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Abstract

The numerica package defines a command to numerically evaluate mathemati-
cal expressions in the LaTeX form in which they are typeset. For programs like
LyX with a preview facility, or compile-as-you-go systems, interactive back-of-
envelope calculations and numerical exploration are possible within the doc-
ument being worked on. The package requires the bundles l3kernel and
l3packages, and the amsmath and mathtools packages.

Note:
• This document applies to version 2.0.0 of numerica.sty.

• Reasonably recent versions of the LATEX3 bundles l3kernel and
l3packages are required (although much of l3kernel has been incor-
porated into LATEX 2ε since February 2020).

• The package requires amsmath and mathtools.

• I refer many times in this document (especially §3.4) to Handbook of Math-
ematical Functions, edited by Milton Abramowitz and Irene A. Segun,
Dover, 1965. This is abbreviated to HMF , often followed by a number
like 1.2.3 to locate the actual expression referenced.

• Version 2.0.0 of numerica

– splits into distinct packages the additional functionality previously
available with the plus and tables package options of version 1;

– allows for user-defined macros and constants (with the \nmcMacros
and \nmcConstants commands) to be used in expressions to be eval-
uated;

– rewrites the code and changes the behaviour of \nmcReuse to main-
tain uniformity across all commands (\nmcEvaluate, \nmcInfo,
\nmcMacros, \nmcConstants, \nmcReuse); this command is no
longer compatible with its use in v.1;

– changes the behaviour of \text and \mbox in the \eval command;
adds \textrm, \textsf, and \texttt to compensate;

– includes many adjustments to the code, including around nesting of
commands;

– adds to and amends documentation.
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Chapter 1

Introduction

numerica is a LATEX package offering the ability to numerically evaluate math-
ematical expressions in the LATEX form in which they are typeset.1

There are a number of packages which can do calculations in LATEX,2 but
those I am aware of all require the mathematical expressions they operate on
to be changed to an appropriate syntax. Of these packages xfp comes closest
to my objective with numerica. For instance, given a formula

\frac{\sin (3.5)}{2} + 2\cdot 10^{-3}

(in a math environment), this can be evaluated using xfp by transforming the
expression to sin(3.5)/2 + 2e-3 and wrapping this in the command \fpeval.
In numerica you don’t need to transform the formula, just wrap it in an \eval
command:

\eval{ \frac{\sin (3.5)}{2} + 2\cdot 10^{-3} }.

(for the acutal calculation see §1.1.3).
numerica, like xfp and a number of other packages, uses l3fp (the LATEX3

floating point module in l3kernel) as its calculational engine. To some extent
the main command, \nmcEvaluate, short-name form \eval, is a pre-processor
to l3fp, converting mathematical expressions written in the LATEX form in
which they will be typeset into an ‘fp-ified’ form that is digestible by l3fp. The
aim is to make the command act as a wrapper around such formulas. Ideally,
one should not have to make any adjustment to them, although any text on

1numerica evolved from the author’s calculyx package that was designed for use with the
document processor LYX (and available for download from a link on the LYX wiki website but
not CTAN).

2A simple search finds the venerable calc in the LATEX base, calculator (including an
associated calculus package), fltpoint, fp (fixed rather than floating point), spreadtab
(using either fp or l3fp as its calculational engine) if you want simple spreadsheeting with
your calculations, the elaborate xint, pst-calculate (a limited interface to l3fp), l3fp in the
LATEX3 kernel, and xfp, the LATEX3 interface to l3fp. Other packages include a calculational
element but are restricted in their scope. (longdivision for instance is elegant, but limited
only to long division.)
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Fourier series suggests that hope in full generality is delusional. Surprisingly
often however it is possible. We shall see shortly that even complicated formulas
like

cos m
n π − (1 − 4 sin2 m

3n π)
sin 1

n π sin m−1
n π

2 sin2 m
3n π

,

and (1 − 4 sin2 m
3n π

2 sin2 m
3n π

)
sin 2m−3

3n π sin m−3
3n π,

can be evaluated ‘as is’ (see below, §1.1.7). There is no need to shift the position
of the superscript 2 on the sines, no need to parenthesize the arguments of
sin and cos, no need to insert asterisks to indicate multiplication, no need to
change the \frac and \tfrac-s to slashes, /, no need to delete the \left
and \right that qualify the big parentheses (in the underlying LATEX) in the
second expression. Of course, if there are variables in an expression, as in
these examples, they will need to be assigned values. And how the result of
the evaluation is presented also requires specifying, but the aim is always: to
evaluate mathematical expressions in LATEX with as little adjustment as possible
to the form in which they are typeset.

numerica is written in expl3, the programming language of the LATEX3
project. It uses the LATEX3 module l3fp (part of l3kernel) as its calculational
engine. This enables floating point operations to 16 significant figures, with
exponents ranging between −10000 and +10000. Many functions and opera-
tions are built into l3fp – arithmetic operations, trigonometric, exponential
and logarithm functions, factorials, absolute value, max and min. Others have
been constructed for numerica from l3fp ingredients – binomial coefficients,
hyperbolic functions, sums and products – but to the user there should be no
discernible difference.

Associated packages provide for additional operations: iteration of functions,
finding zeros of functions, recurrence relations, mathematical table building;
others are planned (e.g. calculus).

1.1 How to use numerica

The package is invoked in the usual way: put

\usepackage{numerica}

in the LATEX preamble. numerica requires the amsmath and mathtools packages
and loads these automatically. numerica will also accept use of some relational
symbols from the amssymb package provided that package is loaded by the user;
see §2.3.4.
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1.1.1 Package options
Currently there are none. With version 2.0.0 of numerica a change has been
made to how additional functionality for the package is invoked; see §1.1.2 below.
This means that the options available in version 1 have been discontinued.

1.1.2 Associated packages
In version 1 of numerica some additional functionality for the package could
be gained by specifying package options – for instance the ability to create
tables of function values or to iterate or find fixed points of functions. However
this manner of invoking the addtional functionality makes the maintaining of
semantic version numbering across the whole numerica package difficult. With
version 2.0.0 of the package, the addtional functionality has been separated into
separate LATEX packages. Currently there are two of these, numerica-plus and
numerica-tables. They are loaded with the familiar \usepackage command
in the document preamble and require the availability of the numerica package
in your TEX distribution. Neither package requires a \usepackage{numerica}
statement; they take care of that themselves. So, if you enter

\usepackage{numerica-plus}

in the preamble of your document you gain access not only to the commands in
the numerica package but also to the commands \nmcIterate, \nmcSolve, and
\nmcRecur. \nmcIterate enables the iteration of functions of a single variable,
including finding fixed points. \nmcSolve enables the solving of equations of
the form f(x) = 0 (i.e. finding the zeros of f), or the finding of local maxima or
minima of a function of one variable. \nmcRecur enables the calculation of terms
in recurrence relations, like the terms of the Fibonacci series, or othogonal poly-
nomials defined recurrently. See the associated document numerica-plus.pdf
for details.

If you enter

\usepackage{numerica-tables}

in the preamble of your document you gain access not only to the commands in
the numerica package but also to the command \nmcTabulate which enables
the creation of (possibly multi-column) tables of function values and makes
available most of the table formats evident in HMF. See the associated document
numerica-tables.pdf for details.

A package numerica-calculus is currently being developed.

1.1.3 Simple examples of use
A simple example of use is provided by the document

\documentclass{article}
\usepackage{numerica}
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\begin{document}

\eval{$ mc^2 $}[m=70,c=299 792 458][8x]

\end{document}

We have a formula between math delimiters: $ mc^2 $. We have wrapped a
command \eval around the lot, added an optional argument in parentheses
specifying numericaal values for the quantities m and c, and concluded it all
with a trailing optional argument specifying that the result should be presented
to 8 places of decimals and in scientific notation (the x). Running pdflatex on
this document generates a pdf displaying

mc2 = 6.29128625 × 1018, (m = 70, c = 299792458)

where the formula (mc2) is equated to the numerical value resulting from substi-
tuting the given values of m and c. Those values are displayed in a list following
the result. The calculation is presented to 8 decimal places in scientific notation.
(According to Einstein’s famous equation E = mc2 this is the enormous energy
content, in joules, of what was once considered an average adult Caucasian male.
Only a minute fraction is ever available.)

A second example is provided by the formula in earlier remarks:

\documentclass{article}
\usepackage{numerica}
\begin{document}

\eval{\[ \frac{\sin(3.5)}{2} + 2\cdot 10^{-3} \]}

\end{document}

Running pdflatex on this document produces the result

sin(3.5)
2 + 2 · 10−3 = −0.173392

The \eval command used in these examples is the main command of the
numerica package. It is discussed in full in the next chapter, but first some
preliminaries.

1.1.4 Display of the result
In what follows I shall write things like (but generally more complicated than)

$ \eval{ 1+1 } $ =⇒ 2
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to mean: run pdflatex on a document containing \eval{1+1} in the document
body to generate a pdf containing the calculated result (2 in this instance). The
reader will note that I have used dollar signs to delimit the math environment.
I could (and perhaps should) have used the more LATEX-pure \( \), which will
do equally well, but habit has won out. In the example the \eval command is
used within a math environment (delimited by the dollar signs). It is not limited
to this behaviour. The command can also wrap around the math delimiters (as
we saw in the previous examples):

\eval{$ 1+1 $} =⇒ 1 + 1 = 2.

As you can see, the display that results is different.

• When the \eval command is used within a math environment, only the
result, followed possibly by the variable = value list (see §2.2) is displayed.

Environments may include the various AMS environments as well as the stan-
dard LATEX inline ( $ $ or \( \) ), equation ( \[ \] ) and eqnarray envi-
ronments. For an example of \eval within an align* environment see §1.1.6
below.

• When the \eval command is wrapped around a math environment, the
result is displayed in the form, formula = result (followed possibly by the
variable = value list) within that environment,

– If the formula is long or contains many variables then it may be
desirable to split the display over two lines; see §2.2.3.4 and §3.1.11,

the whole presented as an inline expression if $ delimiters are used, or as a
display-style expression otherwise. (See the mc2 example for an illustration.)

It is not clear to me that wrapping \eval around the AMS environments,
except for multline, makes much sense, although it can be done. Here is an
example of \eval wrapped around a multline* environment (the phantom is
there so that the hanging + sign spaces correctly),

\eval{ \begin{multline*}
1+2+3+4+5+6+7+8+9+10+\phantom{0}\\

11+12+13+14+15+16+17+18+19
\end{multline*} }

=⇒
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 +

11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 = 190

• It is also possible to dispense with math delimiters entirely, neither wrapped
within nor wrapped around the \eval command, but in that case numerica
acts as if \eval had been used within \[ and \] and displays the result
accordingly.
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1.1.5 Checking
A question I found on the internet that caught my attention was to simplify√

220 − 30
√

35. I found myself intrigued. After some bumbling and fumbling,
I let

x =
√

220 − 30
√

35, y =
√

220 + 30
√

35,

(which seems an obvious thiing to do). Then

xy = 10
√

484 − 315 = 10
√

132 = 130.

Since x2 + y2 = 440 it was then easy to form both (x + y)2 and (x − y)2 and
by separating the resulting numbers into their prime factors, to work out that
x = 5

√
7 − 3

√
5. Was I right?

\eval{$ \sqrt{220-30\sqrt{35}} $} =⇒
√

220 − 30
√

35 = 6.520553,
\eval{$ 5\sqrt{7}-3\sqrt{5} $} =⇒ 5

√
7 − 3

√
5 = 6.520553.

Yes, the simplification was correct. And indeed y = 5
√

7 + 3
√

5:

\eval{$ \sqrt{220+30\sqrt{35}} $} =⇒
√

220 + 30
√

35 = 19.93696,
\eval{$ 5\sqrt{7}+3\sqrt{5} $} =⇒ 5

√
7 + 3

√
5 = 19.93696.

As a final flourish,

\eval{$ xy $}
[ x=5\sqrt{7}-3\sqrt{5},

y=5\sqrt{7}+3\sqrt{5} ]

=⇒ xy = 130, (x = 5
√

7 − 3
√

5, y = 5
√

7 + 3
√

5).

1.1.6 Exploring
When working on numerica’s predecessor package, I constantly tested it against
known results to check for coding errors. One test was to ensure that(

1 + 1
n

)n

did indeed converge to the number e as n increased. Let’s do that here. Try
first n = 10:

\eval{$ e-(1+1/n)^n $}[n=10][x] =⇒
e − (1 + 1/n)n = 1.245394 × 10−1, (n = 10).

(The default number of decimal places displayed is 6.) The difference between
e and (1 + 1/n)n is about an eighth (0.125) when n = 10, which is encouraging
but hardly decisive. The obvious thing to do is increase the value of n. I’ll use
an align* environment to ‘prettify’ the presentation of the results:
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\begin{align*}
e-(1+1/n)^{n} & =\eval{e-(1+1/n)^n}[n=1\times10^5][*x],\\
e-(1+1/n)^{n} & =\eval{e-(1+1/n)^n}[n=1\times10^6][*x],\\
e-(1+1/n)^{n} & =\eval{e-(1+1/n)^n}[n=1\times10^7][*x],\\
e-(1+1/n)^{n} & =\eval{e-(1+1/n)^n}[n=1\times10^8][*x].

\end{align*}

(most of which was written using copy and paste) which produces

e − (1 + 1/n)n = 1.359128 × 10−5, (n = 1 × 105),
e − (1 + 1/n)n = 1.359140 × 10−6, (n = 1 × 106),
e − (1 + 1/n)n = 1.359141 × 10−7, (n = 1 × 107),
e − (1 + 1/n)n = 1.359141 × 10−8, (n = 1 × 108).

Clearly (1+1/n)n converges to e, the difference between them being of order 1/n,
but that is not what catches the eye. There is an unanticipated regularity here.
1.35914? Double the number: $\eval{2\times 1.35914}[5]$ =⇒ 2.71828
which is close enough to e to suggest a relationship, namely,

lim
n→∞

n

(
e −

(
1 + 1

n

)n)
= 1

2 e.

This was new to me. Is it true? From the familiar expansion of the logarithm

ln
(

1 + 1
n

)n

= n ln
(

1 + 1
n

)
= n

(
1
n

− 1
2

1
n2 + 1

3
1
n3 − . . .

)
= 1 − 1

2n

(
1 − 2

3
1
n

+ 2
4

1
n2 −

)
≡ 1 − 1

2n
En,

say. Since En is an alternating series and the magnitudes of the terms of the
series tend to 0 monotonically, 1 > En > 1−2/3n. From this and the inequalities
1/(1 − x) > ex > 1 + x when x < 1 it proved a straightforward matter to verify
the proposed limit.

1.1.7 Reassuring
In the course of some hobbyist investigations in plane hyperbolic geometry I
derived the formula

Φ1(m, n) = cos m
n π − (1 − 4 sin2 m

3n π)
sin 1

n π sin m−1
n π

2 sin2 m
3n π

,
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for m = 2, 3, . . . and integral n ≥ 2m + 1. A key concern was: when is Φ1
positive? After an embarrassingly laborious struggle, I managed to work this
expression into the form

Φ2(m, n) =
(1 − 4 sin2 m

3n π

2 sin2 m
3n π

)
sin 2m−3

3n π sin m−3
3n π,

in which the conditions for positivity are clear: with n ≥ 2m + 1, so that
mπ/3n < π/6, the first factor is always positive, the second is positive for
m ≥ 2, and the third is positive for m ≥ 4. All well and good, but given the
struggle to derive Φ2, was I confident that Φ1 and Φ2 really are equal? It felt
all too likely that I had made a mistake.

The simplest way to check was to see if the two expressions gave the same nu-
merical answers for a number of m, n values. I wrote \eval{\[ \]}[m=2,n=5]
twice and between the delimiters pasted the already composed expressions for
Φ1 and Φ2, namely:

\eval{\[
\cos\tfrac{m}{n}\pi-(1-4\sin^{2}\tfrac{m}{3n}\pi)
\frac{\sin\tfrac{1}{n}\pi\sin\tfrac{m-1}{n}\pi}
{2\sin^{2}\tfrac{m}{3n}\pi}

\]}[m=2,n=5]
\eval{\[

\left(
\frac{1-4\sin^{2}\tfrac{m}{3n}\pi}
{2\sin^{2}\tfrac{m}{3n}\pi}

\right)
\sin\tfrac{2m-3}{3n}\pi\sin\tfrac{m-3}{3n}\pi

\]}[m=2,n=5]

I have added some formatting – indenting, line breaks – to make the formulas
more readable for the present document but otherwise left them unaltered. The
\eval command can be used for even quite complicated expressions without
needing to tinker with their LATEX form, but you may wish – as here – to adjust
white space to clarify the component parts of the formula. Running pdflatex
on these expressions, the results were

cos m
n π − (1 − 4 sin2 m

3n π)
sin 1

n π sin m−1
n π

2 sin2 m
3n π

= −0.044193, (m = 2, n = 5)

(1 − 4 sin2 m
3n π

2 sin2 m
3n π

)
sin 2m−3

3n π sin m−3
3n π = −0.044193, (m = 2, n = 5)

which was reassuring. Doing it again but with different values of m and n, again
the results coincided:
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cos m
n π − (1 − 4 sin2 m

3n π)
sin 1

n π sin m−1
n π

2 sin2 m
3n π

= 0.107546, (m = 5, n = 13)

(1 − 4 sin2 m
3n π

2 sin2 m
3n π

)
sin 2m−3

3n π sin m−3
3n π = 0.107546, (m = 5, n = 13)

Thus reassured that there was not an error in my laborious derivation of Φ2 from
Φ1, it was not difficult to work back from Φ2 to Φ1 then reverse the argument
to find a straightforward derivation.
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Chapter 2

\nmcEvaluate (\eval)

The main calculational command in numerica is \nmcEvaluate. Unlike some
other commands which are loaded optionally, \nmcEvaluate is always loaded,
and therefore always available. Because \nmcEvaluate would be tiresome to
write too frequently, particularly for back-of-envelope calculations, there is an
equivalent short-name form, \eval, used almost exclusively in the following.
But note: wherever you see the command \eval, you can substitute \nmcEvaluate
and obtain the same result.

\eval (like other short-name forms of other commands in the numerica
suite) is defined using \ProvideDocumentCommand from the xparse package.
Hence if \eval has already been defined in some other package already loaded,
it will not be redefined by numerica. It will retain its meaning in the other pack-
age. Its consequent absence from numerica may be an irritant, but only that;
\nmcEvaluate is defined using xparse’s \DeclareDocumentCommand which would
override any (freakishly unlikely) previous definition of \nmcEvaluate in another
package and would therefore still be available.

2.1 Syntax of \nmcEvaluate (\eval)

There are five arguments to the \nmcEvaluate (or \eval) command, of which
only one, the third, is mandatory. All others are optional. If all are deployed
the command looks like

\nmcEvaluate*[settings]{expr.}[vv-list][num. format]

I discuss the various arguments in the referenced sections.

1. * optional switch; if present ensures display of only the numerical result
(suppresses display of the formula and vv-list); see §2.2.3.1

2. [settings] optional comma-separated list of key=value settings for this
particular calculation; see §3.1
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3. {expr.} the only mandatory argument; the mathematical expression/formula
in LATEX form that is to be evaluated

4. [vv-list] optional comma-separated list of variable=value items; see §2.2

5. [num. format] optional format specification for presentation of the nu-
merical result (rounding, padding with zeros, scientific notation, boolean
output); see §2.3

Note that arguments 4 and 5 are both square-bracket delimited optional argu-
ments. Should only one such argument be used, numerica determines which
is intended by looking for an equals sign within the argument. Its presence
indicates the argument is the vv-list; its absence indicates the argument is the
number format specification.

The vv-list and number-format specification are trailing optional arguments.
They do not need to be hard against their preceding arguments; intervening
spaces are allowed. This means there is a possibility that should the \eval
command be followed by a square-bracketed mathematical expression numerica
might confuse it with one of its trailing arguments. Experience using numerica
suggests that this will be a (very) rare occurrence and is easily prevented by
inserting an empty brace pair ({}) before the offending square-bracketed expres-
sion. Allowing spaces between the arguments enables complicated expressions
and large vv-lists to be formatted with new lines and white space to aid clarity
– without requiring the insertion of comment characters (%).

Recommended practice is to minimise the number of optional arguments
used in LATEX commands by consolidating such arguments into a single key=value
list. Although numerica uses such an argument, the vv-list does not fit natu-
rally into that scheme. And practice suggests that separating out the elements
of the number format specification (rounding value, padding with zeros, scien-
tific notation, boolean output) and placing them in a trailing argument is both
convenient and intuitive for the kind of back-of-envelope calculations envisaged
for numerica.

2.2 The variable=value list
To evaluate algebraic, trigonometric and other formulas that involve variables
we need to give those variables values. This is done in the variable=value list – or
vv-list for short. This is the fourth argument of the \nmcEvaluate command and
is a square-bracket delimited optional argument (optional because an expression
may depend only on constants and numbers).

2.2.1 Variable names
In mathematical practice, variable names are generally single letters of the
Roman or Greek alphabets, sometimes also from other alphabets, in a va-
riety of fonts, and often with subscripts or primes or other decorations. In
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numerica a variable name is what lies to the left of the equals sign in an item
of the vv-list. Thus variables can be multi-token affairs: x′, x′′, xiv, xn, x′

n, x′′
mn,

kCn, var, var, F red, Fred, FRED . . . (This criterion for what makes a variable
name means a name may contain spaces – for instance x x should not cause a
numerica error – but such names are not part of mathematical practice.) Usu-
ally, for the kind of back-of-envelope calculations envisaged for numerica, and
for ease of typing, most variables will be single letters from the Roman or Greek
alphabets.

Because equals signs and commas give structure to the vv-list, it should also
be clear that a variable name should not contain a naked equals sign or a naked
comma. They can be incorporated in a variable name but only when decently
wrapped in braces, like R_{=} displaying as R= or X_{,i} displaying as X,i.

Note that x and x will be treated by numerica as different variables since,
in the underlying LATEX, one is x and the other \mathrm{x}. Even names that
look identical in the pdf may well be distinct in LATEX. This is true particularly
of superscripts and subscripts: x_0 and x_{0} appear identical in the pdf but in
the underlying LATEX they are distinct, and will be treated as distinct variables
by numerica.

Although multi-token variables are perfectly acceptable, internally numerica
works with single tokens. Variable names can be so different in structure, one
from another, that to ease the parsing of formulas, all internal variable names
are assumed to be single tokens. Hence a necessary initial step for the package
is to map all multi-token variable names in the vv-list and the formula to single
tokens. numerica does this by turning the multi-token variable names into
control sequences with names in the sequence \nmc_a, \nmc_b, \nmc_c, etc.,
then searches through the vv-list and the formula for every occurrence of the
multi-token names and replaces them with the relevant control sequences. It
does this in order of decreasing size of name, working from the names that
contain most tokens down to names containing only two tokens. (Doing the
replacing in this order prevents parts of longer names possibly being mistaken
for shorter variable names.)

The conversion process uses computer resources. Even if there are no multi-
token variables present, numerica still needs to check that this is so – un-
less the user alerts the program to the fact. This can be done by making
a brief entry xx=0 in the settings option (the second optional argument of
\nmcEvaluate); see §3.1.5. If the user never (or hardly ever) uses multi-token
variables, then a more permanent solution is to create a file numerica.cfg with
the line multitoken-variables = false; see §3.3 for this.

2.2.2 The vv-list and its use
A vv-list is a comma-separated list where each item is of the form variable=value.
It might be something simple like

[g=9.81,t=2]

or something more complicated like
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[V_S=\tfrac43\pi r^3,V_C=2\pi r^2h,h=3/2,r=2].

Spaces around the equals signs or the commas are stripped away during pro-
cessing so that

[g=9.81,t=2] and [ g = 9.81 , t = 2]

are the same variable=value list.

2.2.2.1 Evaluation from right to left

In these examples, with variables depending on other variables, there is an
implication: that the list is evaluated from the right. Recall how a function of
a function is evaluated, say y = f(g(h(x))). To evaluate y, first x is assigned
a value then h(x) is calculated, then g(h(x)) then f(g(h(x))) = y. We work
from right to left, from the innermost to the outermost element. Or consider an
example like calculating the area of a triangle by means of the formula

A =
√

s(s − a)(s − b)(s − c).

First we write the formula; then we state how s depends on a, b, c, namely
s = 1

2 (a + b + c), then we give values to a, b, c. In numerica this is mirrored in
the layout of the \eval command:

\eval{$ \sqrt{s(s-a)(s-b)(s-c)} $}
[s=\tfrac12(a+b+c),a=3,b=4,c=5]

The formula in a sense is the leftmost extension of the vv-list. The entire
evaluation occurs from right to left.

This means that the rightmost variable in the vv-list can depend only on
constants and numbers – although it may be a complicated expression of those
elements. Other variables in the vv-list can depend on variables to their right
but not to their left.

2.2.2.2 Expressions in the variable=value list

Suppose our expression is 4
3 πr3, the volume VS of a sphere in terms of its radius

r, and we want to calculate the volume for different values of r to get a sense
of how rapidly volume increases with radius.

$ V_S=\eval{ \tfrac43\pi r^3 }[r=1] $ =⇒ VS = 4.18879, (r = 1).

Having set up this calculation it is now an easy matter to change the value of r
in the vv-list:

$ V_S=\eval{ \tfrac43\pi r^3 }[r=1.5] $ =⇒ VS = 14.137167, (r = 1.5).
$ V_S=\eval{ \tfrac43\pi r^3 }[r=2] $ =⇒ VS = 33.510322, (r = 2).

To compute the volume VC = πr2h of a cylinder, we have two variables to assign
values to:
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$ V_C=\eval{ \pi r^2h }[h=4/3,r=1] $ =⇒
VC = 4.18879, (h = 4/3, r = 1).

Although values in the vv-list are generally either numbers or simple expressions
(like 4/3), that is not essential. A little more complicated is

$ V_C=\eval{ hA_C }[A_C=\pi r^2,h=4/3,r=1] $ =⇒
VC = 4.18879, (AC = πr2, h = 4/3, r = 1).

where calculation of the volume of the cylinder has been split into two: first
calculate the area AC of its circular base and then, once that has been effected,
calculate the volume.

A second example is provided by Brahmagupta’s formula for the area of a
triangle in terms of its semi-perimeter. In a triangle ABC, the sides are a = 3,
b = 4 and c = 5. (Of course we know this is a right-angled triangle with area
1
2 ab = 6.) The semi-perimeter s = 1

2 (a + b + c) and the area of ABC is

\eval{$ \sqrt{s(s-a)(s-b)(s-c) $}
[s=\tfrac12(a+b+c),a=3,b=4,c=5]

=⇒
√

s(s − a)(s − b)(s − c) = 6, (s = 1
2 (a + b + c), a = 3, b = 4, c = 5).

2.2.2.3 Constants

numerica has five built-in constants and can also accept user-defined constants.
For the latter, see §4.3. The five built-in constants known to numerica are
\pi, the ratio of circumference to diameter of a circle; e, the base of natural
logarithms; Euler’s constant \gamma, the limit of

(∑N
1 1/n

)
− ln N as N → ∞;

the golden ratio \phi, equal to 1
2 (1 +

√
5); and the utilitarian constant \deg,

the number of radians in a degree.

