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We consider a mesoscopic region coupled to two leads under the influence of external time-
dependent voltages. The time dependence is coupled to source and drain contacts, the gates con-
trolling the tunnel-barrier heights, or to the gates that de6ne the mesoscopic region. We derive,
with the Keldysh nonequilibrium-Green-function technique, a formal expression for the fully non-
linear, time-dependent current through the system. The analysis admits arbitrary interactions in
the mesoscopic region, but the leads are treated as noninteracting. For proportionate coupling to
the leads, the time-averaged current is simply the integral between the chemical potentials of the
time-averaged density of states, weighted by the coupling to the leads, in close analogy to the time-
independent result of Meir and Wingreen [Phys. Rev. Lett. BS, 2512 (1992)]. Analytical and
numerical results for the exactly solvable noninteracting resonant-tunneling system are presented.
Due to the coherence between the leads and the resonant site, the current does not follow the driving
signal adiabatically: a "ringing" current is found as a response to a voltage pulse, and a complex
time dependence results in the case of harmonic driving voltages. We also establish a connection
to recent linear-response calculations, and to earlier studies of electron-phonon scattering effects in
resonant tunneling.

I. INTRODUCTION

The hallmark of mesoscopic phenomena is the phase
coherence of the charge carriers, which is maintained
over a significant part of the transport process. The
interference efFects resulting &om this phase coherence
are refIected in a number of experimentally measurable
properties. For example, phase coherence is central
to the Aharonov-Bohm efI'ect, universal conductance
Quctuations, and weak localization, 2 and can be affected
by external controls such as temperature or magnetic
field. The study of stationary mesoscopic physics is now
a mature field, and in this work we focus on an alterna-
tive way of afFecting the phase coherence: external time-
dependent perturbations. The interplay of external time
dependence and phase coherence can be phenomenolog-
ically understood as follows. If the single-particle ener-
gies acquire a time dependence, then the wave functions
have an extra phase factor, g exp[—i f dt'e(t')]. For
a uniform system such an overall phase factor is of no
consequence. However, if the external time dependence
is difFerent in difFerent parts of the system, and the parti-
cles can move between these regions (without being "de-
phased" by inelastic collisions), the phase difference be-
comes important.
The interest in time-dependent mesoscopic phenom-

ena stems &om recent progress in several experimental
techniques. Time dependence is a central ingredient in
many difFerent experiments, of which we mention the fol-
lowing:
(i) Single electron pu-mps and turnstiles Here ti. me-

modified gate signals move electrons one by one through
a quantum dot, leading to a current which is proportional
to the frequency of the external signal. These structures
have considerable importance as current standards. The
Coulombic repulsion of the carriers in the central region
is crucial to the operational principle of these devices,
and underlines the fact that extra care must be paid to
interactions when considering time-dependent transport
in mesoscopic systems.
(ii) ac response and transients in resonant tunneling-

devices. Resonant-tunneling devices have a number of
applications as high-&equeney amplifiers or detectors.
For the device engineer a natural approach would be
to model these circuit elements with resistors, capaci-
tances, and inductors. The question then arises as to
what, if any, are the appropriate "quantum" capacitances
and inductances one should ascribe to these devices. An-
swering this question requires the use of time-dependent
quantum-transport theory.
(iii) Interaction upwith laser fields Ultrashort . laser

pulses allow the study of short-time dynamics of charge
carriers. Here again, coherence and time dependence
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combine with the necessity of treating interactions.
A rigorous discussion of transport in an interacting

mesoscopic system requires a formalism that is capable of
including explicitly the interactions. Obvious candidates
for such a theoretical tool are various techniques based
on Green functions. Since many problems of interest in-
volve systems far &om equilibrium, we cannot use linear-
response methods, such as those based on the Kubo for-
mula, but must use an approach capable of addressing the
full nonequilibrium situation. The nonequilibrum-Green-
function techniques, as developed about thirty years ago
by Kadano6' and Baym, and by Keldysh, have during
the recent years gained increasing attention in the anal-
ysis of transport phenomena in mesoscopic semiconduc-
tors systems. In particular, the Steady-state situation has
been addressed by a large number of papers. Axnong
the central results obtained in these papers is that under
certain conditions (to be discussed below) a Landauer-
type conductance formula can be derived. This is quite
appealing in view of the wide spread success of conduc-
tance formulas in the analysis of transport in mesoscopic
systems.
Considerably fewer studies have been reported where

an explicit time dependence is an essential feature.
We are aware of an early paper in surface physics, i4
but only in the recent past have groups working in
mesoscopic physics addressed this problem. 's 2O I The
work reported in this paper continues along these lines:
we give the full details and expand on our short
corrnnunication. ~~

Our main formal result from the nonequilibrium-
Green-function approach is a general expression for
the time-dependent current fiowing &om noninteracting
leads to an interacting region. As we will discuss in Sec.
II, the time dependence enters through the self-consistent
parameters defining the model. We show that under
certain restrictions, to be specified below, a Landauer-
like formula can be obtained for the time-averaged cur-
rent. To illustrate the utility of our approach we give
results for an exactly solvable noninteracting case, which
displays an interesting, and experimentally measurable,
nonadiabatic behavior. We also establish a link between
the present formulation and recently published results
for linear-response and electron-phonon interactions, ob-
tained by other techniques.
The paper is organized as follows. We examine in Sec.

II the range of experimental parameters in which we ex-
pect our theoretical formulation to be valid. In Sec. III
we brie8y review the physics behind the nonequilibrium-
Green-function technique of Keldysh, and Baym and
Kadano8', which is our main theoretical tool, and then
introduce the specific model Hamiltonians used in this
work. We derive the central formal results for the time-
dependent current in Sec. IV. We also derive, under spe-
cial restrictions, a Landauer-like formula for the average
current. In Sec. V, we apply the general formulas to an
explicitly solvable resonant-tunneling xnodel. Both ana-
lytical and nuxnerical results are presented. We also show
that the linear ac-response results of Fu and Dudley
are contained as a special case of the exact results of this
section. In Sec. VI, we illustrate the utility of our for-

mulation by presenting a much simplified derivation of
Wingreen et at. results on resonant tunneling in the
presence of electron-phonon interactions. Appendix A
summarizes some of the central technical properties of
the Keldysh technique: we state the definitions, give
the basic equations, and provide the analytic continu-
ation rules employed below. In Appendices B and C, we
present proofs for certain statements made in the main
text, and, finally, in Appendix D we describe some trans-
formations which facilitate numerical evaluation of the
time-dependent current.

II. APPLICABILITY TO EXPERIMENTS
A central question one must address is: under which

conditions are the nonequilibrium techniques, applied
successfully to the steady-state problem, transferrable to
time-dependent situations, such as the experiments men-
tioned above?
The time-dependent problem has to be formulated

carefully, particularly with respect to the leads. It is es-
sential to a Landauer type of approach, that the electrons
in the leads be noninteracting. In practice, however, the
electrons in the leads near the mesoscopic region con-
tribute to the self-consistent potential. We approach this
problem by dividing the transport physics in two steps:
(i) the self-consistent determination of charge pileup and
depletion in the contacts, the resulting barrier heights,
and single-particle energies in the interacting region, and
(ii) transport in a system defined by these self-consistent
parameters. Step (i) requires a capacitance calculation
for each specific geometry, and we do not address it in
this paper. Instead, we assume the results of (i) as time-
dependent input parameters and give a fuD treatment
of the transport through the mesoscopic region (ii). In
practice, the interactions in the leads are absorbed into
a tixne-dependent potential and &om then on the elec-
trons in the leads are treated as noninteracting. This
means that when relating our results to actual experi-
ments some care must be exercised. Specifically, we cal-
culate only the current Bowing into the mesoscopic re-
gion, while the total tixne-dependent current measured
in the contacts includes contributions from charge fiow-
ing in and out of accumulation and depletion regions in
the leads. In the time-averuged (dc) current, however,
these capacitive contributions vanish and the correspond-
ing time-averaged theoretical formulas, such as Eq. (27),
are directly relevant to experiment. It should be noted,
though, that these capacitive currents may inBuence the
effective time-dependent parameters in step (i) above.
Let us next estimate the &equency limits that restrict

