
niceverb.sty
—

Minimizing Markup
for Documenting LATEX packages∗

Uwe Lück†

November 9, 2015

Abstract
niceverb.sty provides very decent syntax (through active characters) for
describing LATEX packages and the syntax of macros conforming to LATEX
syntax conventions.
Keywords: literate programming, syntactic sugar, .txt to .tex enhance-
ment, macro programming

Contents
1 Presenting niceverb 2

1.1 Purpose . 2
1.2 Acknowledgement/Basic Ideas . 2
1.3 The Commands and Features of niceverb 3
1.4 Examples . 6
1.5 What is Wrong with the Present Version 7

2 The Package File 8
2.1 Preliminaries . 8

2.1.1 File Header . 8
2.1.2 \newlet . 8
2.1.3 Switching Category Codes 8
2.1.4 Robustness by \IfTypesetting or So 10
2.1.5 Shared Shorthand Macros 11

2.2 Implementation of the “Nice” Syntax 12
2.2.1 \NVerb . 12
2.2.2 Single Quotes Typeset Meta-Code 13

∗This document describes version v0.61 of niceverb.sty as of 2015/11/09.
†http://contact-ednotes.sty.de.vu

1

http://contact-ednotes.sty.de.vu

1 PRESENTING NICEVERB 2

2.2.3 Ampersand (or \cstx) Typesets Meta-Code 14
2.2.4 Escape Character Typesets Meta-Code 16
2.2.5 Meta-Variables . 18
2.2.6 Hash Mark is Code . 18
2.2.7 Single Right Quotes for \textsf 19
2.2.8 Boxes Highlighting Commands and Syntax 22

2.3 When niceverb Gets Nasty . 25
2.3.1 Meta-Variables . 25
2.3.2 Quotes . 25
2.3.3 hyperref . 26
2.3.4 hyper-xr . 27
2.3.5 Listings and Moving . 28
2.3.6 Turning off and on altogether 29

2.4 Minor Final Things . 29
2.4.1 Activating the niceverb Syntax 29
2.4.2 Leave Package Mode . 30
2.4.3 VERSION HISTORY . 30

1 Presenting niceverb
1.1 Purpose
The niceverb package provides “minimal” markup for documenting LATEX pack-
ages, reducing the number of keystrokes/visible characters needed (kind of poor
man’s WYSIWYG).1 It conveniently handles command names in arguments of
macros such as \footnote or even of sectioning commands. If you use make-
doc.sty additionally, commands for typesetting a package’s code are inserted
automatically (just using TEX). As opposed to tools that are rather common
on UNIX/Linux, this operation should work at any TEX installation, irrespective
of platform.

Both packages may at least be useful while working at a very new package
and may suffice with small, simple packages. After having edited your package’s
code (typically in a .sty file—〈jobname〉.sty), you just “latex” the manual
file (maybe some .tex file—〈jobname〉.tex) and get instantly the corresponding
updated documentation.

niceverb and makedoc may also help to generate without much effort docu-
mentations of nowadays commonly expected typographical quality for packages
that so far only had plain text documentations.

1.2 Acknowledgement/Basic Ideas
Four ideas of Stephan I. Böttcher’s in documenting his lineno inspired the
present work:

1“What you see is what you get.” Novices are always warned that WYSIWYG is essentially
impossible with LATEX.

http://www.ctan.org/pkg/lineno

1 PRESENTING NICEVERB 3

1. The markup and its definitions are short and simple, markup commands
are placed at the right “margin” of the ASCII file, so you hardly see them
in reading the source file, you rather just read the text that will be printed.

2. An awk script removes the %s starting documentation lines and inserts
the commands for typesetting the package’s code (you don’t see these
commands in the source).2

3. An active character (‘|’) issues a \string and switches to typewriter type-
face for typesetting a command verbatim—so this works without changing
category codes (which is the usual idea of typesetting code), therefore it
works even in macro arguments.

4. ‘<meta-variable>’ produces ‘〈meta-variable〉’. (‘\lt’ stores the original
‘<’.)

1.3 The Commands and Features of niceverb
Actually, it is the main purpose of niceverb to save you from “commands” . . .

Single quotes ‘, ’, “less than” < (accompanied with >), the “vertical” |, the
hash mark #, ampersand &, and in an extended “auto mode” even backslash \
become \active characters with “special effects.”

The package mainly aims at typesetting commands and descriptions of their
syntax if the latter is “standard LATEX-like”, using “meta-variables.” A string
to be typeset “verbatim” thus is assumed to start with a single command like
\foo, maybe followed by stars (‘*’) and pairs of square brackets (‘[〈opt-arg〉]’)
or curly braces (‘{〈mand-arg〉}’), where those pairs contain strings indicating
the typical kinds of contents for the respective arguments of that command. A
typical example is this:

\foo*[〈opt-arg〉]{〈mand-arg〉}

This was achieved by typing

&\foo*[<opt-arg>]{<mand-arg>}

In “auto mode” of the package, even typing

\foo*[<opt-arg>]{<mand-arg>}

would have sufficed—WYSIWYG! I call such mixtures of verbatim and “meta-
variables” ‘meta-code’.

Outside macro arguments, you obtain the same by typing

‘\foo*[<opt-arg>]{<mand-arg>}’

Details:
2The corresponding part of the “present work” is makedoc.sty.

1 PRESENTING NICEVERB 4

“Meta-variables:” The package supports the “angle brackets” style of “meta-
variables” (as with 〈meta-variable〉). You just type ‘<bar>’ to get ‘〈bar〉’.
This works due to a sloppy variant \NVerb of \verb which doesn’t care
about possible ligatures and definitions of active characters. Instead,
it assumes that the “verbatim” font doesn’t contain ligatures anyway.3
‘\verb+<foo>+’, by contrast, just yields ‘<foo>’.
Almost the same feature is offered by ltxguide.cls which formats the basic
guides from the LATEX Project Team. The present feature, however, also
works in plain text outside verbatim mode.

Single quotes (left/right) for “short verb:” The package “assumes” that
quoting refers to code, therefore ‘‘foo’’ is typeset as ‘foo’, or (generally)
‘〈content〉’ turns 〈content〉 into meta-code with the meta-variable fea-
ture as above. This somewhat resembles the \MakeShortVerb feature of
doc.sty. You can “abuse” our feature just to get typewriter typeface.
Problems with this feature will typically arise when you try to typeset
commands (and their syntax) in macro arguments—e.g.,

\footnote{‘\bar’ is a celebrated fake example!}

will try to execute \bar instead of typesetting it, giving an “undefined”
error or so. \verb fails in the same situation, for the same reason. ‘&’
(\footnote{&\bar〈remaining〉}) or “auto mode” (see below) may then
work better.4 More generally, the quoting feature still works in macro
arguments in the sense that you then have to mark difficult characters
with & (simply as short for \string). However, it still won’t work with
curly braces that don’t follow a command name (such pairs of braces will
simply get lost, single braces will give errors or so).
Double quotes and apostrophes should still work the usual way. For dif-
ficult cases, you can still use the standard \verb command from LATEX.
To get usual single quotes, you can use their standard substitutes \lq
and \rq, or for pairs of them, \qtd{〈text〉} in place of \lq␣〈text〉\rq—or
even \lq␣〈text〉\rq\␣. To get single quotes around some verbatim 〈verb〉,
often \qtd{&〈verb〉} works. It is for this reason that I have refrained from
different solutions as in newverbs (so far).
v0.44 provides \AddQuotes after which single quotes both turn their con-
tent into metacode and print single quotes around them automatically.
This can be turned off again by \DontAddQuotes .

Single right quotes for \textsf: Package names are (by some convention I
often yet not always see working) typeset with \textsf; it was natural to
use a remaining case of using single quotes for abbreviating

\textsf{〈text〉}
3On the other hand, \NVerb is more careful with niceverb’s special characters.
4\bar indeed!

http://www.ctan.org/pkg/newverbs

1 PRESENTING NICEVERB 5

by ’〈text〉’ . This idea of switching fonts continues font switching of
wiki.sty which uses the syntax for editing Wikipedia pages (font switching
by sequences of right single quotes).

Verticals for setting-off command descriptions: |〈code〉| works like
‘‘〈code〉’’ except putting the result into a framed box (just as all around
here)—or something else that you can achieve using some hooks described
with the implementation. There are variants like \cmdboxitem|〈code〉| .