\eval{$ \pi $} =⇒ π = 3.141593,
\eval{$ e $} =⇒ e = 2.718282,

\eval{$ \gamma $} =⇒ γ = 0.577216,
\eval{$ \phi $} =⇒ ϕ = 1.618034,

\eval{$ \deg $} =⇒ deg = 0.017453,

so that \eval{$ 180\deg $} =⇒ 180 deg = 3.141593 (as it should).
Let’s combine two of these in a formula:

\eval{$ e^\pi-\pi^e $} =⇒ eπ − πe = 0.681535,

which is close-ish to 1
4 e: \eval{$ \tfrac14e $} =⇒ 1

4 e = 0.67957.
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In some contexts it may feel natural to use any or all of \pi, e, \gamma and
\phi as variables by assigning values to them in the vv-list. numerica does
not object. The values assigned in this way override the constants’ values. For
example, if the triangle we labelled ABC previously was instead labelled CDE
then it has sides c = 3, d = 4 and (note!) e = 5. It’s area therefore is

\eval{$ \sqrt{s(s-c)(s-d)(s-e)} $}
[s=\tfrac12(c+d+e),c=3,d=4,e=5]

=⇒√
s(s − c)(s − d)(s − e) = 6, (s = 1

2 (c + d + e), c = 3, d = 4, e = 5).

Since this is the correct area we see that e has been treated as a variable with
the assigned value 5, not as the constant. But if e (or \pi or \gamma or \phi)
is not assigned a value in the vv-list then it has, by default, the value of the
constant. In the case of e, if you wish to use it as a variable, the constant is
always available as \exp(1). There is no similar alternative available for \pi,
\gamma or \phi.

2.2.3 Display of the vv-list
By default, the vv-list is displayed with (in fact following) the numerical result.
That and the format of the display can both be changed.

2.2.3.1 Star option: suppressing display of the vv-list

If display of the vv-list is not wanted at all, only the numerical result, it suffices
to attach an asterisk (star) to the \eval command:

$ V_C=\eval*{ hA_C }[A_C=\pi r^2,h=4/3,r=1] $ =⇒ VC = 4.18879,

or simply the naked result:

\eval*{$ hA_C $}[A_C=\pi r^2,h=4/3,r=1] =⇒ 4.18879.

In the latter case, note that a negative result will display with a hyphen for
the minus sign unless you, the user, explicitly write math delimiters around the
\eval* command as a whole. Wrapping them around the formula has no effect:

\eval*{$ y $}[y=ax+b,x=2,a=-2,b=2] =⇒ -2,
$ \eval*{ y }[y=ax+b,x=2,a=-2,b=2] $ =⇒ −2.

The star option delivers a number as result, pure and simple.
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2.2.3.2 Suppressing display of items

You may wish to retain some variables in the vv-list display, but not all. For
those variables you wish omitted from the display, wrap each variable (but not
the equals sign or value) in braces. When calculating the volume of a cylinder
in the previous examples, the base area AC has a different status from the
‘fundamental’ variables r and h. It is an intermediate value, one that we pass
through on the way to the final result. To suppress it from display enclose the
variable in braces:

$ V_C=\eval{ hA_C }[{A_C}=\pi r^2,h=4/3,r=1] $ =⇒
VC = 4.18879, (h = 4/3, r = 1).

As you can see, AC no longer appears in the displayed vv-list. Of course the
name and its value are still recorded ‘behind the scenes’ and can still be used
in calculations.

2.2.3.3 Empty vv-list suppressed

Should the vv-list be empty, or display of all variables is suppressed by wrapping
each in braces, then nothing is displayed where the vv-list would normally be,
not even any punctuation:

$ V_C=\eval{ hA_C }[{A_C}=\pi r^2,{h}=4/3,{r}=1] $ =⇒ VC = 4.18879

If you want a full stop after the result then you will need to add it by hand or
use the p=. setting of §3.1.12.

2.2.3.4 Changing the display format

In two examples above, we have calculated the area of a triangle using Brah-
magupta’s formula. Display of the result is crowded. Two remedies have just
been suggested, but a third one and preferable in this case would be to force
display of the vv-list and result to a new line. This can be done through the set-
tings option to the \eval command, discussed in §3.1.11. However, if \eval is
wrapped around an appropriate environment (like multline, but not equation)
it can also be done simply by including \\ at the end of the formula.

In the following example I use Brahmagupta’s formula for calculating the
area of a cyclic quadrilateral (of which his formula for a triangle is a special
case). The cyclic quadrilateral in the example is formed by a 45-45-90 triangle
of hypotenuse 2 joined along the hypotenuse to a 30-60-90 triangle. The sides are
therefore

√
2,

√
2,

√
3, 1. Adding the areas of the two triangles, the area of the

quadrilateral is A = 1+ 1
2
√

3, or in decimal form, $\eval{1+\tfrac12\surd3}$
=⇒ 1.866025. Let’s check with Brahmagupta’s formula:

\eval{
\begin{multline*}

\sqrt{(s-a)(s-b)(s-c)(s-d)}\\
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\end{multline*}
}[s=\tfrac12(a+b+c+d),

a=\surd2,b=\surd2,c=\surd3,d=1]

=⇒√
(s − a)(s − b)(s − c)(s − d)

= 1.866025, (s = 1
2 (a + b + c + d), a =

√
2, b =

√
2, c =

√
3, d = 1)

2.2.3.5 Abusing multi-token variable names

A variable name is what lies to the left of the equals sign of an item in the
vv-list. Since multi-token variables are converted to single tokens (like \nmc_a)
before any calculating is done, it is possible to sin. Thus :

\eval{$ \sin\pi $}[{\sin\pi}=1] =⇒ sin π = 1;

and (more?) egregiously,

\eval{$ 10 $}[{10}=20] =⇒ 10 = 20.

What is happening here is that the multi-token ‘variables’ \sin\pi and 10 are
being converted, right at the start of proceedings, to single tokens like \nmc_a,
which in TEX-speak are macros containing their respective multiple tokens. For
display purposes they expand to those multiple tokens, but for calculating within
numerica the single token is used. By this means one can easily create further
grotesqueries:

\eval{$ ++ + ++ $}[{++}=1] =⇒ + + + + + = 2,
\eval{$ 2(1+1) $}[{2(1}=3,{+1)}=5] =⇒ 2(1 + 1) = 15,

\eval{$ 1!! $}[{!!}=42] =⇒ 1!! = 42.

Should numerica try to check variable names to avoid consequences like this? I
don’t see any reasonable way of doing that. Symbols like ( and + can easily be
part of valid variable names – k+, k−, C

(0)
n and so on. It is left to the user, in

any public document, to avoid such sins. (And they could easily construct the
displayed expressions in LATEX if they so wished without recourse to \eval at
all.) See also §4.2.3.1 where a similar issue arises with user-defined macros.

2.3 Formatting the numerical result
Internally, values are stored to 16 significant figures (if available), calculations
are carried out to 16 significant figures, but only rarely do we want to view the
result to 16 figures. Generally, we round to some smaller number of figures.
The default rounding value is 6, meaning by default at most 6 decimal places
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are shown. So far, all results have been rounded to this figure, although not all
digits are always displayed – for instance if the sixth one is 0, or the result is an
integer.

Like other elements of the display, both rounding value and the (dis)appearance
of trailing zeros can be customized, in this case by means of an optional argu-
ment following the vv-list (or the formula if there is no vv-list). This optional
argument may contain up to four juxtaposed items from six possibilities:

• a question mark ?, which gives boolean output, or

• an integer, the rounding value, positive, negative or zero, specifying how
many decimal places to display the result to, or

• an asterisk *, which pads the result with zeros should it not have as many
decimal places as the rounding value specifies, or

• the character x (lower case!) which presents the result in ‘proper’ scientific
notation (a form like 1.2345 × 105 for 123450), or

• the character t (lower case!) which presents the result in a bastardized
scientific notation useful in tables (a form like (5)1.2345 for 123450), or

• a character other than ?, *, x, t or an integer, usually one of the letters e
d E D, which presents the result in scientific notation with that character
as the exponent mark (a form like 1.2345e5 for 123450).

If you use ? in the same specification as some other character, the ? prevails;
if you use x in the same specification as some other character except for ?, the
x prevails; if you use t in the same specification as some other character except
for ? or x, the t prevails.

If you repeat the character serving as the exponent mark in scientific notation
– say xx or dd – then scientific notation extends to numbers in the interval
[1,10).

If you repeat a question mark specifying boolean output, then the formatting
of that output is changed from 1/0 to T/F or T/F depending as there are two
or three question marks used.

2.3.1 Rounding value
If the number is displayed as a decimal, the rounding value specifies the number
of decimal places displayed. If a number is displayed in scientific notation (see
below §2.3.3) that is still true, but it can mean differences in the overall number
of digits displayed. For the moment, I show the effect of rounding in a purely
decimal display:

$ \eval{ 1/3 }[4] $ =⇒ 0.3333

In this case 4 was entered in the number-format option and the result is displayed
to four decimal places. The default rounding value is 6:
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$ \eval{ 35/3 } $ =⇒ 11.666667

Following the default behaviour in l3fp, the calculational engine which numerica
uses, ‘ties’ are rounded to the nearest even digit. Thus a number ending 55 with
a ‘choice’ of rounding to 5 or 6 rounds up to the even digit 6, and a number
ending 65 with a ‘choice’ of rounding to 6 or 7 rounds down to the even digit 6:

$ \eval{ 0.1234555 } $ =⇒ 0.123456
$ \eval{ 0.1234565 } $ =⇒ 0.123456

l3fp works to 16 significant figures and never displays more than that number
(and often fewer).

• In the first of the following although I have specified a rounding value of
19 only 16 decimal places are displayed, with the final digit rounded up
to 7;

• in the second I have added 10 zeros after the decimal point, meaning that
all 19 decimal places specified by the rounding value can be displayed since
the 10 initial zeros do not contribute to the significant figures;

• in the third I have changed the figure before the decimal point to 1 so that
the 10 added zeros are now included among the significant figures;

• and in the fourth, I have added 9 digits before the decimal point:

$ \eval{ 0.1234567890123456789 }[19] $ =⇒ 0.1234567890123457
$ \eval{ 0.00000000001234567890123456789 }[19] $ =⇒

0.0000000000123456789
$ \eval{ 1.00000000001234567890123456789 }[19] $ =⇒

1.000000000012346
$ \eval{ 987654321.1234567890123456789 }[19] $ =⇒

987654321.1234568

In all cases, no more than 16 significant figures are displayed, although the
number of decimal places displayed may exceed 16 as in the second example.

It is possible to use negative rounding values. Such a value zeroes the spec-
ified number of digits before the decimal point.

$ \eval{ 987654321.123456789 }[-4] $ =⇒ 987650000

A rounding value of 0 rounds to the nearest integer:

$ \eval{ 987654321.123456789 }[0] $ =⇒ 987654321

If you wish to change the default rounding value from 6 to some other value,
this can be done by creating or editing a file numerica.cfg in a text editor; see
§3.3.
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2.3.2 Padding with zeros
A result may contain fewer decimal places than the rounding value specifies, the
trailing zeros being suppressed by default (this is how l3fp does it). Sometimes,
perhaps for reasons of presentation like aligning columns of figures, it may be
desirable to pad results with zeros. This is achieved by inserting an asterisk, *,
into the final optional argument of the \eval command:

$ \eval{ 1/4 }[4] $ =⇒ 0.25,
$ \eval{ 1/4 }[4*] $ =⇒ 0.2500.

2.3.3 Scientific notation
l3fp can output numbers in scientific notation. For example, 1234 is rendered
as 1.234e3, denoting 1.234 × 103 , and 0.008 as 8e-3, denoting 8 × 10−3. The
‘e’ here, the exponent mark, separates the significand (1.234) from the exponent
(3). In scientific notation, the significand always has one non-zero digit before
the decimal point.1

For scientific notation rounding still means the number of decimal places
displayed, but it can result in very different numbers of digits being shown from
the number shown in decimal form. To switch on output in scientific notation
in numerica enter e in the trailing optional argument:

$ \eval{ 123.456789 }[e] $ =⇒ 1.234568e2.

The default rounding value 6 is in play here, with seven digits of the significand
displayed overall, one preceding the decimal point, six following it. Compare
this with the same number rounded in decimal form:

$ \eval{ 123.456789012345 } $ =⇒ 123.456789.

In this instance, nine digits are displayed, three before the decimal point and
six after. Similarly compare

$ \eval{ 0.0123456789 }[e] $ =⇒ 1.234568e-2

with

$ \eval{ 0.0123456789 } $ =⇒ 0.012346.

This time scientific notation has gained two extra decimal digits to display.
Negative rounding values are pointless for scientific notation. A zero might

on occasion be relevant:

$ \eval{ 987654321 }[0e] $ =⇒ 1e9.

Sometimes letters other than ‘e’ are used to indicate scientific notation, like ‘E’
or ‘d’ or ‘D’. With a few exceptions, numerica allows any letter or text character
to be used as the exponent marker:

1Except for 0 itself.
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\eval{$ 1/23456789 $}[4d] =⇒ 1/23456789 = 4.2632d-8.

But when x is inserted in the trailing optional argument, the output is in the
form d0.d1 . . . dm × 10n (except when n = 0), where each di denotes a digit.

\eval{$ 1/23456789 $}[4x] =⇒ 1/23456789 = 4.2632 × 10−8 .

The requirements of tables leads to another form of scientific notation. Placing
t in the trailing argument turns on this table-ready form of notation:

\eval{$ 1/23456789 $}[4t] =⇒ 1/23456789 = (−8) 4.2632.

This is discussed more fully in the documentation for the numerica-tables
package.

In the next example three options are used in the trailing argument. The
order in which the items are entered does not matter:

\eval{$ 1/125 $}[*e4] =⇒ 1/125 = 8.0000e-3.

Finally, to illustrate that ‘any’ text character2 save for x or t can be used to
distinguish the exponent, I use an @ character:

\eval{$ 1/125 $}[@4] =⇒ 1/125 = 8@-3.

2.3.3.1 Numbers in the interval [1,10)

Usually when scientific notation is being used, numbers with magnitude in the
interval [1, 10) are rendered in their normal decimal form, 3.14159 and the like.
Occasionally it may be desired to present numbers in this range in scientific
notation (this can be the case in tables where the alignment of a column of figures
might be affected). numerica offers a means of extending scientific notation to
numbers in this range by repeating the letter chosen as the exponent mark in
the trailing optional argument.

\eval{$ \pi $}[4tt] =⇒ π = (0) 3.1416

2.3.3.2 \eval* and scientific notation

Scientific notation can be used for the numerical result output by \eval*:

\eval*{ \pi }[ee] =⇒ 3.141593e0

There is one catch: if you substitute x for e here, LATEX will complain about a
missing $. An x in the number-format option produces a \times in the output
which requires a math environment. It is up to you, as the user, to provide
the necessary delimiters outside the \eval* command. (This applies even when
\eval* wraps around math delimiters.)

2Be sensible! An equals sign for instance might confuse numerica into thinking the number-
format option is the vv-list, and will certainly confuse the reader.
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2.3.4 Boolean output
l3fp can evaluate comparisons, outputting 0 if the comparison is false, 1 if it
is true. By entering a question mark, ?, in the trailing optional argument, you
can force numerica to do the same depending as the result of a calculation is
zero or not. The expression being evaluated does not need to be a comparison,
$ \eval{\pi}[?] $ =⇒ 1, but comparisons are what this is designed for.

Possible comparison relations are =, <, >, \ne, \neq, \ge, \geq, \le, \leq.
Although programming languages use combinations like <= or >=, numerica
does not accept these (they are not part of standard mathematical usage) and
will generate an error. An example where the relation is equality exhibits a
numerological curiosity:3

\eval[p=.]{\[ \frac1{0.0123456789}=81 \]}[5?] =⇒

1
0.0123456789 = 81 → 1.

Notice the 5 alongside the question mark in the trailing argument. That is
critical. Change the 5 to a 6 (or omit it since the default rounding value is 6)
and the outcome is different:

\eval[p=.]{\[ \frac1{0.0123456789}=81 \]}[6?] =⇒

1
0.0123456789 = 81 → 0.

Now the relation is false. Evaluating the fraction to more than 6 places, say to
9, we can see what is going on:

\eval{$ 1/0.0123456789 $}[9] =⇒ 1/0.0123456789 = 81.000000737.

2.3.4.1 Outputting T or F

To my eye, outputting 0 or 1 in response to a ‘question’ like 1/0.0123456789 =
81 is confusing. It is easy to change the boolean output from 0, 1 to a more
appropriate F, T , or F,T by adding one or two more question marks respectively
in the number-format option.

\eval[p=.]{\[ \frac1{0.0123456789}=81 \]}[6???] =⇒

1
0.0123456789 = 81 → F.

The default boolean output format is chosen to be 0, 1 in case an \eval com-
mand is used within another \eval command (‘nesting’– see Chapter 5 ). The
inner command needs to output a numerical answer.

3The [p=.] of this and the next example ensures a full stop appears in the correct place;
see §3.1.12.
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2.3.4.2 Rounding error tolerance

If at least one of the terms in a comparison is the result of a calculation, then
it’s value is likely to contain rounding errors. What level of rounding error can
we tolerate before such errors interfere with the comparison being made? l3fp
tolerates none. It decides the truth or falsity of a comparison to all 16 significant
figures: 1.000 0000 0000 0000 and 1.000 0000 0000 0001 are not equal in l3fp.
But for most purposes this will be far too severe a criterion.

Suppose our comparison relation is ϱ, denoting one of =, <, >, \le, etc.
If X ϱ Y then X − Y ϱ Y − Y , i.e. X − Y ϱ 0. This is what numerica does.
It takes the right-hand side of the relation from the left-hand side and then
compares the rounded difference under ϱ to 0. The rounding value used is the
number specified with the question mark in the trailing argument of the \eval
command or, if no number is present, the default rounding value (‘out of the
box’ this is 6). Thus, in a recent example, 1/0.0123456789−81 when rounded to
5 decimal places is 0.00000, indistinguishable from zero at this rounding value;
hence the equality 1/0.0123456789 = 81 is true. But when rounded to 6 places
it is 0.000001 which is distinguishable from zero and so the equality is false.
Truth or falsity depends on the rounding value.

When dealing with numbers generated purely mathematically, rounding val-
ues of 5 or 6 are likely to be too small. More useful would be rounding values
closer to l3fp’s 16 – perhaps 14? – depending on how severe the calculations
are that generate the numbers. However if the numbers we are dealing with
come from outside mathematics, from practical experiments perhaps, then even
a rounding value of 5 or 6 may be too large.

Mathematically, the claim that X = Y at a rounding value n is the claim that

|X − Y | ≤ 5 × 10−(n+1).

since this rounds down to zero at n places of decimals. This gives a more accurate
test of equality than doing things in the opposite order – rounding each number
first and then taking the difference. One might, for instance, have numbers like
X = 0.12345, Y = 0.12335. Rounding to n = 4 places, both round to 0.1234 and
yet the difference between them is 0.0001 – they are distinguishable numbers to
4 places of decimals. This is why numerica forms the difference before doing
the rounding.

2.3.4.3 And, Or, Not

For logical And LATEX provides the symbols \wedge and \land, both displaying
as ∧ , but numerica adds thin spaces ( \, ) around the symbol for \land
(copying the package gn-logic14.sty). For logical Or LATEX provides the
symbols \vee and \lor, both displaying as ∨ , but again numerica adds thin
spaces around the symbol for \lor.
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\eval{$ 1<2 \wedge 2<3 $}[??] =⇒ 1 < 2 ∧ 2 < 3 → T ,
\eval{$ 1<2 \land 2<3 $}[???] =⇒ 1 < 2 ∧ 2 < 3 → T.

To my eye the second of these with its increased space around the wedge sym-
bol displays the meaning of the overall expression better than the first. Both
And and Or have equal precedence; in cases of ambiguity the user needs to
parenthesize as necessary to clarify what is intended.

LATEX provides two commands for logical Not, \neg and \lnot, both dis-
playing as ¬ . Not binds tightly to its argument:

\eval{$ \lnot A \land B $}[A=0,B=0] =⇒ ¬A ∧ B = 0, (A = 0, B = 0).
Here \lnot acts only on the A; if it had acted on A ∧ B as a whole the result
would have been different:

\eval{$ \lnot(A \land B) $}[A=0,B=0] =⇒
¬(A ∧ B) = 1, (A = 0, B = 0).

For a little flourish, I evaluate a more complicated logical statement:4

\eval{$(A\lor\lnot C)\land(C\lor B)\land
(\lnot A\lor\lnot B)$}[A=1,B=0,C=1][???]

=⇒ (A ∨ ¬C) ∧ (C ∨ B) ∧ (¬A ∨ ¬B) → T, (A = 1, B = 0, C = 1).

2.3.4.4 Chains of comparisons

numerica can handle chains of comparisons like 1 < 2 < 1 + 2 < 5 − 1. ‘Behind
the scenes’ it inserts logical And-s into the chain, 1 < 2 ∧ 2 < 1+2 ∧ 1+2 < 5−1,
and evaluates the modified expression:

\eval{$ 1<2<1+2<5-1 $}[?''] =⇒ 1 < 2 < 1 + 2 < 5 − 1 → T.

2.3.4.5 amssymb comparison symbols

numerica accepts some alternative symbols for the basic comparison relations
from the amssymb package provided that package is loaded, i.e. the preamble
of your document includes the statement

\usepackage{amssymb}

The variants from this package are: \leqq ( ≦ ), \leqslant ( ⩽ ), \geqq ( ≧ ),
and \geqslant ( ⩾ ).5 There are also negations: \nless ( ≮ ), \nleq ( ≰ ),
\nleqq ( ≦̸ ), \nleqslant ( ⩽̸ ), \ngtr ( ≯ ), \ngeq ( ≱ ), \ngeqq ( ≧̸ ),
\ngeqslant ( ⩾̸ ).

4Quoting from an article in Quanta Magazine (August 2020) by Kevin Hartnett: ‘Let’s
say you and two friends are planning a party. The three of you are trying to put together
the guest list, but you have somewhat competing interests. Maybe you want to either invite
Avery or exclude Kemba. One of your co-planners wants to invite Kemba or Brad or both of
them. Your other co-planner, with an ax to grind, wants to leave off Avery or Brad or both
of them. Given these constraints, you could ask: Is there a guest list that satisfies all three
party planners?’ I have written C for Kemba, A and B for Avery and Brad.

5No, that is not eggplant.

30



2.4 Calculational details
2.4.1 Arithmetic
Addition, subtraction, multiplication, division, square roots, nth roots, and
exponentiating (raising to a power) are all available.

Multiplication can be rendered explicitly with an asterisk,

\eval{$ 9*9 $} =⇒ 9 ∗ 9 = 81,

but that’s ugly. More elegant is to use \times:

\eval{$ 9\times9 $} =⇒ 9 × 9 = 81.

\cdot is also available and in many cases juxtaposition alone suffices:

\eval{$ \surd2\surd2 $} =⇒
√

2
√

2 = 2,
\eval{$ ab $}[a=123,b=1/123] =⇒ ab = 1, (a = 123, b = 1/123).

Division can be rendered in multiple ways too:

\eval{$ 42/6 $} =⇒ 42/6 = 7,
\eval{$ 42\div6 $} =⇒ 42 ÷ 6 = 7,

or by using \frac or \tfrac or \dfrac as in

\eval{$ \frac{42}6 $} =⇒ 42
6 = 7.

But note that since juxtaposition means multiplication, it is also true that 42 1
6

evaluates to 7 inside an \eval command rather than denoting ‘forty two and a
sixth’. Hence if you want to use ‘two and a half’ and similar values in numerica,
they need to be entered as improper fractions like 5

2 or in decimal form, 2.5
(as one does automatically in mathematical expressions anyway because of the
ambiguity in a form like 2 1

2 ).
Powers are indicated with the superscript symbol ^:

\eval{$ 3^{2^2} $} =⇒ 322 = 81 .

2.4.1.1 Square roots and nth roots

Let us check that 3, 4, 5 and 5, 12, 13 really are Pythagorean triples (I use
\sqrt in the first, \surd in the second):

\eval{$ \sqrt{3^2+4^2} $} =⇒
√

32 + 42 = 5,
\eval{$ \surd(5^2+12^2) $} =⇒

√
(52 + 122) = 13.

The \sqrt command has an optional argument which can be used for extracting
nth roots of a number. This notation is generally used when n is a small positive
integer like 3 or 4. This practice is followed in numerica: n must be a (not
necessarily small) positive integer :
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\eval{$ \sqrt[4]{81} $} =⇒ 4
√

81 = 3,
\eval{$ \sqrt[n]{125} $}[n=\floor{\pi}] =⇒ n

√
125 = 5, (n = ⌊π⌋).

If n should not be a positive integer, an error message is generated; see §2.5.
For display-style expressions, the \sqrt command grows to accommodate

the extra vertical height; the surd doesn’t. Here is an example which anticipates
a number of matters not discussed yet. It shows \eval wrapping around a
square root containing various formatting commands (negative spaces, \left
and \right nested within \bigg commands), all digested without complaint
(see §2.4.13; and see §3.1.12 for the [p=.]):

\eval[p=.]{\[ \sqrt[3]{\!
\biggl(\!\left.\frac AD\right/\!\frac BC\biggr)

}\]}[A=729,B=81,C=9,D=3]

=⇒
3

√(
A

D

/
B

C

)
= 3, (A = 729, B = 81, C = 9, D = 3).

As implemented in numerica, nth roots found using \sqrt[n] are n=<integer>
roots. This raises an interesting question: if the ‘n’ of an nth root is the result
of a calculation, what happens with rounding errors? The calculation may not
produce an exact integer. (This problem also arises with factorials; see §2.4.11.)
The solution employed in numerica is to make what is considered an integer
depend on a rounding value. Most calculations will produce rounding errors in
distant decimal places. For ‘int-ifying’ calculations, numerica uses a rounding
value of 14: a calculation produces an integer if, when rounded to 14 figures, the
result is an integer. Since l3fp works to 16 significant figures, a rounding value
of 14 allows ample ‘elbowroom’ for rounding errors to be accommodated when
judging what is an integer and what is not. As a practical matter problems
should not arise.

2.4.1.2 nth roots of negative numbers

Odd (in the sense of ‘not even’) integral roots of negative numbers are available
with \sqrt,

\eval{$ \sqrt[3]{-125} $} =⇒ 3
√

−125 = −5,
\eval{$ \sqrt[3]{-1.25} $} =⇒ 3

√
−0.125 = −0.5.

2.4.1.3 Inverse integer powers

Of course to find an nth root we can also raise to the inverse power,

\eval{$ 81^{1/4} $} =⇒ 811/4 = 3.

However, raising a negative number to an inverse power generates an error even
when, mathematically, it should not. This matter, which is a product of floating
point representation of numbers, is discussed below in §2.5.7.2.
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2.4.2 Precedence, parentheses
The usual precedence rules apply: multiplication and division bind equally
strongly and more strongly than addition and subtraction which bind equally
stongly. Exponentiating binds most strongly. Evaluation occurs from the left.

\eval{$ 4+5\times6+3 $} =⇒ 4 + 5 × 6 + 3 = 37,
\eval{$ 6\times10^3/2\times10^2 $} =⇒ 6 × 103/2 × 102 = 300000,

which may not be what was intended. Parentheses (or brackets or braces)
retrieve the situation:

\eval{$ (4+5)(6+3) $} =⇒ (4 + 5)(6 + 3) = 81,
\eval{$ (6\times10^3)/(2\times10^2) $} =⇒ (6 × 103)/(2 × 102) = 30.

Because exponentiating binds most strongly, negative values must be parenthe-
sized when raised to a power. If not,

\eval{$ -4^2 $} =⇒ −42 = −16,
which is clearly not (−4)2. But

\eval{$ (-4)^2 $} =⇒ (−4)2 = 16.

2.4.2.1 Command-form brackets

Note that brackets of all three kinds are available also in command form:
\lparen \rparen (from mathtools) for ( ), \lbrack \rbrack for [ ], and
\lbrace \rbrace for \{ \}.

