The alphalph package

Heiko Oberdiek
<oberdiek@uni-freiburg.de>

2007/04/11 v1.5

Abstract

The package provides the new expandable commands \alphalph and
\AlphAlph. They are like \number, but the expansion consists of lowercase
and uppercase letters respectively.

Contents
1 Usage 2
1.1 Usercommands i 2
1.1.1 New commands like \alphalph 2
2 Implementation 3
2.1 Beginof package L L 3
2.2 Helpmacros o e 4
2.3 Usercommands 4
2.4 Conversion with standard TEX means 5
2.4.1 Convert the separated digits to the letter result)
24.2 Addition byone o 6
2.5 Conversion with e-TEX features 8
2.6 Generic version e e e e e e e e e e 8
2.7 Endofpackage 9
3 Installation 9
3.1 Download 9
3.2 Bundle installation oo oL 10
3.3 Package installation o000 10
3.4 Refresh file name databases 10
3.5 Some details for the interested 10
4 History 11
[1999/03/19 VO.1] . . o o oo e e 11
[1999/04/12 v1.0] . . o oo e 11
[1999/04/13 v1.1] . . . o o o o 11
[1999/06/26 v1.2] 11
[2006/02/20 v1.3]o 11
[2006/05/30 v1.4] . . o o 11
[2007/04/11 VI5] . .o oo 11
5 Index 12

1 Usage
The package alphalph can be used with both plain-TEX and KTEX:
plain-TEX: \input alphalph.sty
IATEX 2¢: \usepackage{alphalph}
There aren’t any options.

1.1 User commands

\alphalph \alphalph: This works like \number, but the expansion consists of lowercase let-
ters.

\AlphAlph \AlphAlph: It converts a number into uppercase letters.

Both commands have following properties:
e They are fully expandable. This means that they can safely

— be written to a file,
— used in moving arguments (IXTEX: they are robust),
— used in a \csname-\endcsname pair.

e If the argument is zero or negative, the commands expand to nothing like
\romannumeral.

e As argument is allowed all that can be used after a \number:
— explicite constants,

— macros that expand to a number,

— count registers, A TEX counter can used via \value, e.g.:
\alphalph{\value{pagel}}

The following table shows, how the conversion is made:

number ‘ 1,2,...,26,27,...,52,53,...,78,79,...,702, 703, ...
\alphalph ‘ a,b,..., z aa,...,az ba,..., bz ca,..., zz aaa, ...

1.1.1 New commands like \alphalph

\newalphalph \newalphalph: This macro defines a new command that acts like \alphalph. The
use of e-TEXis required. The macro has three arguments:
#1: The command to be defined.
#2: A macro that converts a positive number to a symbol.

#3: The number of available symbols.

Example:

\newcommand*{\myvocals}[1]{%

\ifcase#1\or A\or E\or I\or O\or U\fi
}
\newalphalph{\vocalsvocals}{\myvocals}{5}

2

Implementation

2.1 Begin of package

1 (xpackage)

Reload check, especially if the package is not used with ETEX.
2 \begingroup

3

© 00 N O U

28

\catcode44 12 ¥, ,
\catcode45 12 % -
\catcode46 12 %, .
\catcode58 12 % :
\catcode64 11 %, @
\expandafter\let\expandafter\x\csname ver@alphalph.sty\endcsname
\ifcase 0%
\ifx\x\relax % plain
\else
\ifx\x\empty % LaTeX
\else
1%
\fi
\fi
\else
\expandafter\ifx\csname PackageInfo\endcsname\relax
\def \x#1#2{}
\immediate\write-1{Package #1 Info: #2.1}J,
Yo
\else
\def\x#1#2{\PackageInfo{#1}{#2, stopped}}’
\fi
\x{alphalph}{The package is already loaded}/
\endgroup
\expandafter\endinput
\fi

29 \endgroup

Package identification:
30 \begingroup

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

\catcode44 12 % ,
\catcoded4b 12 ¥, -
\catcode46 12 %, .
\catcode58 12 % :
\catcode64 11 %, @
\expandafter\ifx\csname ProvidesPackage\endcsname\relax
\def\x#1#2#3 [#4]{\endgroup
\immediate\write-1{Package: #3 #4}J,
\xdef#1{#4}
Y
\else
\def\x#1#2 [#3] {\endgroup
#2 [{#3}1%
\ifx#1\relax
\xdef#1{#3}}
\fi
Yh
\fi