Ampersand shows command syntax &c. even in arguments: E.g.,
type ‘&\foo{<arg>}’ to get ‘\foo{〈arg〉}’. This may be even more con-
venient for typing than the single quotes method, although looking some-
what strange. However, in macro arguments this does not work with
private letters (@ and _ here), for this case, use \cs{〈characters〉} or
\cstx{〈characters〉}〈parameters〉 .5

This choice of & rests on the assumption that there won’t be many ta-
bles in the documenation. You can restore the usual meaning of & by
\MakeNormal\& and turn the present special meaning on again by

\MakeActive\& or \MakeActiveLet\&\CmdSyntaxVerb

You could also redefine (\renewcommand) \descriptionlabel using
\CmdSyntaxVerb (the “normal command” that is equivalent to &, its “per-
manent alias”) so \item[\foo] works as wanted.
Another feature of niceverb’s & is getting (some of the) special characters
(as listed in the standard macro \dospecials) verbatim in arguments
(where \verb and the like fail). It just acts similarly as TEX’s primitive
\string (which it actually invokes—cf. discussion on the left quote feature
above).

“Auto mode” typesets commands verbatim unless . . . In “auto mode,”
the backslash ‘\’ is an active character that builds a command name
from the ensuing letters and typesets the command (and its syntax, al-
lowing meta-variables) verbatim. However, there are some exceptions,
which are collected in a macro \niceverbNoVerbList . \begin, \end,
and \item belong to this list, you can redefine (\renewcommand) it, or
add 〈macros〉 to it by \AddToNoVerbList}{〈macros〉} There is also a
command \NormalCommand{〈letters〉} issuing the command \〈letters〉 in-
stead of typesetting it. Since auto mode is somewhat dangerous, you
have to start it explicitly by \AutoCmdSyntaxVerb . You can end it by
\EndAutoCmdSyntaxVerb . \AutoCmdInput{〈file〉} is probably most im-
portant.
Auto mode is motivated by the observation that there are package files con-
taining their documentation as pure (well-readable) ASCII text—contain-
ing the names of the new commands without any kind of quotation marks

5Moreover, & currently has a limited xspace functionality only.

1 PRESENTING NICEVERB 6

or verbatim commands. Auto mode should typeset such documentation
just from the same ASCII text.

Hash mark ‘#’ comes verbatim. No macro definitions are expected in the
document environment.6 Rather, ‘#’ is an active character for taking the
next character (assuming it is a digit) to form a reference to a macro
parameter—‘#1’ becomes ‘#1’–WYSIWYG indeed! (So the general syntax
is #〈digit〉 .)

Escaping from niceverb (generally). To get rid of the functionality of some
active character 〈char〉 (‘&’, single quote, ampersand, hash mark—not
“auto mode,” see above) here, use \MakeNormal\〈char〉—may be within
a group. To revive it again, use \MakeActive\〈char〉 . This may fail when
a different package overtook the active 〈char〉 (but I expect more failures
then), in this case \MakeActiveLet\〈char〉\〈perm-alias〉 revives the nice-
verb meaning of 〈char〉 where \〈perm-alias〉 is the “permanent alias” for
that active 〈char〉 according to the documentation below. E.g., \LQverb
is the “permanent alias” for active single left quote, niceverb activates it
by \MakeActiveLet\’\LQverb.—You can turn off niceverb syntax allto-
gether by \noNiceVerb and revive it by \useNiceVerb (without “auto
mode”).
Right Quotes: Disabling/reviving replacement of \textsf by single
right quotes requires

\nvRightQuoteNormal or \nvRightQuoteSansSerif

respectively.—The feature fails in certain occasions because a single right
quote must not always be interpreted as \textsf, and deciding this by
macros became quite laborious for me and is most likely still not perfect.
There is a command \nvAllRightQuotesSansSerif to be used with care
that interpretes all single right quotes as \textsf, which, e.g., means that
you must use \rq for apostrophes.
“Moving” arguments: \NiceVerbMove{〈text〉} with v0.6 is for “mov-
ing” arguments so that niceverb syntax operates locally at the destination
(table of contents or page headings). It is automatically used by nice-
verb’s variant of LATEX’s sectioning commands; while with \markboth,
\markright, \addcontentsline etc. you must it include yourself (cur-
rently, TODO?).

1.4 Examples
The file mdoccorr.cfg providing some .txt→LATEX functionality—i.e., typo-
graphical corrections—documents itself using niceverb syntax. Its code and
the documentation that is typeset from it are in the ‘examples’ section

6This idea appeared 2009 on the LATEX-L mailing list. It may be wrong, as I have some-
times experienced . . .

1 PRESENTING NICEVERB 7

of makedoc.pdf.—Moreover, the documentation niceverb.pdf of niceverb.sty
was typeset from niceverb.tex and niceverb.sty using niceverb syntax, likewise
fifinddo.pdf and makedoc.pdf. The example of niceverb shows the most frequent
use of the & feature.

nicetext bundle release v0.4 contains a file substr.tex that should typeset the
documentation of the version of Harald Harders’ substr.sty7 that your TEX finds
first, as well as arseneau.tex typesetting a few packages by Donald Arseneau.
The outcomes (with me) are substr.pdf and arseneau.pdf. These are the first
applications of niceverb’s “auto mode” to (unmodified) third-party package files.
(I also made a more ambitious documentation of Donald Arseneau’s import.sty
v3.0 before I found that CTAN already has a nicely typeset documentation of
import.sty v5.2.)

1.5 What is Wrong with the Present Version
1. niceverb.sty should be an extension of wiki.sty; yet their font selection

mechanisms are currently not compatible. Especially, the feature of

’’〈text〉’’

replacing \textit{〈text〉} or \emph{〈text〉} may be considered missing.

2. Font switching or horizontal spacing may fail in certain situations. You
can correct spacing by ‘\␣’.

3. The “vertical” character ‘|’ produces inline boxes only at present. It might
as well provide a version of the decl tabular environment of ltxguide.cls.
The inline boxes badly deal with long command names and many argu-
ments. Doubled verticals could ensure the decl mode. Moreover, such a
box might issue an index entry.

4. One may have opposite ideas about using quotes—maybe rather "〈code〉"
should typeset 〈code〉 verbatim. There might be a package option for this.
If ordinary ‘‘‘〈text〉"’ still should work, awful tricks as now with the right
quote feature would be needed.

5. “auto mode” seems not to work in section titles. (2011/01/26)

6. Certain difficulties with typesetting code in macro arguments may be over-
come easily using ε-TEX features, I need to find out . . .

7http://ctan.org/pkg/substr

http://ctan.org/pkg/substr

2 THE PACKAGE FILE 8

2 The Package File
2.1 Preliminaries
2.1.1 File Header

1 \NeedsTeXFormat{LaTeX2e}[1994/12/01]
2 \ProvidesPackage{niceverb}[2015/11/09 v0.61
3 minimize doc markup (UL)]
4
5 %% Copyright (C) 2009-2012, 2014 2015 Uwe Lueck,
6 %% http://www.contact-ednotes.sty.de.vu
7 %% -- author-maintained in the sense of LPPL below --
8 %%
9 %% This file can be redistributed and/or modified under

10 %% the terms of the LaTeX Project Public License; either
11 %% version 1.3a of the License, or any later version.
12 %% The latest version of this license is in
13 %% http://www.latex-project.org/lppl.txt
14 %% We did our best to help you, but there is NO WARRANTY.
15 %%
16 %% Please report bugs, problems, and suggestions via
17 %%
18 %% http://www.contact-ednotes.sty.de.vu
19 %%

2.1.2 \newlet

\newlet〈cmd〉〈cnd〉 counters the risk of mistyping 〈cmd〉 with \@ifdefinable,
and even saves some code lines:

20 \providecommand*{\newlet}[2]{\@ifdefinable#1{\let#1#2}}
21 \@onlypreamble\newlet

2.1.3 Switching Category Codes

Underscore as a “private letter,” using stacklet with v0.5:

22 \RequirePackage{stacklet} \PushCatMakeLetter_ %% 2012/08/27

v0.3 introduced \AssignCatCodeTo and \MakeNormal. v0.5 abolishes the former
again and uses actcodes for some part of \catcode switching:

23 \RequirePackage{actcodes}

\CatCode{\〈character〉} (or simply \CatCode\〈character〉) saves one token
per use and works when the category code of ‘‘’ (“single left quote”) has
changed. As of v0.5, it may be defined by a different package:

24 \providecommand*{\CatCode}{\catcode‘} %% \provi... 2012/08/27
25 % \newcommand*{\CatCode}[1]{\catcode‘#1 } %% no better 2010/02/27

2 THE PACKAGE FILE 9

\CatCode is near to be moved into the catcodes bundle, and basic commands
from stacklet and actcodes may be reimplemented using it (manycats; allcats for
loading entire catcodes in good order).