2.4.3 Modifiers (\left \right, etc.)
The \left and \right modifiers and also the series of \big... modifiers
(\bigl \bigr, \Bigl \Bigr, \biggl \biggr, \Biggl \Biggr) are available
for use with all brackets (parentheses, square brackets, braces):

\eval[p=.]{\[ \exp\left(
\dfrac{\ln2}{4}+\dfrac{\ln8}{4}

\right) \]}

=⇒
exp

(
ln 2
4 + ln 8

4

)
= 2.

numerica also accepts their use with . (dot) and with / (as noted earlier,
the [p] and [p=.] are explained at §3.1.12):

\eval[p]{\[ \left.\dfrac{3+4}{2+1}\right/\!\dfrac{1+2}{4+5} \]}
=⇒

3 + 4
2 + 1

/
1 + 2
4 + 5 = 7.

They can be nested.

33



2.4.4 Trigonometric & hyperbolic functions
LATEX provides all six trignometric functions, \sin, \cos, \tan, \csc, \sec,
\cot and the three principal inverses \arcsin, \arccos, \arctan. It also pro-
vides four of the six hyperbolic functions: \sinh, \cosh, \tanh, \coth, and
no inverses. numerica provides the missing hyperbolic functions, \csch and
\sech, and all missing inverses, the three trigonometric and all six hyperbolic:
\arccsc, \arcsec, \arccot, and \asinh, \acosh, \atanh, \acsch, \asech,
\acoth. (HMF writes arcsinh, arccosh, etc. and ISO recommends arsinh,
arcosh, etc. The first seems ill-advised, the second not widely adopted. At
present neither is catered for in numerica.)

\eval{$ \arctan1/1\deg $} =⇒ arctan 1/1 deg = 45 ,
\eval{$ \atanh\tanh3 $} =⇒ atanh tanh 3 = 3 .

Inverses can also be constructed using the ‘−1’ superscript notation. Thus

\eval{$ \sin^{-1}(1/\surd2)/1\deg $} =⇒ sin−1(1/
√

2)/1 deg = 45 ,
\eval{$ \tanh\tanh^{-1}0.5 $} =⇒ tanh tanh−1 0.5 = 0.5 .

Hyperbolic functions

Please note that l3fp does not (as yet) provide any hyperbolic functions na-
tively. The values numerica provides for these functions are calculated values
using familiar formulas involving exponentials (for the direct functions) and nat-
ural logarithms and square roots for the inverses. Rounding errors mean the
values calculated may not have 16-figure accuracy. The worst ‘offenders’ are
likely to be the least used, \acsch and \asech. For instance,

acsch x = ln
[

1
x

+
(

1
x2 + 1

)1/2
]

,

\eval{$ \csch \acsch 7 $}[16] =⇒ csch acsch 7 = 6.999999999999983.

2.4.5 Logarithms
The natural logarithm \ln, base 10 logarithm \lg, and binary or base 2 loga-
rithm \lb are all recognized, as is \log, preferably with a subscripted base:

\eval{$ \log_{12}1728 $} =⇒ log12 1728 = 3

If there is no base indicated, base 10 is assumed. (The notations \ln, \lg,
and \lb follow ISO 80000-2 recommendation, which frowns upon the use of the
unsubscripted \log although only \ln appears widely used.) The base need not
be explicitly entered as a number. It could be entered as an expression or be
specified in the vv-list:
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\eval*{$ \log_b c $}[b=2,c=1024] =⇒ 10,

the log to base 2 in this case. It is possible to use the unadorned \log with a
base different from 10; if you wish to do this only for a particular calculation
see §3.1.8, or see §3.3 if you want to make this default behaviour.

2.4.6 Other unary functions
Other unary functions supported are the exponential function \exp and signa-
ture function \sgn (equal to −1, 0, or 1 depending as its argument is < 0, = 0,
or > 0).

2.4.7 Squaring, cubing, . . . unary functions
numerica has no difficulty reading a familiar but ‘incorrectly formed’ expression
like

sin2 1.234 + cos2 1.234.

You do not have to render it (sin 1.234)2 + (cos 1.234)2 or (heaven forbid)
(sin(1.234))2 + (cos(1.234))2. The everyday usage is fine:

\eval{$ \sin^2\theta+\cos^2\theta $}[\theta=1.234] =⇒
sin2 θ + cos2 θ = 1, (θ = 1.234) .

Equally numerica has no difficulty reading the ‘correct’ but pedantic form

\eval{$ (\sin(\theta))^2+(\cos(\theta))^2 $}[\theta=1.234] =⇒
(sin(θ))2 + (cos(θ))2 = 1, (θ = 1.234) .

A hyperbolic identity is corroborated in this example:

\eval{$ \sinh 3x $}[x=1] =⇒ sinh 3x = 10.017875, (x = 1),

\eval{$ 3\sinh x+4\sinh^3x $}[x=1] =⇒
3 sinh x + 4 sinh3 x = 10.017875, (x = 1).

In fact all named unary functions in numerica can be squared, cubed, etc., in
this ‘incorrect’ but familiar way, although the practice outside the trigonometric
and hyperbolic context seems (vanishingly?) rare.

When the argument of the function is parenthesized and raised to a power
– like sin(π)2 – it is read by numerica as the ‘sine of the square of pi’, sin(π2),
and not as the ‘square of the sine of pi’, (sin π)2:

\eval{$ \sin(\pi)^2 $} =⇒ sin(π)2 = −0.430301 .

Things are done like this in numerica above all to handle the logarithm in a
natural way. Surely ln xn = n ln x, i.e. ln xn = ln(xn) rather than (ln x)n? And
if we wish to write (as we do) ln(1+1/n)n = n ln(1+1/n) = 1−1/2n+1/3n2−. . .
to study the limiting behaviour of (1 + 1/n)n, then we cannot avoid ln(x)n =
n ln(x) = ln(xn) too.
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2.4.8 n-ary functions
The functions of more than one variable (n-ary functions) that numerica sup-
ports are \max, \min and \gcd, greatest common divisor. The comma list of
arguments to \max, \min or \gcd can be of arbitrary length. The arguments
themselves can be expressions or numbers. For \gcd, non-integer arguments are
truncated to integers. Hence both y and 3y are independently truncated in the
following example – to 81 and 243 respectively:

\eval{$ \gcd(12,10x^2,3y,y,63) $}[y=1/0.0123456789,x=3] =⇒
gcd(12, 10x2, 3y, y, 63) = 3, (y = 1/0.0123456789, x = 3) .

(The truncation occurs in the argument of \gcd, not in the vv-list.)
For n-ary functions, squaring, cubing, etc. follows a different pattern from

that for unary functions. For \max, \min, \gcd the argument of the function
is a comma list. Squaring the argument makes no sense. We understand the
superscript as applying to the function as a whole. (Consistency is not the point
here; it is what mathematicians do that numerica tries to accommodate.)

\eval{$ \gcd(3x,x,\arcsin 1/\deg)^2 $}[x=24] =⇒
gcd(3x, x, arcsin 1/ deg)2 = 36, (x = 24) .

2.4.9 Delimiting arguments with brackets & modifiers
Arguments of unary and n-ary functions can be delimited not only with paren-
theses, but also with square brackets and braces, both in explicit character form
and also in the command form of §2.4.2.1. The brackets, of whatever kind, can
be qualified with \left \right, \bigl \bigr, etc.6

\eval[p=.]{\[ \sin\left\lbrack \dfrac\pi{1+2+3}\right\rbrack \]}
=⇒

sin
[

π

1 + 2 + 3

]
= 0.5.

2.4.10 Absolute value, floor & ceiling functions
It is tempting to use the | key on the keyboard for inserting an absolute value
sign. numerica accepts this usage, but it is deprecated. The spacing is incorrect
– compare | − l| using | against |−l| using \lvert \rvert. Also, the identity
of the left and right delimiters makes nested absolute values difficult to parse.
numerica does not attempt to do so. Placing an absolute value constructed with
| within another absolute value constructed in the same way is likely to produce
a compilation error or a spurious result. \lvert \rvert are better in every way
except ease of writing. To aid such ease numerica provides the \abs function

6See §3.1.12 for the [p=.] (which ensures the concluding full stop appears in the correct
place.
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(using the \DeclarePairedDelimiter command of the mathtools package).
This takes a mutually exclusive star (asterisk) or square bracketed optional
argument, and a mandatory braced argument. The starred form expands to
\left\lvert #1 \right\rvert where #1 is the mandatory argument:

\eval[p=.]{\[ 3\abs*{\frac{\abs{n}}{21}-1} \]}[n=-7] =⇒

3
∣∣∣∣ |n|
21 − 1

∣∣∣∣ = 2, (n = −7).

The optional argument provides access to the \big... modifiers:

\eval[p=.]{\[
\abs[\Big]{\abs{a-c}-\abs[\big]{A-C}}

\]}[A=12,a=-10,C=7,c=-5]

=⇒ ∣∣∣|a − c| −
∣∣A − C

∣∣∣∣∣ = 0, (A = 12, a = −10, C = 7, c = −5).

The form without either star or square bracket option dispenses with the
modifiers altogether:

\eval{$ \tfrac12(x+y)+\tfrac12\abs{x-y} $}[x=-3,y=7]. =⇒
1
2 (x + y) + 1

2 |x − y| = 7, (x = −3, y = 7).

As noted, the star and square bracketed option are mutually exclusive argu-
ments.

numerica also provides the functions \floor and \ceil, defined in the same
way, taking a mutually exclusive star or square bracketed optional argument
and for the starred forms expanding to \left\lfloor #1 \right\rfloor and
\left\lceil #1 \right\rceil where #1 is the mandatory argument, and for
the square bracket option forms replacing the \left and \right with the cor-
responding \big commands. The form without star or square-bracket option
dispenses with any modifier at all.

\eval{$ \floor{-\pi} $} =⇒ ⌊−π⌋ = −4,
\eval{$ \ceil{\pi} $} =⇒ ⌈π⌉ = 4.

The floor function, ⌊x⌋, is the greatest integer ≤ x; the ceiling function, ⌈x⌉ is
the smallest integer ≥ x. Like the absolute value, the floor and ceiling functions,
can be nested:

\eval{$ \floor{-\pi+\ceil{e}} $} =⇒ ⌊−π + ⌈e⌉⌋ = −1.

2.4.10.1 Squaring, cubing, . . . absolute values, etc.

These three functions can be raised to a power without extra parentheses:

\eval{$ \ceil{e}^2 $}, =⇒ ⌈e⌉2 = 9,
\eval{$ \abs{-4}^2 $}. =⇒ |−4|2 = 16.
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2.4.11 Factorials, binomial coefficients
Factorials use the familiar trailing ! notation:

\eval{$ 7! $} =⇒ 7! = 5040,
\eval{$ (\alpha+\beta)!-\alpha!-\beta! $}[\alpha=2,\beta=3] =⇒

(α + β)! − α! − β! = 112, (α = 2, β = 3).

The examples illustrate how numerica interprets the argument of the factorial
symbol: it ‘digests’

• a preceding (possibly multi-digit) integer, or

• a preceding variable token, or

• a bracketed expression, or

• a bracket-like expression.

A bracket-like expression is an absolute value, floor or ceiling function, since
they delimit arguments in a bracket-like way:

\eval{$ \abs{-4}!+\floor{\pi}!+\ceil{e}! $} =⇒
|−4|! + ⌊π⌋! + ⌈e⌉! = 36.

The result of feeding the factorial an expression different in kind from one of
these four cases may give an error message or an unexpected result. Use paren-
theses around such an expression; for example write (32)!, rather than 32!.

Nesting of brackets for factorials is accepted:

\eval{$ ((5-2)!+1)! $} =⇒ ((5 − 2)! + 1)! = 5040.

The factorials of negative integers or of non-integers are not defined in numerica,
and again there is the problem met in relation to nth roots of what happens
if the argument of a factorial is the result of a calculation and rounding errors
mean it is not an exact integer. This problem is unlikely to be of practical
concern since numerica rounds the result of such a calculation by default to
14 significant figures before offering it to the factorial. Since l3fp works to 16
significant figures, there is ample ‘elbowroom’ to accommodate rounding errors
before the result of a calculation ceases to round to an integer.

2.4.11.1 Double factorials

The double factorial, written n!!, is the product n(n − 2)(n − 4) . . . × 4 × 2 when
n is even and the product n(n − 2)(n − 4) . . . × 3 × 1 when n is odd.

\eval{$ 6!! $} =⇒ 6!! = 48,
\eval{$ n!! $}[n=\sqrt{49}] =⇒ n!! = 105, (n =

√
49),
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Since n! = n!!(n − 1)!! it follows that

n!! = n!
(n − 1)!! = (n + 1)!

(n + 1)!! .

Putting n = 0 in the outer equality shows that 0!! = 1. Now putting n = 0
in the left equality gives (−1)!! = 1. Double factorials therefore are defined for
integers ≥ −1.

2.4.11.2 Binomial coefficients

Binomial coefficients are entered in LATEX with the \binom command. It takes
two arguments and has a text-style version \tbinom and a display-style version
\dbinom. As implemented in numerica, these are generalised binomial coeffi-
cients: (

x

k

)
= x(x − 1) . . . (x − k + 1)

k(k − 1) . . . 1 , (x ∈ R, k ∈ N),

where x need not be a non-negative integer, and where
(

x
0
)

= 1 by definition.
Although the first (or upper) argument can be any real number, the lower
argument must be a non-negative integer. Thus, \eval{$ \tbinom53 $} =⇒(5

3
)

= 10, \eval{$ \tbinom70 $} =⇒
(7

0
)

= 1, \eval{$ \tbinom{4.2}3 $}
=⇒

(4.2
3

)
= 4.928, but if the second (or lower) argument of \binom is not a

non-negative integer, numerica displays a message; see §2.5.4.

2.4.12 Sums and products
numerica recognizes sums (\sum displaying as

∑
) and products (\prod dis-

playing as
∏

), and expects both symbols to have lower and upper summa-
tion/product limits specified. The lower limit must be given in the form sum/prod
variable = initial value; the upper limit requires only the final value to be speci-
fied (although it can also be given in the form sum/prod variable = final value).
The values may be expressions depending on other variables and values but must
evaluate to integers (or infinity – see §3.2). Evaluating to an integer means that
they round to an integer, using a rounding value that is set by default to 14;
(recall that l3fp works to 16 significant figures). If a limit evaluates to a non-
integer at this ‘int-ifying’ rounding value, an error message results. (To change
this ‘int-ifying’ rounding value, see §3.3.2.)

As an example of expressions in the limits, this example uses the floor and
ceiling functions to convert combinations of constants to integers (the [p] is
explained in §3.1.12),

\eval[p]{\[ \sum_{n=\floor{\pi/e}}^{\ceil{\pi e}}n \]} =⇒

⌈πe⌉∑
n=⌊π/e⌋

n = 45,
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(which is
∑9

n=1 n). If the upper limit is less than the lower limit the result is
zero. Notice that there is no vv-list. The summation variable does not need to
be included there unless there are other variables that depend on it. However,
in the case

\eval[p]{\[ \sum_{k=1}^N\frac1{k^3} \]}[N=100][4] =⇒

N∑
k=1

1
k3 = 1.202, (N = 100),

the upper limit N is necessarily assigned a value in the vv-list.
To the author it seems natural to enter the lower limit first, immediately

after the \sum command (the sum is from something to something), but no
problem will accrue if the upper limit is placed first (after all, the appearance
of the formula in the pdf is the same):

\eval[p=.]{\[ \sum^N_{k=1}\frac1{k^3} \]}[N=100][4] =⇒

N∑
k=1

1
k3 = 1.202, (N = 100).

Another example of a sum, using binomial coefficients this time, is

\eval[p]{\[ \sum_{m=0}^5\binom{5}{m}x^m y^{5-m} \]}[x=0.75,y=2.25]
=⇒

5∑
m=0

(
5
m

)
xmy5−m = 243, (x = 0.75, y = 2.25),

which is just \eval{$(x+y)^5$}[x=0.75,y=2.25] =⇒ (x + y)5 = 243, (x =
0.75, y = 2.25), or 35.

Now let’s calculate a product:

\eval[p]{\[
\prod_{k=1}^{100}

\biggl(\frac{x^2}{k^2\pi^2} +1\biggr)
\]}[x=1][3]

=⇒
100∏
k=1

(
x2

k2π2 + 1
)

= 1.174, (x = 1),

to be compared with \eval{$ \sinh 1 $}[3] =⇒ sinh 1 = 1.175. Obviously
more terms than 100 are required in the product to achieve 3-figure accuracy.
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2.4.12.1 Infinite sums and products

How many more? Let’s ‘go the whole hog’ and put ∞ in the upper limit of this
product:

\eval[p=.]{\[
\prod_{k=1}^{\infty}

\biggl(\frac{x^2}{k^2\pi^2} +1\biggr)
\]}[x=1][3]

=⇒
∞∏

k=1

(
x2

k2π2 + 1
)

= 1.174, (x = 1).

Disappointingly, we still get the same result, deficient by 1 in the third decimal
place. Obviously numerica has not multiplied an infinite number of terms and,
just as obviously, the finite number of terms it has multiplied are too few. How
numerica decides when to stop evaluating additional terms in an infinite sum
or product is discussed later, §3.2.

For this particular product the problem is that it converges slowly. Any
criterion for when to stop multiplying terms or, for an infinite sum adding
terms, seems bound to fail for some product or series. Presumably any stopping
criterion must measure smallness in some way. But terms of, for example, the
divergent harmonic series

∑
(1/n) can always be found smaller than any value

we care to specify. It is not surprising that a sufficiently slowly converging
product or series falls foul of a given criterion.

The default criterion however can be changed. Because this involves values
assigned in the settings option of the \eval command, I discuss infinite sums
and products in the section discussing that optional argument; see §3.2.

Other infinite sums converge more rapidly, and the default settings work ad-
mirably. For example \eval{$ (1+0.1234)^{4.321} $} =⇒ (1+0.1234)4.321 =
1.653329. Using binomial coefficients we can express this as an infinite sum:

\eval[p=.]{\[
\sum_{n=0}^{\infty}\binom{\alpha}{n}x^{n}

\]}[\alpha=4.321,x=0.1234]

=⇒
∞∑

n=0

(
α

n

)
xn = 1.653329, (α = 4.321, x = 0.1234).

2.4.13 Formatting commands
There are many formatting commands which change the layout of a formula on
the page but do not alter its calculational content. numerica copes with a great
many of these formatting commands, although there will surely be some that it
has overlooked and which will trigger an ‘Unknown token’ message; see §2.5. 7

7Please contact the author in that case: ajparsloe@gmail.com
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2.4.13.1 Spaces, phantoms, struts

These include cryptic forms like \, \: and \>, \; and the corresponding ‘ver-
bose’ forms, \thinspace, \medspace and \thickspace and their negative equiv-
alents \! or \negthinspace, \negmedspace and \negthickspace:

\eval{$ 1\negthickspace+\negthickspace 1 $} =⇒ 1+1 = 2

which gives the text spacing of 1+1 as against the usual math spacing 1 + 1 but
doesn’t affect the result of the calculation.

Other spacing commands are \quad and \qquad, and \hspace{arg} and
\mspace{arg}. For \hspace there is also a starred form, \hspace*{arg}.
Phantoms similarly take an argument: \phantom{arg}, \hphantom{arg} and
\vphantom{arg}.

\eval{$ 1\hphantom{mmm}+\hphantom{mmm}1 $} =⇒ 1 + 1 = 2.

Like \vphantom, struts allow vertical spacing adjustments. numerica should
digest both \xmathstrut[optarg]{arg} from mathtools and its ‘baby cousin’
\mathstrut from TEX. An example from The TEX book demonstrating the use
of \mathstrut is

\eval{$\sqrt{\mathstrut a}+\sqrt{\mathstrut d}+
\sqrt{\mathstrut y}$}[a=4,d=9,y=16]

=⇒
√

a +
√

d +
√

y = 9, (a = 4, d = 9, y = 16),
And here is an evaluation of an expression from the mathtools documenta-

tion using \xmathstrut:

\eval{\[ \frac{ \frac{ \xmathstrut{0.1} x-1 }
{ \xmathstrut{0.25} x-\sin{ x} } }

{\xmathstrut{0.4} \sqrt{ 10-x } } \]}
[x=\pi/6]

=⇒
x−1

x−sin x

√
1 − x

= −29.248053, (x = π/6)

2.4.13.2 \splitfrac

The mathtools package provides \splitfrac and \splitdfrac to aid handling
of clumsy fractions. The documentation gives an (artificial) example of use. I’ve
mangled it to produce an even more ridiculous illustration, adding to the mess
an enormous square root, the modifiers \left and \right, and the command-
form alternatives to parentheses, \lparen and \rparen; also the use of \dfrac.
A little mental arithmetic will convince that we are evaluating the square root
of (9 × 7)2 which indeed is what we get:8

8For the [p=.,vvd=] see §3.1.12 and §3.1.10. The first puts the concluding full stop in the
right place; the second suppresses the vv-list.
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\eval[p=.,vvd=]{\[
\sqrt{\left\lparen

\frac{ \splitfrac{xy + xy + xy + xy + xy}
{+ xy + xy + xy + xy}

}
{ \dfrac z7}

\right\rparen \left\lparen
\frac{ \splitdfrac{xy + xy + xy + xy + xy}

{+ xy + xy + xy + xy}
}
{\dfrac z7}\right\rparen}

\]}[x=2,y=5,z=10]

=⇒√√√√√√√
 xy + xy + xy + xy + xy

+ xy + xy + xy + xy
z

7




xy + xy + xy + xy + xy

+ xy + xy + xy + xy
z

7

 = 63.

2.4.13.3 Colour

(Anglicised spelling at least for the heading!) If you add to the preamble of your
document the line

\usepackage{color}

two commands become available, \textcolor[optarg]{arg1}{arg2} and the
declaration form of command, \color[optarg]{arg}. numerica readily ac-
cepts the former in a formula to be evaluated:

\eval{$ \sin \tfrac\pi6n\textcolor{red}{T}+1 $}[T=9,n=3] =⇒
sin π

6 nT + 1 = 2, (T = 9, n = 3)

(assuming you had some wish to highlight the time T ).
However there are restrictions on the use of \color in \eval commands.

\color is a declaration form of command. It has effect until the end of the
current group or environment. If you want to restrict it to only part of that
group you need to em-brace the command and what it is to apply to,

<pre-stuff>{\color{red}<red-stuff>}<post-stuff}

but that is where the problem arises. numerica does not check for ‘unan-
nounced’ brace groups. It expects a brace group to be introduced by a pre-
ceding instruction like \sqrt or \frac or ^. When announced in this way,
numerica can handle the brace group appropriately. But the brace group
{\color{red}<red-stuff>} is not so announced. numerica’s parsing routine
will not recognize what it has just swallowed and a LATEX error will result. So,
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\color cannot be used in a formula in a ‘naked’ or unannounced brace group.
Writing \eval{$ \color{red} \sin \tfrac\pi6nT+1 $}[T=9,n=3] is fine, as
is

\eval{$ \sin \tfrac\pi6nT+1 \color{red} $}[T=9,n=3] =⇒
sin π

6 nT + 1 = 2, (T = 9, n = 3).

So too, because the \frac introduces the confining brace group, is

\eval{$ \frac{\color[gray]{0.5}A}B $}[A=12,b=4]
=⇒ A

B = 3, (A = 12, B = 4),

where both arguments of the \color command are used for grayscale output.
But trying something like \eval{$ 3{\color[gray]{0.5}x}+1 $}[x=2] will

cause a LATEX error and halt compilation since there is no command announcing
the brace group confining the \color command.

2.4.13.4 \text, \mbox, font commands

Following a rethink of the behaviour of a number of font and formatting com-
mands, in version 2 of numerica the content of a \text or \mbox command is
invisible to the \eval command. This behaviour is different from that of version
1. Now the content is ignored in a calculation,

\eval*{ 1/0.0123456789 \mbox{approx.} }[5] =⇒ 81,

even when the \text or \mbox contains mathematical content.
Conversely, the content of font commands (like \mathbf or \mathcal) is

visible to \eval. This becomes useful should numbers be input in scientific
notation (see §3.1.4). As well as the math font commands, \eval also accepts
\textrm, \textsf and \texttt. Thus a number in scientific notation like 2e-1
appearing in the formula or the vv-list can display correctly by wrapping it in
a \textrm or \texttt command, rather than displaying inappropriately as the
algebraic expression 2e − 1.

2.4.13.5 \ensuremath, $, \(, \), \[, \]

Should \ensuremath be included in a formula for evaluation (but why?) it is
digested without demur, irrespective of whether explicit math delimiters are
present or not. More generally, should math delimiters (through some mo-
mentary oversight) be used both within and outside an \eval command, the
command is processed as if only the outside environment is involved; the inner
delimiters are ignored:

$ \eval{\[ -4^2 \]} $ =⇒ −16.
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2.5 Error messages
There are two kinds of error in numerica: those in the underlying LATEX which
are reported in the LATEX log, shown on the terminal, and generally halt com-
pilation, and specifically numerica-related errors which do not halt compilation
and produce messages displayed in the pdf where one would expect the result
of the calculation to be. The original reason for doing things this way was to
enable numerica to be used effectively with the instant preview facility of the
document processor LYX. More philosophically, one might view such errors as
similar to errors of grammar or spelling mistakes in text. It is not clear that
they should halt compilation. Hence strictly numerica-related errors leave brief
messages in the pdf at the offending places.

Before discussing specific error messages, note that there is a debug facility
(of a sort) discussed below in §3.1.1.

Error messages are in two parts: a what part and a where part.

2.5.1 Mismatched brackets
An unmatched left parenthesis or other left bracket (in this case a missing right
parenthesis) usually results in a numerica error:

$\eval{\sin(\pi/(1+x)}[x=1]$ =⇒ !!! Unmatched ( in: formula. !!!

For the same error in the vv-list, the what-part remains unchanged but the
where-part is altered:

$\eval{ 1+y }[x=1,y=\sin(\pi/(1+x)]$ =⇒
!!! Unmatched ( in: variable = value list. !!!

The what message is the same; the where is different.
An unmatched right parenthesis or other right bracket (in this case a missing

left parenthesis) usually results in a similar numerica error:

$\eval{2((x+y)/(y+z)))^2}[x=1,y=2,z=3]$ =⇒
!!! Unmatched ) in: formula. !!!

But note that an unmatched modifier like \left or \right is a LATEX error and
is caught by LATEX before numerica can respond and so results in a terminal
and logfile message.

2.5.2 Unknown tokens
An ‘Unknown token’ message can arise in a number of ways. If an expression
involves a number of variables, some of which depend on others, their order in
the vv-list matters:

$\eval{\tfrac12 vt}[t=2,v=gt,g=9.8]$ =⇒
!!! Unknown token t in: variable = value list. !!!
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The vv-list is evaluated from the right so that in this example the variable
v depends on a quantity t that is not yet defined. Hence the message. The
remedy is to move t to the right of v in the vv-list.

Similarly, if we use a variable in the formula that has not been assigned a
value in the vv-list, we again get the ‘Unknown token’ message, but this time
the location is the formula:

$\eval{\pi r^2h}[r=3]$ =⇒ !!! Unknown token h in: formula. !!!

The remedy obviously is to assign a value to h in the vv-list.
The same message will result if a mathematical operation or function is used

that has not been implemented in numerica:

$\eval{u \bmod v }[v=7,u=3]$ =⇒
!!! Unknown token \bmod in: formula. !!!

A missing comma in the vv-list will generally result in an unknown token mes-
sage:

$\eval{axy}[a=3 y=2,x=1]$ =⇒
!!! Unknown token y in: variable = value list. !!!

Because of the missing comma, numerica assumes a has the ‘value’ 3y=2, an
expression which it then tries to evaluate, but the variable y in this expression
has not been assigned a value, which generates the message.

