
The odesandpdes package∗

Anakin
anakin@ruc.dk

Released 2024/01/17

Abstract

This package is the solution no one asked for, to a problem nobody had. Have
you ever thought to yourself "wow, I sure do dislike having to remember multiple
macros for my odes and pdes" and the author of this package has to agree, whole-
heartedly. In the modern world of "tik-toking" and "family guy surfing", our brains
have rotted beyond salvage for even basic levels of cognitive recall. This package
aims to fix this, through two macros that have been set to each have an identical form
and function, with an emphasis on intuitive use. Through setting options, the mul-
tiple common notational style are easily swapped between, all by a single option.
You’re welcome.

Contents

1 Usage 2
1.1 Options . 2
1.2 The Meat and Potatoes . 2

2 Examples of use 5
2.1 Common Use Examples . 5
2.2 "at x;" Usage Examples . 6
2.3 Prime Count Limits . 7

3 Package Implementation 8
3.1 Set-up . 8

3.1.1 Package Options . 8
3.2 Package Configuration . 9

3.2.1 To not conflict with amsmath . 9
3.3 Foundational macros . 10

3.3.1 The ‘Yoinkers’ . 11
3.3.2 Macro ‘Checkpoints’ . 12

3.4 Ancilliary Functions . 12
3.4.1 Variable Macronames . 12
3.4.2 Determing the next token . 13

3.5 Notational Morphology . 14
3.6 Notational Shaping Tools . 17

∗This document corresponds to odesandpdes v1.0.0, dated 2024/01/17.

1

My funny little ODE/PDE package

Start by first having odesandpdes.sty downloaded in an accessible directory, or
in the same directory as your overleaf main.tex, using it by inserting;

\usepackage[⟨options ⟩]{odesandpdes}

into the preamble, Ideally after any font changing packages you use.

1 Usage

If the reader does not wish to be gradually introduced to the package and its features,
feel free to skip directly to section 2.

1.1 Options

The options included are based off of the three most common notations (accord-notation
maxprimes ing to Wikipedia), Lagrange, Leibniz, and Newton. They can be accessed through the

[⟨options⟩] when importing the package;
\usepackage[notation=⟨option ⟩]{odesandpdes}

In the case of Lagrange or Newton notation, there is the maxprimes option for de-
termination of how many physical markings are allowed to be made before the notation
switches to a symbolic version;

\usepackage[maxprimes=⟨integer ⟩]{odesandpdes}

However, if one might wish to change it on a section to section basis, the command\setDE
\setDE{⟨options⟩} is able to take any package option as an argument and will apply the
new option going forward.

Option list Default Value Valid Arguments
notation Leibniz default, Lagrange, Leibniz, Newton
maxprimes 3 maxprimes = n,n ∈ N+

1.2 The Meat and Potatoes

The command(s) are approached with the philosophy of of an intuitive and modu-
lar usage. The full extent of its usage can look like;

\ode*[x]^2 X(x) =\ode T_{\eta} at 0; -\alpha⇒
d2

dx2 X(x) = dTη

dt

»»»»»»»»t =0
−α

very quickly, and very easily building complex interactions of differentials. The quick
functional break down of each element that comprises the macro;

\ode⟨star⟩[⟨variable⟩]^⟨degree⟩ {⟨function⟩}at ⟨position⟩;
Argument Usage

[⟨variable⟩] The variable being derived
⟨degree⟩ The order/degree of the derivative

{⟨function⟩} The function being derived
at ⟨point⟩; Where the function is being derived

All arguments are conditionally optional, only the function is mandatory, but the com-
mand can forgo needing a function if a star is placed.

2

Notation Style

There are 3 distinct notational styles one can choose between. This choice can be\LagrODE
\LeibODE
\NewtODE
\LagrPDE
\LeibPDE
\NewtPDE

made as a package option in the preamble, in the text with \setDE{⟨options⟩}, or if one
only needs to use a notation style once, through its respective macro.

In essense, all the \ode or \pde commands do are call the respective notational vari-
ent aligned with the currently set option. This makes it simple enough to just use one of
the notational varients, should one wish to do so:

\LagrODE[x] c = \LeibODE[x] c = \NewtODE[x] c ⇒ c ′ =
dc

dx
=
⋅c

This also means that all these functions are identical in what arguments they take.

Variable and Function Arguments

The most barebone form can be understood as:\ode
\ode* \ode[⟨variable⟩]{⟨ function⟩}

\ode*[⟨variable⟩]
and for the sake of parity, the PDE usage is identical:\pde

\pde* \pde[⟨variable⟩]{⟨ function⟩}
\pde*[⟨variable⟩]

Any value you give to the optional [⟨variable⟩] argument will be represented as the
variable being derived. While the mandatory {⟨function⟩} argument will be the function
you are deriving. Say you wish to indicate you are deriving X(t), simple as writing
\ode[t]{X}, however, its worth noting that t is the default variable so writing \ode{X}
will produce identical results. Hence \ode[t]{X} = \ode{X} will produce;

\ode[t]{X} =\ode{X} ⟹
dX

dt
=

dX

dt

While the {⟨function⟩} argument is mandatory using the non-starred command, using
the starred varient omits the need for the {⟨function⟩} argument. Therefor, writing the
exact same equation, just starred \ode*[t]{X} = \ode*{X} will instead produce;

\ode*[t]{X} =\ode*{X} ⟹
d
dt

X =
d
dt

X

Effectively one can rewrite the ‘bare-bones’ display as:

\ode⟨star⟩[⟨variable⟩]{⟨ function⟩}

Degree of Derivative

The previously shown stated section is something the reader has likely encountered
before, made themselves. This is where this package begins to differentiate1 itself. Con-
sider:

\ode⟨star⟩[⟨variable⟩]↑⟨degree⟩{⟨function⟩}
1Calculus Pun!