\AssignCatCodeTo{〈number〉}{\〈char〉} no longer is considered useful
(counted tokens in memory.tex) and replaced by \CatCode.

26 % \newcommand*{\AssignCatCodeTo}[2]{\catcode‘#2=#1\relax}

\MakeLetter\〈char〉 is replaced by the stacklet package—I thought, but here it
is also needed to declare the “private letters” of the package that is documented.
This should be “variable.” OK, the new (v0.5) \private_letters is a step
towards this:

27 \newcommand*{\private_letters}{\CatCode\@11\CatCode_11\relax}

\MakeOther\〈char〉 and \MakeActive\〈char〉 were implemented here before
v0.5, now they are in actcodes . . .

28 % \def \MakeOther {\AssignCatCodeTo{12}}

\MakeActiveLet\〈char〉\〈macro name〉 likewise is in actcodes. niceverb takes
a copy \MakeActiveLetHere of it for dealing with hyperref (see Sec. 2.3.3).
hyperref-compatibility of mere \MakeActive is not provided any longer:

29 \newlet\MakeActiveLetHere\MakeActiveLet

For restoring the usual category codes of TEX’s special characters later, we
store them now. (I.e., these characters are listed in the macro \dospecials
that expands to

\do\ \do\\\do\{\do\}\do\$\do\&\do\#\do\ˆ\do_\do\%\do\˜

their category codes are 10, 0, 1, 2, 3, 4, 6, 7, 8, 14, 13 respectively; “end of line”,
“ignored”, “letter”, “other”, and “invalid” are missing—cf. TEXbook Chap. 7.)

30 \def\do#1{\expandafter
31 % \chardef \csname normal_catcode_\string#1\expandafter \endcsname

← v0.6 2014/03/22: First I thought “too few \expandafters”; actually the
original \expandafter has no effect →

32 \chardef \csname normal_catcode_\string#1\endcsname
33 \CatCode#1\relax}
34 \dospecials

Tests: “normal category code” of \ is 0, “normal category code” of $ is 3;
“normal category code” of & is 4.8

35 % \newcommand*{\make_iii_other}{\MakeOther\\\MakeOther\{\MakeOther\}}
36 %% <- replaced 2009/04/05

8LATEX’s \nfss@catcodes is similar, but it makes space-like characters ignored. Also cf.
ltfinal.dtx. TODO: \RestoreNormalCatcodes.

2 THE PACKAGE FILE 10

\MakeNormal\〈char〉 saves you from remembering . . .

37 \newcommand*{\MakeNormal}[1]{%
38 \@ifundefined{\norm_catc_str#1}%
39 {\MakeOther#1}%
40 {\CatCode#1\csname\norm_catc_str#1\endcsname\relax}}
41 \newcommand*{\norm_catc_str}{normal_catcode_\string}
42 %% TODO add ˆˆI and ˆˆM
43 %% TODO save char tokens %% 2012/08/27

We take a copy \MakeNormalHere of \MakeNormal as with \MakeActive.

44 \newlet\MakeNormalHere\MakeNormal

2.1.4 Robustness by \IfTypesetting or So

It seems we need some own ways of robustifying (as opposed to LATEX’s \protect
and \DeclareRobustCommand—sometimes, especially for certain active charac-
ters) to achieve various compatibilities—using

\IfTypesetting{〈if 〉}{〈unless〉}

It also saves some \expandafters.

45 \providecommand*{\IfTypesetting}{%
46 % \relax

← This \relax suppressed ligatures of single right quotes!

47 \ifx \protect\@typeset@protect
48 \expandafter \@firstoftwo
49 \else \expandafter \@secondoftwo \fi}

\nvSelfProtect{〈cmd-char〉}{〈typeset〉}

is another idea. In “typesetting mode,” 〈typeset〉 is run. Otherwise a single un-
expanded token 〈cmd-char〉 remains. TODO bad at \shipout. No \protect ap-
pears, and as opposed to LATEX’s protection mechanism, running 〈typeset〉 does
not require a second macro name. The idea is that \nvSelfProtect{#1}{#2}
is the definition (substitution text—on token level) of 〈cmd-char〉.9

50 \newcommand*{\nvSelfProtect}[2]{%
51 \ifx \protect\@typeset@protect
52 \nv_expand_else{#2}% %% braces 2014/03/26
53 % \else \protect#1\fi}
54 \else \noexpand#1\fi} %% works 2014/03/28
55 \def\nv_expand_else#1\else#2\fi{\fi#1}

9This may go into a separate package under a different name later.

2 THE PACKAGE FILE 11

Sometimes “control sequences” get definitions with \svSelfProtect below
whose first argument then is an active character—the “control sequence” then
is the “permanent alias” of the active character. This is a somewhat “in-
direct self”-protection. At other places, the “self”-protection is more di-
rect. Then \NewSelfProtectedCommand{〈cmd〉}{〈def 〉} avoids mistakes from
mistyping 〈cmd〉 and saves some code. It works like \newcommand*, provides
the \svSelfProtect, and your definition 〈def 〉 needs to contain the second
argument of \svSelfProtect only. Arguments are not supported currently
(TODO—well, 3 applications 2014/03/27):

56 \newcommand*{\NewSelfProtectedCommand}[2]{%
57 \newcommand*#1{\nvSelfProtect#1{#2}}}
58 \@onlypreamble\NewSelfProtectedCommand

TODO 3 applications for the permanent alias case, saving catcode changes . . .
Testing:

59 \newcommand*{\nvShowProtectedEdef}[1]{%
60 \protected@edef\@tempa{#1}\show\@tempa}

2.1.5 Shared Shorthand Macros

\begin_min_verb is a beginning shared by some macros here. It begins like
LATEX’s \verb, apart from the final \tt. \bgroup is needed for \hbox and must
be balanced by an \egroup counterpart later.

61 \newcommand*{\begin_min_verb}{%
62 \relax \ifmmode \hbox \else \leavevmode\null \fi
63 \bgroup \tt}

For typographical additions (“decorations”) to the verbatim material, we collect
it in a box register addressed by \niceverb_savebox :

64 \newsavebox\niceverb_savebox

\SetNiceVerbSaveBox starts reading the (“meta-”)verbatim material:
65 \newcommand*{\SetNiceVerbSaveBox}{%
66 \setbox\niceverb_savebox\hbox\bgroup}

\NVerb , \HardNVerb , or \NiceMaybeMetaVerb with an optional argument
about as [\〈id〉_egroup] should follow, cf. Sec. 2.2.1.—There have been two
applications only up to now (2014/03/19), but this may change soon.10

\TheNiceVerbSaveBox allows referring to the verbatim material collected,
in order to place it a single time—and no surrounding braces are needed:

67 \newcommand*{\TheNiceVerbSaveBox}{\box\niceverb_savebox}

TODO:
\NewNiceVerbDecoration{\〈deco〉}{\〈end-name〉}{〈start〉}{〈end-code〉}

might save from typing \〈end-name〉 twice and from typing the two \egroups.
TODO left quote verb moving: braces get lost.

10Thought of \qtdnverb, but this doesn’t need this kind of treatment.