Extra commas in the vv-list should cause no problems:

$\eval{axy}[,a=3,,y=2,x=1,]$ =⇒ 6, (a = 3, y = 2, x = 1)

The presence of multi-token variables can also cause an unknown token message
if the check for such variables is turned off; see §3.1.5.

2.5.3 Overlooked value assignments
Perhaps if one is evaluating a formula with a number of variables and assigning
different experimental values to them to see the effect, a variable might be
overlooked:

$\eval{axy}[a=3,y=,x=1]$ =⇒ !!! No value for y in: variable = value list. !!!

In the example the variable y has been overlooked. The remedy is obvious –
assign a value to it.

2.5.4 Integer argument errors
Some functions require integer arguments – factorials, the second argument of a
binomial coefficient, and (in numerica) nth roots using the optional argument
of \sqrt; also summation and product variables. If integers are explicitly en-
tered for these arguments there is no problem, but if the value of the argument
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is the result of a calculation, rounding errors require thinking about. What
accumulation of rounding errors is too much so that the result of the calculation
cannot be considered an integer? numerica is generous: in the default setup, if
a calculation rounds to an integer at rounding value 14 the result of the calcula-
tion is considered an integer (obviously, the value resulting from the rounding).
Since l3fp works to 16 significant figures that gives ample room for rounding
errors to ‘get lost in’ and be ignored, while still ruling out such things as (recall
the example in §2.3.4),

\eval{\[ \sum_{n=1}^N n \]}[N=1/0.0123456789] =⇒
!!! Integer required in: sum limits. !!!

where N differs from 81 not until the seventh decimal place.
The default rounding value of 14 for ‘int-ifying’ calculations can be changed:

see §3.3.2.

2.5.5 Comparison errors
Should a user try to make a comparison using a combination like >= rather than
\geq, numerica admonishes like this:

$\eval{ e^\pi >= \pi^e }[?]$ =⇒
!!! Multi-token comparison in: formula. !!!

(The relation is true by the way.) The same error is generated by other multi-
token comparisons. They are used in programming languages, yes, but not in
mathematics.

2.5.6 Invalid base for \log

ISO recommends using \log only with a subscripted base specified. Otherwise
how is one to know whether the base is e or 10 or 2 or whatever? Nonethe-
less numerica assumes that when \log is used unsubscripted, the base is 10.
Suppose you want to make 12 the base, but forget to put braces around the 12:

$\eval{ \log_12 1728 }$ =⇒
!!! Valid base required for \log in: formula. !!!

Here, numerica has taken 1 as the base (and 21728 as the argument) of the
logarithm and responds accordingly.

2.5.7 l3fp errors
Some errors arising at the l3fp level are trapped and a message displayed.
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2.5.7.1 Dividing by zero

$\eval{1/\sin x}[x=0]$ =⇒ !!! l3fp error ‘Division by zero’ in: formula. !!!

Note however that $\eval{1/\sin x}[x=\pi]$ =⇒ 4193528956200936, (x =
π), because of rounding errors in distant decimal places. No doubt this is true
for other functions as well.

2.5.7.2 Invalid operation

Finding inverse integer powers of positive numbers should always be possible,
but raising a negative number to an inverse power generates an error even when
– mathematically – it should not:

\eval{$ (-125)^{1/3} $} =⇒
!!! l3fp error ‘Invalid operation’ in: formula. !!!

This is a feature of floating point arithmetic. When a number is raised to a
rational power, say p/q where p and q are non-zero integers, then the result
is the pth power of the qth root of the number. Can a qth root be taken? If
our floating point system used (for ease of illustration) only 4 significant digits,
p/q = 1/3 would be the fraction 3333/104, an odd numerator over an even
denominator. But a negative number does not possess an even (104th) root.

Trying to evaluate a function like a factorial or square root or inverse trig.
function outside its domain of definition also produces this error:

$\eval{\arccos x}[x=2]$ =⇒
!!! l3fp error ‘Invalid operation’ in: formula. !!!

In this case the inverse cosine, which is defined only on the interval [−1, 1], has
been fed the value 2.

Trying to evaluate an expression that resolves to 0/0 also produces this
message:

$\eval{\frac{1-y}{x-2}}[x=2,y=1]$ =⇒
!!! l3fp error ‘Invalid operation’ in: formula. !!!

2.5.7.3 Overflow/underflow

The factorial (discussed in §2.4.11) provides an example of overflow:

$\eval{3249!}$ =⇒ !!! l3fp error ‘Overflow’ in: formula. !!!

This is hardly surprising since

$\eval{3248!}[x]$ =⇒ 1.973634 × 109997.

48



There is a limit on the size of exponents that l3fp can handle. A number in the
form a × 10b must have −10001 ≤ b < 10000. If this is not the case an overflow
or underflow condition occurs. As the examples show, an overflow condition
generates a numerica error.

For underflow, where the number is closer to 0 than 10−10001, l3fp assigns
a zero value to the quantity. numerica accepts the zero value and the error is
ignored.
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Chapter 3

Settings

A calculation is effected against a background of default values for various quan-
tities. For a particular calculation, these values may not be appropriate; or you
may have different preferences. The way to change settings for a particular
calculation is through the settings option of \nmcEvaluate discussed next. The
way to change a default setting is by creating a configuration file numerica.cfg
discussed in §3.3.

3.1 Settings option
The second argument of the \nmcEvaluate command is the settings option,
delimited by square brackets. This option is a key=value list, hence comma-
separated. Key=value lists tend to be wordy. For back-of-envelope calculations
one wants to be able to ‘dash off’ the calculation, hence the short, cryptic nature
of the keys. Most settings are generic, applicable not only to \nmcEvaluate but
also to other commands that are available if the packages numerica-plus or
numerica-tables are loaded; see §1.1.2.

3.1.1 ‘Debug’ facility
It is rather grandiose to call this a debug facility, but if a calculation goes wrong
or produces a surprising result, numerica offers a means of examining various
quantities at some intermediate stages on the way to the final result. To use
the facility, enter

dbg = <integer>

into the settings option. (White space around the equals sign is optional.)

• dbg=0 turns off the debug function, displays the result or error message
(this is the default);

• dbg=1 equivalent to dbg=2*3*5*7;
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Table 3.1: Settings options

key type meaning default

dbg int debug ‘magic’ integer 0
view equivalent to dbg=1
^ char exponent mark for sci.

notation input
e

xx int (0/1) multi-token variable switch 1
() int (0/1/2) trig. arg. parsing 0
o int (0/1) degree switch for trig.

functions
1

log num base of logarithms for \log 10
vv@ int (0/1) vv-list calculation mode 0
vvd token(s) vv-list display-style spec. {,}\mskip 12mu 6mu minus

9mu(vv)
vvi token(s) vv-list text-style spec. {,}\mskip 36mu minus

24mu(vv)
* suppress equation

numbering if \\ in vvd
p token(s) punctuation (esp. in

display-style)
,

reuse int form of result saved with
\nmcReuse

0

The ‘magic’ integers are the following primes and their products

• dbg=2 displays the vv-list after multi-token variables have been converted
to their single token form, \nmc_a, \nmc_b, etc.;

• dbg=3 displays the formula after multi-token variables have been converted
to their single token form;

• dbg=5 displays the stored variables and their evaluated values (dbg=2 lists
the values as expressions);

• dbg=7 displays the formula after it has been fp-ified but before it has been
fed to l3fp to evaluate;

– should the formula successfully evaluate, the result of the evaluation
is also displayed (but without any formatting).

To display two or more of the debug elements simultaneously, use the product
of their debug numbers for the magic integer. This can be entered either as
the multiplied-out product, or as the ‘waiting to be evaluated’ product with
asterisks (stars) between the factors. Thus dbg=6 or dbg=2*3 display both the
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vv-list and formula after multi-token variables have been converted to single
token form; dbg=10 or dbg=2*5 display both the vv-list after multi-token vari-
ables have been converted to single token form and the recorded variables with
their evaluated values. And similarly for the other magic integers listed. For
other integers, if they are divisible by 2 or 3 or 5 or 7, they will display the
corresponding component. Both dbg=210 and dbg=2*3*5*7 display all four ele-
ments, but rather than remembering this product, it suffices to put dbg=1. This
is equivalent and displays all elements.

The debug option uses an aligned or align* environment to display its
wares, depending on the presence or absence of math delimiters around the
\eval command. The following uses align* and shows how multi-token vari-
ables are handled, how a chain of comparisons is evaluated (§2.3.4) and how
formatting instructions in the number-format option are ignored in the debug
display:

\eval[dbg=1]{ a < 2a' < 3a'' }
[a=\pi,a'=\phi,a''=e\gamma][4???]

=⇒

vv-list: a=\pi , \nmc_m =\phi , \nmc_l =e\gamma
formula: a < 2\nmc_m < 3\nmc_l

stored: a=3.141592653589793, \nmc_m =1.618033988749895, \nmc_l
=1.569034853003742

fp-form: round((3.141592653589793)-
(2(1.618033988749895)),4)<0&&round(2(1.618033988749895)-
(3(1.569034853003742)),4)<0

result: 1

The various items are displayed in chronological order. First comes the vv-
list after conversion of multi-token to single-token variables, then the formula
in those single-token variables; these are created essentially at the same time.
Next the stored values of the variables are displayed. These are the values after
evaluation. The fourth element both in the display and chronologically is the
fp-ified formula. Often this can be a thicket of parentheses, especially if unary
functions or fractions are involved. The final element of both the display and
chronologically is the result from evaluating the formula. This is shown only if
7 is a factor of the dbg integer, and there is no error. Despite the appearance
of ??? in the number-format option, the result displays as 1. Results are never
rounded or formatted in the debug display, although as is apparent here, the
rounding number 4 is used in the comparisons.

When interpreting the fp-form, differences in the ways numerica and l3fp
read formulas can lead to more or less parentheses than seem strictly necessary.
In particular be aware that in l3fp function calls bind most tightly so that, for
example, sin 2pi evaluates not to zero but to (sin 2)×π, and sin x^2 evaluates
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to (sin x)2. numerica takes care of the former by inserting extra parentheses
and exploits the latter by not inserting parentheses:

\eval[dbg=1]{ \sin 2x \cos^2 y }
[x=\pi/12,y=\pi/4]

=⇒

vv-list: x=\pi /12, y=\pi /4
formula: \sin 2x \cos ^2 y

stored: x=0.2617993877991494, y=0.7853981633974482
fp-form: sin(2(0.2617993877991494))cos((0.7853981633974482))^(2)

result: 0.25

Finally, note that those mathematical operations that have no direct representa-
tion in l3fp contribute only their value to the fp-form. This applies to sums and
products, double factorials, partly to binomial coefficients, and also to \eval
and other commands when nested one within another (see Chapter 5). The
following (ridiculous) example illustrates the matter:

\eval[dbg=1]{\[
\sum_{n=1}^k n + \binom{2k}{m} - \frac1{4k} +

\prod_{n=2}^k (1-1/n) + m!! \]}[m=6,k=5]

=⇒

vv-list: m=6, k=5
formula: \sum _{n=1}^k n + \binom {2k}{m} - \frac 1{4k} + \prod _{n=2}^k

(1-1/n) + m!!
stored: m=6, k=5

fp-form: 15+(151200/720)-((1)/(4(5)))+0.2+(48)
result: 273.15

(0° C in kelvin!) In the fp-form line, the various contributions to the overall
result are displayed simply as numbers because l3fp does not (at least as yet)
handle these elements natively.

3.1.2 Negative dbg values
Negative dbg values are possible: dbg=-2, dbg=-3, etc. (and dbg=-1 meaning
dbg=-210) have exactly the same effects as the corresponding positive values
except for some details of display. The display for positive dbg values is the one
evident in the examples above. Lines wrap, the left margin is not indented and
the display occupies the page width. For negative dbg values, lines do not wrap,
the left margin is indented and the display occupies the text width. An example
is presented in §5.6 below where the display for a nested \eval is significantly
improved with a negative dbg value.
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3.1.3 view setting
Putting dbg=1 may seem a little obscure in order to view internal values of
numerica. In that case, simply writing view in the settings option will produce
the same effect as entering dbg=1.

3.1.4 Inputting numbers in scientific notation
Outputting numbers in scientific notation is controlled by the final trailing ar-
gument of the \eval command. Such output is turned off by default and needs
to be explicitly ordered. Similarly, inputting numbers in scientific notation is
turned off by default and needs to be explicitly ordered. To turn it on, write

^ = <char>

in the settings option, where <char> is any single character, usually e or d or
their upper-casings, but not restricted to them: ^=@ for instance is perfectly
possible, and has the advantage over e or d that it doesn’t conflict with the use
of the character as a variable or constant.

$ \eval[^=@]{ 1.23@-1 } $ =⇒ 0.123.

With letters for the exponent mark – say d or e – the problem is interpreting
forms like 8d-3 or 2e-1. Does such a form denote a number in scientific notation
or an algebraic expression? In numerica, if the settings option shows ^=d, then
a form like 8d-3 is treated as a number in scientific notation. Similarly for e or
any other letter used as the exponent marker for the input of scientific numbers.
(But only one character can be so used at a time.) Note that the number must
start with a digit: e-1 for instance does not, and will be treated as an algebraic
expression involving the exponential constant:

$ \eval[^=e]{ x+e-1 }[x=1] $ =⇒ 2.718282, (x = 1)

but

$ \eval[^=e]{ x+1e-1 }[x=1] $ =⇒ 1.1, (x = 1).

A problem of appearance arises if scientific numbers appear in the vv-list or
formula and either is displayed in the result. A number like 2e-1 will display
as 2e − 1, as if it were an algebraic expression. In version 1 of numerica the
cure was to wrap 2e-1 in a \text or \mbox command. In version 2 of numerica
the behaviour of \text and \mbox has been re-thought; see §2.4.13.4. Their
contents are now invisible to the \eval command. The solution is to wrap 2e-1
in a \textrm or \textsf or \texttt command. These commands were not
recognized by \eval in version 1 but are in version 2:

\eval[^=e]{$ 5x $ }[x=\texttt{2e-1}] =⇒ 5x = 1, (x = 2e-1) ,
\eval[^=e]{$ 5\texttt{2e-1} $ } =⇒ 5(2e-1) = 1 .
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If you use a particular character as the exponent marker for inputting numbers
in scientific notation, it is good practice not to use that character as a variable,
not because it will cause an error but because it makes expressions harder to
read.

3.1.5 Multi-token variables
Variables need not consist of a single character or token (like x or α). Multi-
token symbols like x′ or ti or var are perfectly acceptable. For its internal
operations, numerica converts such multi-token names to single tokens (as dis-
cussed in §2.2.1). This conversion takes time. Even if there are no multi-token
variables used at all, numerica still needs to check that that is so. There is a
setting that allows a user to turn off or turn on the check for such variables by
entering

xx = <integer>

into the settings option. If <integer> is 0, the check for (and conversion of)
multi-token variables is turned off; if <integer> is 1 (or any other non-zero
integer), the check, and conversion if needed, goes ahead. By default, checking
for multi-token variables and converting them if found is turned on. (The name
for the key, xx, is chosen because x is the most familiar variable of all, introduced
in elementary algebra, and doubling it like this suggests multi-token-ness.)

If checking is turned off when a multi-token variable is present, an error
results. We don’t need to enter xx=1 in the first of the following examples
because the check for multi-token variables is on by default. Explicitly turning
it off in the second produces an error.

\eval{$ x_0^{\,2} $}[x_0=5] =⇒ x 2
0 = 25, (x0 = 5),

\eval[xx=0]{$ x_0^{\,2} $}[x_0=5] =⇒
!!! Unknown token x in: formula. !!!

3.1.6 Parsing arguments of trigonometric functions
This setting allows a wider range of arguments to trigonometric functions to
be parsed (think Fourier series) without needing to insert extra parentheses in
order for them to be read correctly by \eval; see §3.4.2.3.

3.1.7 Using degrees rather than radians
You may find it more convenient to use degrees rather than radians with trigono-
metric functions. This can be switched on simply by entering a lowercase o in
the settings option. (The author hopes the charitable eye sees a degree symbol
in the o.) Thus

\eval[o]{$ \sin 30 $} =⇒ sin 30 = 0.5,
\eval[o]{$ \arcsin 0.5 $} =⇒ arcsin 0.5 = 30.
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This is a 0/1 switch, 0 signifying off or ‘don’t use degrees’, 1 signifying on or
‘do use degrees’. Although the o default is 1, out-of-the-box numerica assumes
radians are being used. Thus if o is absent from the settings option of an \eval
command, the out-of-the-box setting prevails and radians are used, but if o is
present, it is equivalent to o=1. To explicitly turn off the use of degrees requires
the full setting, o=0.

If you want to change the out-of-the-box setting you need to put the line
use-degrees = 1 into a configuration file; see §3.3.

3.1.8 Specifying a logarithm base
If you wish to use \log without a subscripted base in a particular calculation,
then add an entry like

log = <positive number>

where <positive number> ̸= 1 to the settings option of the \eval command.
The <positive number> does not need to be an integer. It could be e (if
you object to writing \ln) but is more likely to be 2 or another small integer;
10 is the default. If you want to use this changed base not for one but most
calculations, then add an entry with your choice of base to a configuration file;
see §3.3.

3.1.9 Calculation mode
A variable may change in the course of a calculation. This is certainly true of
sums and products. If a parameter in the vv-list depends on the variable then
that parameter will need to be recalculated, perhaps repeatedly, in the course
of a calculation. By entering either

vv@ = <integer>

or (as in version 1 of numerica),

vvmode = <integer>

in the settings option it is possible to turn on or off the ability to repeatedly
evaluate the vv-list; <integer> here takes two possible values, 0 or 1. vv@=0
(or vvmode=0) means the vv-list is evaluated once at the start of the calculation;
vv@=1 (or vvmode=1) means the vv-list is recalculated every time the relevant
variable changes.1

For example, in a sum it may be desirable to place the summand, or some
part of it, in the vv-list. Since the summation variable obviously changes during
the course of the calculation, we need to enter vv@=1 in the settings option.
Repeating an earlier sum (the seting p=. is discussed in §3.1.12),

1In version 1 of numerica only the vvmode name for this setting was available. To the
author’s eye, the @ sign seems sufficiently close to a symbol like ⟲, suggesting redo or recal-
culate, that vv@ is now preferred. The @ symbol is – universally? – available on keyboards
and vv@ is only half as many keypresses as vvmode.
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\eval[p=.,vv@=1]{\[ \sum_{k=1}^N f(k) \]}
[N=100,f(k)=1/k^3,{k}=1][4]

=⇒
N∑

k=1
f(k) = 1.202, (N = 100, f(k) = 1/k3).

As you can see, the summand f(k) has been given explicit form in the vv-
list – equated to 1/k^3. That means we need to give a preceding value to k
in the vv-list to avoid an unknown token message, hence the rightmost entry.
But we don’t want k=1 appearing in the final display, so we wrap k in braces
(see §2.2.3.2). Since the value k=1 applies only to the first term in the sum,
to ensure it is not used for all terms, we enter vv@=1 in the settings option.
This turns vv-recalculation mode on and ensures k=1 is overwritten by k=2, k=3
and so on, and the vv-list recalculated each time. The final result is the same
as before, although recalculating the vv-list at each step is a more resource-
hungry process. The difference may not be marked for this example; with more
complicated expressions it noticeably takes longer.

Because it is necessary to activate this switch when using implicit notations
– like f(k) in the example – rather than the explicit form of the function in
the main argument, it seems natural to call vv@=1 implicit mode and vv@=0
(the default) explicit mode. Most calculations are explicit mode – the vv-list is
evaluated only once.

3.1.10 Changing the vv-list display format
In previous formulas with variables the vv-list has been displayed following the
result. It is wrapped in parentheses following a comma followed by a space.
These formatting elements – comma, space, parentheses – can all be changed
with the settings option.

The default format specification is

{,}\mskip 12mu plus 6mu minus 9mu(vv)

for a text-style display (an inline formula) and

{,}\mskip 36mu minus 24mu(vv)

in a display-style context. The commas are wrapped in braces because these are
items in a comma-separated list. Both entries exhibit the elements: punctuation
(comma), preceding a variable space, preceding the parenthesized vv-list (the vv
placeholder). No full stop is inserted after the closing parentheses because the
\eval command may occur in the middle of a sentence (even in display style).
For inline use, the elasticity of the space becomes relevant when TEX is adjusting
individual lines to fit sentences into paragraphs and paragraphs into pages. The
largest spacing that can be stretched to is a quad, 18 mu (mu = math unit), and
the smallest that can be shrunk to is a thin space, 3 mu. In display style, the
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largest spacing specified is the double quad, in line with the recommendation in
The TEX Book, Chapter 18, but this can shrink to a single quad, for instance
if the vv-list is heavily populated with variables so that the evaluated result is
pushed well to the left by the vv-list. (But see below, §3.1.11.)

If you want to change these defaults, enter in the settings option

vvi = <new specification>

to change the inline display and

vvd = <new specification>

to change the display-style display For example the settings

vvi = {,}\quad(vv)
vvd = {,}\qquad(vv)

would give a comma (in braces since the settings option is a comma-separated
list) and a fixed space (of one or two quads) between the result and the paren-
thesized vv-list.

The vv-list itself in the display specification is represented by the placeholder
vv. If the vv is omitted from the specification, then the vv-list will not appear
at all:

\eval[vvi=?!]{$ \pi $}[\pi=3] =⇒ π = 3?!

More relevantly, it may well be the case that all variables in the vv-list are
suppressed (wrapped in braces). In that case nothing is displayed. Compare
the last example with

\eval[vvi=?!]{$ \pi $}[{\pi}=3] =⇒ π = 3

and

\eval[vvi=?!]{$ \pi $} =⇒ π = 3.141593

See also the punctuation setting below, §3.1.12.

3.1.11 Displaying the vv-list on a new line
Display of a long formula with many variables, hence a full vv-list, may not fit
comfortably on a line. In an earlier example I used Brahmagupta’s formula to
calculate the area of a triangle. It squeezed onto a line. I shall now use his
formula for the area of a cyclic quadrilateral:

A =
√

(s − a)(s − b)(s − c)(s − d).

The extra side (quadrilateral as against triangle) means there is a further vari-
able to accommodate, not only in the formula but also in the vv-list. In the
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following example, the cyclic quadrilateral is formed by a 45-45-90 triangle of
hypotenuse 2 joined along the hypotenuse to a 30-60-90 triangle. The sides are
therefore

√
2,

√
2,

√
3, 1. Adding the areas of the two triangles, the area of the

quadrilateral is A = 1+ 1
2
√

3, or in decimal form, $\eval{1+\tfrac12\surd3}$
=⇒ 1.866025. Let’s check with Brahmagupta’s formula:

\eval[p=.,vvd={,}\\(vv),*]
{\[ \sqrt{(s-a)(s-b)(s-c)(s-d)} \]}

[s=\tfrac12(a+b+c+d),
a=\surd2,b=\surd2,c=\surd3,d=1]

=⇒√
(s − a)(s − b)(s − c)(s − d) = 1.866025,

(s = 1
2 (a + b + c + d), a =

√
2, b =

√
2, c =

√
3, d = 1).

The values agree. The point to note here is the vvd={,}\\(vv) and the * in the
settings option. The \\ in a specification for vvd acts as a trigger for numerica
to replace whatever math delimiters are enclosed by the \eval command with
a multline environment. As you can see, the specification inserts a comma
after the formula and places the parenthesized vv-list on a new line. The star
* if present suppresses equation numbering by turning the multline into a
multline* environment.

Things to note in the use of \\ in a vvd specification are that

• it applies only to the vvd specification, not the vvi spec.;

• it applies only when \eval wraps around a math environment of some
kind;

• it has no effect when the \eval command is used within a math envi-
ronment when the presentation of the result is of the form result, vv-list.
The formula is not displayed and so the pressure on space is less and the
‘ordinary’ vv-list specification is used.

3.1.12 Punctuation
The \eval command can be used within mathematical delimiters or it can be
wrapped around mathematical delimiters. The latter gives a formula=result
style of display automatically, which is convenient. One doesn’t need to write
the formula= part of the expression, but it causes a problem when \eval wraps
around a display-style or similar environment: how to display a following punc-
tuation mark? For an inline display we can simply follow the \eval command
with the appropriate punctuation, for instance: \eval{$ 1+1 $}. =⇒ 1+1 = 2.
But with \[ \] delimiters used within the \eval command a trailing fullstop
will slide off to the start of the next line, since it is beyond the closing delimiter.
We want it to display as if it were the last element before the closing delimiter.
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Explicitly putting it there – \eval{\[ 1+1. \]} – means the punctuation
mark becomes part of the formula. Potentially numerica then needs to check
not just for a fullstop but also other possible punctuation marks like comma,
semicolon, perhaps even exclamation and question marks. All these marks have
roles in mathematics or l3fp. Including them in the formula means distin-
guishing their punctuation role from their mathematical role and can only cause
difficulties and slow evaluation.

Instead, numerica uses the setting

p = <char(s)>

to place the <char(s)> after the result but within the environment delimiters.
The default punctuation mark is the comma so that simply entering p will
produce a comma in the appropriate place. This saves having to write p={,}
as would otherwise be required, since the settings option is a comma-separated
list.

Nor is one limited to a single punctuation mark:

\eval[p=\ (but no 8!)]{\[ \frac{1}{81} \]}[9] =⇒

1
81 = 0.012345679 (but no 8!)

3.1.13 Reuse setting
This setting determines whether the entire display or only the numerical result
is saved to file with the \nmcReuse command. See below, §4.4.2.

3.2 Infinite sums and products
There are ways of tweaking various default settings to nudge infinite sums and
products to a correct limit. These tweaks are applied via the settings option of
the \eval command.

The normal convergence criterion used by numerica to determine when to
stop adding/multiplying terms in an infinite sum/product is when the next term
added/multiplied leaves the total unaltered when rounded to 2 more digits than
the specified rounding value. Suppose Tk is the sum/product after the inclusion
of k terms, and r is the rounding value. Denote Tk rounded to r figures by
(Tk)r. The infinite sum or product stops at the (k + 1)th term (and the value is
attained at the kth term) when (Tk+1)r+2 = (Tk)r+2. The hope is that if this is
true at rounding value r + 2 then at rounding value r the series or product will
have attained a stable value at that level of rounding.

For a series of monotonic terms converging quickly to a limit, this stopping
criterion works well, less so if convergence is slower, as seen earlier with the
infinite product for sinh 1. The criterion can fail completely when terms behave
in a non-monotonic manner. Terms of a Fourier series, for example, may take
zero values; the criterion is necessarily satisfied but the series may still be far
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Table 3.2: Settings for infinite sums & products

key type meaning default

S+ int extra rounding for stopping
criterion

2

S? int ≥ 0 stopping criterion query
terms for sums

0

P+ int extra rounding for stopping
criterion

2

P? int ≥ 0 stopping criterion query
terms for products

0

from its limit. In a product the equivalent would be a term taking unit value.
Sometimes the initial terms of series or products are ‘irregular’ and take these
‘stopping’ values meaning sum or product would stop after only one or two
additions/multiplications and far from any limit.

To cope with these possibilities, numerica offers two settings for sums, two
for products, summarized in Table 3.2. These are entered in the settings option
of the \eval command.