3

A feature of this family of commands, is that it can ‘easily’ recognize a following
exponent should one be placed. There was rational in choosing to check for the exponent
immediately after the macro command opposed to checking for the exponent at the end
after the function. As, often you would want add a higher degree very quickly as opposed
to after defining the function.

\ode^2{f(x)} as opposed to \ode{f(x)}^2

This was one of the main motivations of creating a package to begin with as instead
of needing, maybe, two personalized commands, such as “\ddt{f} and \ddxx{f}”, or
“\dd{x}{f} and \dd[2]{x}{f}”. One simply needs to treat the \ode macro itself as
being raised to a higher degree.

\ode* \left(\ode{f} \right)=\ode^2{f} ⇒
d
dt

(d f

dt
) = d2 f

dt2

Defining Where the Derivative is

Imagine you, as the reader, are trying to quickly and easily write up the boundry
conditions of your problem. One could always make another macro, in what is no doubt
an impressive display of differential shortcuts. Or:

\ode⟨star⟩[⟨variable⟩]↑⟨degree⟩{⟨ function⟩} at ⟨postion⟩;
See, TEX does something very interesting when it uses ‘glue’, which is partially repli-

cated by packages such as TikZ, where it will happily take ‘soft’ modifiers written directly
in plain english. If one wishes to strictly define paragraph spacing in TEX, they would use
‘\parskip=1ex’. If one would rather give it a range of tolerance the following construct
‘\parskip=1ex plus 0.5ex minus 0.5ex’ then allows a spacing of 1±0.5 ex.

Glue is of course something special, but that does not mean that the author can not
gain inspiration. Say one wishes to define Neumann boundries;

\ode[x]{c} at 0;=0\land\ode[x]{c} at L;=1⇒
dc

dx

»»»»»»»»x=0
= 0∧

dc

dx

»»»»»»»»x=L
= 1

\ode[x]{c} at 0 = L;=1⇒
dc

dx

»»»»»»»»x=0=L
= 1

Literally could not be easier.2

Those reading til this point may have recalled that the first example did not contain
many braces. This is because with the “proper” spacing, there is little need for the use of
the braces, so as to help promote a more fluid, (and readable), workflow without always
needing to worry about the f***ing brace. Not that one can not use the brace for personal
taste. In the following section, many examples of use will be illustrated to show the range
and versitility of the functions.

The most important thing to always remember. Just because the author of this package
has done as much as they can to ‘idiot—— user proof ’ its functions does not mean the user
does not still need to be cautious. This is LATEX we are talking about. There are likely
many scenarios that the author did not think of, nor accidentally came across.

2My source is that I made it up

4

2 Examples of use

To show the generality of use. The following examples all take identical form in
the TEX/LATEX itself. Additionally, in order to illustrate the functional boundries of the
command with respect to each of the notational styles. There is a variety of spacing and
bracketing to help highlight these features, and will be shown in the following verbatim
enviroment;

\begin{align*}
\ode A(x) && \ode[x]{B(x)} && \ode^1 C(x) && \ode[x]^5 {D(x)} \\
\ode* {E(x)} && \ode*[x] F(x) && \ode*^2 {G(x)} && \ode*[x]^6H(x) \\
\pde[t] I(x) && \pde[x] {J(x)}&& \pde[t]^3K(x) && \pde[x]^7 {L(x)} \\
\pde*[t] {M(x)}&& \pde*[x]N(x) && \pde*[t]^4 O(x) && \pde*[x]^8 P(x)
\end{align*}

\setDE{notation=Lagrange} and/or \usepackage[notation=Lagrange]{odesandpdes}

A ′(x) B(x) ′ C ′(x) D(x)(5)

f ′(t)E(x) f ′(x)F(x) f ′′(t)G(x) f (6)(x)H(x)

I ′t(x) J(x) ′x K ′′′
t (x) L(x)(7)

x

f ′t (t)M(x) f ′x(x)N(x) f (4)
t (t)O(x) f (8)

x (x)P(x)

\setDE{notation=Leibniz} and/or \usepackage[notation=Leibniz]{odesandpdes}

dA(x)
dt

dB(x)
dx

dC(x)
dt

d5D(x)
dx5

d
dt

E(x) d
dx

F(x) d2

dt2 G(x) d6

dx6 H(x)

∂ I(x)
∂ t

∂ J(x)
∂ x

∂
3K(x)
∂ t3

∂
7L(x)
∂ x7

∂

∂ t
M(x) ∂

∂ x
N(x) ∂

4

∂ t4 O(x) ∂
8

∂ x8 P(x)

