
The Penrose Package: Documentation
Andrew Stacey

loopspace@mathforge.org

1.0 from 2018/07/10

1 Introduction
The Penrose package is a TikZ library for drawing Penrose tiles. It currently
supports the kite/dart, rhombus, and pentagon tile sets. There are two main
methods for their placement: one that automatically generates a tiling, and one
that allows for “by hand” placement. Furthermore, the tiles themselves can be
deformed and will still (hopefully!) fit together in the correct fashion.

2 Initialisation
To use this package, load the tikz package and load penrose as a TikZ library.
Specifically, your preamble should contain:

\usepackage{tikz}
\usetikzlibrary{penrose}

3 Usage
Using this package splits into several components. There are the two main ways
of getting tiles on to the page, and then there are the ways of deforming or styling
the tiles once they are there.

3.1 Placing Tiles “By Hand”
It is possible to use the tiles as pics. These are mini-drawings introduced in
TikZ3.0 that are node-like in style, but a little more geared towards repeatable
drawings than boxes containing text. This package defines several pic types:

• Kite

1

loopspace@mathforge.org

• Dart

• Thin Rhombus

• Thick Rhombus

• Pentagon (Actually, there are three pentagons: pentagon 5,
pentagon 3, and pentagon 2. The number signifies how many pentagons
it goes next to.)

• Pentagram

• Boat

• Diamond

• Golden Triangle

• Reverse Golden Triangle

• Golden Gnomon

• Reverse Golden Gnomon

The main tiles can have arcs drawn on them to illustrate the matching rules.
The triangles and gnomon are not true Penrose tiles but rather can be used to
build tilings so they do not have the arcs. The two types of each triangle and
gnomon are actually different in that they have different matching rules. This is
best illustrated by deforming the paths (see Section 4).

There are two ways in TikZ to specify the pic type: either as the “con-
tents” of the pic or as the argument to the pic type key. Each of the tiles

2

comes with a shorthand key which specifies the pic type and also invokes the key
every Penrose tile. That is, the key dart calls the every Penrose tile key
and specifies the pic type as dart.

The tiles can be placed using standard TikZ methods. One important thing
to note is that by default, pics are like nodes in that they only respond to
ambient translations, and not to rotations and scaling. To make them notice
this, use the key transform shape or specify the transformation to the pic di-
rectly. If the shortcut keys are used to specify the tiles, this can be put in the
every Penrose pic style.

TikZ pics can be named, using the name=<name> key. When a Penrose tile has
been named then it can be used for positioning other tiles. Each edge is assigned
a label from a b c A B C and a new tile can be aligned with an old one along a
matching edge (a matches with A and so on).

The edge labels are as follows. For the pentagon 5, for example, the edges are
all the same and the numbers are used to distinguish between them.

a

A

c

C
a

A

c

C
a A
b B

a

Ab
B

a1
a2

a3a4

a5

A
b1

a1a2

b2

d
A1

c1c2

A2

C1
C2C3

C4
C5

C6C7 C8C9

C10

3

C1
C2C3

C4
B1

D
B2

D1 B1
B2D2

a
b c

A
B C

A
bC

a
Bc

To align a tile with an existing one, use the following key:

align with=<tile> along <edge>

where <tile> is the name given to an existing tile, and <edge> is the label on
the existing tile. If the tile being placed has edges that are identical (for example,
pentagon 5), this syntax extends to

align with=<tile> along <edge> using <number>

to specify which of the edges on the new tile to use.

\ begin { t i k z p i c t u r e }
\ p i c [k i t e , name=t i l e] ;
\ p i c [dart , a l i g n with=t i l e a long c] ;
\ p i c [pentagon 5 ,name=p t i l e , at ={(3 ,0) }] ;
\ p i c [pentagon 3 , a l i g n with=p t i l e a long a1 us ing 2] ;
\end{ t i k z p i c t u r e }

With judicious use of loops, quite complicated pictures can be rendered us-
ing simple code. (Note that the transform shape is not needed to apply the
transformations needed to place a tile using this syntax.)