49 \expandafter\x\csname ver@alphalph.sty\endcsname
50 \ProvidesPackage{alphalph}/,

51

[2007/04/11 v1.5 Converting numbers to letters (HO)]

For unique command names this package uses aa@ as prefix for internal com-

mand names. Because we need @ as a letter we save the current catcode value.
52 \expandafter\edef\csname aa@atcode\endcsname{\the\catcode‘\@ }
53 \catcode ‘\@=11

\@ReturnAfterElseFi
\@ReturnAfterFi

\aa®alph
\aa@Alph

\alphalph
\AlphAlph

\aa@callmake

2.2 Help macros

The following commands moves the ‘then’ and ‘else’ part respectively behind the
\if-construct. This prevents a too deep \if-nesting and so a TEX capacity error
because of a limited input stack size. I use this trick in several packages, so I
don’t prefix these internal commands in order not to have the same macros with
different names. (It saves memory).

54 \long\def\@ReturnAfterElseFi#1\else#2\fi{\fi#1}

55 \long\def\O@ReturnAfterFi#1\fi{\fi#1}

The two commands \aa@alph and \aa@Alph convert a number into a letter (lower-
case and uppercase respectivly). The character @ is used as an error symbol, if the
number isn’t in the range of 1 until 26. Here we need no space after the number
#1, because the error symbol @ for the zero case stops scanning the number.

56 \def\aaGalph#1{%

57 \ifcase#1,

58 Q%

59 \or alor b\or c\or d\or elor flor g\or h\or ilor j\or k\or 1l\or m%

60 \or n\or o\or p\or g\or r\or s\or t\or ulor v\or w\or x\or y\or z%

61 \else

62 @’
63 \fi
64 }

65 \def\aa@Alph#1{%

66 \ifcase#1Y,

67 @%

68 \or A\or B\or C\or D\or E\or Flor G\or H\or I\or J\or K\or L\or M}
69 \or N\or O\or P\or Q\or R\or S\or T\or U\lor V\or W\or X\or Y\or Zj

70 \else
71 @’
72 \fi
73 }

2.3 User commands

The whole difference between \alphalph and \AlphAlph is that the output con-
sists of lowercase or uppercase letters.

74 \def\alphalph{\aa@callmake\aa@alph}
75 \def\AlphAlph{\aa@callmake\aa@Alph}

\aa@callmake converts the number in the second argument #2 into explicite dec-
imal digits via the TEX primitive \number. (The closing curly brace stops reading
the number at the latest.)

76 \def\aaQcallmake#1#2{Y

77 \expandafter\aa@make\expandafter{\number#2}#17

78 }

e-TEXprovides the new primitive \numexpr. With this command the imple-
mentation is very simple (see 2.5). Therefore the package provides two methods: a
fast and simple one that uses the e-TEX extension and a method that is restricted
to the standard TEX means.

Now we distinguish between TEX and e-TEX by checking whether \numexpr is
defined or isn’t. Because the TEX primitive \csname defines an undefined com-
mand to be \relax, \csname is executed in a group.

79 \begingroup\expandafter\expandafter\expandafter\endgroup
80 \expandafter\ifx\csname numexpr\endcsname\relax

\aaGmake

\aa@process

\aa@getresult

2.4 Conversion with standard TEX means

\aa@make catches the cases, if the number is zero or negative. Then it expands to
nothing like \romannumeral.

81 \def\aaGmake#1#2{

82 \ifnum#1<1 %

83 \else

84 \@ReturnAfterFi{Y%

85 \aa@processl;#1;1..#2}
86 1A

87 \fi

88 }h

\aa@process contains the algorithm for the conversion. TEXdoesn’t provide a
simple method to divide or multiply numbers in a fully expandable way. An
expandable addition by one is complicated enough. Therefore \aa@process uses
only expandible versions of additions by one. The algorithm starts with one and
increments it until the size of the wanted number is reached. The intermediate
number that is incremented is present in two kinds:

e the normal decimal form for the \ifnum-comparison,

e a digit format: the end of each digit is marked by an dot, and the digits are
in reserved order. An empty digit ends this format. The meaning of a digit
is here the decimal representation of a letter, the range is from 1 until 26.

Example: The aim number is 100, the intermediate number 50, so following would
be on the argument stack:

50;100;24.1. .\aa@alph

\aa@process increments the first argument #1 (50), and calls \aa@alphinc to
increment the digit form (24.1..). The middle part with the aim number
;#2; (;100;) will not be changed. Neither \aa@process nor \aa@alphinc need
the conversion command \aa®@alph nor \aa@Alph. This command is read by
\aa@getresult, if the digit form is ready.