\setDE{notation=Newton} and/or \usepackage[notation=Newton]{odesandpdes}

⋅
A(x) ⋅

B(x) ⋅
C(x)

5⋅
D(x)

⋅tE(x) ⋅xF(x) ⋅⋅tG(x)
6⋅xH(x)

⋅
I(x) ⋅

J(x)
⋅⋅⋅
K(x)

7⋅
L(x)

⋅tM(x) ⋅xN(x)
4⋅tO(x)

8⋅xP(x)

5

\setDE{maxprimes=7} and/or \usepackage[maxprimes=7]{odesandpdes}

f ′ f ′′ f ′′′ f ′′′′ f ′′′′′ f ′′′′′′ f ′′′′′′′ f (8) f (9)

⋅
f

⋅⋅
f

⋅⋅⋅
f

⋅⋅⋅⋅
f

⋅⋅⋅⋅⋅
f

⋅⋅⋅⋅⋅⋅
f

⋅⋅⋅⋅⋅⋅⋅
f

8⋅
f

9⋅
f

2.2 "at x;" Usage Examples

Now, because the author is not an insane person, and went through the effort of
learning how TEX deconstructs text into constitute registries and boxes, the way any sane
person might. When using a non-starred version of a command, after the function is
defined, you can place an ‘at ⟨point⟩;’, and the representation will shown according to
notational convention.

\begin{align*}
\ode[x] c at 23\pi; &= 1 \\
\ode[x]^3 c at 69; &= 2 \\
\ode[x]^{69} c at L;+t &= 3 \\
\ode[x]^9 c af 420; &= 4 \\
\ode[x]^6 c a t 13; &= 5

\end{align*}

\setDE{notation=Lagrange}

c ′(23π) = 1

c ′′′(69) = 2

c(69)(L)+ t = 3

c(9)a f 420; = 4

c(6)at13; = 5

\setDE{notation=Leibniz}

dc

dx

»»»»»»»»x=23π

= 1

d3c

dx3

»»»»»»»»»x=69
= 2

d69c

dx69

»»»»»»»»»x=L
+ t = 3

d9c

dx9 a f 420; = 4

d6c

dx6 at13; = 5

\setDE{notation=Newton}

⋅c(23π) = 1

⋅⋅⋅c(69) = 2

69⋅c(L)+ t = 3

9⋅ca f 420; = 4

6⋅cat13; = 5

As can be seen in the examples, this ‘modifier’ is robust enough that one can write
effectively any combination of characters after the function, excluding, verbatim, ‘at ’
and it will work as intended.

6

Important to note, due to a slight difference in how the notational styles are de-
fined, only the Leibniz notation can take arguments for the function that involve subscripts
and superscripts without delimiters. Mostly easily illustrated in this following example
using the \pde command;

\begin{align*}
\pde[y] f_1 &= 1 \\
\pde[y] f_1 at L; &= 2 \\
\pde[y] f at L; &= 3 \\
\pde[y] {(f_1)} &= 4 \\
\pde[y] {(f_1)} at L; &= 5

\end{align*}

\setDE{notation=Lagrange}

f ′y1 = 1

f ′y1atL; = 2

f ′y(L) = 3

(f1) ′y = 4

(f1) ′y(L) = 5

\setDE{notation=Leibniz}

∂ f1

∂ y
= 1

∂ f1

∂ y

»»»»»»»»»y=L

= 2

∂ f

∂ y

»»»»»»»»»y=L

= 3

∂ (f1)
∂ y

= 4

∂ (f1)
∂ y

»»»»»»»»»y=L

= 5

\setDE{notation=Newton}

⋅
f 1 = 1

⋅
f 1atL; = 2

⋅
f (L) = 3

⋅(f1) = 4

⋅(f1)(L) = 5

2.3 Prime Count Limits

Because the Newton and Lagrange notation is procedural; the only limit is your
imagination, and also the fact that TEX can only have something like 127 unplaced tokens
at a time.

\setDE{maxprimes=69}

f ′′′′′

f ′′′′′′′′′′′′′′′′

f ′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′

f ′′

f ′′′

f (70)

5

16

32

54

69

70

⋅⋅⋅⋅⋅
f

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
f

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
f

⋅⋅
f

⋅⋅⋅
f

70⋅
f

5 16 32 54 69 70

7

3 Package Implementation

As a fair warning for anyone interested in the implementation of this package, it
is documented in what might be considered, absurd levels of detail. This comes from
the creation of this package being a great learning experience for the author, and the
in-depth documentation of that understanding is only beneficial. Futhermore, a lot of
the techniques used in this package are not obvious. Some of which, to paraphrase the
creator of TEX, his divine emmisary Donald E. Knuth himself in the ever holy TEXbook,
were prefaced with “Worthy of being known to, at least a few, wizards able to traverse the
nether world of TEXarcana”.