the validity of our approach. Two criteria must be sat-
isfied. First, the driving &equency xnust be suKciently
slow that the applied bias is dropped entirely across the
tunneling structure. When a bias is applied to a sam-
ple, the electric field in the leads can only be screened
if the driving frequency is smaller than the plasma fre-
quency, which is tens of THz in typical doped semicon-
ductor samples. For signals slower than this, the bias
is established entirely across the tunneling structure by
accumulation and depletion of charge near the barriers.
The unscreened Coulomb interaction between net excess
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FIG. 1. Sketch of charge distribution in a three
dimensional resonant-tunneling device under dc bias
Vb;~, ——pL, —p~ with a time modulation of amplitude AI, /~
superposed on the leads. As argued in the text, only a tiny
fraction of charge carriers participates in setting up the volt-
age drop across the structure.

charge is quite strong, and hence the bias across a tun-
neling structure is caused by a relatively small excess of
charge in accumulation and depletion layers. The forma-
tion of these layers then causes a rigid shift [see Eq. (2)
below] of the bottom of the conduction band deeper in
the leads, which is the origin of the rigid shift of energy
levels in our treatment of a time-dependent bias.
The second &equency limit on our approach is that

the buildup of electrons required for the formation of the
accumulation and depletion layers must not significantly
disrupt the coherent transport of electrons incident from
the leads. One way to quantify this is to ask—what is
the probability that an electron incident from the leads
participates in the buildup of charge associated with a
time-dependent bias' This probability will be the ratio
of the net current density fiowing into the accumulation
region to the total incident flux of electrons. For a three-
dimensional double-barrier resonant-tunneling structure
(see Fig. 1) the ac charging the accumulation layer isI'„'= 2n'vCV™/A, where v is the driving &equency,
C is the capacitance, V™is the applied bias, and A
is the area. In comparison, the total incident Hux is
I;„,= 3/8envF Using th. e parameters appropriate for
a typical experiment (we use that of Brown et al.24), we
find that up to 10 THz the probability of an electron par-
ticipating in the charge buildup is only 1%%. Summariz-
ing, these estimates indicate that our approach should be
accurate up to &equencies of tens of 7Hz, which are large
by present experimental standards, and consequently the
analysis presented in what follows should be valid for
most experimental situations.

nection to tunneling physics. Readers interested in tech-
nical details should consult any of the many available
review articles, such as Refs. 25—27. The basic difI'erence
between construction of equilibrium and nonequilibrium
perturbation schemes is that in nonequilibrium one can-
not assume that the system returns to its ground state
(or a thermodynamic equilibrium state at finite tempera-
tures) as t —i +oo. Irreversible effects break the symme-
try between t = —oo and t = +oo, and this symmetry is
heavily exploited in the derivation of the equilibrium per-
turbation expansion. In nonequilibrium situations one
can circumvent this problem by allowing the system to
evolve &om —oo to the moment of interest (for definite-
ness, let us call this instant to), and then continue the
time evolvement &om t = to back to t = —oo.2s (When
dealing with quantities that depend on two time vari-
ables, such as Green functions, the time evolution must
be continued to the later time. ) The advantage of this
procedure is that all expectation values are defined with
respect to a well defined state, i.e., the state in which
the system was prepared in the remote past. The price
is that one must treat the two time branches on an equal
footing (See Fig. 2).
A typical object of interest would be a two time Green

function (see Appendix A); the two times can be located
on either of the two branches of the complex time path
(e.g. , r and w' in Fig. 2). One is thus led to consider
2 x 2 Green-function matrices, and the various terms in
the perturbation theory can be evaluated by matrix mul-
tiplication. Since the internal time integrations run over
the complex time path, a method of bookkeeping for the
time labels is required, and there are various ways of do-
ing this. In the present work we employ a version of the
Keldysh technique.
In the context of tunneling problems the time-

independent Keldysh formalism works as follows. In the
remote past the contacts (i.e., the left and right lead)
and the central region are decoupled, and each region
is in thermal equilibrium. The equilibrium distribution
functions for the three regions are characterized by their
respective chemical potentials; these do not have to coin-
cide nor are the differences between the chemical poten-
tials necessarily small. The couplings between the difI'er-
ent regions are then established and treated as perturba-
tions via the standard techniques of perturbation theory,
albeit on the two-branch time contour. It is important
to notice that the couplings do not have to be small, e.g. ,
with respect level spacings or kBT, and typically must be
treated to all orders.

III. THEORETICAL TOOLS AND THE MODEL
A. Baym-Kadanoff-Keldysh nonequilibrium

techniques

Here we wish to outline the physical background be-
hind the Keldysh formulation, and in particular its con-

FIG. 2. The complex-time contour on which nonequilib-
rium-Green-function theory is constructed. In the contour
sense, the time ~q is earlier than Tq even though its real-time
projection appears larger.
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The time-dependent case can be treated similarly.
Before the couplings between the various regions are
turned on, the single-particle energies acquire rigid time-
dependent shifts, which, in the case of the noninteracting
contacts, translate into extra phase factors for the prop-
agators (but not in changes in occupations). The per-
turbation theory with respect to the couplings has the
same diagrammatic structure as in the stationary case.
The calculations, of course, become more complicated
because of the broken time-translational invariance.

signal. This assumption implies that the total number
of electrons in the contacts varies with time. This be-
havior is inconsistent with what happens in real devices:
it is only the relatively small number of electrons in the
accumulation-depletion layers that is time dependent. In
addition to the unphysical charge pileup in the contacts,
the model of Chen and Ting leads to an instantaneous
loss of phase coherence in the contacts, and hence does
not display any of the interesting interference phenomena
predicted by our phase-conserving model.

B.Model Hamiltonian 2. Compliny beheeen leads and cental myion, Hz

We split the total Hamiltonian in three pieces: H =
H~+ Hz + H«, where H describes the contacts, Hz
is the tunneling coupling between contacts and the in-
teracting region, and H„„modelsthe interacting cen-
tral region, respectively. Below we discuss each of these
terms.

Contacts, H,

Guided by the typical experimental geometry in which
the leads rapidly broaden into metallic contacts, we view
electrons in the leads as noninteracting except for an
overall self-consistent potential. Physically, applying a
time-dependent bias between the source and drain con-
tacts corresponds to accumulating or depleting charge
to form a dipole around the central region. The re-
sulting electrostatic-potential difference means that the
single-particle energies become time dependent:
eg (t) = 2& + b, (t) [here a labels the channel in the
left (L) or right (B) lead]. The occupation of each state
kn, however, remains unchanged. The occupation, for
each contact, is determined by an equilibrium distribu-
tion function established in the distant past, before the
time-dependence or tunneling matrix elements are turned
on. Thus, the contact Hamiltonian is

Hc = ) eIen(t)cr, ~cr,n ~
f

k,a&L,R

and the exact time-dependent Green functions in the
leads for the uncoupled system are

t
= pi8(+t p t') exp i dt~eI, (tg)—

tl

One should note that our model for g difFers from the
choice made in the recent study of Chen and Ting. ~5 The
difFerence does not afFect calculations carried out to lin-
ear response in the ac drive, but is signi6cant in nonlinear
response. Speci6cally, Chen and Ting allow the electro-
chemical potential in the distribution function f to vary
with time: pI, —pR = e[V + U(t)], where U(t) is the ac

The coupling between the leads and the central (inter-
acting) region can be modified with time dependent gate
voltages, as is the case in single-electron pumps. The
precise functional form of the time dependence is deter-
mined by the detailed geometry and by the self-consistent
response of charge in the contacts to external driving.
%e assume that these parameters are known, and simply
write

Hz = ) [Vj, „(t)c&t d„+H.c.] .
k,aqL, R

Here (dt) and (d„)form a complete orthonormal set of
single-electron creation and annihilation operators in the
interacting region.