The expansion motor is \number. It reads and expands token to get decimal
numbers until a token is reached that isn’t a decimal digit. So the expansion
doesn’t stop, if \aa@inc is ready, because \aa@inc produces only decimal digits.
\aa@alphinc is expanded to look for further digits. Now \aa@alphinc makes
its job and returns with its argument ;#2;. At last the first character ; finishes
\number.

89 \def\aa@process#1;#2;{}

90 \ifnum#1=#2 %

91 \expandafter\aa@getresult

92 \else

93 \@ReturnAfterFi{},

94 \expandafter\aa@process\number\aa@inc{#1}\aa@alphinc{;#2;1}
95 Yh

96 \fi

97 Yh

2.4.1 Convert the separated digits to the letter result

The single decimal digits of the final letter number are limited by a dot and come
in reverse order. The end is marked by an empty digit. The next token is the
command to convert a digit (\aa@alph or \aa@Alph), e.g.:

11.3.1..\alph = ack

\aa@getresult reads the digits #1 and the converting command #2. Then it calls
\aa@Q@getresult with its arguments.

\aa@@getresult

\aa@inc

\aal®nextdigit

\aa@reverse

\aa@addone

98 \def\aa@getresult#1l..#2{}
99 \aa@Qgetresult!#2#1..%
100 }%

In its first argument #1 \aa@@getresult collects the converted letters in the cor-
rect order. Character ! is used as a parameter separator. The next token #2
is the converting command (\aa@alph or \aa@Alph). The next digit #3 is read,
converted, and \aa@@getresult is called again. If the digit #3 is empty, the end
of the digit form is reached and the process stops and the ready letter number is
output.

101 \def\aa®@@getresult#1!#2#3.{},

102 \ifx\\#3\\7,

103 \@ReturnAfterElseFi{#1}), ready

104 \else

105 \@ReturnAfterFi{}

106 \expandafter\expandafter\expandafter\expandafter
107 \expandafter\expandafter\expandafter

108 \aa@@getresult

109 \expandafter\expandafter\expandafter\expandafter
110 #2{#3}#1!#27,

111 /A

112 \fi

113 }%

2.4.2 Addition by one
Expandable addition of a decimal integer.

\aa@inc increments its argument #1 by one. The case, that the whole number
is less than nine, is specially treated because of speed. (The space after 9 is
neccessary.)

114 % \aa@inc adds one to its argument #1.
115 \def\aa@inc#1{%

116 \ifnum#1<9 %

117 \aa®nextdigit{#1}%
118 \else

119 \aa@reverse#1!!Y,
120 \fi

121 }h

\aa@nextdigit increments the digit #1. The result is a digit again. \aa@addone
works off the case “9+41”.

122 \def\aa@nextdigit#i{\ifcase#1 1\or2\or3\or4\or5\or6\or7\or8\or9\fi}/

Because the addition starts with the lowest significant digit of the number. But
with the means of TEX’s macro expansion is the first digit of a number available.
So \aa@reverse reverses the order of the digits and calls \aa®addone, if it is
ready.

123 \def\aa@reverse#1#2!#3!{J,

124 \ifx\\#2\\7

125 \aa@addone#1#3!!7

126 \else

127 \@ReturnAfterFi{Y%

128 \aa@reverse#2!#1#3!7,
129 1A

130 \fi

131 }%

The addition is performed by the macro \aa@addone. The digits are in reversed
order. The parameter text #1#2 separates the next digit #1 that have to be

\aa@lastreverse

\aa@alphinc

\aa@alphinclast

incremented. Already incremented digits are stored in #3 in reversed order to
take some work of \aa@lastreverse.

132 \def\aa@addone#1#2!#3!{%

133 \ifnum#1<9 %

134 \expandafter\aa@lastreverse\number\aa@nextdigit#l #2!#3!7,
135 \else

136 \@ReturnAfterFi{Y%

137 \ifx\\#2\\7%

138 10#37%

139 \else

140 \@ReturnAfterFi{%
141 \aa@addone#2!0#3!Y
142 iy

143 \fi

144 j/A

145 \fi

146 }%

With \aa@reverse the order of the digits is changed to perform the addition
in \aa@addone. Now we have to return to the original order that is done by
\aa@lastreverse.

