
The parskip package∗

Frank Mittelbach

September 12, 2018

Abstract

The parskip package helps in implementing paragraph layouts where
the paragraphs are separated by a vertical space instead of (or in addition
to) indenting them.

The package can be used with any document class at any size. By
default it produces the following paragraph layout: Zero \parindent and
non-zero \parskip. The stretchable glue in \parskip helps LATEX in find-
ing the best place for page breaks.

1 Introduction

Many LATEX constructs are internally built by using the paragraph mechanism
even if technically there aren’t text paragraphs. In most such cases the LATEX
code handles indentation and suppressed it if necessary. But unfortunately this
is normally not done for \parskip (as that is zero in the default layouts) and
thus changing it will result in vertical spaces in unexpected places.

This package attempts to fix the spacing in table of contents structures, list
environments, and around display headings that would get screwed up by a
positive \parskip value.

It is, however, is no more than quick fix; the ‘proper’ way to achieve effects
as far-reaching as this is to create a new class.

1.1 History

This file was originally developed by Hubert Partl in 1989 (i.e., for LATEX 2.09)
to provide a somewhat crude solution to an existing problem (in case no proper
document class (back then called document style) support was available.

About ten years later Robin Fairbairns picked up the orphaned package and
his version was then the one available for LATEX 2ε during the next 15+ years.

Finally, while working on the next edition of the LATEX Companion the
current author did a reimplementation, that added support for TOC data and
heading structures. Also a few additional key/value options were added to make

∗This is a reimplementation of a package originally written by Hubert Partl in 1989 and
later maintained by Robin Fairbairns.

1



the package more useful. It still is and will remain an inferior choice compared
to a properly designed document class. But it offers a starting point if nothing
is around.

2 The user interface

The parskip package doesn’t offer any document user commands and just needs
loading with \usepackage.

2.1 Options to customize the package

All of the package options are implemented as key/value options.

skip With the package option skip it is possible to explicitly specify the vertical
space between paragraphs. If the option is not given (or given without a
value) then .5\baselineskip plus 2pt of stretch is assumed.

indent With the package option indent it is possible to explicitly the para-
graph indentation. Using this option without a value keeps the document
class indentation unchanged, if it is specified with a value then that value
is used. If the package is loaded without this option the indentation is set
to zero.

parfill With package option parfill, the package also adjusts \parfillskip
to impose a minimum space at the end of the last line of a paragraph. If
specified without a value then 30pt are assumed, if a value is given that
that forms the minimum.

3 Differences to the original package

If the package us used without any options or just with the option parfill it
behaves like the earlier version, except that now the spacing around headings
is also adjusted (not adding extra \parskip). If this is not desirable when
processing an old document it can be avoided by explicitly requesting version
v1 as follows:

\usepackage{parskip}[=v1]

Of course, the new options, etc. are then also not available.

4 Sources, bugs and issues

The official production version is available from CTAN. The latest (develop-
ment) sources are maintained at GitHub at:

https://github.com/FrankMittelbach/fmitex/tree/parskip/parskip

2



In case of problems with the package you can report them at

https://github.com/FrankMittelbach/fmitex/issues

Please provide a minimal test example that can be run and doesn’t use packages
not in a standard LATEX distribution (and as little as possible to show the issue).

5 The Implementation

1 〈∗package〉

5.1 The main implementation part

2 \NeedsTeXFormat{LaTeX2e}[2018-04-01]

3

4 \DeclareRelease {v1}{2001-04-09}{parskip-2001-04-09.sty}

5 \DeclareCurrentRelease{v2}{2018-08-24}

6 \ProvidesPackage{parskip}[2018-08-24 v2.0a non-zero parskip adjustments]

5.1.1 Option handling

Here we define all option keys for use as package options:

7 \RequirePackage{kvoptions}

8 \SetupKeyvalOptions{family=parskip,prefix=parskip@}

The key indent defines the amount of indentation for each paragraph. If
not given the indentation will be zero (default) and if given without a value
then the outer value from the document class will get used, otherwise the given
value is used.

9 \DeclareStringOption[0pt]{indent}[\parindent]

The key parfill defines a minimum amount of white space that should
be left in the last line. By default the last line can get completely fill up. If
given without a value the default (as before) is to require a minimum of 30pt,
otherwise the given value is used.

10 \DeclareStringOption[0pt]{parfill}[30pt]

The key skip defines the vertical separation between paragraphs. If not
given the default (as before) is to use half a \baselineskip plus a stretch of
2pt to add some flexibility. If given, one need to provide an explicit value which
is then used as a separation (and it needs to contain any extra stretch if that is
wanted, i.e., there is no extra stretch added in this case).

11 \DeclareStringOption{skip}

Execute any package options:

12 \ProcessKeyvalOptions*

So now we can evaluate the given options and adjust the parameter settings:

13 \ifx\parskip@skip\@empty

3



If no skip was given (or it was empty) set \parskip to .5\baselineskip plus
2pt stretch. This has to be done in 2 steps as \baselineskip might already
contain a stretch.