4

\ begin { t i k z p i c t u r e } [
every rhombus / . s t y l e={

draw=black ,
u l t r a th ick ,

} ,
every th in rhombus / . s t y l e={

every rhombus / . try ,
f i l l =thinRhombus ,

} ,
every th i ck rhombus / . s t y l e={

every rhombus / . try ,
f i l l =thickRhombus ,

} ,
every c i r c l e arc / . s t y l e={

draw=c i r c l e A r c
} ,
every long arc / . s t y l e={

draw=longArc
}

]
\ p i c [r o t a t e =18, th i ck rhombus , name=a 0] ;
\ f o r each [eva luate=\k as \kmo us ing i n t (\k−1)] \k in

{ 1 , . . . , 4 }
{

\ p i c [th i ck rhombus , name=a\k , a l i g n with={a\kmo} along
A] ;

}
\ fo r each \k in { 0 , . . . , 4 }
{

\ p i c [th in rhombus , name=b\k , a l i g n with={a\k} along B] ;
\ p i c [th i ck rhombus , name=c\k , a l i g n with={b\k} along A] ;
\ p i c [th i ck rhombus , name=d\k , a l i g n with={b\k} along a] ;
\ p i c [th i ck rhombus , name=e\k , a l i g n with={c\k} along A] ;
\ f o r each \ l /\a in {{0/b} ,{1/B}}

\ p i c [th in rhombus , name=f \k\ l , a l i g n with={e\k} along
\a] ;

}
\ p i c [th in rhombus , name=g 0 , a l i g n with={f 10} along a] ;
\ p i c [th in rhombus , name=g 1 , a l i g n with={f 21} along A] ;
\ f o r each \ l /\a in {{0/a } ,{1/A}}

\ p i c [th i ck rhombus , name=h\ l , a l i g n with={g\ l } along \a] ;
\ p i c [th i ck rhombus , name=i , a l i g n with=g0 along B] ;
\ f o r each \ l /\a in {{0/a } ,{1/A}}

\ p i c [th i ck rhombus , name=j \ l , a l i g n with=i along \a] ;
\end{ t i k z p i c t u r e }

5

The tiles can be styled, either directly or using various keys. Each tile has the
following styles applied (in this order):

1. every Penrose Tile

2. every <name>

3. pic actions

The pic actions are any actions given directly to the tile, as in \pic[draw,thin rhombus];.
The kite, dart, and rhombus tiles also have arcs drawn on them and these are styled
as every circle arc and every long arc. The names come from the way the
arcs look on the rhombus shapes.

One other point is important to note about the tiles. They are actually clipped
against themselves. This ensures that the tiles do not overstep their bounds and
so when placed alongside each other then they do not go over each other. In
practical terms, this means that if drawn then the line width is half that which
might be expected (but when placed next to another tile, the two halves combine
to the expected width).

3.2 Placing Tiles Automatically
There is a way to specify a Penrose tiling using Lindenmayer systems. In brief,
this takes a golden triangle or gnomon (or one of the reverse ones) and repeatedly
decomposes it into smaller triangles and gnomon. Once a desired level has been
reached, the resulting triangles and gnomon are glued together in pairs to create
either darts and kites or rhombuses (of both types). This library contains an
implementation of this both for each of the tilings.

6

The user command is:

\PenroseDecomposition{<type>}{<level>}{<seed>}

where <type> is one of:

• kite for the kite and dart tiling,

• rhombus for the rhombus tiling,

• pentagon for the pentagon tiling.

• ktriangle for the triangular decomposition used to form the kite and dart
tiling but with the individual triangles

• rtriangle for the triangular decomposition used to form the rhombus tiling
but with the individual triangles.

The <seed> is a “word” that will be used to initiate the Lindenmayer system.
The key letters in the alphabet for the kite/darts and rhombuses are T, t, G, and
g. These actually correspond to the two triangles and two gnomons. For the
pentagons, the key letters are P, Q, R, G, B, D. These correspond to the three
pentagons, the pentagram, the boat, and the diamond. Other permitted letters
are [,], s, f, +, *, -, _, >. These refer to various transformations (for details, see
the implementation).