2 THE PACKAGE FILE 12

2.2 Implementation of the “Nice” Syntax
2.2.1 \NVerb

Discovered mistakes in this section 2014/03/19, with respect to robustness.
(i) \NVerb not really was meant to be a user command, to appear in docu-
mentation code (rather to be internal). (ii) The attempt to make it robust
was incomplete. (iii) The code for “not typesetting” was strange. (iv) It is
difficult to imagine that somebody attempts to use “verbatim” code, e.g., in a
section title (while with our &/\string it’s ok). At least handy replacement for
\textsf. Well, let’s see. May be I once find a useful application. So I repair
the code—\protect before _. . ._false. \NVerb〈char〉〈code〉〈char〉 :

68 \newcommand*{\NVerb}{%
69 \protect_no_nice_meta_verb_false \NiceMaybeMetaVerb}

\HardNVerb〈char〉〈code〉〈char〉 does not recognize meta-variables:

70 \newcommand*{\HardNVerb}{%
71 \protect_no_nice_meta_verb_true \NiceMaybeMetaVerb}
72 \newif\if_no_nice_meta_verb_

v0.6 equips both \NVerb[〈end-cmd〉] and \HardNVerb[〈end-cmd〉] with an
optional argument for a single parameter-less macro for what to do after reading
verbatim text—for boxing or quoting etc.11 \niceverb_egroup then is useless
and removed. Macros that were assigned to it before v0.6 move into the new
optional arguments.—Actually, the next macro \NiceMaybeMetaVerb shared
by \NVerb and \HardNVerb gets the optional argument: TODO!?

73 % \newcommand*{\nice_maybe_meta_verb}[1]{%

74 \newcommand*{\NiceMaybeMetaVerb}[2][\niceverb_normal_egroup]{%

\newcommand with v0.6 must suffice for robustness, so removing 2014/03/20:

75 % \IfTypesetting{%

Mainly avoid \verb’s noligs list which overrides definitions of some active char-
acters, while cmtt doesn’t have any ligatures anyway.

76 \begin_min_verb
77 \let\do\MakeOther \dospecials

Turn off niceverb specials:
11The goal resembles that of \collectverb in Martin Scharrer’s newverbs. A difference

in implementation is that the character delimiting the verbatim text is used as a parameter
delimiter for a new/temporary macro. So the verbatim characters are fixed. Our approach
will be collecting the verbatim material in a box, if we need something more complex than
\niceverb_mormal_egroup. This allows changing category codes with \MetaVar again, al-
though there hasn’t been a need for this so far. It might be useful for allowing shorthand
macros in \MetaVar’s argument.

http://www.ctan.org/pkg/newverbs

2 THE PACKAGE FILE 13

78 \MakeOther\|\MakeOther\‘\MakeOther\’%
79 \if_no_nice_meta_verb_ \MakeOther\<%
80 %%% \else \MakeActiveLet\<\MetaVar %% 2010/12/31
81 \else \MakeActiveLetHere\<\MetaVar %% 2011/06/20
82 \fi
83 % \MakeActiveLetHere #2\niceverb_egroup
84 \MakeActiveLetHere #2#1% %% 2014/03/18

After the previous line has worked, we use \def instead of \let, so there is no
longer a need to choose a command name for the verbatim delimiter – well, no,
don’t define the same macro several times. Also, the same “end” macro might
be used for different purposes, e.g., when a macro in an eventual expansion of
the “end” macro is modified.

85 % \MakeActiveDef #2{#1}% %% 2014/03/18
86 \verb@eol@error %% TODO change message 2009/04/09
87 % }{\string\NVerb \string#1}}

← both \string very strange (second one finds 〈char〉—maybe it’s active—
but then its next occurrence delimiting the verbatim code will harm too!), also
redirecting to \NVerb. (May have been ok for entries to auxiliary files.) New
difficulties come from the optional argument, which needs protection as well.—
Ok, the optional argument is not protected, and active characters 〈char〉 must
“protect themselves,” so use of \IfTypesetting changes, cf. Sec. 2.1.4.

88 }

[2014/03/19 removing/hiding remarks from 2009f. that I don’t understand any-
more . . .]

89 \newcommand*{\niceverb_normal_egroup}{%
90 \egroup
91 \niceverb_maybe_rq %% 2011/09/09 for \AddQuotes
92 \ifmmode\else\@\fi}
93 % \@ifdefinable\niceverb_egroup %% rm 2014/03/18
94 % {\let\niceverb_egroup\niceverb_normal_egroup}

2.2.2 Single Quotes Typeset Meta-Code

\LQverb will be a “permanent alias” for the active left single quote.
The verbatim feature must not act when another single left quote is ahead—

we assume a double quote is intended then, and we typeset it (thus the left quote
feature does not allow to typeset something verbatim that starts with a single
left quote). In page headers, a \protect could be in the way before v0.6. (A
hook for \relaxing certain things in \markboth and \markright would have
been an alternative. TODO)

95 \MakeActive\‘
96 \newcommand*{\LQverb}{%
97 % \IfTypesetting{\lq_double_test}{\protect‘}}

2 THE PACKAGE FILE 14

New approach v0.6:

98 \nvSelfProtect‘\lq_double_test}
99 % \IfTypesetting{\lq_double_test}{\noexpand‘}}

100 \MakeOther\‘
101 \newcommand*{\lq_double_test}{%

This test settles the next catcode, so better switch to “other” in advance (won’t
harm if left quote isn’t next): TODO switch what?

102 \begingroup
103 \let\do\MakeOther \dospecials
104 \MakeOther\|%% 2010/03/09!
105 \futurelet\let_token \lq_double_decide}
106 \newcommand*{\lq_double_decide}{%
107 \ifx\let_token\LQverb
108 \endgroup
109 ‘‘\expandafter \@gobble

. . . alternative . . .

110 % \expandafter ‘%

does not recognize next left quote—why? TODO—Corresponding right quotes
will become “other” due to having no space at the left. TODO to be changed
with wiki.sty.

111 \else
112 % \ifx\let_token\protect %% rm. 2014/03/28
113 % % \show\let_token %% indeed before v0.6, 2014/03/24
114 % \expandafter\expandafter\expandafter \lq_double_decide_ii
115 % \else
116 \endgroup
117 \niceverb_maybe_qs %% 2011/09/09
118 \expandafter\expandafter\expandafter \NVerb
119 \expandafter\expandafter\expandafter \’%
120 % \fi
121 \fi}

\lq_double_decide_ii continues test behind \protect.

122 \newcommand*{\lq_double_decide_ii}[1]{%
123 \futurelet\let_token \lq_double_decide}

2.2.3 Ampersand (or \cstx) Typesets Meta-Code

\CmdSyntaxVerb will be a permanent alias for the active &.

124 \MakeActive\&
125 \newcommand*{\CmdSyntaxVerb}{%
126 \IfTypesetting{%
127 \begin_min_verb

2 THE PACKAGE FILE 15

v0.3 moves the previous line from \cmd_syntax_verb where it is too late to
establish private letters according to next line which was in \begin_min_verb
earlier—an important bug fix!

128 \private_letters %% v0.5
129 \cmd_syntax_verb
130 % }{\protect&\string}}
131 % }{\noexpand&\string}}

. . . with \string, in an \edef, the following command cannot be properly
typeset, so

132 }{\noexpand&\noexpand}} %% 2014/03/26

TODO actually test non-typesetting, maybe introduce macros that perform tests
anywhere . . .

133 \MakeNormal\&
134 \newcommand*{\cmd_syntax_verb}[1]{%
135 \string#1\futurelet\let_token \after_cs}

However, & (or \CmdSyntaxVerb) may fail with private letters, especially in
macro arguments12 and with hyperref in titles of sections bearing \labels, so
we provide something like \cs{〈characters〉} from tugboat.sty.

136 \DeclareRobustCommand*{\cs}[1]{%
137 % \begin_min_verb \backslash_verb #1\egroup}

. . . fails with _ in footnote today (2014/03/19) so:

138 \begin_min_verb \withcsname\string#1\endcsname\egroup} %% v0.6
139 \newcommand*{\backslash_verb}{\char‘\\}

Moreover, typing &\par in “short” macro arguments fails, you better type
\cs{par} then. Likewise, \cs{if〈letters〉} and \cs{fi} is safer in case you
want to skip some part of the documentation (e.g., a package option skips
commented code) by \if〈letters〉\fi. Finally, there will be PDF bookmarks
support for \cs rather than for a real & or \CmdSyntaxVerb analogue like
\cstx{〈characters〉}*[〈opt〉]{〈mand〉} as follows.