3.1 Set-up

Package options are difficult to deal with, so using the xkeyval package alleviates
much of the pain associated with it,

1 \RequirePackage{xkeyval}

\m@xm@rk
\exp@c@unt

\@detempv@l

Being that there are a lot of minor calculations within the package reserving registries
for integer counts feels like a good idea

2 \newcount\m@xm@rk%
3 \newcount\exp@c@unt%
4 \countdef\@detempv@l=255%

\v@rr@t@ks
\func@t@ks
\@tpost@ks

As well reserving token registries for tossing arguments around the groups and macros,

5 \newtoks\v@rr@t@ks%
6 \newtoks\func@t@ks%
7 \newtoks\@tpost@ks%

\@dev@rb@x
\@defunb@x
\@deresb@x

Reserving box registries for the purpose of collecting the components together in
a coherent manner,

8 \newbox\@dev@rb@x%
9 \newbox\@defunb@x%

10 \newbox\@deresb@x%

3.1.1 Package Options

\@de@option Defining the package options for notational styles using the LATEX \providecommand
to reloading times. Important to note that defining the command is not the same as using
the command, which is useful in conjunction with \csname and \endcsname for macro
defintions.

11 \providecommand\@de@option{Leib}

Now using the keyval package, it becomes possible to define a family of package
options associated with inputing some notation=#1. This allows for easily defining the
notation for the entire document. The possible options will be defined afterwards,

12 \DeclareOptionX{notation}[default]%
13 {\def\@de@option{\csname @de@not@#1\endcsname}}

8

\@de@not@Lagrange
\@de@not@Leibniz
\@de@not@Newton

Once the package option has been declared, now the options can be defined. The
options take identical form with the exception of the last part of definition. This is
because the \@de@option is not the macro used for the notation definitions. Rather,
\@de@option is an intermediate that expands into one of the defined options, which sub-
sequently expands into one of the four character strings, “Lagr”, “Leib”, or “Newt”

\@de@option \@de@not@“option”

expands to

“string”

expands to

14 \def\@de@not@Lagrange{Lagr}
15 \def\@de@not@Leibniz{Leib}
16 \def\@de@not@Newton{Newt}

\@de@not@default The default option for the notation is defined by pointing to the definition of the
Leibniz notation option,

17 \let\@de@not@default\@de@not@Leibniz

A second option is defined to allow freedom in deciding the cut-off point for the
Lagrange and Newton notations where it no longer makes more physical marks and uses
the symbolic extension instead, with a default of 3 marks before becoming symbolic.

18 \DeclareOptionX{maxprimes}[3]{\m@xm@rk=#1\advance\m@xm@rk\@ne}

To ensure that all other options given to the package will be ignored the star is used
to indicate that all undefined options will be directed towrds this declared option,

19 \DeclareOptionX*{\PackageWarning{odesandpdes}{‘\CurrentOption’ ignored}}

Finally the declared options are executed as to allow the default options to initialize and
be processed,

20 \ExecuteOptionsX{notation,maxprimes}
21 \ProcessOptionsX\relax

3.2 Package Configuration

\setDE In addition to being able to use options directly in the \usepackage package com-
mand, one also gets access to the command \setDE. Which can be used at any point in
the document to change the style of notation or max prime count. Functionally done in
identical manner to how \DeclareOptionX is used.

22 \newcommand\setDE[1]{\setkeys[package]{@de}{#1}}

3.2.1 To not conflict with amsmath

\@de@ver
\@de@top

\@de@bove

Purely because amsmath is a bitch and doesn’t want anyone enjoying their time in
TEX it becomes required to make compatibility checks and work within their abstracted
definitions,

23 \@ifpackageloaded{amsmath}{

9

24 \let\@de@ver=\@@over%
25 \let\@de@top=\@@atop%
26 \let\@de@bove=\@@above}%

Otherwise it just uses the TEX primitive commands for fractions because of increase ease
of function and speed of processing,

27 {\let\@de@ver=\over%
28 \let\@de@top=\atop%
29 \let\@de@bove=\above}

3.3 Foundational macros

\d@@
\d@l

Creating protected macro definitions for increase in speed of processes,

30 \def\d@@{\mathrm d}
31 \let\d@l=\partial

\@dest@red
\@den@st@r

In the same vein, strings are defined for the starred and unstarred versions of macro
commands,

32 \def\@dest@red{st@r@d}
33 \def\@den@st@r{n@st@r}

\ode
\pde

The macro definitions of the ODE and PDE commands

34 \def\ode{\csname \@de@option ODE\endcsname}
35 \def\pde{\csname \@de@option PDE\endcsname}

In essence these two are the same command. This is done for the sake of consistancy in
use and effect. As well, in an attempt to not make the alternative notations inaccesible, the
main macros are themselves stepping stones to the package declared option. As perhaps
multiple notational styles might be useful in a single equation, who knows?

\LagrODE
\LeibODE
\NewtODE

There is unfortunately no way to avoid the process of making an individual macro for
each ODE version;

36 \def\LagrODE{\let\@de@perat@r\d@@% sets the d
37 \let\@dec@mm@nd\@de@not@Lagrange
38 \@de@ifst@r}
39 \def\LeibODE{\let\@de@perat@r\d@@%
40 \let\@dec@mm@nd\@de@not@Leibniz
41 \@de@ifst@r}
42 \def\NewtODE{\let\@de@perat@r\d@@%
43 \let\@dec@mm@nd\@de@not@Newton
44 \@de@ifst@r}

\LagrPDE
\LeibPDE
\NewtPDE

As well as making a macro for each PDE version;

45 \def\LagrPDE{\let\@de@perat@r\d@l% sets the del
46 \let\@dec@mm@nd\@de@not@Lagrange
47 \@de@ifst@r}
48 \def\LeibPDE{\let\@de@perat@r\d@l%
49 \let\@dec@mm@nd\@de@not@Leibniz
50 \@de@ifst@r}
51 \def\NewtPDE{\let\@de@perat@r\d@l%
52 \let\@dec@mm@nd\@de@not@Newton
53 \@de@ifst@r}

10

In terms of usage, these are all the same command, the main differences come
from what the operator is defined as, \d@@ or \d@l, and which notational form that
\@dec@mm@nd points at for further processes down the stream. They are however, given
all caps for the ode and pde in order to enhance visual clarity should one use them.