The <level> controls how far to take the iteration. The code is not particularly
optimised for speed, and once <level> gets to about 5 or 6 then we are at the
“make a cup of tea while compiling” stage, depending on the processor.

\ begin { t i k z p i c t u r e } [
every Penrose t i l e / . s t y l e={draw } ,
Penrose s tep=2cm,

]
\ PenroseDecomposit ion { k i t e }{0}{T}
\end{ t i k z p i c t u r e }

The same styling keys as for the pic tiles apply, together with some additional
ones. These allow styling the tiles by their number: a count is kept of the number
of tiles and each tile knows its own number. Specifically, two keys are tried:

1. Penrose tile <number>, and

2. Penrose tile={<number>}{<total>}

7

A word of warning is in order on the second of these. The <total> is not guar-
anteed to be correct. It is done by a quick count at the start of the process and
counts those letters which might result in a rendered tile. Not every letter in the
resulting word actually does. Nevertheless, this can be used to style a tile based
on what proportion of tiles have been rendered.

Lastly, Penrose step is used to control the size of the resulting picture.

\ begin { t i k z p i c t u r e } [
every Penrose t i l e / . s t y l e={draw } ,
Penrose s tep=4cm,
Penrose t i l e / . code 2 args={

\ pgfmathsetmacro \ t i n t {100∗#1/#2}
\ p g f k e y s a l s o { f i l l =black ! \ t i n t }

}
]
\ PenroseDecomposit ion {rhombus}{3}{T}
\end{ t i k z p i c t u r e }

4 Deforming Paths
This package provides the ability to deform the various tiles. The various tiles can
be built from four paths (labelled a, b, c, and d) together with their reverses. By
changing these paths, one can get a wide variety of different tiles with the same
fundamental matching rules. Indeed, by using asymmetric paths, the matching
rules can be enforced without the need for additional decoration.

Internally, the penrose library uses the spath3 package for storing and ma-
nipulating the paths.

To create a new edge path, use the key save Penrose path=<edge> where
<edge> is one of a, b, c, or d. There are no constraints on the size of the path as
all paths are scaled and transformed to fit the tiles. Once the edge paths have been
specified, they are welded together into the tiles using the following command:
\MakePenroseTile{<name>}

Here, <name> is one of the names of the tiles. This has global effect, as does
the definition of the edge paths. Internally, the tile paths are stored as spath
objects (from the spath3 package) so the commands of that package can be used
to, for example, make a copy of a tile. The internal name for a tile path is
Penrosepathtile<name> (no spaces) so can be cloned via:
\CloneSPath{Penrosepathtile<name>}{My Amazing Penrose Tile}

8

and restored with the same command (but names switched).

\ begin { t i k z p i c t u r e }
\ p i c [draw , dart , name=dart] ;
\ p i c [draw , k i t e , a l i g n with=dart along c] ;
\ p i c [draw , k i t e , a l i g n with=dart along C] ;
\CloneSPath{ P e n r o s e p a t h t i l e k i t e }{ O r i g i n a l k i t e }
\CloneSPath{ P e n r o s e p a t h t i l e d a r t }{ O r i g i n a l dart }
\path [save Penrose path=a] (0 , 0) to [out=−30, in =100]

(1 , 0) ;
\path [save Penrose path=c] (0 , 0) to [out=−40, in =140]

(1 , 0) ;
\ MakePenroseTile { k i t e }
\ MakePenroseTile { dart }
\ p i c [x s h i f t =2cm, draw , dart , name=dart] ;
\ p i c [draw , k i t e , a l i g n with=dart along c] ;
\ p i c [draw , k i t e , a l i g n with=dart along C] ;
\CloneSPath{ O r i g i n a l k i t e }{ P e n r o s e p a t h t i l e k i t e }
\CloneSPath{ O r i g i n a l dart }{ P e n r o s e p a t h t i l e d a r t }
\ p i c [x s h i f t =4cm, draw , dart , name=dart] ;
\ p i c [draw , k i t e , a l i g n with=dart along c] ;
\ p i c [draw , k i t e , a l i g n with=dart along C] ;
\end{ t i k z p i c t u r e }

With deformed tiles, there is no guarantee that the inner arcs will match up
perfectly.