140 \DeclareRobustCommand*{\cstx}[1]{% %% corr. 2010/03/17
141 % \begin_min_verb \backslash_verb #1%

v0.6 like above:

142 \begin_min_verb \withcsname\string#1\endcsname
143 \futurelet\let_token \after_cs}
144 \newcommand*{\after_cs}{%
145 \ifcat\noexpand\let_token a\egroup \space
146 \else \expandafter \decide_verb \fi}
147 \newcommand*{\test_more_verb}{\futurelet\let_token \decide_verb}

12TODO: vfoot2e.sty – see notes.

http://www.ctan.org/pkg/tugboat

2 THE PACKAGE FILE 16

148 \newcommand*{\decide_verb}{%
149 \jumpteg_on_with\bgroup\braces_verb
150 \jumpteg_on_with[\brackets_verb
151 \jumpteg_on_with*\star_verb
152 \egroup}
153 %% CAUTION/TODO wrong before (... if cmd without arg
154 %% use \ then or choose usual verb...
155 %% or \MakeLetter\(etc. ... or \xspace
156 \newcommand*{\jumpteg_on_with}[2]{%
157 \ifx\let_token#1\do_jumpteg_with#2\fi}

TODO cf. xfor, xspace (\break@loop); \DoOrBranch#1 . . . #1 or so.

158 \def\do_jumpteg_with#1#2\egroup{\fi#1}
159 \def\braces_verb#1{\string{#1\string}\test_more_verb}
160 \def\brackets_verb[#1]{[#1]\test_more_verb}
161 \def\star_verb*{*\test_more_verb}
162 %% not needed with \Auto... OTHERWISE useful in args!

As latex.ltx has \endgraf as a permanent alias for the primitive version of \par
and \endline for \cr, we offer \endcell as a replacement for the original &:

163 \let\endcell&

2.2.4 Escape Character Typesets Meta-Code

\BuildCsSyntax will be a permanent alias for the active escape character.

164 \DeclareRobustCommand*{\BuildCsSyntax}{%
165 \futurelet\let_token \build_cs_syntax_sp}
166 \newcommand*{\build_cs_syntax_sp}{%
167 \ifx\let_token\@sptoken
168 \@% %% 2010/12/30
169 \else %% TODO ˆˆM!?
170 \expandafter \start_build_cs_syntax
171 \fi}
172 \newcommand*{\start_build_cs_syntax}[1]{%
173 \edef\string_built{\string#1}%

#1 may be active.—With Donald Arseneau’s import.sty (e.g.), ‘_’ may be needed
to be \active with the meaning of \textunderscore, therefore restoring its
category code needs some more care than with v0.32 and earlier:

174 \edef\before_build_cs_sub{\the\CatCode_}%
175 \private_letters %% v0.5
176 \test_more_cs}
177 \newcommand*{\test_more_cs}{%
178 \futurelet\let_token \decide_more_cs}
179 \newcommand*{\decide_more_cs}{%
180 \ifcat\noexpand\let_token a\expandafter \add_to_cs
181 \else
182 % \MakeNormalHere_

2 THE PACKAGE FILE 17

Restoring ‘_’ more carefully with v0.4 (\begingroup . . . \endgroup!?):

183 \CatCode_\before_build_cs_sub
184 \MakeOther\@%
185 % \expandafter \in@ \expandafter
186 % {\csname \string_built \expandafter \endcsname
187 % \expandafter}\expandafter{\niceverbNoVerbList}%
188 %% <- useless braces 2014/07/17 ->
189 \expandafter \in@ \csname \string_built \expandafter
190 \endcsname \expandafter {\niceverbNoVerbList}%
191 \ifin@
192 \csname \string_built
193 \expandafter\expandafter\expandafter \endcsname
194 \else
195 \begin_min_verb \backslash_verb\string_built
196 \expandafter\expandafter\expandafter \test_more_verb
197 \fi
198 \fi}
199 %% TODO such \if nestings with ifthen!?
200 %% cf.:
201 % \let\let_token,\typeout{\meaning\let_token}
202 %% TEST TODO fuer xspace!? (\ifin@)
203 \newcommand*{\add_to_cs}[1]{%
204 \edef\string_built{\string_built#1}\test_more_cs}

\AutoCmdSyntaxVerb starts, \EndAutoCmdSyntaxVerb ends “auto mode.”

205 \newcommand*{\AutoCmdSyntaxVerb}{%
206 \MakeActiveLetHere\\\BuildCsSyntax}
207 \newcommand*{\EndAutoCmdSyntaxVerb}{\CatCode\\\z@}

\NormalCommand{〈characters〉} executes \〈characters〉 in “auto mode.”

208 \newcommand*{\NormalCommand}{} \let\NormalCommand\@nameuse

Once I may want to use this feature in Wikipedia-like section titles as supported
by makedoc, yet I cannot really apply the present feature soon, so this must
wait . . . (There is a special problem with \newlabel and hyperref . . .)

Former tests:

209 % \futurelet\LetToken\relax \relax
210 % \show\LetToken \typeout{\ifcat\noexpand\LetToken aa\else x\fi}

\niceverbNoVerbList is the list of macros that will be executed instead of
being typeset.

211 \newcommand*{\niceverbNoVerbList}{%
212 \begin\end\item\verb\EndAutoCmdSyntaxVerb\NormalCommand
213 \section\subsection\subsubsection} %% TODO!?

2 THE PACKAGE FILE 18

\AddToMacro{\niceverbNoVerbList}{〈macros〉} can be used to add 〈macros〉
to that list.

214 \providecommand*{\AddToMacro}[2]{% %% TODO move to ... 2010/03/05
215 \expandafter \def \expandafter #1\expandafter {#1#2}}
216 %% <- was very wrong 2010/03/18

Hey, or just \AddToNoVerbList{〈macros〉} :

217 \newcommand*{\AddToNoVerbList}{\AddToMacro\niceverbNoVerbList}

“Auto mode” probably ain’t mean a thing if it ain’t invoked using

\AutoCmdInput{〈file〉}

for typesetting 〈file〉 in “auto mode:”

218 \newcommand*{\AutoCmdInput}[1]{%
219 \begingroup
220 \AddToMacro\niceverbNoVerbList{\ProvidesFile}%
221 %% <- removed ‘\endinput’, will be code! 2010/04/05
222 \AutoCmdSyntaxVerb
223 \input{#1}%
224 \EndAutoCmdSyntaxVerb
225 \endgroup
226 }

2.2.5 Meta-Variables

\MetaVar〈var-id〉> will be a permanent alias for the active ‘<’. v0.6 simplifies
\pdfstringdefDisableCommands.

227 % \def\MetaVar#1>{%
228 \MakeActive\<
229 \newcommand*{\MetaVar}{\nvSelfProtect>\nvMetaVar}
230 \MakeOther\<
231 \def\nvMetaVar#1>{%
232 \mbox{\normalfont\itshape \langle#1\/\rangle}}

As opposed to ltxguide.cls, this works outside verbatim as well. TODO: offer
without angles as well

2.2.6 Hash Mark is Code

\HashVerb〈digit〉 will be a permanent alias for the active hash mark.

233 \newcommand*{\HashVerb}[1]{{\tt\##1}}

2 THE PACKAGE FILE 19

2.2.7 Single Right Quotes for \textsf

\RQsansserif will be a permanent alias for the active single right quote.
One essential problem with the single right quote feature is that a single

right quote may be meant to be an apostrophe. This is certainly the case at
the right of a letter. On the other hand, we assume that it is not an apostrophe
(i) in vertical mode (opening a new paragraph), (ii) after a horizontal skip.

Another problem is that with and LATEX (as with Plain TEX—The TEXbook
p. 357), the right single quote is needed for primes in math mode, and LATEX
enforces this in \@outputpage preparing \writes (why? TODO) as well as page
headers.

234 \MakeActive\’
235 \newcommand*{\niceverb_rq_choice}[1]{% %% 2014/03/27

We make a deal with \active@math@prime: in math mode, the prime func-
tionality acts; outside, the “right quote sansserif mode” acts. Test: a′ now
works with niceverb.—For page headers, in expanding without typesetting, the
expansion of \RQsansserif must contain another active single right quote.