• S+=<integer> or P+=<integer> additional rounding on top of the speci-
fied (or default) rounding for the calculation; default = 2

– the larger the additional <integer> is, the more likely that sum or
product has attained a stable value at the specified rounding r

• S?=<integer ≥ 0> or P?=<integer ≥ 0> the number of final terms to
query after the stopping criterion has been achieved to confirm that it
is not an ‘accident’ of particular values; default = 0

– a final few terms to be summed/multiplied and the rounded result
after each such operation to be compared with the rounded result
at the time the stopping criterion was achieved. Suppose the ad-
ditional rounding (S+ or P+) is n on top of the specified round-
ing r and let the number of final checking terms be m. Suppose
Tk0 is the first term at which the stopping criterion is achieved:
(Tk0)r+n = (Tk0+1)r+n. What we require of the final query terms
is that (Tk0)r+n = (Tk0+1+j)r+n for j = 0, 1, . . . , m.

Previously we found that the infinite product for sinh 1 with the default settings
gave the wrong value, 0.174, deficient by 1 in the last digit. We now have the
means to tweak the stopping criterion by increasing the additional rounding:

\eval[p,P+=3]{\[
\prod_{k=1}^{\infty}
\biggl(\frac{x^2}{k^2\pi^2} +1\biggr)

\]}[x=1][3] \nmcInfo{prod}.

61



=⇒
∞∏

k=1

(
x2

k2π2 + 1
)

= 1.175, (x = 1),

350 factors.
To obtain that last item of information (350 factors), I’ve anticipated a little and
used the command \nmcInfo with the argument prod; see §4.1. The product
now produces the correct three-figure value, but it takes 350 factors to do so.

Knowing how many terms or factors have been needed helps assess how
trustworthy the result from an infinite sum or product is. For example, for the
exponential series,

\eval[p]{\[
\sum_{k=0}^\infty \frac1{k!}

\]}[9] \nmcInfo{sum}.

=⇒
∞∑

k=0

1
k! = 2.718281828,

15 terms.
To 9 places of decimals, using the default value S+=2, the exponential series

arrives at the right sum after only 15 terms. Convergence is rapid. We can
trust this result (and it is in fact the correct nine-figure value). By contrast,
if we didn’t know the value of sinh 1 beforehand, noting the number of factors
required would make us justly cautious about accepting the result of the infinite
product calculation.
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One way to gain confidence in a result is to choose a possibly unrealistic rounding
value – say, the default 6 for the infinite product – then use negative values
for the extra rounding, S+=-5, S+=-4, . . . , so that the stopping criterion
applies at rounding values s of 6 + (−5) = 1, one decimal place, 6 + (−4) = 2,
two decimal places, and so on, but the result is always presented to 6 decimal
places. You can then see how the 6-figure results behave relative to the number
of terms it takes to meet the stopping criterion. A little experimenting shows
that for the infinite product for sinh 1 the number of factors Ns required at a
stopping rounding value s increases in geometric proportion with a scale factor
of about 3: Ns ≈ const × 3s. This rapidly becomes large (34 = 81, 35 =
243 . . . ). For the exponential series on the other hand Ns = 4 + s, the number
of terms increases only slowly, in direct proportion to the stopping rounding
value. Similar experiments with the sums of inverse fourth, third and second
powers of the integers using \nmcInfo to find how many terms are required at
each stopping rounding value, show that at least over the rounding value range
1 to 8, for inverse fourth powers Ns ≈ const × 1.7s, for inverse third powers
Ns ≈ const × 2s and for inverse squares Ns ≈ const × 3s. All are geometric
rather than arithmetic progressions, but for inverse fourth powers the scale
factor (≈ 1.7) is sufficiently small that for these low values of s the number of
terms required does not grow too quickly (e.g. 1.76 ≈ 24). It is a standard result
(Euler) that the series sums to π4/90: $ \eval{ \pi^4/90 } $ =⇒ 1.082323
to six places, and indeed, with the default S+=2,

\eval[p]{\[ \sum_{k=1}^\infty \frac1{k^4} \]} =⇒

∞∑
k=1

1
k4 = 1.082323.

3.2.1 Premature ending of infinite sums
All the series considered so far have been monotonic. Trigonometric series will
generally not be so, nor even single-signed.

Trigonometric sums are computationally intensive and so, for the following
example, I have specified a rounding value of 2. The series

∞∑
n=1

4
n2π2 (1 − cos nπ) cos 2πnt

is the Fourier series for the triangular wave function \/\/\/\ . . . of period 1,
symmetric about the origin where it takes its maximum value 1, crossing the
axis at t = 0.25 and descending to its minimum −1 at t = 0.5, before ascending
to a second maximum at t = 1 (and so on). In the interval [0, 0.5) the series
should sum to 1−4t. The problem is that the summand 4

n2π2 (1−cos nπ) cos 2πnt
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vanishes both when n is even and when 4nt is an odd integer. If t = 0.1 then
4nt is never an odd integer so the summand vanishes only for n even, every
second term. We expect the result to be 1 − 4 × 0.1 = 0.6.

\eval[p]{\[
\sum_{n=1}^{\infty}

\frac{4}{n^{2}\pi^{2}}
(1-\cos n\pi)\cos2\pi nt

\]}[t=0.1][2] \nmcInfo{sum}.

=⇒
∞∑

n=1

4
n2π2 (1 − cos nπ) cos 2πnt = 0.66, (t = 0.1),

1 term.
Only one term? Of course – since for the second term n is even, the term
vanishes and the stopping criterion is satisfied. The way around this problem
is to query terms beyond the one where the stopping criterion is achieved, i.e.,
to set S? to a nonzero value. We try S?=1:

\eval[p,S?=1]{\[
\sum_{n=1}^{\infty}

\frac{4}{n^{2}\pi^{2}}
(1-\cos n\pi)\cos2\pi nt

\]}[t=0.1][2] \nmcInfo{sum}.

=⇒
∞∑

n=1

4
n2π2 (1 − cos nπ) cos 2πnt = 0.6, (t = 0.1),

65 terms.

Table 3.3: Finite sums

N Σ
63 0.6001
64 0.6001
65 0.5999
66 0.5999
67 0.5999

Table 3.3 lists the results of evaluating the finite
sums from n = 1 to N for values of N around
65. Since the specified rounding value is 2 for
the calculation, the stopping criterion applies at
a rounding value of 2 more than that, 4. Since
N = 64 is even, the summand for the 64th term
is zero and the sum takes the same value as for
N = 63. The 65th term is the query term and
the sum differs, so the summation continues. The
66th term vanishes, so the stopping criterion is
met. This time for the query term, the 67th, the sum retains the same 4-figure
value, and the summation stops. The result was attained at the 65th term.
Should we be confident in the result? Increase the number of query terms to
3 (there is no point in increasing S? to 2 because of the vanishing of the even
terms), the sum stops after 113 terms, with the same 0.6 result.
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For a final example, consider the error function

erf z = 2√
π

∫ z

0
e−t2

dt

which can also be rendered as an infinite sum (HMF 7.1.5):

erf z =
∞∑

n=0
(−1)n z2n+1

n!(2n + 1) .

(\erf expanding to erf has been defined in the preamble to this document
using \DeclareMathOperator.) We calculate this sum for z = 2 to 10 places of
decimals. Although this is an alternating series, it is obvious that the summand
never vanishes when z ̸= 0 as here. Hence there seems no need to change the
default value S?=0.

\eval[p]{\[
\frac2{\sqrt{\pi}}

\sum_{n=0}^\infty(-1)^n
\frac{z^{2n+1}}{n!(2n+1)}

\]}[z=2][10*] \nmcInfo{sum}.

=⇒
2√
π

∞∑
n=0

(−1)n z2n+1

n!(2n + 1) = 0.9953222650, (z = 2),

26 terms.
According to HMF Table 7.1, this calculated value of erf 2 is correct to all

10 places. But beyond z = 2 errors will begin to interfere with the result. Note
that 26 terms means n = 26 was the last value of n for which the summand was
evaluated. (The sum stops at the 26th term, n = 25, but the next term n = 26
needs to be calculated for the stopping criterion.) Fortuitously, 22×26+1 = 253 is
the greatest power of 2 that can be exactly rendered to the 16 significant figures
that l3fp uses. But n! exceeds the 16-significant figure limit of l3fp when
n > 21, so despite the 10-figure result, errors have already begun to occur in the
denominator of the summand and accrue in the sum when z = 2. For larger z
values the errors can only get worse and at some point will render the calculated
value worthless at any meaningful rounding value. For example, when z = 7
the sum apparently ‘evaluates’ to over 929 whereas we know that

erf z <
2√
π

∫ ∞

0
e−t2

dt = 1.

3.2.2 Double sums or products
Sums or products can be iterate d. For instance, the exponential function can
be calculated this way:

65



\eval[p]
{\[ \sum_{k=0}^{\infty}

\prod_{m=1}^{k}\frac{x}{m} \]}[x=2]

=⇒
∞∑

k=0

k∏
m=1

x

m
= 7.389056, (x = 2),

which is \eval{$ e^2 $} =⇒ 7.389056.
A second example is afforded by Euler’s transformation of series (HMF 3.6.27).

To calculate e−1 we use

\eval[p]
{\[ \sum_{n=0}^{\infty}

\frac{(-1)^{n}}{n!} \]}[3] \info{sum}.

=⇒
∞∑

n=0

(−1)n

n! = 0.368,

9 terms.
Following Euler, this series can be transformed to the form

\eval[p,S?=1]{\[
\sum_{k=0}^\infty \frac{(-1)^k}{2^{k+1}}
\sum_{n=0}^k(-1)^n\binom kn \frac1{(k-n)!}

\]}[3] \nmcInfo{sum}.

=⇒
∞∑

k=0

(−1)k

2k+1

k∑
n=0

(−1)n

(
k

n

)
1

(k − n)! = 0.368,

16 terms.
Note the setting S?=1. Without it, the summation stops after 1 term, the k = 0
term, because the k = 1 term vanishes. With S?=1 it takes 16 terms of the
outer sum to reach the stopping criterion. Since that sum starts at 0, that
means that changing the upper limit from ∞ to 15 should give the same result
– which it does – but it takes 1

2 × 16 × 17 = 136 terms in total to get there,
to be compared with the 9 terms of the earlier simpler sum, and the terms are
more complicated. Obviously such double sums are computationally intensive.

3.3 Changing default values
The settings option enables various settings to be changed for an individual
calculation. You may find yourself wanting to make such changes sufficiently
often that a change of default value is a better plan than encumbering each
calculation with a list of settings.
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Table 3.4: Default values, \eval command

key value

rounding 6
pad 0
output-sci-notation 0
output-exponent-char e
%
input-sci-notation 0
input-exponent-char e
multitoken-variables 1
use-degrees 0
logarithm-base 10
vv-display {,}\mskip 36mu minus 24mu(vv)
vv-inline {,}\mskip 12mu 6mu minus 9mu(vv)
%
sum-extra-rounding 2
sum-query-terms 0
prod-extra-rounding 2
prod-query-terms 0
%
intify-rounding 14
eval-reuse 0

The way to do that is to create a configuration file named numerica.cfg in
a text editor. Its entries are of the form key=value followed by a comma, and
for clarity preferably one entry per line (although this is not essential).The key
names are noticeably more verbose than the corresponding keys of the settings
option. The possible keys are listed in Table 3.4, together with their current
default values.

Keys taking one of two possible values, 0 (for false/off) or 1 (for true/on),
are pad (the result with zeros), output-sci-notation, input-sci-notation,
(check for) multitoken-variables, and use-degrees (for trig. functions).

The table is divided into four parts.

• The top four rows concern elements that can be changed for individual cal-
culations with the trailing optional argument of \eval: rounding, padding
with zeros, and outputting in scientific notation; see §2.3.

– Note that to output the result always in scientific notation requires
two settings, first setting output-sci-notation to 1, and then choos-
ing a character to act as the exponent marker. Because l3fp uses e
for this character, numerica has made e its default. But this option
is turned off by default (hence the 0 against this key).
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• The next block of rows concern general elements that can be changed for
individual calculations with the settings option of \eval; see §3.1. The
key names are more expansive here but the effect is the same.

– Note that to input numbers in scientific notation requires two set-
tings, first setting input-sci-notation to 1, and then choosing a
character to act as the exponent marker. Because l3fp uses e for this
character, numerica has made e its default. The option is turned off
by default (hence the 0 against this key).

• The third block of rows concern default settings for infinite sums and
products. These correspond to the keys S+, S? and P+, P? of the settings
option that can be used to tweak the behaviour of the stopping criterion
for such sums or products; see §3.2.

• The last block is for ‘left-overs’: specifying at what rounding value a float-
ing point should be considered an integer (see §3.3.2 below), and specifying
what kind of result is saved to file when the \nmcReuse command is used
(see §4.4.2).

If you are dissatisfied with any of the default values listed, then in a text editor
create a new file called numerica.cfg and assign your values to the relevant
keys. For instance, if you find yourself working to 4 figures, that rounding to 6
is too many, then make the entry rounding = 4. If also you want results always
presented in proper scientific notation, d.d1d2d3d4 × 10n, then add a comma
after 4 and enter on a new line (recommended but not strictly necessary; the
comma is the crucial thing), output-sci-notation = 1, (note the comma)
and on another new line, output-exponent-char = x.

Perhaps you also want a non-zero setting for the final query terms for infinite
sums and products. This makes sense if you are largely dealing with non-
monotonic series – like Fourier series. Even the Euler transformation of the
exponential series for e−1 discussed above required a non-zero S?. If you wish
to make this change then add a comma and on a new line add (for instance)
sum-query-terms = 1, and again on a new line, prod-query-terms = 1. If
this is all you wish to change, then no comma is necessary after this final entry.
Your newly created file should look something like

rounding = 4,
output-sci-notation = 1,
output-exponent-char = x,
sum-query-terms = 1,
prod-query-terms = 1

The white spacing may be different; white space is ignored by numerica when
reading the file. Using it to align the equals signs helps us read the file. Note
that the last entry, because it is the last entry, lacks a comma. Now save the
file with the name numerica.cfg. This file will be read by numerica near the
end of its loading process. These settings will be numerica’s defaults for the
relevant keys.
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3.3.1 Location of numerica.cfg

Save, yes, but where to? If the new settings are likely to apply only to your
current document, then the document’s directory is a sensible place to put it and
numerica will certainly find it there since it is part of LATEX3 file handling that
file searches are not limited to the TEX distribution (including your personal
texmf tree) but also include the current document directory. But what happens
when you start working on another document? Will you remember to copy
numerica.cfg to its new location? That is why your personal texmf tree is a
better place.

3.3.1.1 Personal texmf tree?

This is a directory for ‘waifs and strays’ of the TEX system that are not included
in the standard distributions like MiKTEX or TEXLive. Here you place personal
packages designed for your own particular circumstances. These may include
your own TEX or LATEX package, say mypackage.sty, achieving some small
or singular effect that doesn’t warrant wider distribution on CTAN. Here you
might place configuration files for other packages with your preferences (unless
the package requires some specific location). Here you can put your personal
bibliography files.

Your personal texmf tree is structured like the standard MiKTEX or TEXLive
hierarchy but placed in another location so that there is no chance of its being
overwritten when packages in MiKTEX or TEXLive are updated. But these
distributions need to be alerted to its existence.

For example, in the MiKTEX console, click on Settings, and then on the
Directories tab of the resulting dialog. Here you get to add your personal texmf
hierarchy to the list of paths that MiKTEX searches, by clicking on the + button,
browsing to your texmf folder and selecting it. By using the up and down arrow
keys that the MiKTEX console provides, ensure that it lies above the the entry
for the main MiKTEX tree. That way, files in your personal texmf tree will
be found first and loaded. Now go to the Tasks menu and click on Refresh the
filename database. This will let MiKTEX know what is held in your personal
texmf tree. Files there can then be used like standard LATEX packages.

3.3.2 Rounding in ‘int-ifying’ calculations
Factorials, binomial coefficients, summation and product variables, and (in
numerica) nth roots from the \sqrt command, all require integer arguments.
These integers may indeed be entered explicitly as integers, but they can also
be determined as the result of a calculation. Rounding errors may mean the
result is not an exact integer. How much leeway should be allowed before it is
clear that the calculation did not give an integer result? In the default setup,
numerica is generous. A number is considered an integer if it rounds to an in-
teger when the rounding value is 14. Since l3fp works to 16 significant figures
this provides more than enough ‘elbowroom’ for innocuous rounding errors to
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be accommodated. If a calculation does not round to an integer at a rounding
value of 14 then it seems reasonable to conclude that it has really not given an
integer answer, not just that rounding errors have accumulated. If you want
to change this ‘int-ifying’ value for a particular calculation, then add a line to
numerica.cfg like

intify-rounding = <integer>

Since l3fp works to 16 significant figures, values of <integer> greater than 16
are pointless. Generally int-ifying rounding values will be less than but close to
16 (although when testing the code I used some ridiculous values like 3 or 4).
If other entries follow this one in the file, then conclude the line with a comma.

3.4 Parsing mathematical arguments
A main aim of the numerica package is to require minimal, preferably no, ad-
justment to the LATEX form in which an expression is typeset in order to evaluate
it. But mathematicians do not follow codified rules of the kind programming
languages insist on when writing formulas – like parenthesizing the arguments
of functions, or inserting explicit multiplication signs (*) between juxtaposed
terms. Hence the question of where the arguments of mathematical functions
end is acute. For a few functions LATEX delimits the argument: think of \sqrt,
\frac, \binom; also ^. But for functions like \sin or \tanh or \ln, unary
functions, this is not so; nor is it for sums and products, and comparisons.

Before discussing the parsing rules for different groups of functions, I discuss
the means numerica provides to handle exceptions to those rules, when one does
need to make some adjustment to a formula.

3.4.1 The cleave commands \q and \Q

The word cleave has two opposed meanings: to adhere or cling to, and to
split apart or separate. numerica defines two commands, \q and \Q to achieve
these opposite effects. When a mathematical argument is being parsed, the \q
command joins the next token to the argument (cleaves to); the \Q command
severs the next token from the argument (cleaves apart). Neither command is
added to the argument nor leaves a visible trace in the output.

Thus, without \q,

\eval{$ \sin(n+\tfrac12)(x-t) $}[n=3,x=t+\pi,t=1.234] =⇒
sin(n + 1

2 )(x − t) = −1.102018, (n = 3, x = t + π, t = 1.234),

which is (sin 7
2 ) × π. With \q between the bracketed factors,

\eval{$ \sin(n+\tfrac12)\q(x-t) $}[n=3,x=t+\pi,t=1.234] =⇒
sin(n + 1

2 )(x − t) = −1, (n = 3, x = t + π, t = 1.234),

which is sin( 7
2 π). Similarly, without \q,
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\eval[p]{\[ \cos\frac{2\pi}{T}n(t+\tfrac12T) \]}[T=2,t=1,n=3] =⇒

cos 2π

T
n(t + 1

2 T ) = −6, (T = 2, t = 1, n = 3),

which is (cos π) × 3 × (1 + 1
2 × 2). With \q used twice, once after the fraction

and once before the left parenthesis,

\eval[p]{\[
\cos\frac{2\pi}{T}\q n\q(t+\tfrac12T)

\]}[T=2,t=1,n=3]

=⇒
cos 2π

T
n(t + 1

2 T ) = 1, (T = 2, t = 1, n = 3),

which is cos(π × 3 × 2).
It should be noted that for trigonometric functions, because of their use

in Fourier series especially, there is another way of handling arguments that
contain parentheses (and fractions). This is discussed in §3.4.2.3 below.

For the \Q command which splits an argument we have, without it,

\eval{$ 1/2e $} =⇒ 1/2e = 0.18394,

which is the reciprocal of 2e, whereas with the \Q command inserted before e,

\eval{$ 1/2\Q e $} =⇒ 1/2e = 1.359141,

which is one half of e, although it is unlikely to be read that way. If one half of
e is intended then parenthesize the 1/2 or present as a \tfrac.

3.4.1.1 Mnemonic

As mnemonic, best seen in sans serif for the Latin Modern fonts used in this
document, think of the letter q as a circle cleaving to a vertical descender; think
of the letter Q as a circle cleaved apart by the diagonal stroke.

3.4.2 Parsing groups
The arguments of different groups of functions are handled in different ways.
The criterion used for deciding when an argument ends for one group will not be
that used for others. Table §3.3.2 lists the different groups that numerica takes
account of. At the top are functions or operations that have the smallest reach
when determining where their arguments end; at the bottom are operations
that have the greatest reach. The denominator of a slash fraction is treated as
a unary function and is assigned to group II. By default trigonometric functions
are treated the same as other unary functions but there is a setting which enables
the direct (rather than inverse) trigonometric functions to accept a wider range
of arguments, as occurs in Fourier series. Hence they are separated into their
own group.
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Table 3.5: Parsing groups
group function/operation

I surd, logical Not
II unary functions (direct trig. functions default), /
III direct trig. functions with special setting
IV sums, products
V comparisons
VI logical And, logical Or

A formula is a sequence of tokens and brace groups. All parsing occurs from
the left, LATEX argument by LATEX argument, where argument means either
a token (an N-type argument in expl3-speak) or a brace group (an n-type
argument). To distinguish LATEX arguments from mathematical arguments I
shall when necessary refer to L-args and M-args. A mathematical argument
may end at an L-arg, meaning immediately before the L-arg, or end with the L-
arg, meaning immediately after the L-arg. Ending or not will in general depend
on whether the argument is in first position – the position immediately following
a function token like \sin or \log – or in general position – any later position
(although for trigonometric functions we will also need to consider second and
even third positions).

For counting position, we need to allow for formatting elements and multi-
token numbers – in both decimal and scientific formats. Formatting elements
do not change the position count. This applies to things like thin spaces or
phantoms (and their arguments) or modifiers like \left or \biggl. Multi-
token numbers (in decimal or scientific formats) are treated as single items;
they advance the position count by exactly one. LATEX functions – like \frac
– which take LATEX arguments again advance the position count only by one.
Mathematically, the fraction is viewed as a single unit.

I shall refer to a token or a token and its LATEX arguments – like \frac and
its arguments – as an item. Similarly, a (possibly multi-token) number is an
item. Also it will help to distinguish tokens within brackets where both brackets
lie to the right of a function from those that do not. The former I call clothed;
the latter are naked. Thus the plus sign in (sin x + y) is naked relative to the
sine (one bracket to the left of the function), but is clothed in sin(x + y) (both
brackets to the right of the function).

3.4.2.1 Parsing group I

The only functions in this category are the surd and logical Not.
Why distinguish the surd from other unary functions? Surely we all agree

that \sin2\pi, displaying as sin 2π, vanishes? The argument of the sine extends
beyond the 2 to include the π. But \surd2\pi, displaying as

√
2π, is understood

to be the product
√

2 × π. The argument of the surd ends with the 2. The surd
binds more tightly to its argument than is true of unary functions generally.

72



For parsing group I

1. if a left bracket is in first position, the mathematical argument ends with
the matching right bracket; otherwise

2. the argument ends with the item in first position and any L- or M-args
required by that item.

If the factorial sign ! preceded its argument, it too would belong to this parsing
state, for it also binds tightly like the surd. This means that an expression like√

4! is intrinsically ambiguous. Is it the square root of 24 or the factorial of 2?
In numerica it produces the (perhaps rather odd) error

\eval{$ \surd 4! $} =⇒ !!! Empty argument to fp-ify in: factorial. !!!

The surd has seized the argument; there is nothing for the factorial to operate
on. The same error arises if the 4 is parenthesized, but parenthesizing like either
(\surd 4)! or \surd(4!) repairs the situation. Because other unary functions
(like the sine or logarithm) do not bind as tightly, this ambiguity does not arise
for them.

Exponents cause no problem because taking square roots and raising to a
power are commutative operations – the result is the same whichever is per-
formed first.

\eval{$ \surd 3^4 $} =⇒
√

34 = 9.

3.4.2.2 Parsing group II

In the default setup this category includes the trigonometric and hyperbolic
functions, their inverses, the various logarithms and the exponential functions,
the signum function \sgn, and the denominators of slash fractions /. Note
however that there is a setting switch which enables trigonometric functions to
handle parentheses in arguments more generally; see §3.4.2.3.

• In parsing group II we wish to accommodate usages like ln zn = n ln z
(HMF 4.1.11), or gd z = 2 arctan ez − 1

2 π (HMF 4.3.117), defining the
Gudermannian. The exponent is included in the argument. Considering
ln(1 + 1/n)n exponents must also be part of parenthesized arguments.

• An approximation to Stirling’s formula for the factorial is often written
ln N ! ≈ N ln N −N (widely used in texts on statistical mechanics). Hence
the factorial sign should also be considered part of the argument.

• ln xy = ln x + ln y means the argument must reach over a product of
variables. Identities like sin 2z = 2 sin z cos z mean the argument also
reaches over numbers, and expressions like sin 1

2 πx (HMF 4.3.104) mean
that it further reaches over \tfrac-s and constants.

• Essentially anything can be in first position, and without parentheses; e.g.
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– unary functions: ln ln z (HMF 4.1.52), ln tan z

2 (HMF 4.3.116),

– fractions: ln z1

z2
(HMF 4.1.9), arcsin (2ax + b)

(b2 − 4ac)1/2 (HMF 3.3.36),

ln tan z

z
(HMF 4.3.73),

– absolute values: ln
∣∣∣∣a + x

a − x

∣∣∣∣ (HMF 3.3.25),

– square roots: arctan
√

ν1

ν2
F (HMF 26.6.8)

With these examples in mind, for parsing group II

1. if a left bracket is in first position, the mathematical argument ends with
the matching right bracket and any attached exponent, or factorial or
double factorial sign; otherwise

2. the mathematical argument includes the item in first position and any L-
or M-args required by that item;

(a) if the item in first position is a number, variable, constant or \tfrac

i. the argument appends the next item if it is a number, variable,
constant or \tfrac, and so on recursively; or

ii. the argument appends the next item if it is an exponent, or
facorial or double factorial sign, and ends there; otherwise

iii. the argument ends.
(b) if the item in first position is not a number, variable, constant or

\tfrac

i. the argument appends the next item if it is an exponent, or
factorial or double factorial sign, and ends there; otherwise

ii. the argument ends.

An argument may extend over (see 2(a)i) numbers, constants, variables and
\tfrac-s, as instanced with sin 2 p

q πx which exhibits all elements.
Illustrating 1, the exponent is included in the argument but not the following

variable:

\eval{$ \log_{10}(1+2+3+4)^3n $}[n=5] =⇒
log10(1 + 2 + 3 + 4)3n = 15, (n = 5).

For the sake of the reader, and as one naturally does in any case to avoid
ambiguity, the formula should be written with the variable n preceding the
logarithm: n log10(1+2+3+4)3. The way the example is written suggests that
the writer wished the n to be considered part of the argument of the logarithm.
If that is the case, inserting a \q command before n would achieve this, but that
would still be confusing for the reader of the pdf. Inserting parentheses is the
only sensible thing to do.
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Illustrating 2(a)ii, again the exponent is included in the argument but not
the following variable:

\eval{$ \log_{10}m^3n $}[m=10,n=5] =⇒
log10 m3n = 15, (m = 10, n = 5).

Again, for the sake of the reader and as one naturally does to avoid ambiguity,
the variable n should precede the logarithm. If in fact the intention was for the
n to be included in the argument of the logarithm, then again the \q command
could be used or, better in this case, the n could be shifted to precede the m,
which illustrates 2(a)i:

\eval{$ \log_{10}nm^3 $}[m=10,n=5] =⇒
log10 nm3 = 3.69897, (m = 10, n = 5),

the logarithm of 5000, or better still, m3n could (and should) be parenthesized
for the sake of the reader.

Why the difference between nm3 where n and m3 are included in the argu-
ment, and m3n where n is not? Any criterion is going to miss some instances
where a different outcome might be desirable. Where an argument ends is af-
fected by visual appearance in the pdf. It is simple and easy to remember if it is
understood that anything that breaks the ‘visual flow’ of juxtaposed numbers,
variables, constants and \tfrac-s ends the argument. An exponent does just
that. If you feel there is ambiguity, parenthesize to clarify.

