Rotations and Angular Momenta

Finite Versus Infinitesimal Rotations

Consider a vector

$$
\mathbf{V}=\left(\begin{array}{lll}
V_{x} & V_{y} & V_{z}
\end{array}\right)^{\top}
$$

after a rotation

$$
\left(\begin{array}{l}
V_{x}^{\prime} \\
V_{y}^{\prime} \\
V_{z}^{\prime}
\end{array}\right)=R\left(\begin{array}{c}
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right)
$$

with

$$
R^{\top} R=R R^{\top}=1
$$

leading to a property

$$
\begin{gathered}
\mathbf{V}^{\top} \mathbf{V}=\mathbf{V}^{\top} R^{\top} R \mathbf{V} \\
V_{x}^{\prime 2}+V_{y}^{\prime 2}+V_{z}^{\prime 2}=V_{x}^{2}+V_{y}^{2}+V_{z}^{2}
\end{gathered}
$$

Define a rotation operator about the z-axis by angle ϕ,

$$
R_{z}(\phi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We are particularly interested in an infinitesimal form of R_{z} :

$$
R_{z}(\epsilon)=\left(\begin{array}{ccc}
1-\frac{\epsilon^{2}}{2} & -\epsilon & 0 \\
\epsilon & 1-\frac{\epsilon^{2}}{2} & 0 \\
0 & 0 & 1
\end{array}\right), \quad \epsilon \rightarrow 0
$$

Likewise, we have

$$
R_{x}(\epsilon)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-\frac{\epsilon^{2}}{2} & -\epsilon \\
0 & \epsilon & 1-\frac{\epsilon^{2}}{2}
\end{array}\right)
$$

and

$$
R_{y}(\epsilon)=\left(\begin{array}{ccc}
1-\frac{\epsilon^{2}}{2} & 0 & \epsilon \\
0 & 1 & 0 \\
-\epsilon & 0 & 1-\frac{\epsilon^{2}}{2}
\end{array}\right)
$$

Elementary matrix manipulations lead to

$$
\begin{gathered}
R_{x} R_{y}=\left(\begin{array}{ccc}
1-\frac{\epsilon^{2}}{2} & 0 & \epsilon \\
\epsilon^{2} & 1-\frac{\epsilon^{2}}{2} & -\epsilon \\
-\epsilon & \epsilon & 1-\epsilon^{2}
\end{array}\right) \\
R_{y} R_{x}=\left(\begin{array}{ccc}
1-\frac{\epsilon^{2}}{2} & \epsilon^{2} & \epsilon \\
0 & 1-\frac{\epsilon^{2}}{2} & -\epsilon \\
-\epsilon & \epsilon & 1-\epsilon^{2}
\end{array}\right) \\
R_{x} R_{y}-R_{y} R_{x}=\left(\begin{array}{ccc}
0 & -\epsilon^{2} & 0 \\
\epsilon^{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=R_{z}\left(\epsilon^{2}\right)-1
\end{gathered}
$$

where all terms of order higher than ϵ^{2} have been ignored.

Infinitesimal Rotations in Quantum Mechanics

Given a rotation operation characterized by a orthogonal 3×3 matrix R, associate an operator $\mathcal{D}(R)$ in the appropriate ket space such that

$$
|\alpha\rangle_{R}=\mathcal{D}(R)|\alpha\rangle
$$

- For describing a spin $-1 / 2$, system with no other degrees of freedom, $\mathcal{D}(R)$ is a 2×2 matrix;
- for a spin- 1 system, $\mathcal{D}(R)$ is a 3×3 matrix.

The appropriate infinitesimal operators could be written as

$$
\hat{U}(\epsilon)=1-i \hat{G} \epsilon, \quad \hat{G}: \text { Hermitian }
$$

We therefore define the angular-momentum operator $\hat{\jmath}_{k}$ for an infinitesimal rotation around the k th axis by angle $\mathrm{d} \phi$ can be obtained by letting

$$
\hat{G} \rightarrow \frac{\hat{J}_{k}}{\hbar}, \quad \epsilon \rightarrow \mathrm{~d} \phi
$$

More generally, we have

$$
\mathcal{D}(\hat{\mathbf{n}}, \mathrm{d} \phi)=1-\mathrm{i}\left(\frac{\mathbf{J} \cdot \hat{\mathbf{n}}}{\hbar}\right) \mathrm{d} \phi,
$$

$$
\hat{\mathbf{n}}=(\cos \alpha \sin \beta, \sin \alpha \sin \beta, \cos \beta): \text { unit vector }
$$

A finite rotation can be obtained by compounding successively infinitesimal rotations about the same axis.
For instance,

$$
\begin{aligned}
\mathcal{D}_{z}(\phi) & =\lim _{N \rightarrow \infty}\left[1-\mathrm{i}\left(\frac{\hat{J}_{z}}{\hbar}\right)\left(\frac{\phi}{N}\right)\right]^{N} \\
& =\exp \left(-\mathrm{i} \frac{\hat{J}_{z}}{\hbar} \phi\right)
\end{aligned}
$$

The group structures

We further postulate that $\mathcal{D}(R)$ has the same group properties as R :

- Identity:

$$
R \cdot 1=R \Rightarrow \mathcal{D}(R) \cdot 1=\mathcal{D}(R)
$$

- Closure:

$$
R_{1} R_{2}=R_{3} \Rightarrow \mathcal{D}\left(R_{1}\right) \mathcal{D}\left(R_{2}\right)=\mathcal{D}\left(R_{3}\right)
$$

- Inverses:

$$
\begin{aligned}
& R R^{-1}=1 \Rightarrow \mathcal{D}(R) \mathcal{D}^{-1}(R)=1 \\
& R^{-1} R=1 \Rightarrow \mathcal{D}^{-1}(R) \mathcal{D}(R)=1
\end{aligned}
$$

- Associativity:

$$
\begin{aligned}
& R_{1}\left(R_{2} R_{3}\right)=\left(R_{1} R_{2}\right) R_{3}=R_{1} R_{2} R_{3}, \\
& \Rightarrow \mathcal{D}\left(R_{1}\right)\left[\mathcal{D}\left(R_{2}\right) \mathcal{D}\left(R_{3}\right)\right]=\left[\mathcal{D}\left(R_{1}\right) \mathcal{D}\left(R_{2}\right)\right] \mathcal{D}\left(R_{3}\right) \\
& =\mathcal{D}\left(R_{1}\right) \mathcal{D}\left(R_{2}\right) \mathcal{D}\left(R_{3}\right)
\end{aligned}
$$