236 \nvSelfProtect’{\ifmmode
237 \expandafter\active@math@prime
238 \else
239 \expandafter#1%
240 \fi}}

The following \do_rq_sansserif is what \DoRQsansserif below was before
v0.6. This, too, must be changed for \active@math@char, and earlier use of
\DoRQsansserif in \niceverb_rq_sf_test must be replaced.

241 \@ifdefinable\do_rq_sansserif
242 {\def\do_rq_sansserif#1’{\textsf{#1}}}
243 \newcommand*{\RQsansserif}{%
244 % \IfTypesetting{\niceverb_rq_sf_test}{\protect’}}
245 \niceverb_rq_choice\niceverb_rq_sf_test}
246 \MakeOther\’

Another macro just to avoid more sequences of \expandafter:

247 \newcommand*{\niceverb_rq_sf_test}{%
248 \ifhmode
249 \ifdim\lastskip>\z@
250 % \expandafter\expandafter\expandafter \DoRQsansserif
251 \expandafter\expandafter\expandafter \do_rq_sansserif
252 \else
253 \ifnum\niceverb_spacefactor
254 \expandafter\expandafter\expandafter\expandafter
255 \expandafter\expandafter\expandafter
256 \do_rq_sansserif %%% \DoRQsansserif
257 \else ’\fi
258 \fi

2 THE PACKAGE FILE 20

259 \else \ifvmode
260 % \expandafter\expandafter\expandafter \DoRQsansserif
261 \expandafter\expandafter\expandafter \do_rq_sansserif
262 \else ’\fi
263 \fi}
264 % \nvShowProtectedEdef{’niceverb’}
265 \MakeOther\’

\DoRQsansserif is another (possible) alias for the active single right quote,
below.

266 \newcommand*{\DoRQsansserif}{%
267 \niceverb_rq_choice\do_rq_sansserif} %% 2014/03/27

The following cases are typical and cannot be decided by the previous cri-
teria: (i) parenthesis, (ii) footnotes and after “horizontal” environments like
\[〈math〉\], (iii) section titles, (iv) \noindent. We introduce some danger-
ous tricks—redefinitions of LATEX’s internal \@sect and of TEX’s primitives
\noindent and \ignorespaces as well as by a signal \spacefactor value of
1001.

\nvAllowRQSS becomes more powerful with v0.6, for Sec. 2.3.5:

268 \NewSelfProtectedCommand{\nvAllowRQSS}{%
269 \MakeActiveLetHere\’\RQsansserif
270 \niceverb_rqsf %% 2014/03/27
271 \niceverb_ignore} %% 2010/03/16

These and the entire right quote functionality are activated by

\nvRightQuoteSansSerif and disabled by \nvRightQuoteNormal

—at \begin{document}—where we collect previous settings—or later:

272 \AtBeginDocument{%
273 \edef\before_niceverb_parenthesis{\the\sfcode‘\(}%
274 \newlet \before_niceverb_ignore \ignorespaces %% 2010/03/16
275 \newlet \before_niceverb_sect \@sect %% \newlet 2014/03/25
276 \newlet \before_niceverb_noindent \noindent} %% 2010/03/08

We assume that \@sect has the same parameters there as in LATEX (even if
redefined by another package, like hyperref).

277 \def\niceverb_sect#1#2#3#4#5#6[#7]#8{%
278 \before_niceverb_sect{#1}{#2}{#3}{#4}{#5}{#6}%
279 % [{\protect\nvAllowRQSS #7}]%
280 % {\protect\nvAllowRQSS #8}}

With v0.6, a more general \NiceVerbMove{〈text〉} is introduced, defined in
Sec. 2.3.5:

281 [\NiceVerbMove{#7}]%
282 {\NiceVerbMove{#8}}}

2 THE PACKAGE FILE 21

2010/03/20:

283 \newcommand*{\niceverb_spacefactor}{\spacefactor=1001\relax}
284 \newcommand*{\niceverb_noindent}{%
285 \before_niceverb_noindent \niceverb_spacefactor}
286 \newcommand*{\niceverb_ignore}{%
287 \ifhmode \niceverb_spacefactor \fi \before_niceverb_ignore}

Here are the main switches. With v0.6, \nvRightQuoteSansSerif is divided
into two parts, for Sec. 2.3.5:

288 \newcommand*{\niceverb_rqsf}{% %% 2014/03/27
289 % \MakeActiveLet\’\RQsansserif
290 \sfcode‘\(=1001 %% enable in parentheses 2009/04/10

I also added \sfcode‘/=1001 in the preamble of makedoc.tex.

291 % \let\@footnotetext\niceverb_footnotetext
292 \let\ignorespaces\niceverb_ignore %% 2010/03/16
293 % \let\@sect\niceverb_sect
294 \let\noindent\niceverb_noindent} %% 2010/03/08
295 \newcommand*{\nvRightQuoteSansSerif}{%
296 \niceverb_rqsf
297 \MakeActiveLet\’\RQsansserif
298 \let\@sect\niceverb_sect
299 \def\niceverb_rqsf_kind{\nvAllowRQSS}}

← It really must be \def in order to transmit the choice to the table of contents.
With v0.6, in dealing with moving things in Sec. 2.3.5, section titles are

handled in a more complex way. We divide the former \nvRightQuoteNormal
into two parts:

300 \newcommand*{\niceverb_rq_normal}{%
301 % \MakeNormal\’% %% 2010/03/21
302 \sfcode‘\(=\before_niceverb_parenthesis\relax
303 \let\ignorespaces\before_niceverb_ignore %% 2010/03/16
304 \let\noindent\before_niceverb_noindent} %% 2010/03/08
305 \MakeActive\‘
306 \newcommand*{\nvRightQuoteNormal}{%
307 \MakeNormal\’% %% 2010/03/21
308 \niceverb_rq_normal
309 \let\nv_rqsf_kind\@empty
310 \ifnum\CatCode\‘=\active %% ‘=’ missing 2015/11/09
311 \ifx‘\LQverb \else
312 \let\@sect\before_niceverb_sect
313 \fi
314 \else
315 \let\@sect\before_niceverb_sect
316 \fi}
317 \MakeOther\‘

2 THE PACKAGE FILE 22

\nvAllRightQuotesSansSerif (after \begin{document}!) forces the \textsf
feature without testing for apostrophes. You then must be sure—DANGER!
CARE!—to use ‘\rq’ only for obtaining an apostrophe and the double quote
character ‘"’ for closing double quotes, or our \dqtd{〈text〉} for the entire quot-
ing.

318 \newcommand*{\nvAllRightQuotesSansSerif}{%
319 \niceverb_rq_normal %%% \nvRightQuoteNormal %% 2014/03/27

That’s one use of \DoRQsansserif with v0.6:

320 \MakeActiveLet\’\DoRQsansserif
321 \def\niceverb_rqsf_kind{\nvAllRQSS}} %% 2014/03/27

← must be \def for transmissions.

322 \NewSelfProtectedCommand{\nvAllRQSS}{%
323 \niceverb_rq_normal

That’s the other use of \DoRQsansserif with v0.6:

324 \MakeActiveLetHere\’\DoRQsansserif}

[Hiding remarks from 2010f. (\ctanpkgref) 2014/03/23]

2.2.8 Boxes Highlighting Commands and Syntax

With v0.3, we include one kind of command syntax boxes whose 〈content〉 is (in
niceverb syntax) delimited as |〈content〉| . \GenCmdBox〈char〉〈content〉〈char〉}
works like \NVerb〈char〉〈content〉〈char〉 except putting the latter’s result into a
framed (or coloured or . . .) box.

325 \newcommand*{\GenCmdBox} {_no_nice_meta_verb_false \gen_cmd_box}

\HardVerbBox is a variant of \GenCmdBox with the meta-variable feature dis-
abled (for the documentation of the present package).

326 \newcommand*{\HardVerbBox}{_no_nice_meta_verb_true \gen_cmd_box}
327 \newcommand*{\gen_cmd_box}{%
328 % \let\niceverb_egroup\nice_collect_verb_egroup %% rm 2014/03/18
329 % \setbox\niceverb_savebox \hbox\bgroup

← 2014/03/19 →

330 \SetNiceVerbSaveBox
331 % \if_no_nice_meta_verb_
332 % \expandafter \HardNVerb
333 % \else \expandafter \NVerb \fi

← 2014/03/19 → [TODO use generalization]

2 THE PACKAGE FILE 23

334 \NiceMaybeMetaVerb[\nice_collect_verb_egroup]%
335 }
336 \newcommand*{\nice_collect_verb_egroup}{%
337 \egroup \egroup
338 \ifvmode \expandafter \VerticalCmdBox
339 \else \ifmmode \hbox \fi
340 \expandafter \InlineCmdBox \fi
341 % {\box\niceverb_savebox}%

← 2014/03/19 →

342 \TheNiceVerbSaveBox

(Removing a remark that I don’t understand 2014/03/19.)