5 More Examples
Let’s set some aesthetically pleasing shapes.

9

\ begin { t i k z p i c t u r e }
\path [save Penrose path=a] (0 , 0) to [out=−30, in =100]

(1 , 0) ;
\path [save Penrose path=b] (0 , 0) to [out =0, in =140] (1 , 0) ;
\path [save Penrose path=c] (0 , 0) to [out=−40, in =140]

(1 , 0) ;
\ MakePenroseTile { th in rhombus}
\ MakePenroseTile { th i ck rhombus}
\ MakePenroseTile { golden t r i a n g l e }
\ MakePenroseTile { r e v e r s e golden t r i a n g l e }
\ MakePenroseTile { golden gnomon}
\ MakePenroseTile { r e v e r s e golden gnomon}
\ MakePenroseTile { k i t e }
\ MakePenroseTile { dart }
\end{ t i k z p i c t u r e }

Styling the first tile. Note that as the pattern is formed by repeating two
different initial seeds 5 times, there are 10 “first tiles” in each overall pattern.

\ begin { t i k z p i c t u r e } [
every Penrose t i l e / . s t y l e={draw } ,
Penrose t i l e 1/ . s t y l e={ f i l l =ye l low } ,

]
\ f o r each \ tp /\ pos in

{rhombus/0cm, r t r i a n g l e /2 .5cm, k i t e /5cm, k t r i a n g l e /7 .5cm}
{
\ begin { scope } [x s h i f t =\pos]
\ f o r each [eva luate=\k as \mk us ing

{\k+Mod(\k , 2) } , eva luate=\k as \ax us ing {Mod(\k , 2)
== 0 ? "T" : " t " }] \k in { 0 , . . . , 9 } {

\ begin { scope } [r o t a t e=\mk∗36]
\ PenroseDecomposit ion {\ tp }{1}{\ ax}
\end{ scope }

}
\end{ scope }
}
\end{ t i k z p i c t u r e }

A more detailed decomposition, with more and more tinting applied to teach

10

tile. Roughly half of the counted tiles are rendered, and the ordering in which they
are rendered is not at first an obvious one (though it is in general from “outside
in”).

Note that the key tint fill colour is not a TikZ native. It is defined as:

\makeatletter
\tikzset{

tint fill colour/.code={%
\edef\@temp{%

\def\noexpand\tikz@fillcolor{\tikz@fillcolor!#1}%
\noexpand\tikz@addoption{%

\noexpand\pgfsetfillcolor{\tikz@fillcolor!#1}%
}%

}%
\@temp

}
}
\makeatother

\ begin { t i k z p i c t u r e } [
every Penrose t i l e / . s t y l e={draw } ,
every k i t e / . s t y l e={ f i l l =rever seGo ldenTr iang l e } ,
every dart / . s t y l e={ f i l l =go ldenTr iang l e } ,
Penrose t i l e / . code 2 args={

\ pgfmathsetmacro \ t i n t {100∗(1 − 1.5∗#1/#2)) }
\ p g f k e y s a l s o { t i n t f i l l c o l our=\t i n t }

}
]
\ f o r each [eva luate=\k as \mk us ing

{\k+Mod(\k , 2) } , eva luate=\k as \ax us ing {Mod(\k , 2)
== 0 ? "T" : " t " }] \k in { 0 , . . . , 9 } {

\ begin { scope } [r o t a t e=\mk∗36]
\ PenroseDecomposit ion [Penrose s tep=5cm] { k i t e }{4}{\ ax}
\end{ scope }

}
\end{ t i k z p i c t u r e }

11

An example with “manual placement”.