147 \def\aa@lastreverse#1#2!#3!'{},

148 \ifx\\#2\\7

149 #1#3%

150 \else

151 \@ReturnAfterFi{%

152 \aa@lastreverse#2!#1#3!9,
153 i

154 \fi

155 }%

Increment of the decimal digit result form.

\aa@alphinc adds one to the intermediate number in the decimal digit result
form (see 2.4.1). Parameter #1 consists of the tokens that come before the addition
result (see ; #2; of \aa@process). Then it is also used to store already incremented
digits. #2 contains the next digit in the range of 1 until 26. An empty #2 marks
the end of the number.

156 \def\aa@alphinc#1#2.{%

157 \ifx\\#2\\7

158 \@ReturnAfterElseFi{

159 #11..7, ready

160 1A

161 \else

162 \@ReturnAfterFi{%

163 \ifnum#2<26 %

164 \@ReturnAfterElseFi{/,

165 \expandafter\aa@alphinclast\expandafter
166 {\number\aa@inc{#2}}{#1}/
167 iy

168 \else

169 \@ReturnAfterFi{%

170 \aa@alphinc{#11.}%

171 Y

172 \fi

173 %

174 \fi

175 }h

\aa@alphinclast is a help macro. Because #2 consists of several tokens (e.g.
;100;), we cannot jump over it via \expandafter in \aa@alphinc.
176 \def\aa@alphinclast#1#2{#2#1.}%

\newalphalph

\aaGmake

\aa@eprocess

\aa@gen@callmake

\aa@gen@make

\aa@gen@eprocess

177 \newcommand*{\newalphalph}[3]{%

178 \PackageError{alphalph}{%
179 \string\newalphalph\space requires e-TeX),
180 F\@ehc

2.5 Conversion with e-TgX features
181 \else

\aa@make catches the cases, if the number is zero or negative. Then it expands to
nothing like \romannumeral.

182 \def\aa@make#1#2{%

183 \ifnum#1<1 %

184 \else

185 \@ReturnAfterFi{Y%
186 \aa@eprocess#1;#2%
187 Y

188 \fi

189 }%

The first argument #1 contains the number that have to be converted yet, the
next argument #2 the command for making the conversion of a digit (\aa@alph or
\aa@Alph). The number is divided by 26 to get the rest. Command #2 converts the
rest to a letter that is put after the arguments of the next call of \aa@eprocess.

The only feature of e-TEX we use the new primitive \numexpr. It provides
expandible mathematical calculations.

190 \def\aa®@eprocess#1;#2{}

191 \ifnum#1<27 %

192 \@ReturnAfterElseFi{’

193 #2{#1}%

194 Yh

195 \else

196 \@ReturnAfterFi{},

197 \expandafter\aaQeprocess\number\numexpr (#1-14) /26
198 \expandafter\expandafter\expandafter;?/
199 \expandafter\expandafter\expandafter#2y,
200 #2{\numexpr#1-((#1-14)/26) *26}/,

201 Y

202 \fi

203}

2.6 Generic version

See macro \aa@callmake. Argument #3 holds the number of available symbols.
204 \def\aa@gen@callmake#1#2#3{/,

205 \expandafter\aa@gen@make\expandafter{\number#3}#1{#2}%

206 h

See macro \aa@make. Argument #3 holds the number of available symbols.

207 \def\aa@gen@make#1#2#3{/,

208 \ifnum#1<1 %

209 \else

210 \@ReturnAfterFi{Y%

211 \aa@gen@eprocess{#3}#1;#2/,
212 I/

213 \fi

214 }Yh

See macro \aa@eprocess. Argument #1 holds the number of available symbols.

\aa@half

\newalphalph

215 \def\aa@genQeprocess#1#2;#3{J,

216 \ifnum#2>#1 %

217 \@ReturnAfterElseFi{%

218 \expandafter\aa@gen@eprocess\expandafter{’
219 \number#1\expandafter

220 Y

221 \number\numexpr (#2- (\aaGhalf{#1}+1)) /#1%
222 \expandafter\expandafter\expandafter;

223 \expandafter\expandafter\expandafter#3y,
224 #3{\numexpr#2- ((#2- (\aa@half{#1}+1))/#1)*#1\relax}’
225 Yh

226 \else

227 \@ReturnAfterFi{/,

228 #3{#2}

229 Yh

230 \fi

231 }h

Macro \aa@half implements integer division by two without rounding.