Illustrating 2(b)ii, the argument stops with the \dfrac and its arguments
and does not extend to the following constant:

\eval{$ \sin\dfrac12\pi $} =⇒ sin 1
2π = 1.50616.

Obviously, someone writing an expression like this intends the π to be part of
the argument. In that case, a \tfrac should be used since the \dfrac breaks
the ‘visual flow’ of the argument.

Fractions
But why not a plain \frac? After all, for an inline expression it displays in
the same way as a \tfrac. I considered making the argument-behaviour of
\frac the same as \tfrac for text-style contexts, and the same as \dfrac
for display-style contexts, but that would have meant the same expression
evaluating to different results depending on whether it lay between $ $ or
\[ \] delimiters, which ruled it out. Because \frac sometimes displays
as \dfrac, it is treated like \dfrac (but see §3.4.2.3, specifically ()=2).

Slash fractions
It is easy to write ambiguous expressions using the slash / to indicate
fractions or division. How should π/2n be interpreted? With from-the-
left evaluation and calculator precedence rules which give equal prece-
dence to * (multiplication) and / (division), this would be interpreted as
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(π/2) × n, but most people will instinctively interpret it as π/(2n). By
placing / in parsing group II, this is what numerica does. It treats the
right-hand argument of the slash as if it were the argument of a named
function. This means that 1/2 sin(π/6) is parsed as (1/2) sin(π/6) rather
than as 1/(2 sin(π/6)). It also means that 1/2 exp(1) and 1/2e give differ-
ent results, which (in the author’s view) is acceptable since they display
differently and are not instinctively read in the same way.

3.4.2.3 Parsing group III

By default trigonometric functions are set to parsing group II. This accom-
modates many instances of how arguments are used with these functions, but
Fourier series in particular require more. For them we need to take account of
how parentheses are used in arguments. I find tan 1

2 (A + B) (HMF 4.3.148),
sec π( 1

4 + 1
2 az) (HMF 19.3.3), cos(2m + p)z (HMF 20.2.3), sin(2n + 1)v (HMF

16.38.1). Looking through various texts discussing Fourier series it is easy to
find examples like

cos 2π

T
nt, cos 2π

T
n(t + 1

2 T ),

and
cos(N + 1

2 )2πτ

T
, sin 2π

(
x

λ
− t

T

)
.

In the last of these \left and \right have been used to enlarge the parentheses.
All these usages can be accommodated by adjusting a setting in the settings

option (§3.1) of the \eval command:

() = <integer>

where <integer> is one of 0, 1, 2.

I remain unsure whether to persist with the () setting. A principal aim of
numerica is to avoid having to modify a formula to bring it into a form that can
be evaluated. The () setting arose in that context, but it complicates the code
and may well confuse the user. Inserting cleave functions, \q or \Q, to achieve
the same effects does mean modifying formulas, but is straightforward and easier
to understand. (And \q and \Q have no effect on the visual appearance of
formulas.)

For convenience of statement in what follows call parentheses, square brack-
ets or braces brackets. If preceded by a \left or \right or \biggl or \biggr
etc. modifier, call them Brackets, with an uppercase ‘B’. Modifiers do not con-
tribute to the position count, so that a left Bracket in first position means the
modifier and left bracket are both considered to be in first position. When it
is immaterial whether it is a bracket or a Bracket I write b/Bracket. The rules
that follow do not prescribe what mathematicians ought to do but are intended
to be descriptive of certain patterns of mathematical practice as discerned in
HMF and a number of texts (about half a dozen) on Fourier series.
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()=0 is the default setting, parsing group II behaviour; b/Brackets are included
in the argument only if

• the left b/Bracket is in first position;
– if the first item beyond the matching right b/Bracket is an expo-

nent, or factorial or double factorial sign, it is appended to the
argument, which ends there, otherwise

– the argument ends with the right b/Bracket.

The default setting allows things like sin 1
2 a, cos 2πnt and tan(A + B). It does

not encompass examples like tan 1
2 (A + B) or cos 2(n + 1

2 )π. For that we need
the setting ()=1:

()=1 includes a b/Bracketed expression in the argument, provided

• the left Bracket is in first position;
– if the first item beyond the matching right Bracket is an expo-

nent, or factorial or double factorial sign, it is appended to the
argument, which ends there, otherwise

– the argument ends with the right Bracket.
• or the item in first position is a number, variable, constant or \tfrac

and the left bracket is in second position;
– if the first item beyond the matching right bracket is an expo-

nent, or factorial or double factorial sign, it is appended to the
argument, which ends there, or

– if the first item beyond the matching right bracket is a number,
variable, constant, or \tfrac it is appended to the argument,
and so on recursively, until

∗ an exponent, or factorial or double factorial sign is met,
which is appended to the argument which ends there, or

∗ an item is met which is not an exponent, or factorial or dou-
ble factorial sign, or a number, variable, constant or \tfrac,
at which point the argument ends, or

∗ the end of the formula is reached.

With the ()=1 setting, the arguments of tan 1
2 (A+B), sec π( 1

4 + 1
2 az), cos(2m+

p)z, sin(2n + 1)v are all accommodated, as is sin 1
2 (m + n)π with items on both

sides of the parentheses. But, note, there must be at most one item before the
left parenthesis:

\eval[()=1]{$ \sin\tfrac16(m+n)\pi $}[m=1,n=2]. =⇒
sin 1

6 (m + n)π = 1, (m = 1, n = 2),

whereas, with two items before the left parenthesis,

\eval[()=1]{$ \sin2\tfrac1{12}(m+n)\pi $}[m=1,n=2]. =⇒
sin 2 1

12 (m + n)π = 1.563534, (m = 1, n = 2).
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Whatever the () setting, numerica does not check what is included between the
parentheses (or brackets generally) – it could be anything. However inserting
\left, \right or other modifiers before the parentheses restricts the argument
of the sine in this example, despite the ()=1 setting, to the \tfrac:

\eval[()=1]{$ \sin\tfrac16\left(m+n\right)\pi $}[m=1,n=2] =⇒
sin 1

6 (m + n) π = 1.563534, (m = 1, n = 2).

Although ()=1 serves well for the kinds of expressions and identities involved in
trigonometry, perusal of any text on Fourier series will show it does not cover
the kinds of expressions met there. For that we need

()=2 includes a b/Bracketed expression in the argument provided

• the left b/Bracket is in first position, or the item in first position
is a number, variable, constant, \dfrac, \frac or \tfrac and the
left b/Bracket is in second position, or the items in first and sec-
ond positions are numbers, variables, constants, \dfrac-s, \frac-s
or \tfrac-s and the left b/Bracket is in third position;

– if the first item beyond the matching right b/Bracket is an expo-
nent, or factorial or double factorial sign, it is appended to the
argument, which ends there, or

– if the first item beyond the matching right b/Bracket is a number,
variable, constant, \dfrac, \frac or \tfrac it is appended to
the argument, and so on recursively, until

∗ an exponent, or factorial or double factorial sign is met,
which is appended to the argument which ends there, or

∗ an item is met which is not an exponent, or factorial or dou-
ble factorial sign, or a number, variable, constant, \dfrac,
\frac or \tfrac, at which point the argument ends, or

∗ the end of the formula is reached.

()=2 draws no distinction between brackets and Brackets. It allows all ()=1
possibilities but also two items (of a suitable kind) before a left b/Bracket; it
also treats \dfrac-s and \frac-s like \tfrac-s for determining the scope of
arguments.

The following examples are taken from different texts on Fourier series. The
first shows a \frac being included in the argument, the second shows two items
– including a \frac – preceding the left parenthesis, the third shows a \frac
to the right of the parentheses, and the fourth shows parentheses using \left-
\right modifiers with two items preceding them:

cos 2π

T
nt, cos 2π

T
n(t + 1

2 T ), sin(N + 1
2 )2πτ

T
and sin 2π

(
x

λ
− t

T

)
.

All these usages are accommodated by the ()=2 setting. For instance
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\eval[p,()=2]
{

\[ \sin(N+\tfrac12)\frac{2\pi\tau}T \]
}[N=1,\tau=2,T=3]

=⇒
sin(N + 1

2 )2πτ

T
= 0, (N = 1, τ = 2, T = 3),

which is the sine of 2π = ( 3
2 ) × ( 4

3 π) where a \frac trailing the parentheses has
been included in the argument, and not (sin 3

2 )( 4
3 π). Or consider

\eval[p,()=2]
{\[

\sin2\pi\left(\frac{x}{\lambda}
-\frac{t}{T}\right)

\]}[x=1,\lambda=2,t=3,T=4]

=⇒
sin 2π

(
x

λ
− t

T

)
= −1, (x = 1, λ = 2, t = 3, T = 4),

which is the sine of − 1
2 π = 2π×(− 1

4 ) where there are two items before the paren-
theses and \left and \right modifiers, and not sin 2π times the parenthesised
expression.

However a usage like sin(n + 1
2 )(x − t), noted in two different texts, is not

available without explicit use of the \q command between the parenthesized
groups.

3.4.2.4 Parsing group IV

The only members of this group are \sum and \prod.
For parsing group IV

1. the argument ends

(a) at the first naked plus or minus sign encountered, or
(b) at the first comparison sign or comparison command encountered, or
(c) at the first logical And or logical Or sign encountered, or
(d) at the end of the formula.

In practice this means mainly (a) and (d), and seems to be the instinctive
practice. HMF has multiple examples in multiple chapters of the argument to
a sum ending at a naked plus sign: 7.3.12 & 7.3.14, 9.1.11 & 9.1.77, 9.6.35 &
9.6.43, 11.1.9, . . . (at that point I stopped looking). They were all of the form∑

argument + . . .

A minus sign serving the same purpose was harder to find but HMF 10.4.65
& 10.4.67 are two instances. I considered whether a \times or slash fraction
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sign / might end the argument of a sum, but surely we need to allow things like∑
1/n2 which rules out the slash and HMF 9.9.11 provides two of a number of

instances in HMF of sum arguments continuing past explicit \times signs (at
line breaks when a summand spills onto a second line).

Because they are evaluated using the same code as sums I (unthinkingly)
placed products with sums but doubts later intruded. In HMF products occur
only occasionally and are almost all of the form∏

(argument)

where the argument is bracketed (often with \left \right modifiers) and the
multiplicand ends with the right bracket. At least twice (HMF 6.1.25 and
24.2.2.1) an exponent (−1) is attached to the right bracket and the argu-
ment ends there. Looking further afield, a text on number theory has exam-
ples where the argument of the product extends to three parenthesised factors,∏

(arg1) (arg2) (arg3) and a number of others where it extends to two. A text
on theory of functions has

∞∏
n=1

(
1 + z

n

)
ez/n

although HMF, for the same expression, encloses the two factors within (large)
square brackets, as if some ambiguity existed as to how far the reach of the
\prod extended.

Tentatively I retain products here in the same group as sums.

3.4.2.5 Parsing group V

Comparison symbols compose this group: =, <, >, \ne, \le, \ge, \leq, \geq, and
the various comparison commands from the amssymb package listed in §2.3.4.5.
Because of the way numerica handles comparisons, it is the argument on the
right-hand side of the relation that needs determining.

For parsing group V
1. the argument ends at

(a) the first logical And or logical Or encountered, or
(b) the first comparison sign or command encountered, or
(c) the end of the formula.

3.4.2.6 Parsing group VI

Logical And and logical Or are the sole members of this group. It is the right-
hand side of the And or Or command that needs determining.

For parsing group VI
1. the argument ends at

(a) the first logical And or logical Or encountered, or
(b) the end of the formula.
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3.4.2.7 Disclaimer

The parsing rules of the different groups are not normative; they are not state-
ments of how mathematical formulas should be written. Rather they are at-
tempts to discern regularities in how mathematicians often do write formulas.
It is how things look in the pdf, not LATEX, that is the guide. You are always
free to parenthesize as you see fit and to insert cleave commands (\q or \Q) to
force outcomes.

(But note that parenthesizing has its limits. For sums, writing∑
(< stuff >) < more stuff >

does not necessarily end the summand at the right parenthesis: it ends at the
first naked + or − sign, or \Q command, encountered.)

The rule should always be to write expressions that are clear to the reader
of the pdf. An expression that is ambiguous to the reader, even if it fits within
the parsing rules, is to be deprecated. The intent is that \eval can parse
unambiguous expressions correctly.
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Chapter 4

Supplementary commands

This chapter introduces four commands, \nmcInfo (which we have already met),
\nmcMacros, \nmcConstants and \nmcReuse, supplementary to the principal
command \nmcEvaluate. They use the same machinery as \nmcEvaluate and
so have the same syntax. If all arguments are present it is

\nmc<cmd>*[settings]{main arg}[vv-list][rounding]

where <cmd> is one of Info, Macros, Constants and Reuse. All four commands
have short-name forms: \info, \macros, \constants, \reuse.

Generally the final two optional arguments will not be used. The user should
be aware of this if following a command with a square bracketed expression – the
expression will be absorbed without trace unless it is preceded by, for example,
an empty brace pair.

Because the commands share the machinery of \nmcEvaluate, the settings
discussed earlier (Chapter 3) for the \eval command are also available for these
commands, although they will, in the main, be irrelevant. The ‘debug’ code has
been used by the view setting of some of these supplementary commands to
produce its effects.

The starred form of command is available in all four cases and in all cases
produces a pure number. If both star and view are used at the same time, the
view setting prevails over starring.

4.1 Feedback on ‘infinite’ processes: \nmcInfo

Used after the evaluation of an ‘infinite’ process, the \nmcInfo command, or
its short-name form \info will tell you how many terms or factors or other
operations1 were needed to arrive at the result.The main argument contains an
identifier for the ‘infinite’ process:

1It also applies to the commands \nmcIterate and \nmcSolve from the numerica-plus
package and to derivatives and integrals from the numerica-calculus package.

82



\nmcInfo{<arg>}

(or \info{<arg>}) where, at this stage, <arg> is either sum or prod. The
display, as we have seen in earlier examples, is a number followed by a space then
a descriptor. For sum and prod the descriptors are terms and factors. Starring
\nmcInfo – \nmcInfo*{arg} or \info*{arg} – suppresses the descriptor and
leaves only the number. This allows the starred form to be nested in an \eval
command, which might sometimes be convenient.

As an example, let’s test ‘the hard way’ a standard identity, cosh2 x −
sinh2 x = 1. We know that cosh x =

∑∞
n=0

x2n

(2n)! and sinh x = x
∏∞

k=1

(
1 + x2

k2π2

)
.

The difference of their squares should be 1:

\eval{\[
\left[\sum_{n=0}^{\infty}

\frac{x^{2n}}{(2n)!}
\right]^2-

\left[x\prod_{k=1}^{\infty}
\left(1+\frac{x^{2}}{k^{2}\pi^{2}}\right)

\right]^2
\]}[x=1][3] \info{sum},\quad \info{prod}

=⇒ [ ∞∑
n=0

x2n

(2n)!

]2

−

[
x

∞∏
k=1

(
1 + x2

k2π2

)]2

= 1.002, (x = 1)

5 terms, 119 factors.
Nearly right. Obviously the product converges only slowly which is where

the error comes from (see the discussion in §3.2, where we needed the extra
rounding setting P+=3 and 350 factors to get a correct 3-figure value). The
point of the example is to show the information command being used for both
sum and product in the one evaluation. One does not exclude the other.

4.1.1 Suppressing the descriptor: \nmcInfo*

The starred form of the \info command suppresses the descriptor (‘terms’,
‘factors’) and gives a purely numerical result:

\eval{$
\sum_{k=0}^{\infty}\binom \alpha k x^k

$}[x=1/2,\alpha=3],
requiring $ \info*{sum}-1 $ additions.

=⇒
∑∞

k=0
(

α
k

)
xk = 3.375, (x = 1/2, α = 3), requiring 4 − 1 additions. (Four

terms added, therefore 3 additions.)
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4.1.2 Errors
Should the wrong argument be used in the \nmcInfo command, no harm is
done:

\eval{$
\sum_{k=0}^{\infty}\binom \alpha k x^k

$}[x=1/2,\alpha=3], \ \info{prod}

=⇒
∑∞

k=0
(

α
k

)
xk = 3.375, (x = 1/2, α = 3), 119 factors.

119 factors? The information command is remembering a previous result,
the last time prod was used as its argument. Changing the argument from prod
to sum reveals the correct number of terms.

Should a non-existent argument be used, an error message is generated:

\eval{$
\sum_{k=0}^{\infty}\binom \alpha k x^k

$}[x=1/2,\alpha=3], \\ \info{Fred}

=⇒
∑∞

k=0
(

α
k

)
xk = 3.375, (x = 1/2, α = 3),

!!! Unknown process Fred in: \nmcInfo command. !!!

4.1.3 view setting
As noted at the start of this chapter, \nmcInfo uses the ‘machinery’ of \nmcEvaluate.
Most of the settings available for \eval are also available for \info but of these
only one seems relevant: the dbg setting. However, rather than use the obscure
dbg=<integer> (which is possible), it suffices to enter view in this argument:

\info[view]{} =⇒

process: sum {4}, prod {119}

The result is a display of all the current values of all the ‘infinite’ processes
available. All such values are initialized to 0. (Further processes iter and solve
become relevant if the numerica-plus package is used; deriv and integ become
relevant if the numerica-calculus package, currently under development, is
used.)

4.2 User-defined macros: \nmcMacros

The \nmcMacros and \nmcConstants commands were prompted by a question
on TEX Stack Exchange.2 Some time later the maintainer of the mandi package3

2A question from Giacomo Petrillo on TEX Stack Exchange and a response by
‘egreg’ prompted the introduction of the \nmcMacros and \nmcConstants commands. See
https://tex.stackexchange.com/questions/602993/use-macros-in-numerica-vv-list/
602998#602998

3The maintainer is Joe Heafner, who explains that ‘mandi’ is an abbreviation of ‘matter
and interactions’ after a physics textbook of that name (by different authors). Among other
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approached me with a similar problem. Suppose one has defined a macro to
contain a value, say

• \def\myvalue{0.35}, or

• \newcommand\myvalue{0.35}, or

• \NewDocumentCommand\myvalue{}{0.35}, if you’re using xparse.

(If you’re using the document processor LYX then there is good reason to prefer
\gdef to define your macro, \gdef\myvalue{0.35}; see Chapter 6). After one
of these commands, \myvalue is now known to LATEX, but it is not known
to numerica. The quantities numerica does know about are variables in the
vv-list of an \eval command, and those LATEX (and amsmath and mathtools)
commands used for writing mathematical expressions. These quantities are
stored in numerica in structures called property lists. Since \myvalue is not
recorded in these lists yet, putting x=\myvalue in the formula or vv-list of an
\eval command will produce an ‘Unknown token’ error message:

\NewDocumentCommand \myvalue {} {0.35}
\eval{ \myvalue }

=⇒ !!! Unknown token \myvalue in: formula. !!!
With version 2 of numerica a command is now available, \nmcMacros, to reg-

ister macros and their values with the property lists used internally by numerica.
(This command was not available in version 1.) The macro must have been de-
fined earlier in the document or in a supporting package.

The basic usage is simple. If you have a list of macros you wish to make avail-
able to \nmcEvaluate, enter them in a comma list in the mandatory argument
of \nmcMacros:

\nmcMacros{ \macro1, \macro2, ... }

There is an equivalent short-name form of the command, \macros.
Multiple \nmcMacros commands can be used in a document. If the com-

mand is placed in the preamble (after the definition of the macros) then the
user-defined macros and their values are available throughout the document,
otherwise they are available from the position of the \macros statement. How-
ever, macros do not need to be defined in your current document provided they
are defined and accessible from elsewhere – for example from a loaded LATEX
package. But always an \nmcMacros command is required to ‘register’ them
with numerica for use in an \eval command.
things, the package defines a long list of macros, each containing the value of a physical
constant.
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4.2.1 What can be stored in a macro?
Generally a user-defined macro will store a number. This macro might well be
defined in an external package – for example the mandi package defines a large
number of macros containing the values of physical constants, some fundamental
like the speed of light, others contingent like the earth–moon distance. If the
mandi package is loaded then writing, for instance,

\macros{ \electronmassprecisevalue,
\protonmassprecisevalue }

will make these two macros available for use in numerica. One could then write
in the vv-list of an \eval command

m_e=\electronmassprecisevalue,m_p=\protonmassprecisevalue

which would allow (among other things) calculation of the mass ratio mp/me

of proton to electron. (The length of name of some of the macros in the mandi
package has a pedagogical purpose, but makes them unwieldy for direct use in
mathematical expressions.)

4.2.1.1 Macros containing formulas

Numbers are not the only quantities that can be stored in a macro for use in
numerica. In fact any mathematical expression that can be \eval-uated can
be stored in a macro:

\NewDocumentCommand \mysumC {}
{ \sum_{n=1}^{100}1/n - \ln 100 }

\macros{ \mysumC }
\eval{$ \mysumC $}[4]

=⇒
∑100

n=1 1/n − ln 100 = 0.5822,

(to be compared with Euler’s constant γ = 0.5772 – obviously many more terms
are needed). The \eval command wraps around math delimiters in the example.
Hence the result is presented in the form formula=result. In that presentation,
note how \mysumC displays as the formula it contains.

The essential space: But the critical thing to notice in the example is the
space preceding \sum in the definition of \mysumC. When a formula starts with
an expandable token, this space is essential. For macros to register successfully
with numerica, the first character in their definition must be unexpandable.
Thus a digit is fine: storing a number in a macro is straightforward and you
don’t need to fuss about such niceties. But a control sequence like \sum does
expand (to

∑
). If it is the initial token of the formula, then it will cause a

possibly obscure error – see §4.2.3 – unless preceded by an unexpandable token.
Hence the space before \sum in the \NewDocumentCommand statement. (On the
other hand the spacing in the \macros statement is purely aesthetic.)
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When using macros from another package, this is a matter to be aware of.
If the macros contain only numbers, there should be no problem, but if they
contain more complicated expressions, the absence of an initial space could make
them unusable in numerica.

4.2.1.2 Vv-list

In the example it would be nice to be able to vary the number of terms summed.
This is easily done by using a vv-list in the \macros statement:

\NewDocumentCommand \mysumN {}
{ \sum_{n=1}^{N}1/n - \ln N }

\macros{ \mysumN }[N=150]
\eval{$ \mysumN $}

=⇒
∑N

n=1 1/n − ln N = 0.580545.

numerica needs a definite value to store; it does not store the formula as such.
To give \mysumN a definite value, give the variable N a value. This is done in
the vv-list added to the \macros statement: N=150. In this way a definite value
is stored in numerica against the macro \mysumN. The definition of the macro
is unaffected. If a new value is given to N in the \macros statement (which is
the point of using a variable), the old value is overwritten and the new value is
used in subsequent calculations.

4.2.2 Seeing what macros are available
Perhaps your document has a number of \nmcMacros statements scattered
through it and you want to remind yourself of what exactly has been stored.
\nmcMacros has the view setting for this purpose. Writing

\macros[view]{} =⇒

macros: \mysumN { \sum _{n=1}^{N}1/n - \ln N },\mysumC { \sum
_{n=1}^{100}1/n - \ln 100 }

stored: \mysumN =0.580545294547621, \mysumC =0.582207331651529

produces a list of all macros registered with numerica and their values, as you
can see.

If the braced argument is not empty, the display is slightly modified:

\def\mydef{ \sin(m\pi/n) }
\newcommand\mynewcmd{ \cos(m\pi/n) }
\macros[view]{ \mydef,\mynewcmd }[m=3,n=18]
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=⇒

vv-list: m=3, n=18
added: \mydef { \sin (m\pi /n) },\mynewcmd { \cos (m\pi /n) }
stored: \mydef =0.4999999999999999, \mynewcmd =0.8660254037844387, \mysumN

=0.580545294547621, \mysumC =0.582207331651529

\mydef and \mynewcmd have been added to those available for use in numerica.

4.2.2.1 Freeing macros from storage

Rather than cluttering numerica’s property lists with no-longer-needed macros,
it is possible to remove them from there with the free setting. This has no effect
on the LATEX definition of the macro. It merely ‘de-registers’ the macro with
numerica.

\macros[free,view]{ \mysumC } =⇒

freed: \mysumC { \sum _{n=1}^{100}1/n - \ln 100 }
stored: \mydef =0.4999999999999999, \mynewcmd =0.8660254037844387, \mysumN

=0.580545294547621

If you want to free all macros registered with numerica use an empty main
argument with the free setting. For an example, see just below.

4.2.2.2 Counting how many macros are available

You can count how many macros are currently registered with numerica by
starring the \nmcMacros command:

\macros*{} =⇒ 3.

If the braced argument is not empty, the list of macros it contains will be added
to those registered with numerica and included in the overall count.

Note that the view setting prevails over starring if both are used.
The star can also be used with the free setting. As mentioned above, if the

main argument is empty, then all macros are freed:

\macros*[free]{} =⇒ 0

4.2.3 Errors
If a macro is used in a \macros statement and the macro has not been defined
in the document or a supporting package it will cause an error:

\macros{ \mymacro }
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=⇒ !!! Undefined macro \mymacro in: \nmcMacros command. !!!
As noted in the introduction to this section, an undefined macro used in an
\eval-uation will cause an ‘Unknown token’ message in numerica. The solution
in this and the preceding case is (obviously) to define the macro.

If a macro contains a formula which begins with an expandable token and a
preceding space is omitted (see above), then entering that macro in a \macros
statement to register it with numerica will generally cause a puzzling error:

\newcommand\mysin{\sin(\pi/7)}
\macros{ \mysin }

=⇒ !!! Unknown token \protect in: \nmcMacros. !!!
The \protect seems to be plucked from nowhere. In fact it comes from the
expansion of \sin. If \sum had been the first token in the macro definition,
again with no preceding space, then \protect would have been replaced by the
even more puzzling \DOTSB. The solution is to insert a space as the first token
in the macro definition.

If a macro is defined but the \macros statement is overlooked, and the macro
is used in an \eval-uation, it will generate an ‘Unknown token’ message.

If your macro stores a formula with variables, and you forget to give those
variables values in the \macros statement that will produce a message:

\def\mysumk{ \sum_{n=1}^k n }
\macros{ \mysumk }

=⇒ !!! Unknown token k in: sum limits. !!!
The ‘where’ part of the message is specific in this case, but is generally ‘\nmcMacros
command’.

And of course there can be ‘all the usual suspects’ discussed at §2.5 in the
evaluation of the vv-list or the formula.

4.2.3.1 Display of macros

As shown in earlier examples, macros display as their content. Thus \mysumC
displayed as

∑100
n=1 1/n − ln 100. But once a macro is known to LATEX (not

necessarily to numerica) it can be used as a variable name. This has the same
potential for abuse as noted earler for multi-token variables (§2.2.3.5). In the
following example note that there is no \macros statement. It suffices for the
macro to be known to LATEX.

\def\mymac{1}
\eval[vvi=\,???]{$ \mymac+\mymac $}[\mymac=2]

=⇒ 1 + 1 = 4 ???
The value assigned to a variable name – in this case \mymac – by numerica
for calculational purposes and how that variable name displays in LATEX are
two separate things. One relies on the user not to do something deliberately
deceptive.
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4.2.4 Rounding value
Values are stored to 16 significant figures (if available). In most cases appending
a rounding value to a \macros statement has no effect on the value stored. In the
following example note the o setting, meaning the sine reads angles in degrees:

\NewDocumentCommand\testi{}{ \sin 60 }
\NewDocumentCommand\testii{}{ \sin 60 }
\macros[o]{ \testi }[10]
\macros[o]{ \testii }[3]
\macros[view]{}

=⇒

macros: \testii { \sin 60 },\testi { \sin 60 }
stored: \testii =0.8660254037844386, \testi =0.8660254037844386

Despite the different rounding values the same 16 figures are stored in both
\testi and \testii.