12

\ begin { t i k z p i c t u r e } [
every Penrose p i c / . s t y l e={

draw=black ,
u l t r a th ick ,

} ,
every k i t e / . s t y l e={

f i l l =k i t e ,
} ,
every dart / . s t y l e={

f i l l =dart ,
} ,
every c i r c l e arc / . s t y l e={

draw=c i r c l e A r c
} ,
every long arc / . s t y l e={

draw=longArc
}

]
\ p i c [dart , name=a 0] ;
\ f o r each [eva luate=\k as \kmo us ing i n t (\k−1)] \k in

{ 1 , . . . , 4 } {
\ p i c [dart , name=a\k , a l i g n with={a\kmo} along a] ;

}
\ f o r each \k in { 0 , . . . , 4 } {

\ fo r each \ l /\ e /\ ee in {0/ c/a ,1/C/A} {
\ p i c [k i t e , name=b\ l \k , a l i g n with={a\k} along \e] ;
\ p i c [dart , name=c\ l \k , a l i g n with={b\ l \k} along \ ee] ;
\ p i c [k i t e , name=d\ l \k , a l i g n with={c\ l \k} along \e] ;

}
\ p i c [k i t e , name=e\k , a l i g n with={c 0\k} along C] ;
\ p i c [dart , name=f \k , a l i g n with={c 0\k} along a] ;
\ f o r each \e in {c ,C} {

\ p i c [k i t e , name=g\k , a l i g n with={f \k} along \e] ;
}

}
\end{ t i k z p i c t u r e }

13

The decomposition rules for the Lindenmayer system can be illustrated by
drawing each tile together with the result of one decomposition superimposed on
top.

\ fo r each \ax in {T, t ,G, g} {

\ begin { t i k z p i c t u r e }
\ fo r each \ tp /\ pos in

{rhombus/0cm, r t r i a n g l e /2cm, k i t e /4cm, k t r i a n g l e /6cm}
{
\ begin { scope } [x s h i f t =\pos]

\ PenroseDecomposit ion [every
path / . s t y l e={draw=red , u l t r a th i ck }]{\ tp }{0}{\ ax}

\ PenroseDecomposit ion [every
path / . s t y l e={ f i l l =gray ! 5 0 , f i l l
opac i ty =.5 , draw=black }]{\ tp }{1}{\ ax}

\end{ scope }
}
\end{ t i k z p i c t u r e }

}

14

The tiles can make interesting forms by themselves.

15

\ begin { t i k z p i c t u r e } [
s c a l e =2,
every Penrose p i c / . s t y l e={

trans form shape ,
} ,
every golden t r i a n g l e / . s t y l e={

draw=black ,
u l t r a th ick ,
f i l l =go ldenTr iang le ,

} ,
every r e v e r s e golden t r i a n g l e / . s t y l e={

draw=black ,
u l t r a th ick ,
f i l l =reverseGoldenTr iang le ,

} ,
every golden gnomon / . s t y l e={

draw=black ,
u l t r a th ick ,
f i l l =goldenGnomon ,

} ,
every r e v e r s e golden gnomon / . s t y l e={

draw=black ,
u l t r a th ick ,
f i l l =reverseGoldenGnomon ,

} ,
]
\ p i c [golden t r i a n g l e , name=a] ;
\ p i c [r e v e r s e golden t r i a n g l e , a l i g n with=a along a] ;
\ p i c [r e v e r s e golden t r i a n g l e , a l i g n with=a along b] ;
\ p i c [r e v e r s e golden t r i a n g l e , a l i g n with=a along c] ;
\ begin { scope } [x s h i f t =2cm]
\ p i c [r e v e r s e golden t r i a n g l e , name=a] ;
\ p i c [golden t r i a n g l e , a l i g n with=a along A] ;
\ p i c [golden t r i a n g l e , a l i g n with=a along B] ;
\ p i c [golden t r i a n g l e , a l i g n with=a along C] ;
\end{ scope }
\ begin { scope } [y s h i f t=−3cm]
\ p i c [golden gnomon , name=a] ;
\ p i c [r e v e r s e golden gnomon , a l i g n with=a along C] ;
\ p i c [r e v e r s e golden gnomon , a l i g n with=a along b] ;
\ p i c [r e v e r s e golden gnomon , a l i g n with=a along A] ;
\ begin { scope } [x s h i f t =2cm]
\ p i c [r e v e r s e golden gnomon , name=a] ;
\ p i c [golden gnomon , a l i g n with=a along c] ;
\ p i c [golden gnomon , a l i g n with=a along B] ;
\ p i c [golden gnomon , a l i g n with=a along a] ;
\end{ scope }
\end{ scope }
\end{ t i k z p i c t u r e }