8. The cental-mgion Hamiltonian H

The form chosen for H„„in the central interacting re-
gion depends on geometry and on the physical behavior
being investigated. Our results relating the current to
local properties, such as densities of states and Green
functions, are valid generally. To make the results more
concrete, we will discuss two particular examples in de-
tail. In the 6rst, the central region is taken to consist of
noninteracting, but time-dependent levels,

(4)

Here d~ (d ) creates (destroys) an electron in state
m. The choice (4) represents a simple model for time-
dependent resonant tunneling. Below we shall present
general results for an arbitrary number of levels, and an-
alyze the case of a single level in detail. The latter is
interesting both as an exactly solvable example, and. for
predictions of coherence efFects in time-dependent exper-
iments.
The second example we will discuss is resonant tunnel-

ing with electron-phonon interaction,

H;,'„P"= mod d+ d d ) M~[at + a ~] .

In the above, the 6rst term represents a single site,
while the second term represents the interaction of an
electron on the site with phonons: at(a ) creates (de-
stroys) a phonon in mode q, and Mz is the interaction
matrix element. The full Hamiltonian of the system
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must also include the free-phonon contribution Hph,
hcuzataz. This example, while not exactly solvable,

is helpful to show how interactions in8uence the current.
Furthermore, we can directly compare to previous time-
independent results using (5) to demonstrate the power
of the present formalism.

Gee (tt', ) = ) fdt, (te' (te)

x [G"„(t,t, )g~ (t„t')
+G.' (t, t )g'. (t t')] (12)

IV. TIME-DEPENDENT CURRENT AND
KELDYSH GREEN FUNCTIONS

A. General expression for the current

where the Green functions g+ for the leads are defined
in (2) above. Combining (2), (10), and (12), yields

28
JL, (t) = ——Im ) V& „(t) dt,

k»a&L —OO

The current kom the left contact through the left bar-
rier to the central region can be calculated Rom the time
evolution of the occupation number operator of the left
contact:

» f» ~4& tt(m& )2Vre

x[G (t'„ti)fe,(ee )+Ge (tt, )]I . , (13)

Jl, (t) = —e(Ng) = ——([H, NI, ]),
where Nl, = p& &Lcf, cg and H =H, +HT +H„„.
Since 0, and H„„commutewith Nl. , one readily finds

The discrete sum over k in P& can be expressed in terms
of densities of states in the leads: J'dip (c). Then it is
useful to define

).p-()V-, ( t)V;, ( t)
k, exp L

Now define two Green functions

t
x exp i dt24 (e, t2)

C1

(14)

G~ „(t,t')=—i(c'„(t')d„(t)),
, (' ')= i(d (t )c (t)) .

Using G& „(t,t) = —G„&(t, t), and inserting the
time labels, the current can be expressed as

Jl, (t) =—Re ) Vs, (t)G„/, (t, )
2e

k, n&L
(10)

G e(ee') = ) f de,„G (e, ;e,)„
XVf ~ ~(ry)gg»»(T) t T )

Here G (+, 7q) is the contour-ordered Green function
for the central region, and the 7 variables are now defined
on the contour of Fi.g. 2. Note that the time dependence
of the tunneling matrix elements and single-particle en-
ergies has broken the time-translational invariance. The
analytic continuation rules (A3) of Appendix A can now
be applied, and we Gnd

One next needs an expression for G~& (t, t') For the.
present case, with noninteracting leads, a general rela-
tion for the contour-ordered Green function G„),(7, v')
can be derived rather easily (either with the equation-
of-motion technique, or by a direct expansion of the S
matrix; the details are given in Appendix B), and the
result is

where Vj, „=V „(ef,). In terms of this generalized
linewidth function (14), the general expression for the
current is

t
Je(t) = —— dt, —ImT»{e "(e e)re(e;tt, t)

2m

x[G (tt, ) + fe(e,)G (h)]t) . " (15)

Here the boldface notation indicates that the level-width
function F and the central-region Green functions G
are matrices in the central-region indeces m, n. An anal-
ogous formula applies for J~(t), the current fiowing into
the central region through the right barrier.
This is the central formal result of this work, and the

remainder of this paper is devoted to the analysis and
evaluation of Eq. (15). The current is expressed in terms
of local quantities: Green functions of the central region.
The first term in Eq. (15), which is proportional to the
lesser function G+, suggests an interpretation as the out-
tunneling rate [recalling Im G+ (t, t) = N(t)]. Likewise,
the second term, which is proportional to the occupation
in the leads and to the density of states in the central
region, can be associated to the in-tunneling rate. How-
ever, one should bear in mind that all Green functions in
Eq. (15) are to be calculated in the presence of tunnel-
ing. Thus, G+ will depend on the occupation in the leads.
Furthermore, in the presence of interactions G" will de-
pend on the central-region occupation. Consequently, the
current can be a nonlinear function of the occupation fac-
tors. This issue has recently been discussed also by other
authors.
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B. Time-independent case

1. @enemy expression

lE—[fL( ) —fR( )]2'
(2i)

In the time-independent limit the linewidth function
simplifies: r(e, ti, t) ~ r(e), and the ti integrals in Eq.
(15) can be performed:

dg —ImTr e "(' )F 6 G

The ratio is well defined because the F matrices are pro-
portional. The difference between the retarded and ad-
vanced Green functions is essentially the density of states.
Despite the apparent similarity of (21) to the Landauer
formula, it is important to bear in mind that in general
there is no immediate connection between the quantity

Tr F ~F ~ 7 ~ +F e G" ~ —G
and

dt —ImTr e ""'I' E L, EG" t —ty2'

—Tr F e L ~ G" ~ —G ~ . 17
2 2'

and the transmission coefficient. In particular, when in-
elastic scattering is present, we do not believe that such
a connection exists. In Sec. V, where we analyze a non-
interacting central region, a connection with the trans-
mission coefficient can be established. Further, in the
next section we shall see how an analogous result can be
derived for the average of the time-dependent current.

When these expressions are substituted to Eq. (15), the
current from the left (right) contact to the central region
becomes C. Average current

J(„)——" —'Tr r(")~ G2x

+fI(&))'))G ~') 0 )')))) .
In steady state, the current will be uniform, so that J =
JL, = —J~, and one can synUnetrize the current: J =
(JL, + JL,)/2 = (JL, —J~)/2. Using Eq. (18) leads to the
general expression for the dc current:

2h 2x

+[fL(e)r'(e) —f (e)r"(e)][G (~) —G (~)])
(ig)

This result was reported in Ref. 7, and applied to the
out-of-equilibrium Anderson impurity problem.