3.3.1 The ‘Yoinkers’

\@dest@r@rg
\@de@ption@l@rg

\@de@exponent@rg

Now a group of functions are needed for the processing each of the major elements,
the star (*), for whether to have a function parameter. The option ([), for determining the
variable being differentiated. And exponent (^), for deteriming what order the differential
should be. Whether these functions should be used or not, comes from the use of a macro
described in section 3.3.2.

Importantly each of these elements, should they appear, require the relevant token to
be ‘yoinked’ by the macro in question. Should a star appear, \@dest@r@rg ‘gobbles’ said
star and propmts the next element, an optional argument, to be checked for.

54 \def\@dest@r@rg*{\expandafter\@de@ifbr@ck}

For an optional argument, \@de@option@l@rg will yoink the argument, as well as
the surrounding brackets,

55 \def\@de@ption@l@rg[#1]{\expandafter\v@rr@t@ks{#1}\relax \@de@ifexp@n}%

If an exponent should appear, \@de@exponent@rg will yoink the ^, and the integer
following it,

56 \def\@de@exponent@rg^#1{\exp@c@unt#1\relax \@deifst@rred}

\@dest@r@dy@ink
\@den@st@ry@ink

Depending on if one is using the starred version of the command, there is a command
that yoinks the following function variable and one that ends the compiling here.

57 \def\@dest@r@dy@ink{\expandafter\@dec@mpf@rm}
58 \def\@den@st@ry@ink{\expandafter\@dey@inkf@rm}

\@de@func@ther
\@de@func@Leib
\@de@func@Lagr
\@de@func@Newt

As a consequence of the inherent differences in how the notational styles treat func-
tions, the \@de@func@Leib macro has to be treated differently. Whereas both the La-
grange and Newton notations will just accept the first token following the call of the
function yoinker. The Leibniz varient will attempt to absorb all the tokens untill the first
space token is found. This is not done in the traditional way of denoting an explicit space
token at the end of the control sequence, but rather through a special macro defined in
section 3.4.2. This had to be done as a consequence of getting the ‘at x;’ function to
work properly.

59 \def\@de@func@ther#1{\expandafter\func@t@ks{#1}\relax
60 \expandafter\@de@if@tpos}
61 \def\@de@func@Leib{\expandafter\func@t@ks{}\relax
62 \expandafter\@de@ifbrace}
63 \let\@de@func@Lagr\@de@func@ther
64 \let\@de@func@Newt\@de@func@ther

\@de@tpos@rg Finally, the last element that can be used, is designed to eat all the tokens between its
call and the first semi-colon it sees, to ensure a function can be derived anywhere.

65 \def\@de@tpos@rg#1;{\expandafter\@tpost@ks{#1}\relax \@de@tf@rm}

11

3.3.2 Macro ‘Checkpoints’

\@de@ifst@r
\@de@ifbr@ck
\@de@ifexp@n

As can be seen in the definitions of the \ode and \pde, there are no explicitely defined
\ode* or \pde* macros. A workaround is implemented by making the first step of the
macro to check if the first token that appears is a star, or asterisk, if one would prefer
the technical language. These macros make use of an ancilliariy function \@deifch@r,
which is defined in the section 3.4.2.

66 \def\@de@ifst@r{\@deifch@r *
67 {\@dest@rgument\@dest@red\@dest@r@rg}
68 {\@dest@rgument\@den@st@r\@dest@r@rg*}}
69 \def\@de@ifbr@ck{\@deifch@r [
70 \@de@ption@l@rg
71 {\@de@ption@l@rg[t]}}
72 \def\@de@ifexp@n{\@deifch@r ^
73 \@de@exponent@rg
74 {\@de@exponent@rg^\@ne}}

\@de@ifbrace \@de@ifbrace is a bit more special than the other \@deif conditionals, as it is not a
general use conditional. Only the Leibniz notational style function yoinker makes use of
it. This is likely not a good long-term solution, but that just means it’s going to be this
way for at least a few years.

75 \def\@de@ifbrace{\@deifch@r \bgroup
76 \@de@func@ther
77 \@de@tilsp@ce}

\@de@if@tpos
\@de@tDoubleCheck

In the same way, there also exist a macro to check for the ‘at ’. The main difference
however, is the follow up command that helps robustify \@de@if@tpos. This is done
through absorbing all the tokens after the ‘a’ until the next space token, if only a single
token is absorbed, and that token is a ‘t’, then success! Otherwise nothing happens.3

78 \def\@de@if@tpos{\@deifch@r a \@de@tDoubleCheck \@dec@mpf@rm}
79 \def\@de@tDoubleCheck a#1 {\ifx t#1\expandafter\@de@tpos@rg\else
80 \@dec@mpf@rm a#1\fi}%

3.4 Ancilliary Functions

There are a lot of macros or command sequences that need to be used in addendum to
the main commands that one would download this package for. As a consequence, there
are a plethora of ancilliary functions to pull from defined in this section.