232 \def\aa@half#1{%
233 \number\dimexpr.5\dimexpr #1lsp\relax\relax
234 Yh

New macros are defined by \newalphalph that act like \alphalph. The macro to
be defined is #1. Argument #2 contains the macro that converts a number to a
symbol and argument #3 holds the number of available symbols.

235 \newcommand*{\newalphalph} [3]{%

236 \newcommand*{#1}{}/

237 \edef#1{Y%

238 \noexpand\aa@gen@callmake\noexpand#2{\number\numexpr#33}J,
239 Yh

240 Y}

2.7 End of package
Now we can terminate the differentiation between TEX and e-TgX.

241 \fi
At the end the catcode of the character @ is restored.
242 \catcode ‘\@=\aa@atcode

243 (/package)

3 Installation

3.1 Download

Package. This package is available on CTAN':
CTAN:macros/latex/contrib/oberdiek/alphalph.dtx The source file.
CTAN:macros/latex/contrib/oberdiek/alphalph.pdf Documentation.
Bundle. All the packages of the bundle ‘oberdiek’ are also available in a TDS

compliant ZIP archive. There the packages are already unpacked and the docu-
mentation files are generated. The files and directories obey the TDS standard.

CTAN:macros/latex/contrib/oberdiek/oberdiek-tds.zip

lftp://ftp.ctan.org/tex-archive/

ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/oberdiek/alphalph.dtx
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/oberdiek/alphalph.pdf
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/oberdiek/oberdiek-tds.zip
ftp://ftp.ctan.org/tex-archive/

3.2 Bundle installation

Unpacking. Unpack the oberdiek-tds.zip in the TDS tree (also known as
texmf tree) of your choice. Example (linux):

unzip oberdiek-tds.zip -d ~/texmf
Script installation. Check the directory TDS:scripts/oberdiek/ for scripts
that need further installation steps. Package attachfile2 comes with the Perl script

pdfatfi.pl that should be installed in such a way that it can be called as pdfatfi.
Example (linux):

chmod +x scripts/oberdiek/pdfatfi.pl
cp scripts/oberdiek/pdfatfi.pl /usr/local/bin/

3.3 Package installation

Unpacking. The .dtx file is a self-extracting docstrip archive. The files are
extracted by running the .dtx through plain-TEX:

tex alphalph.dtx

TDS. Now the different files must be moved into the different directories in your
installation TDS tree (also known as texmf tree):

alphalph.sty — tex/generic/oberdiek/alphalph.sty
alphalph.pdf — doc/latex/oberdiek/alphalph.pdf
alphalph.dtx — source/latex/oberdiek/alphalph.dtx

If you have a docstrip.cfg that configures and enables docstrip’s TDS installing
feature, then some files can already be in the right place, see the documentation
of docstrip.

3.4 Refresh file name databases

If your TEX distribution (teTEX, mikTEX, ...) relies on file name databases, you
must refresh these. For example, teTEX users run texhash or mktexlsr.

3.5 Some details for the interested

Attached source. The PDF documentation on CTAN also includes the .dtx
source file. It can be extracted by AcrobatReader 6 or higher. Another option is
pdftk, e.g. unpack the file into the current directory:

pdftk alphalph.pdf unpack_files output .

Unpacking with B TEX. The .dtx chooses its action depending on the format:
plain-TEX: Run docstrip and extract the files.
I2TEX: Generate the documentation.

If you insist on using BTEX for docstrip (really, docstrip does not need WTEX),
then inform the autodetect routine about your intention:

latex \let\install=y\input{alphalph.dtx}

Do not forget to quote the argument according to the demands of your shell.

10

Generating the documentation. You can use both the .dtx or the .drv to
generate the documentation. The process can be configured by the configuration
file 1txdoc.cfg. For instance, put this line into this file, if you want to have A4
as paper format:

\PassOptionsToClass{adpaper}{article}
An example follows how to generate the documentation with pdfIATEX:

pdflatex alphalph.dtx
makeindex -s gind.ist alphalph.idx
pdflatex alphalph.dtx
makeindex -s gind.ist alphalph.idx
pdflatex alphalph.dtx

4 History
[1999/03/19 v0.1]

e The first version was built as a response to a question®of Will Douglas® and
the request®of Donald Arsenau®, published in the newsgroup comp.text.tex:
“Re: alph counters > 2676

e Copyright: LPPL (CTAN:macros/latex/base/lppl.txt)

[1999/04/12 v1.0]

e Documentation added in dtx format.

e ¢-TEX support added.