2. Pompon tionate compliny

If the left and right linewidth functions are propor-
tional to each other, i.e., F (e) = Ar (e), further sim-
plification can be achieved. %e observe that the current
can be written as J = xJL,—(1—x)J~, which gives, using
Eq. (18),

In analogy with the previous subsection, where we
found a compact expression for the current for the case
of proportionate coupling, the time-dependent case al-
lows further simplification, if assumptions are made on
the linewidth functions. In this case, we assume a gener-
alized proportionality condition

F (e, ti, t) = Ar (e, ti, t) . (22)

e = JR(t) + JL, (t),dN(t)
dt

which allows one to write for arbitrary z

JI,(t) = xJL, (t) + (1—z) e —J~(t)dN(t)
dt

Choosing now x = 1/(1+ A) leads to

One should note that in general this condition can be
satisfied only if b, (t) = 6 (t) = b, (t). However, in
the wide-band limit (WBL), to be considered in detail
below, the time variations of the energies in the leads do
not have to be equal.
%e next consider the occupation of the central region

N(t) = P (dt (t)d (t)) and apply the continuity equa
tion

(2O)

J = — —Tr F e Ax —1—x G
2m

+(»fr—(& —&)fR)(&'(&) —& )(&) ) . . (25)

The arbitrary parameter x is now fixed so that the first
term vanishes, i.e., 2: = 1/(1 + A), which results in

The time average of a time-dependent object E(t) is de-
fined by
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T/2
(y(t)) = lim — dtF(t) .T~oo T T/2

(26)

If Q(t) is a periodic function of time, it is sufficient to
average over the period. Upon time averaging, the 6rst
term in Eq. (25) vanishes, (dN/dt) -+ 0, because the oc-
cupation N(t) is finite for all T. The expression for the
time-averaged current further simpli6es if one can fac-
torize the energy and time dependence of the tunneling
coupling, Vj, (t) = u(t)V „(eq).We then obtain

of states times the difference of the two contact occu-
pation factors. It is valid for arbitrary interactions in
the central region, but it was derived with the somewhat
restrictive assumption of proportional couplings to the
leads.

V. NONINTERACTING RESONANT-LEVEL
MODEL

A. General formulation

(JL,(t)) = —— [fI—.(~) —fR(~)]

xlmTr R (u(t)&(& t)) (27)
F~(c)FR(~)
Fit(~) + 'FR

In the noninteracting case the Hamiltonian is H =
H, + HT + H„„,where H„„=P„e„dtd„.Follow-
ing standard analysis (an analogous calculation is also
carried out in Appendix B), one can derive the Dyson
equation for the retarded Green function,

where

A(E, t) = J dtl (tl)EEG (t, tl)

G"(t, t ) = g"(t, t)+ J dtl fdtlg (ttl)",
xZ (t„t,)G"(t„t'), (29)

t
x exp ie(t —ti) +i dt26(t2) (28)

Due to Eq. (22) we do not have to distinguish between
I,/R in the definition of A(e, t); below we shall encounter
situations where this distinction is necessary.
The expression (27) is of the Landauer type: it ex-

presses the current as an integral over a weighted density

where

Z"„„,(t„t,) = ) V„' „(t,)g"„.(t„t,)
kaqL, R
x Vg „(t2), (3O)

and g& is given by Eq. (2). From (A4) the Keldysh
equation for G is

G (t t ) = J dtl J dttG (t tl)Z (tl tt)G (tl t )

(31)

Provided that the Dyson equation for the retarded Green
function can be solved, Eq. (31) together with the current
expression Eq. (15) provides the complete solution to the
noninteracting resonant-level model. Below we examine
special cases where analytic progress can be made.

B. Time-independent case

In the time-independent case the time-translational in-
variance is restored, and it is advantageous to go over to
energy variables

C"(~) = [(g') '-Z"(&)1 '
G (e) = Cr (E)Z (E)Gr (E) . (32)

In general, the Dyson equation for the retarded Green
function requires matrix inversion. In the case of a single
level, the scalar equations can be readily solved. The
retarded (advanced) self-energy is

()= ) =A()p-F(), (33)
E —6'ga + lg 2

ka&L,R

where the real and imaginary parts contain "left" and
"right" contributions: A(e) = A (e) + A (e) and F(e) =
I' (e) + I' (e). The lesser self-energy is

~'(~) = ). IVs-I'~;. (e)
kaGL, R

g[F (E)fr, (6) + F (E)fR(t)]

where

G'(~) = ia(~)f(~),

Using the identities G"G = (G"—G )/(1/G —1/G") =
a(e)/F(e) (here a(e) = i[G"(e) —G (e)] is the spectral
functionj, one can write G+ in a "pseudoequilibrium"
form
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(&)fL(e) + F"(e)fz(e)
&( )= F( )

a(e)= F(e
[e —"—A(e)1'+ [F(e)/2]' (36)

With these expressions the evaluation of the current (19)
is straightforward

—a(e) F'(e) —F"(e) f(e)2A 2x
—&,(~)r'(~) —f (')r" ) )
e de I' (e)F (e)

&& [e —eo —A(e)]'+ [F(e)/2]'
x [f~(e) &~(e)—] . (37)

Note that this derivation made no assumptions about
proportionate coupling to the leads. The factor multi-
plying the difference of the Fermi functions is the elas-
tic transmission coefficient. It is important to under-
stand the difFerence between this result and the result
obtained in Sec. IIIB2 (despite the similarity of ap-
pearance): There Eq. (21) gives the current for a fully
interacting system, and the evaluation of the retarded
and advanced Green functions requires a consideration
of interactions (e.g. , electron-electron, electron-phonon,
and spin-flip) in addition to tunneling back and forth
to the contacts. Suppose now that the Green func-
tion for the interacting central region can be solved,
G (e) = [e—e() —A(e) +ip(e)/2], where A and p/2 are
the real and imaginary parts of the self-energy (including
interactions aud tunneling). Then the interacting result
for proportionate coupling (21) becomes

stants, P &L &F = F ~, and (iii) allowing a single
time dependence, DI,~It(t), for the energies in each lead.
Let us comment on the relevance of the WBL. This

approximation captures the main physics in a range of
applications, and has the great advantage of yielding
explicit analytic results. In particular, transport is of-
ten dominated by states close to the Fermi level, and
since F(e) and A(e) are generally slowly varying func-
tions of energy, the WBL for this case is an excellent
approximation. The WBL also allows asymmetric barri-
ers (FL, g F~). Consequently, it is possible to describe
resonant-tunneling systems under high bias by using a
suitable model for the bias dependence of the level widths
and/or shifts. Finally, while the simplest WBL leads
to an unphysical monotonic I Vcu-rve for a resonant-
tunneling diode (because the model lacks band edges),
it is relatively simple to generalize the WBL so that it
does yield negative difFerential resistance, see Sec. IV C 4
below.
The retarded self-energy in Eq. (29) thus becomes

Z"(tg, tz) = ) u'(tg)u (ts)e ' 's
n&L,R

x —e-"f"-"18(t,—t,)[—iF ]2'
F'(t, ) + F"(t, )]S(t, —t,) .2

(Here we have introduced the notation F~~+(tq)
I' )' (tq, tq) = I' )' ~u~~~(tq)~ .) With this self energy, -
the retarded (advanced) Green function becomes

e de I' (e)F (e)—[fr( ) —&n( )]F,(,) F„()
~(e)

[e -"—~(e))'+ [~(e)/2]' (3g) With

+I'"(t,) (40)

This result coincides with the noninteracting current
expression (37) if A(e) ~ A(e) and p(e) -+ F(e)
F (e) + I' (e). In a phenomenological model, where the
total level width is expressed as a sum of elastic and in-
elastic widths, p = p, + p;, one recovers the results of
Jonson and Grincwajg, and Weil and Vinter.