For the \eval command, rounding values specify how results are displayed.
The rounding value matters only after, not during, the calculation. Only for
infinite sums or products is this otherwise. There the rounding value is used to
determine when to stop adding further terms or factors. The same is true of the
\macros command. Only if a macro contains an infinite sum or product does
the rounding value become relevant. Sixteen figures are still stored, but most of
them will be ‘wrong’ since the infinite sum or product has stopped early, after
only a finite number of terms or factors. Exactly how many of the first few
figures are correct depends on the rounding value. An example may clarify the
matter.

\macros[free]{}
\def\zetaiii{ \sum_{n=1}^\infty 1/n^3 }
\macros[view]{ \zetaiii }[3]
\info{sum}
\macros[view]{ \zetaiii }[6]
\info{sum}

=⇒

vv-list:
added: \zetaiii { \sum _{n=1}^\infty 1/n^3 }
stored: \zetaiii =1.201844363305174

47 terms

vv-list:
added: \zetaiii { \sum _{n=1}^\infty 1/n^3 }
stored: \zetaiii =1.202054634870939
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468 terms
HMF Table 23.3 tells me that ζ(3) = 1.202056903159594 . . . The different

rounding numbers have restricted the infinite sums to the very finite 47 and
468 terms respectively. Although 16 figures are stored, only the first few are
correct. Just how many depends on the number of terms summed which depends
on when the stopping criterion is met which depends on the rounding value.

4.3 User-defined constants: \nmcConstants

As noted much earlier in this document (§2.2.2.3), there are five built-in con-
stants: \pi, e, \phi, \gamma and \deg, but a user may well want to define their
own constant or constants. There are contexts where it would make sense to
permanently record fundamental constants like the speed of light or Planck’s
constant, or more down-to-earth constants like the acceleration due to gravity
or the viscosity of water, rather than having to enter them in the vv-list for each
calculation. Or a parameter might be held constant for a particular problem or
class of problems where other variables change – for example triangles of con-
stant perimeter but varying sides. This is the purpose of the \nmcConstants
command.

The symbols used to denote constants are subject to exactly the same con-
straints and freedoms as the symbols used to denote variables. They might be
single latin letters like c (e.g. c = 3 × 108), or greek letters like \alpha (e.g.
α = 1/137), or multitoken combinations like the Rydberg constants R_\infty
or R_{\mathrm{H}} from atomic physics, or \mu_0 and \epsilon_0 used to de-
note the permeability and permittivity of free space, or personal constants like
total of no wider significance. numerica handles all these different forms of
constant with the command \nmcConstants:

\nmcConstants{ const-n=value-n, ... ,
const2=value2, const1=value1 }

This is the simplest use – each constant is assigned a (numerical) value. But it
is easy to envisage situations where it would be convenient to have a constant
with value 1/

√
2π say, or another with value e

π
2 , and so on. That is easy: simply

put the expession for the value on the right:

\constants{ a=1/\sqrt{2\pi},b=e^{\tfrac\pi2} }

Or the values could be expressions depending on parameters:

\constants{ s=\tfrac12(a+b+c) }[a=3,b=5,c=7]

Some constants might depend on earlier constants in the list:

\constants{ A=\sqrt{s(s-a)(s-b)(s-c),
s=\tfrac12(a+b+c) }[a=3,b=5,c=7]

Or the values could involve an ‘infinite’ process, requiring a rounding number:
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\constants{ \zeta=\sum_{n=1}^\infty(1/n^k) }[k=4][5]

In this, although 16 figures will be stored, only the first few will be accurate,
the precise number depending on the value of k and the rounding number (5 in
the example); see the discussion on this issue for user-defined macros, §4.2.4.

4.3.1 New list replaces old by default
A particular group of constants may be relevant only to a particular part of a
document. Another part of the document may use other constants. By default,
a second list of constants replaces the first list. Thus each of the \constants
statements above would replace the previous one.

There is a technical reason why replacing rather than appending is the de-
fault. For each calculation all multi-token constants (e.g. R_\infty, N_0, . . . )
are added internally to the start of the vv-list of the \eval command. Even if the
vv-list is empty, this is still the case since the formula might well use constants.
Like multi-token variables and for the same reason (see §2.2.1), multi-token
constants are mapped internally to single tokens. This occurs afresh for each
calculation. If there are a lot of multi-token constants then each calculation
is going to involve not only this mapping from multi- to single tokens but the
evaluation of a long vv-list. In that case it seems better to make the default
behaviour replacement of one constant list by another, rather than appending
them.

4.3.2 Adding constants to a list
Despite the default behaviour, there will be occasions when you want to add a
new constant or constants to the current list. This is easily done with the add
setting. For instance,

\nmcConstants[add]{ \sigma=5.67\times10^{-8},
k_B = 1.381\times10^{-23} }

would add \sigma and k_B to the current list. The presence of the add setting
triggers appending rather than replacement.

4.3.3 Examples of use
4.3.3.1 Example 1: atomic constants

In the following example, the values of various atomic constants are taken from
the mandi package. I use two \constants statements in order to show the use
of the add setting. I’ve also included a view setting in the second \constants
statement.

The constants are used to calculate the fine-structure constant \alpha in
the vv-list of the \eval command, and its well-known reciprocal (close to 137)
in the main argument. Note that the constants do not need to be entered in the
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vv-list of the \eval command. Their values are available from the \constants
statements.

\constants{ c=2.99792458\times10^{8},
h=6.62607015\times10^{-34},
e=1.602176634\times10^{-19} }

\constants[view,add]
{ \epsilon_0=8.854187817\times10^{-12} }

\eval{$ 1/\alpha $}[\alpha=e^2/2\epsilon_0hc]

=⇒

vv-list:
added: \nmc_p =8.854187817\times 10^{-12}

constants: e=1.602176634e-19, h=6.62607015e-34, c=299792458, \epsilon
_0=8.854187817e-12

1/α = 137.035999, (α = e2/2ϵ0hc).
The view setting produces a now familiar kind of display. It shows that the

three-token \epsilon_0 (the control sequence \epsilon, the underscore _ and
the digit 0) has been replaced by \nmc_q – which may look as if it is also three
tokens but is in fact a single control sequence.

4.3.3.2 Example 2: local constants

Long ago, when there were such creatures as reference librarians, I was asked
about a school physics project along these lines.

A car is travelling at 50 km/hr when it hits a lamppost. The bonnet crumples
1 metre and the car comes to an immediate halt. Although she herself is wearing
a seat-belt, a woman in the passenger cabin is holding her 5 kg baby. Does the
baby survive?

The enquirer was familiar with the equations describing constant accelera-
tion,

x = ut + 1
2 at2, and v2 − u2 = 2ax,

and Newton’s second law, F = ma, force equals mass times acceleration. The
question was really about understanding these laws and how to think with them.
Here, s is the distance travelled in time t, with initial speed u at t = 0, speed v
at time t, and constant acceleration a – a deceleration in this case.

The given data provide our constants: distance x = 1 metre, initial speed
u = 1000 ∗ 50/(60 ∗ 60) = (10/36) ∗ 50 metres per second, final speed v = 0. To
estimate whether the woman can hold on to her baby, we will need to make a
comparison with forces we have personally experienced. Most of us have tried
lifting someone else, so let’s use a characteristic human weight as our test mass.
Thus, we have the (baby’s) mass m = 5 kilograms, and a test mass, M say,
which we will leave as a variable. But dealing with weight, we will need the
acceleration due to gravity. For the kind of rough estimating we are doing,
g = 10 metres per second per second will be an adequate approximation.
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\constants{ x=1,v=0,u=(10/36)50,m=5,g=10 }

The deceleration experienced by the woman is found from the second equation of
constant acceleration, a = (v2 − u2)/2x. Even if the deceleration isn’t constant
this will give an estimate of its magnitude. (If some of the deceleration is less
than this a, some must be greater.) This is also the deceleration experienced by
the baby as long as the woman holds onto her. Hence the magnitude of the force
exerted by the baby on the woman’s arms is ma = m(v2 − u2)/2x = −mu2/2x
which we want to compare with our test force, say that required to lift M = 70
kilograms, which was once considered the mass of an average western adult
male (but is doubtless a considerable underestimate now). Hence the test force
is Mg. Let’s do the calculations. (I have altered the \constants statement to
allow for a later comparison with the effect of a small increase in speed.)

\constants{ x=1,u=(10/36)U,m=5,g=10 }[U=50]
\eval{$ mu^2/2x $}[0], \par
\eval{$ Mg $}[M=70].

=⇒ mu2/2x = 482,
Mg = 700, (M = 70).
The force required to hold on to the baby is noticeably less than that required

to lift a 70 kg person – in fact about the same as that needed to lift a 50 kg
person. But we have ignored the force experienced by the mothers forearms –
perhaps doubling m (baby plus forearms) would give a better estimate of the
force she experiences. In that case mu2/2x obviously doubles and the total force
required by the woman to retain her baby – now 964 newtons – is significantly
more than that required to lift a 70 kg person. I think it almost certain that
the baby is torn from her arms.

What difference does increasing the speed to 60 km/hr make?

\constants{ x=1,u=(10/36)U,m=5,g=10 }[U=60]
\eval{$ mu^2/2x $}[1], \par
\eval{$ Mg $}[M=70].

=⇒ mu2/2x = 694,
Mg = 700, (M = 70).
Now the force of baby alone is comparable to that required to lift a 70 kg

person. Including the woman’s forearms in m, doubling m say, will result in a
force twice as great – like that required to lift two 70 kg people or one 140 kg
person. There is no chance of the woman holding on to her baby. The force is
too great.

4.3.3.3 Example 3: macros and constants

Constants can depend on previously defined and registered user macros. Sup-
pose I have defined two macros

\NewDocumentCommand\electronmassprecisevalue {}
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{9.1093837015\times10^{-31}}
\NewDocumentCommand\protonmassprecisevalue {}

{1.672621898\times10^{-27}}

(I have taken both the names and the values from the mandi package.) The
long explicit names of the macros has a pedagogic purpose, but they are too
cumbersome to use in calculations. For that purpose we need, first, a \macros
statement registering the two macros with numerica, and then a \constants
statement like

\nmcConstants{ m_e=\electronmassprecisevalue,
m_p=\protonmassprecisevalue }

With that m_e and m_p could be entered in formulas, taking the values contained
in the macros. Let’s do it:

\NewDocumentCommand\electronmassprecisevalue {}
{9.1093837015\times10^{-31}}

\NewDocumentCommand\protonmassprecisevalue {}
{1.672621898\times10^{-27}}

\nmcMacros{ \electronmassprecisevalue,
\protonmassprecisevalue }

\nmcConstants{ m_e=\electronmassprecisevalue,
m_p=\protonmassprecisevalue }

\eval{$ m_p/m_e $}

=⇒ mp/me = 1836.152645,
the familiar mass ratio of proton and electron.

4.3.4 Viewing, counting constants
To see all constants currently ‘in play’, use the view setting in the \constants
command. The main argument can be empty,

\constants[view]{} =⇒

constants: m_p=1.672621898e-27, m_e=9.1093837015e-31

or contain a list of constants. In the latter case, the display is of the above
form but featuring the constants of the new list or, if the add setting is used,
featuring the joined lists, old and new:

\constants[view,add]{X=42} =⇒

vv-list:
added: X=42

constants: m_p=1.672621898e-27, m_e=9.1093837015e-31, X=42
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To count how many constants are currently in play, star the \constants com-
mand. The number will depend on whether the main argument is empty or not,
and whether the add setting is active:

\constants*{} =⇒ 3.

If the view setting is being used at the same time as the star, the view prevails.

4.3.5 Errors
When contemplating error messages from numerica it needs to be remembered
that multi-token constants are added to the vv-list for every calculation. Hence
an error may not be in the vv-list as indicated in the message but in the
\constants statement, specifically, the multi-token constants.

4.4 Saving and reusing results: \nmcReuse

You may want to use at some place in a document a result calculated earlier.
It would be good to be able to do so without having to do the calculation
again at the new location. numerica offers a command \nmcReuse (short-name
form, \reuse) which saves a result to a control sequence that can then be used
elsewhere in the document, expanding to the saved result. The control sequence
and its content are also saved to file, allowing the possibility of using the result
in other documents.

The \nmcReuse command in version 2 of numerica has been completely rewrit-
ten. Its use is not compatible with how the command was used in version 1. I
found that I could bring \nmcReuse along with \nmcMacros and \nmcConstants
into the coding scheme used for \nmcEvaluate and the reasons for doing so were
too compelling.

4.4.1 Use of \nmcReuse

As noted, all the supplementary commands share the syntax of the \eval com-
mand, so that \nmcReuse has an optional settings argument preceding a manda-
tory main argument, followed by two trailing optional arguments. \nmcReuse
does not use the last two. The command is used mainly in two ways:

1. \nmcReuse{}, which loads the saved control sequences from file, if not already
loaded; and

2. \nmcReuse{csname}, which loads the saved control sequences from file, if not
already loaded, assigns the latest result from \eval to the control sequence
\csname, and saves \csname to file.

You may wish to put \nmcReuse{} in the preamble of your document (after
\usepackage{numerica} of course). In that way, saved control sequences are
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available from the start. Indeed, control sequences saved from later in the
document can be used in earlier sections in a later LATEX run.

Note that only the name, csname, of the control sequence is supplied to
\reuse, not the control sequence (\csname). The name should be composed of
letters only. If the name has already been defined in LATEX a numerica error
is produced, see below §4.4.1.4, although if you want to save a new value in a
previously saved control sequence, that can be done without invoking a message;
see §4.4.1.4.

Once defined with a \nmcReuse{csname} command, \csname becomes available
for use elsewhere in the document.

4.4.1.1 What is saved?

What is saved is the most recent result of an \eval-uation. This is the full
result. It may include the vv-list; it may include formatting elements; it may
include math delimiters. Thus, using \csname in your document (after the
command \nmcReuse{csname}) may not be straightforward – simply writing
\csname where you want the value it expands to, may produce a LATEX error
and halt compilation. You may have to write $ \csname $ or provide some
other math environment in order for the control sequence to display correctly.

It can be helpful to see exactly what has been saved; to do that see §4.4.1.5.

Use of \eval* Users will make life simpler for themselves if they make a
habit of using the starred form \eval* to produce the results to save. \eval*
produces solely a number with no formatting or delimiters; even a negative
result uses a hyphen for the minus sign, just as one would type it. In this case
\csname can be used freely in both text and math environments.

4.4.1.2 The .nmc file

The file that control sequences are saved to has a filename composed of the
document name with the extension .nmc. If your document is mydoc.tex (so
that the LATEX command \jobname expands to mydoc) then the file to which
results are saved is mydoc.nmc, located in the document directory.

mydoc.nmc is a comma list of pairs of the form \csname {value}. Thus, the
contents of mydoc.nmc might be \csname1 {value1},\csname2 {value2},...,
\csnamen {valuen}. If mydoc.nmc does not already exist then it is created in
the document directory, and \csname {value} becomes its first element.

Editing the .nmc file externally The .nmc file is a text file and can be
edited in a text editor. Thus it is possible to externally add control sequences
and values to it provided the structure of the file is strictly adhered to. It is
also possible to delete items from it or rename control sequences or edit values
by the same mechanism. Editing the file externally like this, or renaming it, or
transferring items from one .nmc file to another, provides a way of using saved
values in multiple documents.
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4.4.1.3 Messages

If a control sequence \csname is already known to LATEX, then writing \reuse
{csname} will produce a numerica message and the result of the latest \eval-
uation will not be saved:

\eval*{\sum_{n=1}^{10}n}\par
\reuse{sigma}

=⇒ 55
!!! \sigma already defined in: \nmcReuse command. !!!

If there is no result to save – perhaps an \eval-uation produces an error
message instead – then another message is generated:

\eval*{1/0}\par
\reuse{oops}

=⇒ !!! l3fp error ‘Division by zero’ in: formula. !!!
!!! No result available for oops in: \nmcReuse command. !!!

4.4.1.4 Deleting and renewing

There may be occasions when you wish to change a previously saved value and
yet, irritatingly, the control sequence name will now be known to LATEX and so
will generate an ‘already known’ message. If you choose a different name for the
control sequence to save the new value to, do you want the old name cluttering
the .nmc file? Deleting and renewing the values of saved control sequences are
controlled by the settings delete and renew.

Entering delete in the settings option deletes a control sequence and its
value from the .nmc file and undefines it in LATEX terms. Thus \reuse[delete]
{csname} would delete \csname and its value from the .nmc file and undefine
\csname. If \csname is not present in the file, nothing happens. Entering renew
replaces the value of a saved control sequence with a new value. If there is no
such saved control sequence but the control sequence is otherwise known to
LATEX the ‘already defined’ message will still be generated. This prevents giving
control sequences like \sin or \frac new meanings with the renew setting.

• \reuse[delete]{csname} deletes \csname and its value from the .nmc
file and from memory if present; otherwise has no effect;

• \reuse{csname} (the default) saves the result of the latest \eval com-
mand to \csname, provided \csname is not already defined; in that case
a warning message is presented and the result is not saved;

• \reuse[renew]{csname} behaves like the default mode unless \csname is
already a saved control sequence in the .nmc file, in which case its previous
value is replaced by the result of the latest \eval command;

• if delete and renew are used together, whichever occurs second prevails.
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In the following example, the first \reuse deletes \suma should it be present
in the .nmc file, the second saves the result, 55, of the latest \eval-uation (in
fact an \eval*-uation) and the third overwrites that saved value with the new
value, 210.

\reuse[delete]{suma}
\eval*{\sum_{n=1}^{10}n} \par
\reuse{suma}
\eval*{\sum_{n=1}^{20}n} \par
\reuse[renew]{suma}

=⇒ 55
210

4.4.1.5 Viewing what has been saved

It would be good in this example to see that the new value 210 has in fact been
saved. That is easy. Simply enter view in the settings option of \nmcReuse
(I’ve removed the now unnecessary \par tokens from the example.)

\reuse[delete]{suma}
\eval*{\sum_{n=1}^{10}n}
\reuse[view]{suma}
\eval*{\sum_{n=1}^{20}n}
\reuse[renew,view]{suma}

=⇒ 55

saved: \suma {55}

210

saved: \suma {210}

First the original value 55 was saved to \suma but then the value was overwritten
by the new value 210.

The view setting allows us to see how formatting is stored if the unstarred
form of the \eval command is used. In the following example, \eval wraps
around math delimiters:

\eval{$ 1+1 $} \reuse[view,renew]{two} =⇒ 1 + 1 = 2

saved: \two {$1+1=2$}

The full formula=result display has been captured in \two along with the math
delimiters. If a vv-list is also involved, things become messy (but informative):

\eval{$ x+y $}[x=1,y=2]
\reuse[view,renew]{three}
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=⇒ x + y = 3, (x = 1, y = 2)

saved: \three {$x+y=3\mathchoice {{,}\mskip
36muminus24mu(x=1,y=2)}{{,}\mskip
12muplus6muminus9mu(x=1,y=2)}{}{}$}

You may want to see all saved control sequences. In that case use an empty
main argument: \nmcReuse[view]{}. We now have enough saved control se-
quences to make this worthwhile:

\reuse[view]{}

=⇒

saved: \three {$x+y=3\mathchoice {{,}\mskip
36muminus24mu(x=1,y=2)}{{,}\mskip
12muplus6muminus9mu(x=1,y=2)}{}{}$}, \two {$1+1=2$}, \suma {210},
\seven {7}

(The \seven that appears here is defined shortly. Its appearance before defi-
nition is presumably due to LATEX making a number of passes when compiling
this document.)

4.4.1.6 Counting saved control sequences: \nmcReuse*

Because \nmcReuse uses the same machinery as \nmcEvaluate, it has a starred
form, \nmcReuse*, which produces a purely numerical result (just like \eval*,
info*, \macros* and \constants*). In this case, the number is the count of
how many control sequences have been saved:

\reuse*{} =⇒ 4.

4.4.2 reuse setting of \eval command
Using \eval* for a calculation ensures a purely numerical result, with no vv-list
or formatting in the display of the result. But sometimes we might want the
full display yet wish to save only the numerical result. This is the point of the
reuse setting of the \eval command.

For the starred form of the \eval command it is always only the numerical
result that is saved, whatever the value of the reuse key in the settings option
of the \eval command.

For the unstarred form of the \eval command exactly what is saved with
\nmcReuse depends on the reuse setting:

reuse = <integer>

where <integer> can take one of two values,
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• reuse=0 (the default) saves the form that is displayed including the vv-list
if there is one and possibly a formatting component (like math delimiters).
Note that if the vv-list is empty, a formatting component (math delimiters)
may still be present in the saved result;

• reuse=1 (or, indeed, any non-zero integer) saves only the numerical result
with no other elements of the display (no vv-list, no formatting component,
no math delimiters).

As we saw earlier, saving the result from \eval{$ x+y $}[x=1,y=2], corre-
sponding to reuse=0, means the full display is saved. Check by writing \three
=⇒ x + y = 3, (x = 1, y = 2). The full display was saved (including math
delimiters).

On the other hand, with reuse=1 only the numerical value is saved:

\eval[reuse=1]{$ x + y $}[x=3,y=4] \reuse[renew]{seven} =⇒
x + y = 7, (x = 3, y = 4) .

The numerical result only of the calculation should be saved, although the for-
mula and vv-list are displayed as the result of the \eval-uation. We can easily
check: \seven =⇒ 7. Indeed, only the numerical result was saved.
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Chapter 5

Nesting commands

The \eval command and the supplementary commands of the previous chapter
can be nested – used within other \eval or supplementary commands. Nesting
may occur in the main argument, or the vv-list, or the settings option, or some
combination of all three. With the commands currently introduced, nesting is
unlikely to be a major concern, but it becomes significant for the commands
defined in the associated package numerica-plus (see §1.1.2). Since those ad-
ditional commands are not available for this document, the examples below
use the commands introduced earlier: \eval, \info, \macros, \constants and
\reuse.

5.1 Nesting in the formula
Consider a statement like \eval{...\eval...}. There is an inner \eval and
an outer \eval. The inner \eval ‘digests’ its LATEX formula to produce an
l3fp-readable expression which is fed to l3fp to evaluate. The result is then
returned to (the inner) \eval to display. In version 1 of numerica that meant
the inner command had to be starred, \eval*, so that no display formatting
was fed to the outer command to try to digest (and cause an error). In version
2 of numerica this is no longer the case. numerica detects whether a command
is inner or outer, and if inner, suppresses all display formatting, producing only
a number, as if the command had been starred:

\eval{$ \sin(\eval{\sin x}[x=\pi/6]\pi) + 1 $} =⇒ sin(0.5π) + 1 = 2.
In the presentation of the overall result, the inner \eval command is evaluated,
displaying as a number.

In this example, the x=\pi/6 could be removed from the inner \eval and
placed in the vv-list of the outer command since outer variables are available to
the inner command:

\eval{$ \sin(\eval{\sin x}\pi) + 1 $}[x=\pi/6] =⇒
sin(0.5π) + 1 = 2, (x = π/6).
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Just to show that it is possible, the next example shows \eval being used in a
\constants command. The o setting in the \constants command pervades its
argument; hence it needs to be explicitly turned off for the \eval if \sin(\pi/6)
is to evaluate as expected.

\constants[o]{ y=\sin 30,x=\eval[o=0]{\sin(\pi/6)} }
\eval{$ x+y $}

=⇒ x + y = 1.

5.1.1 Math delimiters and double evaluations
Any math delimiters in the inner \eval are ignored. (This also differs from
version 1 of numerica where they caused an error.) Obviously it is simpler to
omit them as I have done in the examples.

However, math delimiters in the outer \eval command still have their nor-
mal effect and produce a formula = result, (vv-list) display. One consequence
of such a display is that the formula in the inner \eval command is evaluated
twice – once when the overall result is being calculated (i.e. the formula of the
outer \eval) and later when the overall display of the result is created. In the
formula part of the formula = result, [vv-list] display, the tokens in the formula
are expanded to their display form. For example, \sin is expanded to sin, \pi
is expanded to π – and the inner \eval is expanded to the numerical result of
its evaluation – a second evaluation. If the inner formula is simple, this will
be of little moment, but should the inner formula contain, say, a slowly con-
verging infinite series, then evaluating it twice is a bad idea and it would be
better to remove the delimiters from the outer \eval. That prevents the second
evaluation.

The problem does not arise if the outer \eval lies within a math environment
(e.g. $ \eval{...} $) since that produces a display of the form result, [vv-list].
The formula is not displayed and so the second evaluation does not occur. The
inner \eval is evaluated once only to calculate the result.

5.2 Nesting in the vv-list
The inner \eval can be placed in the vv-list of the outer command. If the vv-list
of the inner \eval contains a comma (meaning there are at least two variables),
then the entire inner \eval and its LATEX arguments needs to be wrapped in
braces to hide the comma or commas of its vv-list from the outer \eval. To
show the effect of not doing so, I have slightly complicated the previous example
by adding a second (unnecessary) variable. The first example is with braces,
the second without:

\eval{$ \sin k\pi + 1 $}[k={\eval{y\sin x}[x=\pi/6,y=1]}] =⇒
sin kπ + 1 = 2, (k = 0.5).

\eval{$ \sin k\pi + 1 $}[k=\eval{y\sin x}[x=\pi/6,y=1]] =⇒
!!! Unmatched ] in: variable = value list. !!!.
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The vv-list of the outer \eval is parsed as containing two entries, k=\eval
{y\sin x}[x=\pi/6 and y=1]. Both will cause errors but since the vv-list is
evaluated from the right, it is y=1] which actually does so.

5.3 Nesting in the settings option
This will be rare, but commands can occur in the settings option of the outer
command. The \info command provides a good example. I have included it in
the punctuation setting of an \eval-uation.

\eval[p=\mbox{,\qquad\info{sum} terms.}]
{\[ \sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!} \]}[3]

=⇒
∞∑

n=0

(−1)n

n! = 0.368, 9 terms.

Because of the \[ \] math delimiters, if the \info command had been
placed after the \eval command, it would have slid down to the next line.
Used in the settings, as here, the display is inside the \[ \] delimiters, on
the same line as the expression. This may be significant for adjusting vertical
spacing of later parts of the document – widow and orphan control for instance.

A point to note is the explicit writing of the ‘terms’ descriptor. Normally
\info{sum} would automatically supply the descriptor, but as noted earlier,
nesting of one command in another suppresses all elements of display of the
inner command beyond the numerical result. It is as if the inner command is
starred. Because the \info command is nested in the \eval command, the
‘terms’ descriptor is suppressed and has had to be explicitly supplied by hand.

5.4 Rounding and display
In the display of the overall result, it is the result of the inner command which
is shown, not the formula that the inner command acts on. How that number is
displayed is determined by the number-format specification of the inner com-
mand. Note however that this specification affects only how the result of the
inner command is shown. Always 16 figures are passed from the inner command
to the outer, as you can see in this example:

\eval{$ \pi - \eval{ \pi }[4] $}[15]

=⇒ π − 3.1416 = 0.
The outer result would not be zero to 15 places of decimals if the inner result
were restricted to 4 decimal places. It is only the display of the inner result
which is so restricted.

For infinite sums and products (and for \nmcIterate and \nmcSolve of the
numerica-plus package), the rounding value is not just for display purposes
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but is also used to determine the result. This may require judicious use of the
extra rounding setting to get a sensible display. In the first instance below, the
second sum stops at an effective rounding value of 5 + 2 = 7, since the default
extra rounding is +2, and the first sum (the inner one) also stops at 7 = 4 + 3.
No surprise then that the overall result is 0. In the second instance, the inner
sum stops at a rounding value of 4 + 2 = 6. Although the left-hand side of the
display is unaltered, the result is no longer 0.

