
nucleardata — provides nuclide information∗

Bill Nettles†

Released 2016/04/01

The nucleardata package provides a method for quickly accessing information
about atomic nuclides (isotopes of elements) by referring to the chemical symbol
and mass number (A) or to the atomic number (Z) and mass number (A). This
information can be inserted and typeset without the user having to search an
outside source. The information available, via macro commands, in the current
version includes chemical symbol or name given Z, Z given the chemical sym-
bol or name, atomic mass, nuclear mass, Q-values for radioactive decay, half-life
of ground states, binding energy, mass excess, and list of known isotopes of an
element.

There is a macro command for generating a random set of nuclides, accessible
as elements of lists of Z and corresponding (valid) A. The elements of the list can be
used as arguments for Z and A arguments of other nucleardata macros. Another
macro will randomly select an valid A for a user-specified Z.

Source of Data
The data is contained in two CSV format files: massdata.csv and elementlist.csv.
These files must be installed in the same directory as the nucleardata.sty file.
They are read during the LATEX compile process and lookups are done by Python
code embedded into the .sty file. Initially, the Python code loads all the data
from the CSV files into Python arrays, nucleardata and elementdata.

The massdata.csv file was created by the author (Nettles) from ENSDF data
files and the file mass.mas03round from “The Ame2003 atomic mass evaluation
(II)” by G.Audi, A.H.Wapstra and C.Thibault, Nuclear Physics A729 p. 337-676,
December 22, 2003. The elementlist.csv file was created by the author from
public sources.

Using PythonTEX
Because Python is the basis of the lookup engine, the package pythontex is au-
tomatically loaded. The user must follow a three-step compiling sequence to get
a semifinal/final document. For example, if the user’s file is named carbon.tex,
the sequence will be
∗This file describes version v1.01c, last revised 2016/04/01.
†E-mail: bnettles@uu.edu

1



pdflatex carbon.tex
pythontex carbon.tex
pdflatex carbon.tex

If the user is familiar with PythonTEX this shouldn’t seem unusual.

A Python Class–Nucdata

Python functions are called by customized LATEX commands to extract the data
from the nucleardata and elementdata arrays, so the user has the capabil-
ity of using these functions to write custom Python routines within the default
PythonTEX environment. The functions belong to a class defined in this package
as Nucdata. The class is instantiated in the package Python code as nuc.

The functions will allow the user to use the data for more specific calculations
such as Q-values of reactions or decay chain behaviors. PythonTEX was designed
for tasks such as this. The user can utilize the functions as part of the nuc
instantiation or can implement their own instance. The data arrays are loaded
external to the class.

Neutron Notation
The neutron doesn’t have a chemical symbol, but in this package the symbol nn
can be used with a mass number, A, of 1. It can also be referenced with Z=0 and
A=1 as arguments.

Rounding Option
Some of the macros below have an optional argument that lets the user spec-
ify rounding of decimal places. The rounding is accomplished using the Python
round(〈float〉,〈places〉) function inside a PythonTEX \py() call. The 〈float〉 ar-
gument is the return value of the main function mentioned in each description.
Rounding is not a part of the definition of the main functions. As an example,
the LATEX command definition for nucamassu is defined as

\newcommand{\nucamassu}[3][6]{\py{round(getMass_u(’#2’,#3),#1)}}

This definition gives a default rounding of six decimal places.

Using Python variable names as arguments
If a command calls for an integer value for either Z or A, you can supply the name
of a Python variable which contains an integer value. This value could be set using
a PythonTeX call or one of the nucleardata commands that selects random Z or
A values (see nucrandom[]{} and nucAran{}).

\pyc{myz=6} Element Z=\py{myz} is called \nucname{myz}.

2



Macro Commands
Command form: \nucsymbol{〈namez〉}.\nucsymbol

The argument can be an unquoted string (the name of the element) or an
integer (atomic number, Z). Returns a string with the element symbol. Calls a
Python function getSymbol(’〈namez〉’).

Command form: \nucName{〈namez〉} or \nucname{〈namez〉}.\nucname
\nucName The argument can be an unquoted string (the symbol of the element) or an

integer (atomic number, Z). \nucName returns a string with the element name
capitalized. \nucname returns the name in lower case. Calls a Python function
getName(’〈namez〉’).