C. Wide-band limit

1. Baeic fonraulae

For simplicity, we continue to consider only a single
level in the central region. As in the previous section,
we assume that one can factorize the momentum and
time dependence of the t»~~cling coupling, but allow
for difFerent time dependence for each barrier: Vj, (t):—
ul y~(t)V (eg, ). Referring to Eq. (33), the wide-band
limit consists of (i) neglecting the level shift A(e), (ii) as-
suming that the linewidths are energy independent con-

g" (t, t') = pi&(+t pt')
t

x exp i dtqeo(tz)—
tl

(41)

Jr, (t) = ——I (t)N(t) + fI,(e)—e dE'

7r

t
x dt, Fi(t„t)
xlm(e *'&" ' G"(t, tg)} (42)

For a compact notation we introduce

This solution can now be used to evaluate the lesser func-
tion Eq. (31),and further in Eq. (15), to obtain the time-
dependent current. In the WBL the e and tq integrals in
the term involving G+ are readily evaluated, and we write
the current as [using Im(G+(t, t)}= N(t), where N(t) is
the occupation of the resonant level]
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Aliii(e, t) = fdtiuliii(ti)G'(t, ti)
we treat the case when the contact d t
vary as

an si e energy levels

tI
x exP iE(t —t ) —i dt2b L/R(t )

t
AL/R P (t) = AL/R P cos((dt) . (49)

( )

Obviousl iny,
' the time-independent case A~a~ is

Fourier tran f
e', ~', is just the

In terms of A~a tj& the(, ) he occupation N(t) [using E . (31)
for G+] is given by

q.

m(t) = ~ rL/R
2 fL/R(&) IAL/R(e, t) I' .

It is easy to generalize the treatment to situ to si ua ions w ere
e mo u ation frequencies and/or h d'p ases are i erent in
i erent parts of the device. Assuming that the barrier
heights do not depend on time u = 1
tutin 49 inuting (49) in the expression (43) for A(e, t), one finds

AL/R(E t) = exp —'L
Ap —6

sin((ut)

We write the current as a sum fm o currents flowing out
&om the central region into the left ~

' h j
a so ig. 9~j, and currents flowing into the central re-

x Ji, l
J /&p —&L/Rl

)
~t kept

e —ep —kur + iI'/2 ' (50)

(45)

(46)

JL/R(t) = ——~""(t)&(t)h

J» (t& = ——FL iRL/R( ) = —~ «/R(t) fL/R(&)—
xlm(AL/R (e, t) ) .

We recall from Eqs. (44)—(45) that the current at a given
time is etermined by integrating lA(e, t) l2 and ImA(e t'I

It is readily verified that these expressions coincide with

constants.
mp oying the same approach as in Sec. IV C, and pro-

vi e t at uL(t) = uR(t) = u(t), we find that the time-
averaged current in the WBL is given bis given y

0
= (a)

-iNP '

WK 1 II1i

%lh)I
I

%N)~~L
Nia) all

'&"'A

e)

')I ). 'i

ELNL

:. SNL)i
ui%,.s 4& LAN%

2e I'LI' de—Im(fL(e)(u(t)AL(e, t))
-fR(e)(u(t)AR(e t))} (47)

Unlike the general case of Eq. (27), there is no restriction

wo ea s. quation (47) can, therefore, be used for the
case o a time-dependent bias where 6 (t) d b,
w' e erent. It is interesting to note that the func-
tion of ener argy appearing in the time-averaged current is
positive definite. In particular, as is shown in Appendix

= (b)0 =

LO

p .i)/I'I „~)III)ti "I '

LI)

i" a

(imfuL/R(t)AI /R(e, t) j) = —(IAL/R(~ t) I') (48)

One cone consequence of (48) is that if onl the I

ias.
en e average current cannot flow against th e

In the next two sections wewe consider specific examples
or t e time variation, which are relevant fn or expenmen-4

2. Neaponae to hedonic modulation

Harmonic time modulation is probably the most com-
monly encountered exam le f t d . ep e o ime uependence. Here

@IiIIIt' 'i, xg
g .

l~
all// & C)

FIG. 3. a Ae t aas a function of time for harmonic
modulation fo' n for a symmetric structure, I'I. = I'a = I'/2.
The unit for the time axis is I I' d ll a-, an a energies are mea-
sured in units of F, vrith the values pL, = 10

frequency is w = 21'/IL (h) The time dependence of ImA(e, t)
for the case shown in (a).
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over energy, an usd thus an examination of Fig. 3 elps
to understand to complicated time dependence discusse
below. {We show only AL„similar results hold for A~.)
Th h l parameters used to generate these plots aree p yslca p
given 1n e gure cath fi caption. The three-dimensiona p o
(top part of figure) is projected down on a plane to yie
a contour plot in order to help to visualize the time de-
pendence. As expected, the time variation is perio ic
with penoh d T = 2 i'(d. The time dependence is strik-
ingly complex. The most easily recognized features are
h ' ' the plot for lAlz; these are related to p o-E. 51ton sidebands occuring at e = ep 6 ku [see also q. ( )
below]. ss

ribedThe current is computed using the methods descri e
A d B and is shown in Fig. 4. We also dispayin ppen ix, an

th dr've voltage as a broken line. Bearing m min e
complex time dependence of lAl and ImA, which e-
termine the out and in currents, respectively, it is no
surprising a eth t th current displays a nonadiabatic time
d d The basic physical mechanism underlyingepen ence. e
the secondary maxima and minima in the current is e
lineup of a photon-assisted resonant-tunneling peak with
the contact chemical potentials. The rapid time varia-
tions are due to J'" (or, equivalently, due to ImA): the

t Jo"' is determined by the occupation
ich is theand hence varies only on a time scale I'/5, whic is e

time scale for charge density changes.
We next consider the time average of the current. For

the case of harmonic time dependence, we finds4

I 2 (&p &L,)RI
(ImA~)R(e, t)) =-2 ). J~l(

1
(e —ep —k(u)2+ (I'/2)2 '

l 1gure s owsF' 5 h the resulting time-averaged current J~,.
A, consequence once of the complex harmonic structure o t e
time-dependent current is that for temperatures
Ru the average current oscillates as a function o perio
2z/ur. The oscillation can be understood by examining
the general expression for average current q.ent E . 27 to-
get erh 'th (51): whenever a photon-assisted pea in

at 6= 6 +khpthe effective density of states, occuring at e = ep
in the time-averaged density of states (ImAL, ~~), moves
in or out of the allowed energy range, determined by t e
difference of the contact occupation factors, a maximum
(or minimum) in the average current results.

8. Response to eteplike moCkdation

We give results for the case when the central site leve 1
changes abruptly at t = tp.'tp M p + If the con-
tacts aso c anget t 1 hange at the same time, the corresponding

Thusresults are obtained by letting b, -+ b —bL,g~. us,
simultaneous and equal shifts in the central region and

heights do not depend on time (ur, ~R = 1), one finds for
t ) tp from Eq. (43)

1 1 —exp[i(c —(co+ 6) +ir/2i(t —io)j
]Ir/2''", („+~)+;I/2 (52)

0.4 ~ ' ~ I ''''' ~ ' ' ~ ' ~

This result is easily generalized [see Eq. (14) in R . ]Ref. 17~ to
a pulse of duration s, and numerical results are discusse
below.

andIt ' ' tructive to study analytically the long- an1s lns rue
thatshort-time behavior of A(e, t) It easily .verified a

A(e, t) has the expected limiting behavior

A(e, t -+ oo) = [e—(ep + b, ) + iT/2]
Thus, when the transients have died away, A(s, t) settles
to its new steady-state value.
Consider next the change in current at short times af-

ter the pulse, t —tp = ht « A/I', Ii/e Note that. the
second inequality provides an efFective cutofF for the en-
ergy integration required for the current. In this limit we
may write

0.24 .

0.2 0.33

0.0 ........ .~. .....................................................

0 1 2 3 4 5 6
Time

FIG. 4. The time-dependent current J(t) for harmonic
i . 3. Themo uaid 1 tion corresponding to the parameters o g.