343 \ifmmode\else\@\fi
344 % \let\niceverb_egroup\niceverb_normal_egroup %% rm 2014/03/19
345 }

\nvCmdBox will be the permanent alias for ‘|’.

346 \newcommand*{\nvCmdBox}{\GenCmdBox\|}

\VerticalCmdBox{〈content〉} may eventually start a decl environment as in
ltxguide.cls, looking ahead for another ‘|’ in order to (perhaps) append another
row. Another possibility is first to do some

\if@nobreak\else␣\pagebreak[2]\fi

etc. and then invoke \InlineCmdBox. The user can choose later by some
\renewcommand. We do the perhaps most essential thing here (again cf.
\begin_min_verb):

347 \newcommand*{\VerticalCmdBox}{%

v0.6 encourages a page break here according to the above idea, in order to
avoid a page break after explaining subsequent code (TODO: that’s a major
functionality change):

348 \if@nobreak\else \pagebreak[2]\fi
349 \leavevmode\InlineCmdBox}

(2011/11/05 removing \null.) The command declaration boxes in the docu-
mentation of Nicola Talbot’s datatool would be an especially nice realization of
\VerticalCmdBox.13

\InlineCmdBox{〈content〉} , according to our idea, should not change base-
line skip, even with some \fboxsep and \fboxrule. (However, it may be a good
idea to increase the overall normal baseline skip.) We therefore replace actual
height and depth of the content by the height and depth of math parentheses.

13I find the documentation of Martin Scharrer’s newverbs package similarly impressive.

http://www.ctan.org/pkg/datatool
http://www.ctan.org/pkg/newverbs

2 THE PACKAGE FILE 24

350 \newcommand*{\InlineCmdBox}[1]{%
351 \bgroup

. . . needed in math mode with \begin_min_verb.

352 \fboxsep 1pt
353 \kern\SetOffInlineCmdBoxOuter
354 \smash{\SetOffInlineCmdBox{\kern\SetOffInlineCmdBoxInner
355 \InlineCmdBoxArea{#1}%
356 \kern\SetOffInlineCmdBoxInner}}%
357 \mathstrut
358 \kern\SetOffInlineCmdBoxOuter
359 \egroup
360 }

The default choice for \SetOffInlineCmdBox is \fbox:

361 \newlet\SetOffInlineCmdBox\fbox

You can \renewcommand it to change \fboxsep, \fboxrule etc. or to use a
\colorbox with the color package, e.g., I used the following setting so far:

\RequirePackage{color}
\renewcommand*{\SetOffInlineCmdBox}

{\colorbox[cmyk]{.1,0,.2,.05}}

\SetOffInlineCmdBoxInner enables controlling the inner horizontal space to
the box margin independently of \fboxsep.

362 \newcommand*{\SetOffInlineCmdBoxInner}{-\fboxsep\thinspace}

This choice is inspired by \cstok for “boxed” things in Knuth’s manmac.tex
which formats The TEXbook.

\SetOffInlineCmdBoxOuter allows that the box hangs out into the margin
horizontally. We set it to 0 pt as default (it is a macro only, for a while).

363 \newcommand*{\SetOffInlineCmdBoxOuter}{\z@}

The height and depth of the frame should be the same for all inline boxes, we
think. The present choice \InnerCmdBoxArea for the spacing respects code
characters rather than the height and depth of the angle brackets that surround
meta-variable names.

364 \newcommand*{\InlineCmdBoxArea}[1]{%
365 \smash{#1}\vphantom{gjpq\backslash_verb}}

\cmdboxitem|〈content〉| is another variant of \GenCmdBox. It should replace
\item[〈content〉] in the description environment.

366 \newcommand*{\cmdboxitem}{%
367 % \bgroup
368 % \let\niceverb_egroup\cmd_item_egroup
369 % \global %% TODO!? 2010/03/15
370 % \setbox\niceverb_savebox \hbox\bgroup

2 THE PACKAGE FILE 25

← 2014/03/19 →

371 \SetNiceVerbSaveBox
372 % \NVerb}

← 2014/03/19 →

373 \NVerb[\cmd_item_egroup]}
374 \newcommand*{\cmd_item_egroup}{%
375 \egroup \egroup %%% \egroup %% 1 less 2014/03/19
376 \item[\InlineCmdBox\TheNiceVerbSaveBox]}

Does it work?

\foo{〈arg〉} could be defined for a test.

\bar{〈arg〉} could be defined for a test as well.

2.3 When niceverb Gets Nasty
These things are new with v0.3.

2.3.1 Meta-Variables

This is even newer than v0.3.
In case you actually need < and > in math mode, \lt and \gt are “pro-

vided” as aliases:

377 \providecommand*{\gt}{>}
378 \providecommand*{\lt}{<}

2.3.2 Quotes

In order to get real single quotes, you could use \lq␣〈text〉\rq, maybe appending
a \␣, but the code \qtd{〈text〉} may look better and be easier to type.

379 \providecommand*{\qtd}[1]{‘#1’} %% provide 2012/11/27

However, here we get the problem that the left quote in \qtd{‘〈code〉’} will
be unable to switch into verbatim mode entirely—then use &, e.g., ‘\qtd{&&}’
typesets “&”, i.e., the ampersand in single (non-verbatim) quotes.

380 % todo \qtdverb!? alternative meaning for \LQverb!? 2010/03/06
381 % rather rare, & takes less space 2010/03/09

. . . see approaches below . . .
\AddQuotes automatically surrounds code with single quotes. I have so

often felt that it was a design mistake to drop them (2011/09/09):

382 \newcommand*{\AddQuotes}{%
383 \let\niceverb_maybe_qs\niceverb_add_qs}
384 \newcommand*{\niceverb_add_qs}{%

2 THE PACKAGE FILE 26

In a math display, quotes are suppressed even with \AddQuotes:

385 \ifmmode\else
386 ‘\let\niceverb_maybe_rq\niceverb_rq
387 \fi}
388 \newlet\niceverb_maybe_rq\relax
389 \newcommand*{\niceverb_rq}{’\let\niceverb_maybe_rq\relax}

You can undo this by \DontAddQuotes :

390 \newcommand*{\DontAddQuotes}{\let\niceverb_maybe_qs\relax}

The default will be the behaviour that we had before:

391 \DontAddQuotes

With v0.6, \qtdnverb〈char〉〈m-verb〉〈char〉 encloses the “meta-verbatim” ma-
terial with single quotes:

392 \newcommand*{\qtdnverb}{%

Don’t . . . after \AddQuotes:—TODO

393 \ifx\niceverb_maybe_qs\niceverb_add_qs
394 \expandafter\NVerb
395 \else
396 \lq
397 % \expandafter\NVerb\expandafter[\expandafter\egroup\expandafter]
398 \fi}

\dqtd{〈text〉} can be used for enclosing in double quotes with the dangerous
\nvAllRightQuotesSansSerif (see above).

399 \providecommand*{\dqtd}[1]{‘‘#1"} %% 2012/11/27

2.3.3 hyperref

This is for/about compatibility with the hyperref package. (One preliminary
thing: in doubt, don’t load niceverb earlier than hyperref.)