Command form: \nucz{〈namez〉}.\nucz
The argument must be an unquoted string (the symbol or the name of the ele-

ment). Returns the atomic number, Z. Calls a Python function getZ(’〈namez〉’).

Command form: \nuchalflife[〈unit〉]{〈namez〉}{〈A〉}.\nuchalflife
\nuchalfvalue
\nuchalfunit

The optional argument is an unquoted string specifying the time unit to use
for the return value. The chart below lists valid arguments. The first required
argument can be an unquoted string (the symbol) or an integer (Z). The second
required value must be an integer, the mass number, A. Returns a string with
the value and units of the halflife of the specific nuclide. Calls a Python function
getHalfLife(’〈namez〉’, 〈A〉, ’〈unit〉’).

There are two variations on this command:
\nuchalfvalue calls getHalfLifeValue(’〈namez〉’, 〈A〉, ’〈unit〉’) and re-

turns the unformatted numerical portion of the halflife and \nuchalfunit calls
getHalfLifeUnit(’〈namez〉’, 〈A〉, ’〈unit〉’) returns a string with the unit por-
tion. They take the same arguments as \nuchalflife. If there is no half life
listed, the call returns the None token.

argument unit symbol unit name
ev eV electron-volt
mev MeV mega-electron-volt
kev keV kilo-electron-volt
ps ps picosecond
ns ns nanosecond
us µs microsecond
ms ms millisecond
s s second

m or min min minute
h or hr h hour
d or day d day
y or yr yr year

My My megayear
Gy Gy gigayear

3



Command form: \nucspin{〈namez〉}{〈A〉}, etc.\nucspin
The first required argument can be an unquoted string (the symbol) or an

integer (Z). The second must be an integer, the mass number, A. Returns the
value of the spin quantum number and parity of the ground state of the
nuclide. If no value has been assigned, it returns “None.” Calls a Python function
getSpin(’〈namez〉’, 〈A〉).

Command form: \nucamassu[〈rnd〉]{〈namez〉}{〈A〉}, \nucamassmev[〈rnd〉]{〈namez〉}{〈A〉},\nucamassu
\nucamassmev
\nucamasskev

\nucamasskev[〈rnd〉]{〈namez〉}{〈A〉}.
The optional argument is the number of decimal places for rounding; the de-

fault is 6 (or 3 for keV). The first required argument can be an unquoted string
(the symbol) or an integer (Z). The second must be an integer, the mass number,
A. Returns the value of the atomic mass of the nuclide in atomic mass units (u),
MeV/c2 or keV/c2, respectively. Calls Python function getMass_u(’〈namez〉’,
〈A〉) or getMass_mev(. . .) or getMass_kev(. . .).

Command form: \nuclearmassu[〈rnd〉]{〈namez〉}{〈A〉}, etc.\nuclearmassu
\nuclearmassmev
\nuclearmasskev

The optional argument is the number of decimal places for rounding; the de-
fault is 6 (or 3 for keV). The first required argument can be a string (the symbol)
or an integer (Z). The second must be an integer, the mass number, A. Returns
the value of the nuclear mass of the nuclide in atomic mass units (u), MeV/c2 or
keV/c2, respectively. Calls Python function getNuclearMass_u(’〈namez〉’, 〈A〉),
etc.

Command form: \nucexcess[〈rnd〉]{〈namez〉}{〈A〉}.\nucexcess
The optional argument is the number of decimal places for rounding; the de-

fault is 3. The first required argument can be a string (the symbol) or an integer
(Z). The second must be an integer, the mass number, A. Returns the mass excess
(∆) in keV/c2. (Atomic mass = A×931502 + ∆, in keV). Calls Python function
getExcess(’〈namez〉’,〈A〉).

Command form: \nucbea[〈rnd〉]{〈namez〉}{〈A〉}\nucbea
The optional argument is the number of decimal places for rounding; the de-

fault is 3. The first required argument can be a string (the symbol) or an integer
(Z). The second must be an integer, the mass number, A. Returns the binding en-
ergy per nucleon in MeV. (Z*atomic mass(1H)+(A-Z)*mass neutron-atomic mass
of nuclide)/A. Calls Python function getBea(’〈namez〉’,〈A〉).