3.4.1 Variable Macronames

\@dest@rgument
\@deifst@rred
\@dec@mpf@rm

It becomes useful to be able to freely define which macro to be used when going
through the option tree. Subsequently, three macros are defined to fufill that purpose.

3There is a way to make this function in a far more generalized way using \csname and \endcsname.
However, as this package makes use of this feature exactly once, there is no benefit to generalizing the
functionality.

12

\@dest@rgument takes an argument and defines two macros \@deifst@rred which de-
fines whether the function ‘yoinker’ exists or not, and \@dec@mpf@rm which works with
\@de@option,defined in subsection 3.2, to define the final ODE or PDE form.

81 \def\@dest@rgument#1{%
82 \def\@deifst@rred{\csname @de#1y@ink\endcsname}%
83 \def\@dec@mpf@rm{\csname#1@\@dec@mm@nd\endcsname}}

\@de@tf@rm
\@dey@inkf@rm

Additional macros are also defined for determining intermediate forms during the
construction process of the resulting ODEs and PDEs

84 \def\@de@tf@rm{\csname @de@t@\@dec@mm@nd\endcsname}%
85 \def\@dey@inkf@rm{\csname @de@func@\@dec@mm@nd\endcsname}%

3.4.2 Determing the next token

An integral part of the ‘mastication’ process is the identification of the proceeding
token in the oncoming token stream. Therefore, a macro is defined to streamline this
process instead of needing to create a unique \futurelet sequence for each token type.

The use of \futurelet is a strange and arcane process that better described by occult
terminology than the proper scientific terms one would use in daily life. However, it is
important to understand at least a little bit for the implementation of the \@deifch@r
macro.

\@deifch@r
\@detesttoken

\@de@tmpA
\@de@tmpB

\@deifch@r takes in three tokens as arguments, the first argument will assign
\@detesttoken and be what the macro looks out for, while the other two arguments
are for storage to be executed later. Building off this, there are two main elements that
compose the macro, the namesake \@deifch@r, and its supplement macro \@denext@rg.
This is because \futurelet is a primitive that will act as the \let primitive, just one
token removed.

\let token1 token2 token3 \futurelet token1 token2 token3

\let token1 token3

The most important consequence is that, should \futurelet be enacted upon a
stream of three tokens, “\futurelet token1 token2 token3”; token1 will be \let
to point at token3 before token2 is expanded. What this means, is one is able to have
token3 act upon the unexpanded token2.4

86 \def\@deifch@r#1#2#3{%
87 \let\@dew@tcht@k=#1\relax
88 \def\@de@tmpA{#2} \def\@de@tmpB{#3}
89 \futurelet\@detesttoken\@denext@rg}

Using this enlightenment, define the token representing an ‘if-then-else’ con-
trol sequence \@denext@rg. In \@deifch@r, \@dew@tcht@k becomes a macro for
the token we want to check against. Using this to our advantage, before TEX expands
\@denext@rg, it will assign \@detesttoken to point to a third, currently, unknown to-
ken after \@denext@rg. This is where the magic happens; because \@denext@rg only
expands after the assignment of \@detesttoken, meaning it becomes possible to com-
pare \@detesttoken and \@dew@tcht@k against eachother to determine which outcome
should be executed.

4If this means something to you, it’s too late. You’ve lost your chance of escaping TEX.

13

\@denext@rg
\@de@nextact

The first half of \@denext@rg ensures that a space tokens does not get in the way of
assignment, as unfortunate as it is, the \futurelet primitive does consider a space token
to be a valid token to point to.

90 \def\@denext@rg{%
91 \ifx\@detesttoken\@sptoken\relax
92 \let\@de@nextact\@desp@cegobbler\else

The second half of \@denext@rg is what does the actual comparison. Should the
comparison be positive, \@detesttoken = \@dew@tcht@k, then the code stored in
\@de@tmpA will be executed, otherwise, \@de@tmpB will be executed

93 \ifx\@detesttoken\@dew@tcht@k\relax % if
94 \let\@de@nextact\@de@tmpA\else % ifn’t
95 \let\@de@nextact\@de@tmpB\fi\fi
96 \@de@nextact}

\@desp@cegobbler Ensuring that the space(s), explicit or implicit, trailing after \@deifch@r requires
some TEX tomfoolary. By defining the function with a non-character token, the trailing
space will matter for the macro definition, thereby, creating a macro that gobbles one
space token on use.

97 \def\<{\@desp@cegobbler}
98 \expandafter\def\< {\futurelet\@detesttoken\@denext@rg}

These three macros work together as a three point cycle discarding spaces until the first
non-space token is found, in which case the \if-\else will be executed.

\@de@tilsp@ce While the previous macro gobbles space tokens until it finds a non-space token
\@de@tilsp@ce gobbles non-space tokens until it finds a space token. There is a dif-
ference however, in that \@de@tilsp@ce stores the gobbled tokens until it finds that
space token, subsequently ejaculating————— returning the the tokens as a registry list.