. Thedc bias is de6ned via p, l. ——10 and p,R ——0, respectively. e
dotted line shows (not drawn to scale) the time dependence
of the drive signal. The temperature is Ic~T = 0.= 0.11'.

0.20-

0.18-
0.16 .

0 1 2 3 4 5 6
Period

FIG. 5. Time-averaged current Jg, as function oion of the ac
oscillation period 2s/id. The dc amplitudes are the same as
those in Fig. 4.
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A(~, t)
1 —iAbt

E —Eo + xl/2 (54)

Since b1 "'(t) oc!A(e, t)!' oc (bt)', the leadin contri
or low temperatures we And

0.50:
0.4()-
0.;30:-
().' 0:—

delmbA(e, t)bJl,yR(t)— —h/bt
ePI, /R

bbtlnbt.
gran

0. 10:-
0.0()-:.

We next discuss the numerical results for a ste like
modulation. Just like in the c f he case o armonic modula-

and ImA th
ion, st is instructive to stud th t dy e ime dependence of!A!2
an mA; these are shown in Figs. 6(a) and (b),
tivel .

s. a an ~ j, respec-

t
y. he observed time depend '

1
han in the harmonic case. N h 1, '

g
en ence ss less corn lex

e. evert eless, the resulting
current, which we have computed for a ulse of

ay in ig. , shows an interesting ringin be-
avior. The rin in is a aig' g 's again due to the movement of th

g e-

si ebands of ImA throough the contact Fermi ener
o e

Due to the ex e 'perimental caveats discussed in Sec. II,
i energies.

the ringing shown in Fig. 7 may be masked by capacitive
e ects not included in the present work. However, t e
ringing should be observable ' th t'in e ime-averaged cur-

FIG. 7. Tim-. Time-dependent current J(t) throu h a s
double-barrier t l'

roug a symmetric
' r unne ing structure in res onse to a

lar bias pulse. I 't' llse. ni ia y, the chemical potentials a
and the resonant-level

s pg and pR
- eve energy eo are all zero. At t = 0 a b'

pillse (dashed curve) suddenI illcreasu en y increases energies in the left

e
ea y I. ——10 and increases t
=5. Att=3 be

e resonant-level energy b
e ore the current has settled to

steady value the
e oanew

zero.
e pulse ends and the current d b

ro. The temperature is k&T = O.lr.
ecays ack to

rent by applying a series of pulses such as that f F' .
en varying the pulse duration In F' . 8 the

as a 0 lg.

erivative o the dc current with respect to ul 1 h '
op se engt is

p e, normahzed by the repeat time 7 between ul
For pulse len ths e o

e r e ween p ses.

time 5 I' the de 'g s e of the order of the resonance 1'f-
/, erivative of the dc current mimi 1

nce i c-

the time-d
mimics c ose y

e-dependent current following the pulse, and, like-
wise, asymptotes to the steady-state current at th
voltage.

n a e new

0

0

&~i

as

«sL INL

'1" r'"I'|WLLLL%L
'P SL
' "C.

If L4
\'a

Linear response

For circuit mode inode&ing purposes it would often be desir-
able to replace the mesosco ic
clrcurt element, with an as
u), or admittance Y(u). Our results for the

ear time-de endent cp n en current form a very practical startin

the
'on. or e noninteracting case

he current is determined by A e t
, an a one has to do is to linearize A [Eq. (43)]

with respect to the amplitude f th d ', '.e.,e o e nve signal, i.e.,

I '' ' I' I I '' '' 'I' ''''''' ~ ' I

sLLSLL

I, . I I I,ii Ii «I «LLLLLLLLLL

0.;)

0.0
—0.;) I I , I. . .. . . . I. . ~~ ~ I

as a function of time for st l k d-ors epi emod-
the resonant-level ener & s

creases by 5I. ~b~~The ti
rgy eo suddenly de-

( ) c time dependence of ImA(e tL fo h
case shoLvn in Fig. 6(a).

ort e

0 1 ':3 4
Vul~c lvngtls

FIG. 8. Derivative o
s ect to

o the integrated dc current J thg, wi re-

pulses 7. or u
p pu e duration s, normalized b the ie y e interval between

an e resonance

e ias voltage, but for shorter u
of th

or er pulses the ringing response
e current is evident.
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I+I,/R(& t) I

(~) &—&I,/R 1Re
(d + iI'/2

e—iut
X —u —iF/2

6—61./R. It is important to notice that we do not lin-
earize with respect to the chemical potential difference:
the results given below apply to an arbitrary static bias
voltage.
Performing the linearization, one finds

At finite temperature the energy integration must be
done numerically, as explained in Appendix B, while at
T = 0 they can be done analytically. In the latter case,
all the integrals can be cast into the form

dE'

(e —e + iI', /2) (e —e + iF /2)

1 p—,+ 'I', /2.,—., +i(F, —F,)/2 i —., +iF,/2

and

eight
& )+ (u —iF/2

Using

yields

ln(z+iy) = 1/21n(z +y ) +itan (y/z)

ImA~(~(~, t) = Irn((&) &—&L,/R
2(d E' —E' —(d + XI 2

&
—idiot —iwt iwt

+
E E +td+EI/2 E —E +ET/2)

(57) and

J~('/)~" ——I' / / cos(ddt)Fr, /~(id)2m~
+ sin(~t) Gr, /R (~) (59)

Jr /Ji = ~F ) F cos(~t) 2 2 GL/Ji((u) — 2 z FL/~(~)
(&),o & I,/R - I,/R I /& 4J r

2zur [ A&2+ I'2 2+$2

rin(~ ) 2 Gl/R(~) + 2 2FL/g(~)~2+ I2 ~2 + F2 (60)

where we defined

and

I~I/R —o+ F/2I'
I (pL, /~ —eo + iI'/2) ' —ur'I (61)

tributions cancel, and that the "in" currents combine to
give the net current

J(')(t) = ——— [cos((ut)F(id) + sin((ut)G(~)j .
Q 4 2xu

(63)
& PI,/R —~0 —~

Fi/R(~) = Can '

~ PI/R —~0+
I'/2 (62)

J(1) 1 /2i J(1),in J(1),out J(1),out J(1),injLI. + R

These expressions give the linear ac current for an arbi-
trarily biased double barrier structure, where both con-
tacts and the central-region energies are allowed to vary
harmonically. As a check, it is instructive to verify that
the finite temperature results of Appendix B 2 contain
Eqs. (59) and (60) as a special case; this is a rather
straightforward calculation using the limiting behavior
of the Digamxna function.
Considerable simplification occurs, if one considers a

symmetric structure at zero bias: F+ = F+ = F/2, and
pL, = pR = p, respectively. Following Fig. 9, the net
current &om left to right is

ut

~R

)f
VR

Here the functions F(u) and G(tL/) are given by Eqs. (62)
and (61) but using p and I'/2 as parameters. This re-
sult exactly coincides with the recent calculation of Fu
and Dudley, 1 which employed the ac Landauer-Biittiker
linear-response theory.
We now wish to apply the formal results derived in

this section to an experimentally relevant system. The

Using Eqs. (59) and (60), one finds that the "out" con- FIG. 9. Linear-response con6guration.
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archetypal mesoscopic device with potential for applica-
tions is the resonant-tunneling diode. The key feature of
a resonant-tunneling diode is its ability to show negative
difFerential resistance (NDR). The WBL model studied
in this section does not have this feature: its I-V char-
acteristic, which is readily evaluated with Eq. (37), is a
monotonically increasing function. A much more inter-
esting model can be constructed by considering a model
where the contacts have a finite occupied bandwidth; this
can be achieved by introducing a low energy cutoK Dl./R
(in addition to the upper cutoff provided by the electro-
chemical potential). The zero-temperature I Vch-arac-
teristic is now

e 2I'L, I'It i I I —eo(V)=
h r " r/2

, pL, —Dl —eo(V)
I'/2

i pR(V) —eo(V)
I'/2

, pR(V) —DR —eo(V)
I'/2 (64)