14 \parskip.5\baselineskip

15 \advance\parskip 0pt plus 2pt\relax

16 \else

Otherwise set it to the specified value:

17 \parskip\parskip@skip\relax

18 \fi

Setting \parfillskip was suggested by Donald Arseneau at some point on
comp.text.tex:

19 \parfillskip \parskip@parfill\relax

20 \advance\parfillskip 0pt plus 1fil\relax

\parindent gets whatever was specified. If the key was given without an option
this will essentially reassign the now “current” value.

21 \parindent\parskip@indent\relax

5.2 Handling document elements

Setting up a non-zero \parskip has some side-effects in document elements such
as lists or headings etc. Here we try to keep these side-effects somewhat under
control.

We make use of the etoolbox package to do patching.

22 \RequirePackage{etoolbox}

5.2.1 Lists

To accompany this, the vertical spacing in the list environments is changed to
use the same as \parskip in all relevant places (for \normalsize only), i.e.

\parsep = \parskip

\itemsep = \z@ % add nothing to \parskip between items

\topsep = \z@ % add nothing to \parskip before first item

However, if the user explicitly asked for a zero parskip (via the skip option)
we shouldn’t do this but rather keep the default list settings, so we better check
for this.

23 \ifdim \parskip > 0pt

24 \def\@listI{\leftmargin\leftmargini

25 \topsep\z@ \parsep\parskip \itemsep\z@}

26 \let\@listi\@listI

27 \@listi

28 \def\@listii{\leftmargin\leftmarginii

29 \labelwidth\leftmarginii\advance\labelwidth-\labelsep

30 \topsep\z@ \parsep\parskip \itemsep\z@}

4



31 \def\@listiii{\leftmargin\leftmarginiii

32 \labelwidth\leftmarginiii\advance\labelwidth-\labelsep

33 \topsep\z@ \parsep\parskip \itemsep\z@}

34 %

35 % and finally ...

36 % \partopsep = \z@ % don’t even add anything before first item (beyond

37 % % \parskip) even if the list is preceded by a blank line

38 \partopsep=\z@

39 \fi

5.2.2 TOCs and similar lists

Within a table of contents or a list of figures we don’t want any additional
vertical spacing just because the individual lines in such a list are implemented
as one-line paragraphs. So we locally set the \parskip to zero. Should be really
something that is done already in LATEX.

40 \patchcmd\@starttoc

41 {\begingroup \makeatletter}

42 {\begingroup \makeatletter \parskip\z@}

43 {}{\typeout{Couldn’t patch \string\@starttoc}}

5.2.3 Standard headings

For the same reason we don’t want to see an additional \parskip being added
before and after a display heading, so we subtract its value (in two places):

44 \patchcmd\@startsection

45 {\addvspace\@tempskipa}

46 {\advance\@tempskipa-\parskip\addvspace\@tempskipa}

47 {}{\typeout{Couldn’t patch \string\@startsection}}

48 \patchcmd\@xsect

49 {\vskip\@tempskipa}

50 {\advance\@tempskipa-\parskip\vskip\@tempskipa}

51 {}{\typeout{Couldn’t patch \string\@xsect}}

5.2.4 titlesec headings

If titlesec is used then headings are built using different commands and we have
to cancel the \parskip there. The principle is the same. Of course, the patching
should only happen if that package really got loaded, so we defer it to the start
of the document and test for it:

52 \AtBeginDocument{%

53 \ifx\ttl@straight@ii\@undefined\else % titlesec got loaded

54 \patchcmd\ttl@straight@ii

55 {\addvspace{\@tempskipa}}%

56 {\advance\@tempskipa-\parskip \addvspace\@tempskipa}%

57 {}{\typeout{Couldn’t patch \string\ttl@straight@ii}}%

58 \patchcmd\ttl@straight@ii

59 {\vspace{\@tempskipb}}%

5



60 {\advance\@tempskipb-\parskip \vspace\@tempskipb}%

61 {}{\typeout{Couldn’t patch \string\ttl@straight@ii}}%

62 \patchcmd\ttl@part@ii

63 {\vspace*{\@tempskipa}}%

64 {\advance\@tempskipa-\parskip \vspace*\@tempskipa}%

65 {}{\typeout{Couldn’t patch \string\ttl@part@ii}}%

66 \patchcmd\ttl@part@ii

67 {\vspace{\@tempskipb}}%

68 {\advance\@tempskipb-\parskip \vspace\@tempskipb}%

69 {}{\typeout{Couldn’t patch \string\ttl@part@ii}}%

70 \patchcmd\ttl@page@ii

71 {\vspace*{\@tempskipa}}%

72 {\advance\@tempskipa-\parskip \vspace*\@tempskipa}%

73 {}{\typeout{Couldn’t patch \string\ttl@page@ii}}%

74 \patchcmd\ttl@page@ii

75 {\vspace{\@tempskipb}}%

76 {\advance\@tempskipb-\parskip \vspace\@tempskipb}%

77 {}{\typeout{Couldn’t patch \string\ttl@page@ii}}%

78 \fi}

5.3 Closing shop

79 〈∗package〉

6