99 \def\@de@tilsp@ce#1 {%
100 \beginnext%
101 \toks0={#1}
102 \edef\next{\func@t@ks=\expandafter{\the\toks0}}
103 \endnext \@de@if@tpos}

\beginnext
\endnext

The \beginnext, \endnext construct is a relatively common construct one finds
when working with variable macros and subsequently working with \edef commands.
Using the explicit \begingroup and \endgroup group denotions means that one can
play all sorts of registry based games, that can not be broken by implicit groupings. By
\edef’ing \next inside this construct, whatever finalized product you have assigned to
\next, will be a fully expanded assortment of values from those registries.

104 \def\beginnext{\begingroup
105 \let\next\undefined}
106 \def\endnext{\expandafter\endgroup\next}

3.5 Notational Morphology

There is nothing particularly interesting about the methodology behind preparing the
output forms, just using the classical TEX methods of exponents and fractions. So while

14

these macro definitions will be left in, there won’t be much commenting on them directly.
The follow-up section will be illustrating the macros used within the ode replacement
text, those will be explained.

One thing of note, is that these macros make heavy use of the ‘\the\registry’
commands to expand registries previously used for storing tokens, and integers. Another
hugely important element in these macros are the \box commands for arranging and
subsequently storing said arrangement into a box which can then float to the top of the
groupings like a message in a bottle.

Starred Forms

\st@r@d@Lagr Macro for Lagr+star

107 \def\st@r@d@Lagr{%
108 \setbox\@deresb@x\hbox{$
109 {f^{\mkern1mu\@dedr@wm@rk\lagr@prime\lagr@prime\br@ced@xpon}
110 _{\m@kep@rtLagr}}\mkern-\tw@ mu\left(\the\v@rr@t@ks\right)
111 $}%
112 \@derele@se}%

\st@r@d@Leib Macro for Leib+star

113 \def\st@r@d@Leib{%
114 \setbox\@defunb@x\hbox{$\@de@perat@r^{\@deem@rex}$}%
115 \b@se@Leib}%

\st@r@d@Newt Macro for Newt+star

116 \def\st@r@d@Newt{%
117 \setbox\@dev@rb@x\hbox{$\the\v@rr@t@ks$} \b@se@Newt}%

Unstarred Forms

\n@st@r@Lagr Macro for Lagr

118 \def\n@st@r@Lagr{%
119 \setbox\@deresb@x\hbox{$
120 {\the\func@t@ks
121 ^{\mkern\@ne mu\@dedr@wm@rk\lagr@prime\lagr@prime\br@ced@xpon}
122 _{\m@kep@rtLagr}}\mkern\m@ne mu$}%
123 \@derele@se}%

\n@st@r@Leib Macro for Leib

124 \def\n@st@r@Leib{%
125 \setbox\@defunb@x\hbox{$
126 \@de@perat@r^{\@deem@rex}\mkern0.40mu\the\func@t@ks$}
127 \b@se@Leib}

\n@st@r@Newt Macro for Newt

128 \def\n@st@r@Newt{%
129 \setbox\@dev@rb@x\hbox{$\the\func@t@ks$} \b@se@Newt}%

15

“At Position” Forms

\@de@t@Lagr Macro for Lagr at point

130 \def\@de@t@Lagr{%
131 \noexpand\hbox{$
132 \n@st@r@Lagr\mkern-\thr@@ mu\left(\the\@tpost@ks\right)
133 $}}%

\@de@t@Leib Macro for Leib at point

134 \def\@de@t@Leib{%
135 \noexpand\hbox{$
136 \left.\n@st@r@Leib\mkern\@ne mu\right|
137 _{\mkern1mu\displaystyle\the\v@rr@t@ks\mkern2mu
138 \rlap{$\scriptstyle=\mkern\thinmuskip\the\@tpost@ks$}}
139 $}%
140 }%

\@de@t@Newt Macro for Newton at point

141 \def\@de@t@Newt{%
142 \noexpand\hbox{$
143 \n@st@r@Newt\mkern-\tw@ mu\left(\the\@tpost@ks\right)
144 $}}%

Foundational forms

\m@kep@rtLagr Macro for Lagr partial notations

145 \def\m@kep@rtLagr{\ifx\@de@perat@r\d@l\the\v@rr@t@ks\else\empty\fi}

\b@se@Leib Macro for the base Leibniz form

146 \def\b@se@Leib{%
147 \setbox\@dev@rb@x\hbox{$
148 \@de@perat@r\mkern0.40mu\the\v@rr@t@ks^{\@deem@rex}$}%
149 \setbox\@deresb@x\hbox{\kern0.5\p@%
150 $\raise2\p@\box\@defunb@x\@de@ver\lower5\p@\box\@dev@rb@x$%
151 \kern0.5\p@}%
152 \@derele@se}%

\b@se@Newt Macro for the base Newton form

153 \def\b@se@Newt{%
154 \setbox\@defunb@x\hbox{\vbox{\baselineskip=\z@\lineskip=\m@ne\p@%
155 \@dedr@wm@rk\@de@ned@ts\@detw@d@ts\@denewt@nd@t}}%
156 \setbox\@deresb@x\hbox{\vbox{\baselineskip=\z@\lineskip=-0.5\p@%
157 \hbox to\wd\@dev@rb@x{\hss\raise\z@\box\@defunb@x\hss}%
158 \hbox{\raise\z@\box\@dev@rb@x}}}%
159 \@derele@se}

\m@kep@rtNewt Macro for Newt partial notations

160 \def\m@kep@rtNewt{\ifx\@de@perat@r\d@l\empty\fi}

16

3.6 Notational Shaping Tools

Here’s where some spice comes back into play. One of the major challenges5 was
ensuring that the appropriate number of primes or dots were placed when changing the
maxprimes option.