1.2
1.0
0.8
0.6
0.4

Here we assume that the right chemical potential is field
dependent: p~(V) = p~ —eV, and that the field de-
pendence of the central-region level is given by eo(V) =
—V/2. The resulting current-voltage characteristic is

depicted in Fig. 10. We note that the strong increase
in current, which is observed in experimental systems at
very high voltages, is not present in our model: this is
because we have ignored the bias dependence of the bar-
rier heights as well as any higher lying resonances. The
only generalization required for Eqs. (59) and (60) is to
modify the F and G functions: F„~F = F„—F„
and analogously for G„.We show in Fig. 11 the resulting
linear-response admittance Y(u) for a symmetric struc-
ture (I'I, = I'R). Several points are worth noticing. For
dc bias eV = 5 (energies are given in units of I') the
calculated admittance resembles qualitatively the results
reported by Fu and Dudley for zero external bias, except
that the change in sign for the imaginary part of Y(~)
is not seen. For zero external bias (not shown in the fig-
ure) our finite bandwidth model leads to an admittance,

0.4 .

0.2

0.0

—0.2-
—0.4

0 2 4 6
Frequency

8 10

FIG. 11. In-phase and out-of-phase components of the
linear-response current {in units of el'/h and normalized
with the amplitude of the drive signal AL, to yield admit-
tance) for two bias points, eV = 5 {continuous line) and
eV = 10 (dashed line). Other parameters are as in Fig.
10. The out-of-phase components {or, equivalently, imagi-
nary parts) always tend to zero for vanishing frequency, while
the in-phase component can have either a positive or negative
zero-frequency limit depending on the dc bias.

whose imaginary part changes sign, and thus the behav-
ior found by Fu and Dudley cannot be ascribed to an
artefact of their in6nite bandwidth model. More inter-
estingly, for dc bias in the NDR regime, the real part is
negative for small frequencies. This simply refiects the
fact that the device is operating under NDR bias condi-
tions. At higher frequencies the real part becomes posi-
tive, thus indicating that further modeling along the lines
sketched here may lead to important implications on the
high-frequency response of resonant-tunneling structures.
In concluding this section, we wish to emphasize that

the linear-response analysis presented above is only a spe-
cial case of the general results of Sec. IV, which seem to
have the potential for many applications.

VI. RESONANT TUNNELING W'ITH
ELECTRON-PHONON INTERACTIONS

As a 6nal application, we establish a connection to
previous calculations on the effect of phonons on resonant
tunneling. 2z For simplicity, we consider a single resonant
level with energy-independent level widths I'I, and I'R
(i.e., the WBL). The expression for the current Eq. (21)
becomes now

e r~r" de OOJ = — —[fL,{e)—fR{p)] dte*' a{t),gZL +pR
(65)

0.2
0.0

10 15
Voltage

20

where a{t) = i[G"(t) —D {t)]is the interacting spectral
density. In general, an exact evaluation of a(t) is not
possible, however, if one ignores the Fermi sea, G"(t)
[and hence a(t)] can be calculated exactly

FIG. 10. I-V characteristic for a model resonant-tunneling
device (quantum dot). The system is defined by parameters
Ep(V = 0) = 2, pr, = @A{V= 0) = 0, and Dl. = Dn = 2, and
the current is given in units of eI'/h.

G"(t) = —i8(t) exp[—it(eo —A) —4(t) —I't/2], (66)

where



50 TIME-DEPENDENT TRANSPORT IN INTERACTING AND. . . 5541

.M2
q 4)q

Grant No. DMR 91-20007, and by NSF, ONR, and ARO
at the Center for Free Electron Laser Studies.

APPENDIX A: NONEQUILIBRIUM GREEN
FUNCTIONS

and the electron-phonon interaction is given by Eq. (5).
When substituted in the expression for current, one re-
covers the result of Ref. 22, which originally was derived
by analyzing the much more complex two-particle Green
function

G(~, s, t) = 8(s)8(t)(d(~ —s)dt(~)d(t)dt(0)).
The advantage of the method presented here is that one
only needs the single-particle Green function to use the
interacting current formula (21). Other systematic ap-
proaches to the single-particle Green function can, there-
fore, be directly applied to the current (e.g. , perturbation
theory in the tunneling Hamiltonian).

VII. CONCLUSIONS

Here, we summarize the main results of this study. We
have derived a general formula for the time-dependent
current through an interacting mesoscopic region, Eq.
(15). The current is written in terms of local Green
functions. This general expression is then examined in
several special cases: (i) It is shown how earlier results
for time-independent current are contained in it [Eqs.
(19) and (21)]. (ii) An exact solution, for arbitrary time-
dependence, for a single noninteracting level coupled to
two leads is given [Eqs. (44) and (45)]. This calculation
leads to a prediction of "ringing" of current in response
to abrupt change of bias, or in response to an ac bias.
We believe that this prediction should be experimentally
verifiable. (iii) We derive a Landauer-like formula for the
average current, Eq. (27). Finally, as applications, we
discuss (iv) ac linear-response at arbitrary dc bias and
finite temperature, and (v) find a connection to earlier
results on resonant tunneling in the presence of optical
phonons.
We hope that time dependence will provide a new win-

dow on coherent quantum transport, and will lead to sig-
ni6cant new insights in the future.
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The most important result (see, e.g. , Refs. 25, 26, and
27) of the formal theory of nonequilibrium Green func-
tions is that the perturbation expansion has precisely the
same structure as the T = 0 equilibrium expansion. In-
stead of a time-ordered Green function, one works with
the contour-ordered Green function,

G(~~ 7 ) = —'(T&8'(~)@'(~ ))) ~ (A1)

where the contour C is shown in Fig. 2. The contour-
ordering operator Tc orders the operators following it in
the contour sense: operators with time labels later on
the contour are moved left of operators of earlier time
labels. Thus, once the self-energy functional, Z = Z[G],
has been specified, the contour-ordered Green function
obeys formally the same Dyson equation as in T = 0
theory,

G = Go+GpZG,

(~r) f«.gB, (tt, )c (=(g t )", "

A (t, t )=fdt [B"(t,'f )0 (t, t )
+B (t, t, )C (t„t')].

These results are readily generalized to products involv-
ing three (or more) Green functions or self-energies.
The equation of motion for G can be derived by

applying the rules (AS) to the Dyson equation for the
contour-ordered Green function. The Dyson equation
can be written either in a differential form, or in an inte-

with the modification that internal time integrations run
along the (complex) path discussed in Sec. IIA. It follows
from this structural equivalence that one can derive equa-
tions of motion just as in the T = 0 case, and that the
passage to nonequilibrium takes place by replacing the
time-ordered Green functions by contour-ordered Green
functions, and by replacing the real-time integration by
an integration along the time contour. In practical cal-
culations, however, the contour-ordered Green functions
are inconvenient, and it is expedient to perform an an-
alytic continuation to the real axis. The first step in
this procedure consists of expressing the contour-ordered
Green functions in terms of 2 x 2 matrices, whose ele-
ments are determined by which branches of the contour
the two time labels are located on. The four elements of
the matrix Green function are not linearly independent,
and it is useful to perform a rotation of this matrix. A
particularly convenient set of operational rules has been
given by Langreth:zs If one has an expression A = JBC
on the contour (this is the generic type of term encoun-
tered in the perturbation expansion), then the retarded
and lesser components are given by
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gral form, as in Eq. (A2). The former leads to the Baym-
Kadanoff transport equation, while the latter (which is
employed in the present work) yields the Keldysh equa-
tion for the lesser function

G~ = (1+G"Z")G() (1+Z G ) + G"Z G, (A4)

where the retarded and advanced Green functions satisfy

Gr, a Gr, a + G&,&gr, aGv, a
0 0 (A5)

APPENDIX B:DVSON EQUATION FOR G'N»

The physical modeling goes in the choice of the self-
energy functional Z, which contains the interactions
(carrier-impurity scattering, phonon scattering, carrier-
carrier scattering, etc.). Once Z is given, for example
in terms of diagrams, the retarded, or "lesser" compo-
nents of the self-energy can be worked out according to
the rules (A3), and one can proceed to solve the coupled
Eqs. (A4) and (A5).

ation rules (A3) can be applied, and the desired Dyson
equation is obtained.

