that $\text{\meta{percent}} = 1$ means $100\%$. Error marks are thus placed at $x \cdot (1 \pm \pgfplotserror x)$ for linear axes and at $\log(x \cdot (1 \pm \pgfplotserror x))$ for logarithmic axes. Computations are performed in floating point for linear axis and using the identity $\log(x \cdot (1 \pm \pgfplotserror x)) = \log(x) + \log( 1 \pm \pgfplotserror x)$ for logarithmic scales. \end{pgfplotsxykey} \begin{pgfplotsxykey}{error bars/\x\ explicit} Configures the error bar algorithm to draw $x$-error bars at any input coordinate for which user-specified errors are available. Each error is interpreted as absolute error, see |x fixed| for details. The different input formats of errors are described in section~\ref{sec:errorbar:input}. \end{pgfplotsxykey} \begin{pgfplotsxykey}{error bars/\x\ explicit relative} Configures the error bar algorithm to draw $x$-error bars at any input coordinate for which user-specified errors are available. Each error is interpreted as relative error, that means error marks are placed at $x (1 \pm \text{\meta{value}}(x))$ (works as for |error bars/x fixed relative|). \end{pgfplotsxykey} \begin{pgfplotskey}{error bars/error mark=\meta{marker}} Sets an error marker for any error bar. \marg{marker} is expected to be a valid plot mark, see section~\ref{sec:markers}. \end{pgfplotskey} \begin{pgfplotskey}{error bars/error mark options=\marg{key-value-list}} Sets a key-value list of options for any error mark. This option works similary to the \Tikz\ `|mark options|' key. \end{pgfplotskey} \begin{pgfplotskey}{error bars/error bar style=\marg{key-value-list}} Appends the argument to `|/pgfplots/every error bar|' which is installed at the beginning of every error bar. \end{pgfplotskey} \begin{pgfplotscodetwokey}{error bars/draw error bar} Allows to change the default drawing commands for error bars. The two arguments are \begin{itemize} \item the source point, $(x,y)$ and \item the target point, $(\tilde x,\tilde y)$. \end{itemize} Both are determined by \PGFPlots\ according to the options described above. The default code is \begin{codeexample}[code only] \pgfplotsset{ /pgfplots/error bars/draw error bar/.code 2 args={% \pgfkeysgetvalue{/pgfplots/error bars/error mark}% {\pgfplotserrorbarsmark}% \pgfkeysgetvalue{/pgfplots/error bars/error mark options}% {\pgfplotserrorbarsmarkopts}% \draw #1 -- #2 node[pos=1,sloped,allow upside down] {% \expandafter\tikz\expandafter[\pgfplotserrorbarsmarkopts]{% \expandafter\pgfuseplotmark\expandafter{\pgfplotserrorbarsmark}% \pgfusepath{stroke}}% }; } } \end{codeexample} \end{pgfplotscodetwokey} \subsubsection{Input Formats of Error Coordinates} \label{sec:errorbar:input}% Error bars with explicit error estimations for single data points require some sort of input format. This applies to `|error bars/|\meta{[xy]}| explicit|' and `|error bars/|\meta{[xy]}| explicit relative|'. Error bar coordinates can be read from `|plot coordinates|' or from `|plot table|'. The inline plot coordinates format is \begin{codeexample}[code only] \addplot coordinates { (1,2) +- (0.4,0.2) (2,4) +- (1,0) (3,5) (4,6) +- (0.3,0.001) } \end{codeexample} where $(1,2) \pm (0.4,0.2)$ is the first coordinate, $(2,4) \pm (1,0)$ the second and so forth. The point $(3,5)$ has no error coordinate. The `|plot table|' format is \begin{codeexample}[code only] \addplot table[x error=COLNAME,y error=COLNAME] \end{codeexample} or \begin{codeexample}[code only] \addplot table[x error index=COLINDEX,y error index=COLINDEX] \end{codeexample} These options are used as the `|x|' and `|x index|' options. You can supply error coordinates even if they are not used at all; they will be ignored silently in this case. }%