Did the author realistically need to make it so one could have a procedural number of
primes/dots? Nope. Would there ever be a realistic use-case for a derivative of order 3 or
higher in which one would use markings? Of course not. Did the author do it anyways?
Absolutely.

\lagr@prime
\br@ced@xpon

The macro for the Lagrangian prime is very straightforward each time \lagr@prime
is used, a prime mark will be placed, and the exponent count will reduce by one. The
function does this repeatedly until the exponent count is reduced to 1.

161 \def\lagr@prime{\mkern0.35mu\prime\global\advance\exp@c@unt\m@ne}

Should the exponent count be greater than the maximum allowed prime markings,
\br@ced@xpon will be used instead, which will display the general form of an integer
enclosed by parenthesis.

162 \def\br@ced@xpon{\left(\the\exp@c@unt\right)}

\@detw@d@ts
\@de@ned@ts

The dots for the Newtonian notation are more complicated than just incrementing a
counter by one for each placed mark. Because Newtonian notation is built with a point
at the top, it requires the initial dot to be place prior the rest of the dots as the \vbox
primitive builds top down

In order to deal with that, this set of macros, \@detw@d@ts and \@de@ned@ts will
take the exponent count, and determine if the number is ≡ mod2 if it is congruent. There
is no initial dot created, if it is not congruent and a greater value than the set maxprimes,
an initial dot is placed into the token stream to become the star on top.

The reason for these macros to be so complicated, is that TEX only has addition, and
multiplication with integer registries. There is no divsion or float value functionality.

163 \def\@detw@d@ts{\ifnum\exp@c@unt>\@ne%
164 \advance\exp@c@unt-\tw@\hbox to 5\p@{\hss$\cdot\cdot$\hss}\fi}%
165 \def\@de@ned@ts{\@detempv@l=\the\exp@c@unt%
166 \loop\ifnum\@detempv@l>\tw@%
167 \advance\@detempv@l-\tw@\repeat%
168 \ifnum\@detempv@l<\tw@%
169 \advance\exp@c@unt\m@ne\hbox to 5\p@{\hss\cdot\hss}\fi}%

\@denewt@nd@t The generalized form of the the Newtonian derivative notation is is just a glorified
fraction, with a dot as the denominator, and a number as the numerator.

170 \def\@denewt@nd@t{\hbox{\vbox{%
171 \hbox to 5\p@{\hss\raise\thr@@\p@\hbox{$\scriptstyle\@deem@rex$}\hss}%
172 \hbox to 5\p@{\hss\hbox{$\displaystyle\cdot$}\hss}}}}%

\@deem@rex For the Leibniz notation, there is no reason to display the exponent should it be an integer
value less than 2, therefor, any exponent count less than two will be replaced with \empty.

173 \def\@deem@rex{\ifnum\tw@>\exp@c@unt\empty\else\the\exp@c@unt\fi}
5Aside from my mental challenges.

17

\@dedr@wm@rk Because both the Lagrangian and Newtonian notational styles involve a physical
marking being repeated, common macro was made that takes 3 arguments, the first
will be for the initial placement, the second argument is fed into a follow-up macro
\@derepe@tdr@w, and the third argument is what will be placed should the exponent
count be higher than the max allowed.

Effectively \@dedr@wm@rk is what checks whether it should be a marking or the more
symbolic generalized form.

174 \def\@dedr@wm@rk#1#2#3{
175 \ifnum\exp@c@unt<\m@xm@rk
176 #1\@derepe@tdr@w#2\else
177 #3\fi}

\@derepe@tdr@w While \@derepe@tdr@w is what provides the conditional looping enviroment to ensure
the markings are placed;

178 \def\@derepe@tdr@w#1{\loop\ifnum\exp@c@unt>\z@#1\repeat}

\@derele@se Shorthand for allowing the final formed ode or pde to rise to the surface

179 \def\@derele@se{\noexpand{\box\@deresb@x}}

18

	Contents
	1 Usage
	1.1 Options
	1.2 The Meat and Potatoes

	2 Examples of use
	2.1 Common Use Examples
	2.2 "at x;" Usage Examples
	2.3 Prime Count Limits

	3 Package Implementation
	3.1 Set-up
	3.1.1 Package Options

	3.2 Package Configuration
	3.2.1 To not conflict with amsmath

	3.3 Foundational macros
	3.3.1 The `Yoinkers'
	3.3.2 Macro `Checkpoints'

	3.4 Ancilliary Functions
	3.4.1 Variable Macronames
	3.4.2 Determing the next token

	3.5 Notational Morphology
	3.6 Notational Shaping Tools