2. S-matrix expansion

We write the Green function G„i,(t, t') in terms of
interaction-picture operators (denoted by a tilde) by in-
voking the S matrix:

G„i, (r, r') = —i(Tc(Sd„(r)est (r'))),
where

S = Tc exp i —driHT (ri)c J

is the contour-ordered S matrix, and HT is the tunneling
Hamiltonian of Sec. IIB2. We expand the exponential
function in (B5); the zeroth order term does not con-
tribute, and we find

1. Equation-of-motion method

According to Appendix A it is suKcient to consider
the T = 0 equation of motion for the time-ordered Green
function G~

& .

( )m+1
G„,s (r, r') = i T—c d„(r)ct (r') )

I ";(n+1)!
x «z . &a

A. "a', m

,G'„„(t—t') = e&G'„„(t—t')
+) V„' G'„(t—t'), (Bl)

xc„,~, ( 2) ~( 2) „*,~, ~( 2)

xd (r2)ci, i~~(r2)j (B6)

where we defined the central-region time-ordered Green
function G~ (t —t') = —i(T(d~ (t')d„(t))).Note that
it is crucial that the leads be noninteracting: had we
allowed interactions in the leads the equation-of-motion
technique would have generated higher order Green func-
tions in Eq. (Bl), and we would not have a closed set of
equations.
We can interpret the factors multiplying G„&(t-

t') as the inverse of the contact Green-function opera-
tor, and introduce a short-hand notation: G„&g&

G~ V&' . By operating with g& from right, we
arrive at

Ga, kn(rir ) —) dr2( —&)(Tc(ca~(r2)c&~(r')))
C

xV„' (r2) (—x)
x(Tc(Sd~(r2)d~( )j) . (B7)

Equation (B7) is completely equivalent to the result (B3)
obtained in the previous subsection.

Since, by assumption, the leads are noninteracting, result
will only be nonzero if c& (r ) is contracted with cg (r;)
from one of the n+1 interaction terms. The n+1 possible
choices cancels a factor of n + 1 in the factorial in the
denominator, leaving

xVi, gg (ti t ) . (82) APPENDIX C PROOF OF EQ. (48)

G„,~ (v;v') =) f d iG (v;riT)

x Vk~ ~(ri)gkC1 (ri ~
r ) (B3)

This is Eq. (11) of the main text. The analytic continu-

According to the rules of the nonequilibrium theory, this
equation has in nonequilibrium precisely the same form,
except that the intermediate time integration runs on the
complex contour:

In this Appendix, we prove that for a single level in
the WBL (see Sec. V C) there is a definite relation,

—( 1.)'~( )™(I)'~(' ))) = —(I Iyz( )I')~ ( )

between the time averages of the quantities that, respec-
tively, determine the current and the occupation. For
the case of the occupation, one can explicitly write out
(~AL, yR(e, t) ~ ) and then use the identity
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G"(t, t, )G (t'„t)= i8(t —t, )8(t —t', )
x -'('-"lG"(t' t )
—I'(t—tr )Ga (tr t ) (C2)

IIlg from e = Ep + 'lI /2 aIld e = ep + 6 + i //2 obvi-
ously lead to no problems, while the sum over n con-
verges either as n 4 [the term originating from D(y)], or
as n s exp[—22m(t —tp)/P] [the term due to E(p)], and
hence also converges rapidly.

to obtain
~ T/2 T/2

([A( ) = lim dtl

xttL/R(tl)[G" (tlr tl) —G (tl, tl)]

" I"LIR( I)

t~)
x exp ie(tl —tl) + dt2b (t2)

Cj

Writing out (22L/R (t)Im(AL/R (c, t) )) explicitly then
yields Eq. (Cl).

APPENDIX D: NUMERICAL INTEGRATION

1. Steplike modulation

We illustrate the somewhat cumbersome but straight-
forward formulas by giving the expressions for the devi-
ation of the occupation from its asymptotic value follow-
ing a steplike modulation of the level energy (Sec. V C 3):
6N(t) = N(t) —N(t = oo). We find from Eqs. (44) and
(52)

In this Appendix, we describe methods to facilitate
numerical calculations in the wide-band limit (Sec. V C).
While the numerical integrations required for the occu-
pation and for the current can be done directly, it is of-
ten difficult to obtain sufficient accuracy. We have found
that it is useful to do the integrations analytically by
contour integration, and then sum the resulting residues.
We have also checked for a few selected parameter values
that the two methods give identical results.

2. Harmonic modulation

In principle, the calculation proceeds as in the previous
section. However, the sum over the residues, which re-
sults from the contour integration, converges very slowly.
A typical term in the resulting lengthy expressions con-
verges only as n 2. Significantly improved convergence
can be obtained by making use of the relation

1

; (n+ a)(n+ Lr)

1
,[~(a) —~(L)]

N(t) =—) sin(prt) 2I'rp
1 .&0 —&L/RF / . - L/R

L,R

+cos(prt) 2rdrp/ —+ pr(B+ + & )

+r(r,"" r"') }. — (D4)

Here

Ig = Im 4' 1/2 — .(IsL/R &0 + pr 2F/2)L R f P
22r2

= Re @ 1/2 — (IsL/R —ep+ rd —2F/2)LR f /3 ~
27ri

where 4 is the digamma function. In what follows,
we give the results for Linear resIronse. The occupation
[which also gives the current fiowing out from the central
region via (44)] is

6N(t) =—b, e (' "l[F D(pL) + F D(pR)]
1
2'
——be (' "l/ [I' 2Re(E(pL))1
2'
+F 2Re(E(pR) )], (D1)

L/Rr = Re lIr 1/2 + . (pL/R —e + iF/2)27ri

The current flowing into the central region can also be
expressed in terms of similar functions:

where

D(it) = de f e) 1
(c —ep —b,) + (I'/2)2 (e —ep)z+ (I'/2)2'

E(p) = de f(~)
(e —ep —b, )2 + (F/2)2

ei(~—«—a)(t—g, )
X

E —E —2T /2
(D2)

where f(e) is the Fermi function with chemical potential
p. The poles of the integrands are at e = ep + iF/2,
e = ep + b, + iI'/2, and c = y, + i22r(n+ 1/2)/p, respec-
tively. Upon closing the contour in the upper-half plane,
one obtains three difFerent contributions; the terms aris-

2' CtJ
+ sin(&ut) (2rp —r+ —r )

L/R L/R L/R (D6)

with

i / = Im 4' 1/2+ .(p /
—eo W pr+2F/2)LR ( -P

2rr 2

r~ ——Re 4' 1/2+ . (/rL/R —~p p rd + iI'/2)L/R
22I 2

(D7)
By recalling lim, ~ @(z) -+ ln(z), it is straightforward
to check that these results reduce to the T = 0 case
discussed in the main text.
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