16

17

\ begin { t i k z p i c t u r e } [
every rhombus / . s t y l e={

draw=black ,
u l t r a th ick ,

} ,
every th in rhombus / . s t y l e={

every rhombus / . try ,
f i l l =thinRhombus ,

} ,
every th i ck rhombus / . s t y l e={

every rhombus / . try ,
f i l l =thickRhombus ,

} ,
every c i r c l e arc / . s t y l e={

draw=c i r c l e A r c
} ,
every long arc / . s t y l e={

draw=longArc
}

]
\ p i c [r o t a t e =18, th i ck rhombus , name=a 0] ;
\ f o r each [eva luate=\k as \kmo us ing i n t (\k−1)] \k in

{ 1 , . . . , 4 }
{

\ p i c [th i ck rhombus , name=a\k , a l i g n with={a\kmo} along
A] ;

}
\ fo r each \k in { 0 , . . . , 4 }
{

\ p i c [th in rhombus , name=b\k , a l i g n with={a\k} along B] ;
\ p i c [th i ck rhombus , name=c\k , a l i g n with={b\k} along A] ;
\ p i c [th i ck rhombus , name=d\k , a l i g n with={b\k} along a] ;
\ p i c [th i ck rhombus , name=e\k , a l i g n with={c\k} along A] ;
\ f o r each \ l /\a in {{0/b} ,{1/B}}

\ p i c [th in rhombus , name=f \k\ l , a l i g n with={e\k} along
\a] ;

}
\ p i c [th in rhombus , name=g 0 , a l i g n with={f 10} along a] ;
\ p i c [th in rhombus , name=g 1 , a l i g n with={f 21} along A] ;
\ f o r each \ l /\a in {{0/a } ,{1/A}}

\ p i c [th i ck rhombus , name=h\ l , a l i g n with={g\ l } along \a] ;
\ p i c [th i ck rhombus , name=i , a l i g n with=g0 along B] ;
\ f o r each \ l /\a in {{0/a } ,{1/A}}

\ p i c [th i ck rhombus , name=j \ l , a l i g n with=i along \a] ;
\end{ t i k z p i c t u r e }

18

Lastly, here’s an example that generates full page patterns.

\ fo r each \ tp /\ l v l in {rhombus /5 , rhombus /6 , k i t e /5 , k i t e /6}
{
\ begin { t i k z p i c t u r e } [

every Penrose t i l e / . s t y l e={draw } ,
remember p i c ture ,
over lay ,
s c a l e =20

]
\ coord inate (a) at (cur rent page . c en te r) ;
\ begin { scope } [s h i f t ={(a) }]
\ f o r each [eva luate=\k as \mk us ing

{\k+Mod(\k , 2) } , eva luate=\k as \ax us ing {Mod(\k , 2)
== 0 ? "T" : " t " }] \k in { 0 , . . . , 9 } {

\ begin { scope } [r o t a t e=\mk∗36]
\ PenroseDecomposit ion {\ tp }{\ l v l }{\ax}
\end{ scope }

}
\end{ scope }
\end{ t i k z p i c t u r e }
\newpage
}

19

20

21

22

23

	1 Introduction
	2 Initialisation
	3 Usage
	3.1 Placing Tiles ``By Hand''
	3.2 Placing Tiles Automatically

	4 Deforming Paths
	5 More Examples