[1999/04/13 v1.1]

e Minor documentation change.

o First CTAN release.

[1999/06/26 V1.2]
e First generic code about \ProvidesPackage improved.

e Documentation: Installation part revised.

[2006/02/20 v1.3]
e Reload check (for plain-TEX)
e New DTX framework.
e LPPL 1.3

[2006/05 /30 v1.4]
e \newalphalph added.

[2007/04/11 v1.5]

e Line ends sanitized.

2Url: http://www.dejanews.com/ [ST_rn=ps]/getdoc.xp?AN=455791936
3Will Douglas’s email address: william.douglas@wolfson.ox.ac.uk
4Url: http://www.dejanews.com/ [ST_rn=ps]/getdoc.xp?AN=456358639
5Donald Arsenau’s email address: asnd@reg.triumf.ca

6Url: http://www.dejanews.com/[ST_rn=ps]/getdoc.xp?AN=456485421

11

news:comp.text.tex
ftp://ftp.ctan.org/tex-archive/macros/latex/base/lppl.txt
http://www.dejanews.com/[ST_rn=ps]/getdoc.xp?AN=455791936
mailto:william.douglas@wolfson.ox.ac.uk
http://www.dejanews.com/[ST_rn=ps]/getdoc.xp?AN=456358639
mailto:asnd@reg.triumf.ca
http://www.dejanews.com/[ST_rn=ps]/getdoc.xp?AN=456485421

5 Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

N o 52, 53, 242

\@ReturnAfterElseFi
..... 54, 103, 158, 164, 192, 217

\@ReturnAfterFi

54, 84, 93, 105, 127, 136, 140,
151, 162, 169, 185, 196, 210, 227
\@ehc, 180
N\ 102, 124, 137, 148, 157

A
\aa@@getresult 99, 101
\aa@addone 125, 132
\aa@Alph 56, 75
\aaGalph 56, 74
\aa@alphinc 94, 156
\aa@alphinclast 165, 176
\aa@atcode 242
\aa@callmake 74, 75, 76
\aa@eprocess 186, 190
\aa@gen@callmake 204, 238
\aa@gen@eprocess 211, 215
\aa@gen@make 205, 207
\aa@getresult 91, 98
\aaGhalf 221, 224, 232
\aa@inc 94, 114, 166
\aa@lastreverse 134, 147
\aalmake 77, 81, 182
\aa@nextdigit 117, 122, 134
\aalprocess 85, 89
\aa@reverse 119, 123
\AlphAlph 2,74
\alphalph 2,74
C

\catcode 3, 4, 5,
6, 7, 31, 32, 33, 34, 35, 52, 53, 242
\csname 8, 18, 36, 49, 52, 80

12

D
\dimexpr 233
E
\empty 12
\endcsname 8, 18, 36, 49, 52, 80
\endinput 27
1
\ifcase 9, 57, 66, 122
\ifnum 82,
90, 116, 133, 163, 183, 191, 208, 216
\ifx ... 10, 12, 18,
36, 44, 80, 102, 124, 137, 148, 157
\immediate 20, 38
N
\newalphalph 2, 177, 235
\newcommand 177, 235, 236
\number 77,94, 134,

166, 197, 205, 219, 221, 233, 238

\numexpr 197, 200, 221, 224, 238
P

\PackageError 178

\PackageInfo 23

\ProvidesPackage 50
S

\Space 179
T

\the 52
w

\write 20, 38
X

\x ... 8, 10, 12, 19, 23, 25, 37, 42, 49

	Contents
	1 Usage
	1.1 User commands
	1.1.1 New commands like \alphalph

	2 Implementation
	2.1 Begin
	2.2 Help macros
	2.3 User commands
	2.4 TeX
	2.4.1 Digits to letter result
	2.4.2 Addition by one

	2.5 e-TeX
	2.6 Generic version
	2.7 End

	3 Installation
	3.1 Download
	3.2 Bundle installation
	3.3 Package installation
	3.4 Refresh file name databases
	3.5 Some details for the interested

	4 History
	[1999/03/19 v0.1]
	[1999/04/12 v1.0]
	[1999/04/13 v1.1]
	[1999/06/26 v1.2]
	[2006/02/20 v1.3]
	[2006/05/30 v1.4]
	[2007/04/11 v1.5]

	5 Index
	Symbols
	A
	C
	D
	E
	I
	N
	P
	S
	T
	W
	X