\eval{$ \eval[S+=3]{\sum_{n=1}^\infty 1/n^3}[4*]
- \sum_{n=1}^\infty 1/n^3$}[5]

=⇒ 1.2020 −
∑∞

n=1 1/n3 = 0
whereas

\eval{$ \eval[S+=2]{\sum_{n=1}^\infty 1/n^3}[4*]
- \sum_{n=1}^\infty 1/n^3$}[5]

=⇒ 1.2020 −
∑∞

n=1 1/n3 = −0.00003.

5.5 Error messages
Errors in an inner command create a small change in error message display.

\eval{ 1 + \eval{ 1 + \eval{ k } } } =⇒
!!! Unknown token k in: formula (2). !!!

\eval{ x + \eval{ k }[k=\arcsin 2] }[x=1] =⇒
!!! l3fp error ‘Invalid operation’ in: variable = value list (1). !!!

An integer is added to the ‘where’ part of the error message. The integer
indicates the level of nesting where the error occurs.

If there is no nesting where the error occurs, the integer is suppressed, even
though there may be nesting elsewhere in the overall expression. This is in
the interests of straightforwardness when nesting is absent, which will be over-
whelmingly the most common situation.

\eval{ k + \eval{ x }[x=1] }[k=\arcsin 2] =⇒
!!! l3fp error ‘Invalid operation’ in: variable = value list. !!!

5.6 Debugging
It is worth looking at the debug display when \eval commands are nested. For
the outer \eval command:
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\eval[dbg=1]{$ \sin \eval*{\sin x}[x=\pi/6]\pi + 1 $} =⇒

vv-list:
formula: \sin \eval *{\sin x}[x=\pi /6]\pi + 1

stored:
fp-form: sin((0.4999999999999999)(pi))+1

result: 2

There is no vv-list for the outer command whence the two empty slots in the
display but when the inner \eval is in the vv-list, they are filled:

\eval[dbg=1]{$ \sin k\pi + 1 $}[k=\eval*{\sin x}[x=\pi/6]] =⇒

vv-list: k=\eval *{\sin x}[x=\pi /6]
formula: \sin k\pi + 1

stored: k=0.4999999999999999
fp-form: sin((0.4999999999999999)(pi))+1

result: 2

For the inner \eval command debugging may still work but in an idiosyncratic
way. To clarify exactly what is going on I have added a \left( \right) pair
around the entire inner \eval command. Note that I have also used a negative
dbg value. With a positive value, the right parenthesis is pressed toward the
right margin of the page. The negative value limits the display to the text width
and gives the much neater result shown.

\eval[()=2]{$
\sin\left(

\eval*[dbg=-1]{ \sin x }[x=\pi/6]
\right)\pi + 1 $}

=⇒ sin


vv-list: x=\pi /6

formula: \sin x
stored: x=0.5235987755982988

fp-form: sin((0.5235987755982988))
result: 0.4999999999999999

 π + 1 = 2

The debug display from the inner \eval command has been inserted into
the formula of the outer \eval in the position occupied by the inner \eval. I
did not deliberately code for this, but have decided to leave it as is despite the
potential for some rather odd displays, since there can be no confusion about
which \eval command is being ‘debugged’. In this last example, in order to
both use \left(...\right) and have the calculation give the previous result I
have employed the setting ()=2 in the outer \eval; see §3.4.2.3.
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Chapter 6

Using numerica with LYX

The document processor LYX has a facility that enables snippets from a docu-
ment to be compiled separately and the results presented to the user without
having to compile the entire document. The present document was written in
LYX. The demonstration calculations were evaluated using this instant preview
facility.

To use numerica in LYX go to Document ▷ Settings ▷ LaTeX Preamble and
enter

\usepackage{numerica}

then click OK. You may wish to follow the above line in the preamble with
\nmcReuse{}:

\usepackage[lyx]{numerica}
\nmcReuse{}

In that case, type the extra line and then click OK. The additional line ensures
all saved values are available in your document from the outset.

6.1 Instant preview
The instant preview facility of LYX performs mini-LATEX runs on selected parts
of a document (for instance, the mathematical parts) and displays the results in
LYX while the user continues to work on the surrounding document. numerica
uses these mini-LATEX runs to do its evaluations and display their results. That
means you get feedback on your calculations almost immediately.

To use this facility first ensure that instant preview is turned on. This means
selecting Tools ▷ Preferences ▷ Look & Feel ▷ Display, ensuring that the Display
graphics checkbox is checked, and against Instant preview selecting On, then
clicking OK.
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6.1.1 Document location
It also matters where your document is located. You may have your own local
or personal texmf tree (see §3.3.1.1). If your document is located there, perhaps
in the doc folder, then not all features of preview will work as expected. Pre-
sumably this is because both LYX and your LATEX distribution (e.g. TEXLive or
MiKTEX) are interacting with the location and interfere. Move your document
to another location which your LATEX distribution has no interest in, and open
it in LYX there.

6.1.2 Global vs local previewing
Compilation of previews occurs in two distinct modes.

Global preview generation: When a document is opened (and preview is
on), all previews in the document are formed in sequence in the one LATEX
run. This is the global mode. The mini-LATEX run may well be substantial.
It compiles a .tex file that begins with the document’s preamble with some
additions then comes \begin{document}. That is followed by a sequence of
preview environments,

\begin{preview}
<stuff>
\end{preview}

one for each preview in the document. Finally there is an \end{document} state-
ment. The critical point is that all previews are between the same \begin{document},
\end{document} statements, and so earlier previews in the sequence can com-
municate with later ones.

Local preview generation: The other mode in which preview operates is
local. Suppose you have your document open and want to add to it, for instance
with a simple evaluation, \eval{x+y}[x=1,y=2] in an ERT inset in a preview
inset. The resulting mini-LATEX run is of the form

<preamble>
\begin{document}
\begin{preview}
\eval{x+y}[x=1,y=2]
\end{preview}
\end{document}

The preamble is as before but there is only one preview between the \begin{document},
\end{document} statements. That preview is isolated from all other, previous
previews and will be isolated from all other, later previews.

This has implications for the supplementary commands of the previous chap-
ter and means that if you want to transfer information (a macro, a constant,
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a result) from one preview to another, you need to do it through the preamble
or by means of an external file or, in some cases, by forcing a global preview
run in which all previews are recompiled between the same \begin{document},
\end{document} statements.

6.1.2.1 Forcing a global preview run

Closing then opening a document is one way to force a global preview compi-
lation. Another is to change the zoom level. This causes LYX to recompile all
previews at the new zoom level. But you may not want to work at the new zoom
level. Going back to the old zoom level will force a second recompilation of all
previews. For a large document two recompilations is too heavy a burden. The
secret is to combine a zoom in and a zoom out into one command and attach it
to a shortcut.

If you go to Tools ▷ Preferences ▷ Editing ▷ Shortcuts, click on the New
button and enter

command-sequence buffer-zoom-in; buffer-zoom-out

then assign a shortcut to it (Alt+Z for zoom?) you will gain a simple means of
forcing a global recompilation of previews.

6.2 Mathed
(Mathed = the LYX mathematics editor.) If you have instant preview on then
one way to use numerica in LYX is to enter an \eval command in mathed.
Clicking the cursor outside the editor with the mouse or moving it outside with
the arrow keys will then trigger formation of a preview of the editor’s contents
– a snippet of what will be shown in the pdf. This will be displayed in mathed’s
place after a generally short ‘pause for thought’ as the mini-LATEX run progresses
behind the scenes.

The original expression can be recovered by clicking on the preview. The
content of mathed is immediately displayed and can be edited.

6.2.1 LATEX braces { }
LYX does not support numerica’s \eval command ‘out of the box’ as it does,
say, \frac or \sqrt. To use the \eval command in mathed you will need
to supply the braces used to delimit its mandatory argument. (For \frac and
\sqrt by contrast, LYX supplies these automatically in the form of blue-outlined
boxes.) Unfortunately the { key1 does not insert a left brace into the document
but rather an escaped left brace \{ as you can see by looking at View ▷ Code
Preview Pane. Escaped braces like this are used for grouping terms in mathe-
matics; they are not the delimiters of a LATEX argument.

1Shift+[ on my keyboard.
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The brace delimiters for LATEX arguments are entered in mathed by typing
a backslash \ then a left brace { – two separate key presses rather than a
single combined press. This enters a balanced pair of (unescaped) braces with
the cursor sitting between them waiting for input. Alternatively, if you have
already written an expression that you want to place between braces, select it,
then type \ then {.

6.3 Preview insets
There are problems with using mathed for calculations.

• Expressions entered in mathed are necessarily of the form $ \eval... $
or more generally delimiter \eval... delimiter. But you may wish
to wrap the \eval command around the math delimiters to produce a
formula=result form of display. In mathed the only way to effect such
a display is to write the formula= part yourself – which may involve no
more than copy and paste but is still additional mouse work/key pressing.

• Mathed does not accept carriage returns. If you want to format a com-
plicated expression for readability by breaking it into separate lines, you
can’t. The expression is jammed into the one line, along with the settings
option content and the vv-list, often extending well beyond the edge of
the screen.

For these reasons I have come to prefer not using mathed for calculations but
instead to use preview insets wrapped around TEX-code (ERT) insets. LYX uses
the shortcut Ctrl+L to insert an ERT inset. Since LYX now does no printing
itself, the shortcut Ctrl+P that was formerly used for printing is available for
other purposes. On my keyboard, the P key lies diagonally up and to the right
but adjacent to the L key. I suggest assigning Ctrl+P to inserting a preview
inset. Then typing Ctrl+P Ctrl+L – which means holding the Ctrl key down
and tapping two diagonally adjacent keys, P followed immediately by L – will
insert an ERT inset inside a preview inset with the cursor sitting inside the
ERT inset waiting for input. In the ERT inset you can enter carriage returns,
and so format complicated expressions. You can place the vv-list on a separate
line or onto consecutive lines. And when you have finished, clicking outside the
preview inset will trigger preview into doing its thing and present the result
‘before your eyes’.

To assign the suggested shortcut, go to Tools ▷ Preferences ▷ Editing ▷
Shortcuts. Under Cursor, Mouse and Editing Functions in the main window on
the right, scroll down until you come to preview-insert, select it, then click Modify.
Now press Ctrl+P. The shortcut will magically appear in the greyed, depressed
key. Click OK and then OK in the Preferences window to close it. (Most of
the examples in this document have been evaluated in this way, using Ctrl+P
Ctrl+L.)
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6.4 Errors
Instant preview will display error messages generated by numerica in LYX just
as it does the results of calculations. Clicking on the message will show the
underlying expression which can then be edited. However LATEX errors will not
produce a preview; formation of the preview will stall. To find precisely what
has gone wrong, you will need to look at the LATEX log, but not the log of the
overall document; rather the preview log.

6.4.1 Temporary directory of LYX
Unfortunately this is tucked away in a temporary directory and is not imme-
diately accessible in LYX (unlike the main LATEX log from Document ▷ LATEX
Log). When LYX is started, it sets up a temporary directory in which to per-
form various tasks. On Windows systems this will be located in C:\Users\<your
name>\AppData\Local\Temp and will have a name like lyx_tmpdir.XOsSGhBc1344.

One of the tasks LYX uses this temporary directory for is to create preview
images when a document is opened. If you look inside LYX’s temporary directory
when a document is first loaded, you will see a subdirectory created, with a
name like lyx_tmpbuf0. There may already be such directories there, in which
case the number on the end will be greater than 0 – it depends on whether
other documents are or have been open in the current instance of LYX. Inside
the appropriate lyx_tmpbufn folder will be the preview log with a name like
lyxpreviewZL1344.log. It will usually be accompanied by other files with
extensions like .dvi, .tex, and – depending on the number of previews in your
document – a number, perhaps a lot, of image files with the extension .png,
each one of which is a preview. For a document just loaded there will be only
the one preview log, but if you have added preview insets or math insets to your
document in the current editing session there will be a number of such logs and
you will need to determine the relevant one by the time stamp.

The log files are text files and can be opened in a text editor. The relevant
part of the log is towards the end (just before the final statistical summary)
where you will find a list of entries like Preview: Snippet 1 641947 163840
7864588. If there is an error, it will be noted here among these snippets and
will generally make clear what needs remedying.

6.4.2 CPU usage, LATEX processes
It is possible when a preview stalls that the LATEX process associated with
the preview will continue to run, using CPU cycles, slowing overall computer
performance, and perhaps resulting in extra fan use giving a different sound
to the computer. In Windows 10, the Task Manager (Ctrl+Shift+esc) under
the Details tab shows the current executables running. The CPU column will
show which processes are preoccupying the CPU. Check whether one or more
of these processes looks LATEX-related (e.g. latex.exe or pdflatex.exe, or
miktex-pdftex.exe if using MiKTEX). Click the Name column to sort the
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processes by name and look for the relevant name in the list, select it, and end
the process (click the End Task button).

I am not familiar with the corresponding situation on Linux or Mac.

6.5 Hyperref support vs speed
If you want the pdf produced from your document to support hyperref links
and show an outline window in your pdf viewer (generally placed on the left
in the viewer) then you need to ensure the checkbox at Document Settings ▷
PDF Properties ▷ Use Hyperref Support is indeed checked. But you don’t need
to do this until the final compilation of the document. The advantage of leaving
this until the last is that in a large document with many previews the time
for preview generation is essentially halved. If hyperref support is enabled,
preview generation not only creates all the individual image files that are the
previews (files of extension .png) but also requires the compilation of a single
pdf document showing all the previews in sequence. (Like the previews, the pdf
document ‘hides’ in the termporary directory where LYX does its work.) In other
words, two images are created for each preview, the .png image which is the
one LYX displays, and another image buried inside the pdf of all images. That
second step does not occur if hyperref support is disabled. In a small document,
this is not going to matter; in a large document it becomes significant. It is well
worth temporarily turning off hyperref support and then, when the time for
final compilation comes, turning it back on.

6.6 Supplementary commands in LYX
There are some difficulties using the supplementary commands successfully with
instant preview.

6.6.1 Reuse of earlier previews
One is that whenever LYX has generated a preview image for a particular LATEX
expression, it will use that same image whenever it meets that same LATEX ex-
pression later. That means that a statement like \macros[view]{} and the
same statement later will display the same image, even though there may have
been macros defined or freed in between. The same goes for all the other supple-
mentary functions, including, for example, \info{sum}. A second instance of
\info{sum} will display the image generated by the first instance even though
further infinite sums may have been evaluated between the \info statements.

The remedy is to make some small but insignificant difference to the LATEX
expression in the second instance – generally a change in white space will do. For
example: first time \macros[view]{}, second time \macros[view]{ } where a
space has been inserted between the braces; or: first time \info{sum}, second
time \info{ sum} where a space has been inserted before sum. This will ensure
LYX doesn’t fall back on the previously generated image.
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6.6.2 ‘Stalled’ previews
It is possible to put content into an ERT inset inside a preview inset (Ctrl+P
Ctrl+L) and for nothing to happen. The preview has apparently stalled. Cer-
tainly this can be the case if there is an error in the input (e.g. a miss-
ing brace) but it also occurs if there is no output to display. For instance
\constants{ c=300000000 } does not produce any visual output. There is
nothing for the preview to display and so the preview inset sits there, appar-
ently stalled. This is a security measure for previews in LYX to provide at least
some guard against malicious code being run in the preview. If the preview
resolved, it would disappear completely from view in the LYX window.

If you find the visual appearance of such apparently stalled previews dis-
tracting, the addition of some displayable content to the preview will result in
it resolving to that content; the content could be as small as a full stop.

6.6.3 Using \nmcMacros

As noted earlier, previews are mini-LATEX runs, either local or global. Each local
preview is of the form<preamble>

\begin{document}
\begin{preview}
<stuff>
\end{preview}
\end{document}

Whatever goes into or comes out of the preview is isolated from any other local
preview, unless it is through the preamble or an external file. Sometimes a global
preview run can overcome this problem for then all the previews lie between the
same \begin{document}, end{document} statements. However, this does not
help with macro definitions. \def, \newcommand, \NewDocumentCommand all pro-
vide local definitions which remain trapped within their own \begin{preview},
\end{preview}) statements. Another preview, say containing an \eval com-
mand, between a different pair of \begin{preview}, \end{preview}) state-
ments, will not know about the macro definition.

There are (at least) three ways out:

1. Confine everything to the same preview inset: the definition of a macro,
the \macros statement, and the use of the macro in an \eval command.

2. Confine macro definitions to the preamble (Document ▷ Settings ▷ LATEX
Preamble).

3. Within previews use \gdef (or \global\def) exclusively for making your
macro definitions; this makes the macro available to all later previews.
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6.6.4 Using \nmcConstants

Because \nmcConstants doesn’t use \def or \newcommand or \NewDocumentCommand
it is not subject to the same localisation problem as \nmcMacros, but the reach
of a \constants command will still be confined to its own preview unless a
global preview run is forced; see above §6.1.2.

6.6.5 Using \nmcReuse

As noted earlier, LYX creates its previews in a temporary directory, not the
document directory. If you want to save values from your current document –
say, mydoc.lyx – to mydoc.nmc then you do so as described earlier (§4.4), but
the file mydoc.nmc containing the saved results will be located in the temporary
directory. When LYX is closed the file will be deleted along with all the other
contents of that directory.

Fortunately LYX has a copying mechanism for getting files out of the tempo-
rary directory and into the document directory. When a document is exported
– say to pdf – it is possible to specify a copier to automatically copy back to the
document directory or subdirectory various files in the temporary directory. We
want the .nmc file containing the saved values to be copied back. Go to Tools
▷ Preferences ▷ File Handling ▷ File Formats and find PDF (pdflatex) (assuming
export to pdf by this route) in the list of formats. In the Copier slot of the
dialogue insert the following line of code:

python -tt $$s/scripts/ext_copy.py -e nmc,pdf -d $$i $$o

ext_copy.py is a python script that is supplied with LYX. The -e nmc,pdf -d
part of the line tells ext_copy.py that on export to pdf by the pdflatex route
to copy any files with the extensions .nmc or .pdf from the temporary directory
where LYX does its work back to the document directory – the -d option (which
became available with LYX 2.3.0).

But if you have a complex document, it may take too much time to want to
export to pdf before closing LYX, particularly if there are a lot of evaluations
in the document. Much faster is to export to plain text, not because you want
a plain text version of your document but because it too can be used to trigger
the copier mechanism. Go to Tools ▷ Preferences ▷ File Handling ▷ File Formats
and find Plain text in the list of formats. In the Copier slot enter

python -tt $$s/scripts/ext_copy.py -e nmc -d $$i $$o

The only difference from the previous copier command is the absence of pdf.2
This will copy mydoc.nmc with its saved values from the temporary directory
back to the document directory. To effect the export, go to File ▷ Export and
find Plain text in the list of formats and click on it.

2I’m assuming that you don’t actually want the plain text version of the file copied back.
If you do, then change -e nmc to -e nmc,txt.
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A shortcut would be nice. For that go to Tools ▷ Preferences ▷ Editing ▷
Shortcuts, click on New, enter buffer-export text in the Function: slot, click
on the blank key against Shortcut: and type your shortcut. You may have to
try a number before you find one that hasn’t already been assigned. (I’m using
Ctrl+; for no particular reason beyond the fact that it fits under the fingers
easily and saving values to the document directory has a punctuation-like feel
to it, a pause in the process of writing.) It is now an easy matter to press the
shortcut at the end of a LYX session to copy all the values saved in mydoc.nmc
back to a file of the same name in the document directory. And it is brisk, not
least because plain text export ignores ERT insets (and hence preview insets
wrapped around ERT insets), nor does it evaluate \eval commands in math
insets.

6.6.5.1 A final tweak?

But one still needs to remember to press the shortcut. The thought arises:
can closing the current document trigger the copying process? LYX provides
a means of linking two commands and assigning a keyboard shortcut to them
with its command-sequence LYX function. I suggest assigning a shortcut to

command-sequence buffer-export text; view-close

Indeed, why not reassign the current shortcut for view-close, which is Ctrl+W
on my system, to this command sequence? (I use the cua key bindings – check
the Bind file: slot in Tools ▷ Preferences ▷ Editing ▷ Shortcuts.)

Please note, however, that this will work as intended only from LYX 2.4.0.3
For LYX 2.3 and earlier, the command sequence will generally fail because
of ‘asynchronous’ processing – buffer-export and view-close use different
threads and the latter may well start before the former is complete. From LYX
2.4.0 this defect has been fixed. You press your shortcut, the export to plain
text occurs and the .nmc file is copied back to the document directory, then the
current view is closed.

Note that in the other direction, the .nmc file in your document directory is
automatically copied to the temporary directory when needed. Nothing needs
to be done by you, the user.

6.6.5.2 Use of LYX notes

The central fact about a LYX note is that it does not contribute to the pdf. But
instant preview still works there. This suggests a possibility: that a calculation
be performed within a LYX note and the result saved using \nmcReuse within
the same note. The saved value is now available from file for use elsewhere in
the document. In this way, some selected content from a LyX note can find its
way into the pdf when the document is compiled.

3Due for release in 2021.
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Chapter 7

Reference summary

7.1 Commands defined in numerica

1. \nmcEvaluate, \eval

2. \q, \Q (‘cleave’ commands)

3. \nmcInfo, \info

4. \nmcMacros, \macros

5. \nmcConstants, \constants

6. \nmcReuse, \reuse

Provided they have not already been defined when numerica is loaded, the fol-
lowing commands are defined in numerica using \DeclareMathOperator from
amsmath :

1. \arccsc, \arcsec, \arccot

2. \csch, \sech

3. \asinh, \acosh, \atanh, \acsch, \asech, \acoth

4. \sgn, \lb

Provided they have not already been defined, the following commands are de-
fined in numerica using \DeclarePairedDelimiter from mathtools:

\abs, \ceil, \floor

The following commands have been redefined in numerica to give more spacing
around the underlying \wedge and \vee symbols:

\land, \lor

116



7.2 ‘Digestible’ content
numerica knows how to deal with the following content, meaning that any of
these elements occurring within an \eval command should not of itself cause a
numerica error. Not all formatting commands affect display of the output.

1. variable names (sequences of tokens given values in the variable = value
list)

2. digits, decimal point

(a) 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, .

3. constants

(a) e, \pi, \gamma, \phi, \deg, \infty

4. arithmetic operators

(a) +, -, *, /, ^, \times, \cdot, \div

5. logical operators

(a) \wedge, \land, \vee, \lor, \neg, \lnot

6. comparisons

(a) =, <, >, \ne, \neq, \le, \leq, \ge, \geq

(b) (if amssymb loaded) \nless, \ngtr, \geqq, \geqslant, \leqq,
\leqslant, \ngeq, \ngeqq, \ngeqslant, \nleq, \nleqq, \nleqslant

7. brackets, bracket-like elements, modifiers

(a) ( ), [ ], \{ \}

(b) \lparen \rparen (from mathtools), \lbrack \rbrack, \lbrace
\rbrace

(c) \lvert \rvert, \lfloor \rfloor, \lceil \rceil

(d) | | (no nesting, deprecated)
(e) \left \right, \bigl \bigr, \Bigl \Bigr, \biggl \biggr, \Biggl

\Biggr

(f) . / | (used with a modifier)
(g) \abs[]{}, \abs*{}, \floor[]{}, \floor*{}, \ceil[]{}, \ceil*{}

8. unary functions (in the mathematical sense)

(a) \sin, \cos, \tan, \csc, \sec, \cot

(b) \arcsin, \arccos, \arctan, arccsc, \arcsec, \arccot

(c) \sin^{-1}, \cos^{-1}, \tan^{-1}, \csc^{-1}, \sec^{-1}, \cot^{-1}
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(d) \sinh, \cosh, \tanh, \csch, \sech, \coth
(e) \asinh, \acosh, \atanh, \csch, \sech, \acoth
(f) \sinh^{-1}, \cosh^{-1}, \tanh^{-1}, \csch^{-1}, \sech^{-1},

\acoth^{-1}
(g) \exp, \lb, \lg, \ln, \log, \log_{}, \sgn, \surd
(h) \sqrt{}, \abs[]{}, \abs*{}, \floor[]{}, \floor*{}, \ceil[]{},

\ceil*{}
(i) !, !! (prepended argument)

9. binary functions

(a) \tfrac{}{}, \frac{}{}, \dfrac{}{}
(b) \tbinom{}{}, \binom{}{}, \dbinom{}{}
(c) \sqrt[]{}

10. n-ary functions

(a) \min, \max, \gcd

11. sum, prod

(a) \sum_{}^, \prod_{}^

12. formatting commands

(a) , (comma, in n-ary functions)
(b) {}, \\, &, \to
(c) \begin{}, \end{}, $, \[, \]
(d) \dots, \ldots, \cdots
(e) \ , \,, \;, \:, \!, \>
(f) \thinspace, \medspace, \thickspace,
(g) \negthinspace, \negmedspace, \negthickspace,
(h) \hspace*{}, \mspace{},
(i) \quad, \qquad , \hfill, \hfil
(j) \phantom{}, \vphantom{}, \hphantom{}
(k) \xmathstrut[]{} , \splitfrac{}{}, \splitdfrac{}{} (from mathtools),

\mathstrut
(l) \displaystyle, \textstyle, \scriptstyle, \scriptscriptstyle

(m) \label{}, \ensuremath{}, \text{}, \mbox{}, \smash{}
(n) \color[]{}, \textcolor[]{}{}

13. font commands

(a) \mathrm{}, \mathit{}, \mathcal{}, \mathtt{}, \mathbf{}, \mathbb{},
\mathsf{}, \mathfrak{}, \mathscr{}

(b) \mathnormal{}, \boldsymbol{}
(c) \textrm, \textsf, \texttt
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7.3 Settings
7.3.1 Available \nmcEvaluate settings

key type meaning default

dbg int debug ‘magic’ integer 0
view equivalent to dbg=1

^ char exponent mark for sci.
notation input e

xx int (0/1) multi-token variable switch 1
() int (0/1/2) trig. function arg. parsing 0

o int (0/1) degree switch for trig.
funcions 1

log num base of logarithms for \log 10
vv@ int (0/1) vv-list calculation mode 0
vvmode int (0/1) equivalent to vv@ 0

vvd token(s) vv-list display-style spec. {,}\mskip 12mu plus 6mu
minus 9mu(vv)

vvi token(s) vv-list text-style spec. {,}\mskip 36mu minus
24mu(vv)

* switch to suppress equation
numbering (if \\ in vvd)

p char(s) punctuation (esp. in
display-style) ,

S+ int extra rounding for stopping
criterion, sums 2

S? int ≥ 0 query stopping with these
final terms, sums 0

P+ int extra rounding for stopping
criterion, products 2

P? int ≥ 0 query stopping with these
final terms, products 0

reuse int form of result saved with
\nmcReuse

0

7.3.2 Available settings for supplementary commands
All settings for \nmcEvaluate, the view setting in particular (although most
will be irrelevant), plus for

• \nmcMacros

– free ‘deregister’ a macro from numerica

• \nmcConstants
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– add add the new list of constants to the current one

• \nmcReuse

– delete remove the listed control sequences from the .nmc file
– renew change the value of a control sequence in the .nmc file

7.3.3 Available configuration file settings

key default
rounding 6
pad 0
output-sci-notation 0
output-exponent-char e
input-sci-notation 0
input-exponent-char e
multitoken-variables 1
use-degrees 0
logarithm-base 10
intify-rounding 14
vv-display {,}\mskip 36mu minus 24mu(vv)
vv-inline {,}\mskip 12mu 6mu minus 9mu(vv)
sum-extra-rounding 2
sum-query-terms 0
prod-extra-rounding 2
prod-query-terms 0
eval-reuse 0
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