Command form: \nucisotopes{〈namez〉}\nucisotopes
The argument can be a string (the element symbol) or an integer (Z). The

macro returns a string list of all the isotopes of that element which have mass infor-
mation available in the database. Calls Python function getIsotopes(’〈namez〉’).

The Python function getIsotopes(’〈namez〉’) produces a Python list of in-
tegers for the mass numbers, A, found in the data associated with the element. A

4



user can access the individual A values using a direct call in a PythonTex command
like this:

The lightest isotope of \nucname{8} is \py{nuc.getIsotopes(’8’)[0]}
and the heaviest is \py{nuc.getIsotopes(’8’)[-1]}.

Notice that in the direct call, the class instance, nuc is specified, and the argument
is enclosed in single quotes. Quotes should NOT be used with the LATEX macros
in this package.

Command form: \nucQ-----[〈rnd〉]{〈namez〉}{〈A〉}\nucQalpha
\nucQbeta
\nucQposi

\nucQec

The optional argument is the number of decimal places for rounding; the de-
fault is 6. The first required argument can be an unquoted string (the element
symbol) or an integer (Z). Returns the Q-value of the chosen decay in MeV. Decay
type options are alpha, beta, posi (for positron), and ec for electron capture.
Call Python functions getQ-----(’〈namez〉’,〈A〉).

Command form: \nucis-----{〈namez〉}{〈A〉}.\nucisalpha
\nucisbeta
\nucisposi

\nucisec

The first argument can be an unquoted string (the element symbol) or an
integer (Z). Returns the string True or False depending on whether the Q-value
of a decay is positive or negative. Decay type options are the same as for the
\nucQalpha{----- macros. Calls Python functions getQ-----(’〈namez〉’,〈A〉)
and checks for positive value.

Command form: \nucreactionqu[〈rnd〉] {〈namez1 〉} {〈A1 〉} {〈namez2 〉}\nucreactionqu
\nucreactionqmev
\nucreactionqkev

{〈A2 〉} {〈namez3 〉} {〈A3 〉} {〈namez4 〉} {〈A4 〉}, etc.
The optional argument is the number of decimal places for rounding; the de-

fault is 6 (or 3 for keV). The first required argument can be a string (the symbol) or
an integer (Z). The second must be an integer, the mass number, A. The numbers
after 〈name〉 and 〈A〉 represent

1 – the target nucleus/particle

2 – the projectile nucleus/particle

3 – the ejected nucleus/particle

4 – the resultant nucleus/particle

Returns the Q-value of the reaction in atomic mass units (u), MeV/c2 or
keV/c2, respectively. Calls Python function getReaction_u(’〈namez1 〉’, 〈A1 〉,
’〈namez2 〉’, 〈A2 〉, ’〈namez3 〉’, 〈A3 〉, ’ 〈namez4 〉’, 〈A4 〉), etc.

Command form: \nucAran{〈namez〉}.\nucAran
This macro generates a random A value for the given element specified by the

required argument. The argument can be a string (the element symbol) or a num-
ber (Z). The generated A is stored in a Python variable, singleAran, accessible
via PythonTeX macros such as \py{singleAran}. This list element name can also

5



be used as the A argument for other nucleardata macros. Calls Python function
nuc.getRandomA(’〈namez〉’).

Command form: \nucrandom[〈repeater〉]{〈listsize〉}.\nucrandom
This macro generates a list of random Z values and a list with a valid random A

value for each chosen Z. The optional argument determines whether a Z value can
selected more than once (0=no repeat [default], 1=repeats allowed). The required
argument is an integer specifying the length of the lists. The generated list of Z
is stored in a Python list, zran, and the associated A for each Z is stored in a
Python list, aran. zran[k]→aran[k]. The values in each list are accessible via
PythonTeX macros such as \py{zran[0]}. The list element members can also be
used as Z or A arguments for other nucleardata macros.

Calls Python function nuc.makeNucRandom(〈listsize〉,〈repeater〉).

6