We need some substitutions for PDF bookmarks with hyperref. We issue
them at \begin{document} when we know if hyperref is at work.14

400 \AtBeginDocument{%
401 \@ifpackageloaded{hyperref}{%
402 \newcommand*{\PDFcstring}{% %% moved here 2010/03/09
403 \134\expandafter\@gobble\string}% %% ASCII octal encoding
404 \pdfstringdefDisableCommands{%
405 \let\nvAllowRQSS\empty %% not \relax 2010/03/12
406 \let\NiceVerbGeneral\empty %% 2014/03/27
407 \let\nvAllRQSS\empty %% 2014/03/27
408 \MakeActiveLetHere\<<% %% 2014/03/28

14An alternative approach would be using afterpackage by Alex Rozhenko.

http://www.ctan.org/pkg/afterpackage

2 THE PACKAGE FILE 27

409 %% 2010/03/12
410 \MakeActiveLetHere\‘\lq \MakeActiveLetHere\’\rq
411 \MakeActiveLetHere\&\PDFcstring
412 \def\cs{\134}% %% 2010/03/17, 2011/06/27

The typesetting version of \BuildCsSyntax (Sec. 2.2.4): 2014/07/16

413 \withcsname\def BuildCsSyntax \endcsname{\cs}%

. . . disables \niceverbNoVerbList; better switch off auto mode with section
headings TODO (modify \@startsection)

414 \let\decide_more_cs\bookmark_more_cs
415 }%

Moreover, in order to avoid spurious Label(s) may have changed with hyper-
ref, a single right quote must be read as active by a \newlabel if and only if it
has been active when \@currentlabelname was formed.15 as \active. We use
\protected@write as this cares for \nofiles. \@auxout may be \@partaux
for \include.

416 \newcommand*{\niceverb_aux_cat}[2]{% %% 2010/03/14
417 \protected@write\@auxout{}{\string#1\string#2}}%

v0.5 restricts “activating” to \MakeActiveLet:

418 % \renewcommand*{\MakeActive}[1]{%
419 % \MakeActiveHere#1%
420 % \niceverb_aux_cat\MakeActiveHere#1}%
421 \renewcommand*{\MakeActiveLet}[2]{%
422 \MakeActiveLetHere#1#2%
423 % \niceverb_aux_cat\MakeActiveHere#1}%
424 \protected@write\@auxout{}{%
425 \string\MakeActiveLetHere\string#1\string#2}}%
426 \renewcommand*{\MakeNormal}[1]{%
427 \MakeNormalHere#1%
428 \niceverb_aux_cat\MakeNormalHere#1}%
429 }{}%
430 }

2.3.4 hyper-xr

With the hyper-xr package creating links into external documents, preceding
\externaldocument{〈file〉} with \MakeActiveLet\&\CmdSyntaxVerb may be
needed. I do not want to redefine something here right now as I have too little
experience with this situation.

15This uses \@onelevelsanitize, therefore \protect doesn’t change the behaviour of “ac-
tive” characters.

2 THE PACKAGE FILE 28

2.3.5 Listings and Moving

Working on v0.6, in testing I discovered a problem with the listing environ-
ments. The present documentation uses code listings with makedoc, which build
on the moreverb package and eventually call LATEX’s \@noligs macro.16 The
problem also appears with the {verbatim} environment from the LATEX kernel
(latex.ltx) as well as from the verbatim package—with anything that calls LATEX’s
\@noligs. The latter assigns special meangings to the active characters listed in
the \verbatim@nolig@list, three of them need a different meaning with nice-
verb. When a page break happens after such an environment has been entered
(this may well be when the environment falls to the beginning of the next page),
these settings are used in LATEX’s \@outputpage for running the \writes of the
page as well as for page headers. And this happens quite often in a package
documentation!

The problem was reported by Walter Schmidt with respect to math primes
as latex/3104 in 1999. I cannot reproduce it, and I see two reasons in re-
cent latex.ltx code why it cannot happen anymore. However, one remedy
in latex.ltx is activating \active@math@prime in \@resetactivechars of
\@outputpage. But this is bad for niceverb’s single right quote. We over-
ride the \active@math@prime functionality and verbatim \@noligs by ap-
pending some protection of the characters collected in \verbatim@nolig@list
to \@resetactivechars. This solves the problem for \writes at \shipout.
\do_protect_noligs is used for this purpose; actually it is applied in
\useNiceVerb (Sec. 2.3.6):

431 \newcommand*{\do_protect_noligs}[1]{% %% 2014/03/28
432 \MakeActiveLetHere#1\relax} %% ‘Here’ missing 2015/11/09

\nvResetPages can be used to restore LATEX’s \@resetactivechars. I don’t
add it to \noNiceVerb because it could corrupt \writes, so should be used with
care.

433 \AtBeginDocument{%
434 \newlet\latex_reset_actives\@resetactivechars}
435 \newcommand*{\nvResetPages}{%
436 \let\@resetactivechars\latex_reset_actives}

\NiceVerbMove{〈text〉} with v0.6 is for “moving” arguments so that niceverb
syntax operates locally at the destination, I think of table of contents and page
headers. It is automatically used by niceverb’s variant of LATEX’s sectioning
commands (Sec. 2.2.7); while with \markboth, \markright, \addcontentsline
etc. you must it include yourself (currently, TODO?). This is meant as a remedy
against LATEX’s and verbatim’s \@noligs with respect to page headers. How-
ever, another purpose is that you could switch off the niceverb syntax at the
beginning of your document (by \noNiceVerb), though certain entries to the
table of contents can use niceverb syntax without affecting other entries (where

16moreverb is used, and its listing environments use \@verbatim from the verbatim package,
then \verbatim@font calls \@noligs . . .

http://www.ctan.org/pkg/verbatim
http://www.ctan.org/pkg/verbatim
http://www.ctan.org/pkg/moreverb
http://www.ctan.org/pkg/verbatim

2 THE PACKAGE FILE 29

some active characters may have different meanings, perhaps from a different
package).

437 \newcommand*{\NiceVerbMove}[1]{%

What goes to .aux files must not have underscores:
438 {\NiceVerbGeneral\niceverb_rqsf_kind#1}}
439 \NewSelfProtectedCommand{\NiceVerbGeneral}{%

440 % \newcommand*{\useNiceVerbHere}{% %% 2014/03/28
441 \let\MakeActiveLet\MakeActiveLetHere \useNiceVerbI}
442 % \newcommand*{\NiceVerbGeneral}{%
443 % \nvSelfProtect\NiceVerbGeneral\useNiceVerbHere}

2.3.6 Turning off and on altogether

These commands are new with v0.3.
\noNiceVerb disables all niceverb features.

444 \newcommand*{\noNiceVerb} {\MakeNormal\‘%
445 \MakeNormal\&%
446 \MakeNormal\<%
447 \MakeNormal\#%
448 \nvRightQuoteNormal
449 \MakeNormal\|%
450 \let\@sect\niceverb_before_sect} %% 2014/03/27

\useNiceVerb activates all the niceverb features (apart from “auto mode”).
With v0.6, it is divided into two parts for \NiceVerbMove in Sec. 2.3.5:

451 \newcommand*{\useNiceVerbI}{\MakeActiveLet\‘\LQverb

TODO to be changed with wiki.sty v0.2
452 \MakeActiveLet\&\CmdSyntaxVerb
453 \MakeActiveLet\<\MetaVar
454 \MakeActiveLet\#\HashVerb
455 \nvRightQuoteSansSerif
456 \MakeActiveLet\|\nvCmdBox}
457 \newcommand*{\useNiceVerb} {\useNiceVerbI %% 2014/03/27
458 \let\@sect\niceverb_sect
459 \g@addto@macro\@resetactivechars{%
460 % \useNiceVerbHere %% 2014/03/28
461 \let\do\do_protect_noligs \verbatim@nolig@list %% 2014/03/28
462 }}

2.4 Minor Final Things
2.4.1 Activating the niceverb Syntax

niceverb features are activated at \begin{document} so (some) other packages
can be loaded after niceverb. For v0.3, we do this after possible settings for
compatibility with hyperref.

2 THE PACKAGE FILE 30

463 \AtBeginDocument{\useNiceVerb}

2.4.2 Leave Package Mode

464 \PopLetterCat_ %% 2012/08/27
465 \endinput

2.4.3 VERSION HISTORY

466 v0.1 2009/02/21 very first, sent to CTAN
467 v0.2 2009/04/04 ...NoVerbList: \subsubsection, \AddToMacro,
468 2009/04/05 \SimpleVerb makes more other than iii
469 2009/04/06 just uses \dospecials
470 2009/04/08 debugging code for rq/sf, +\relax
471 2009/04/09 +\verb@eol@error, prepared for new doc method,
472 removed spurious \makeat..., -\relax (ligature),
473 2009/04/10 (’-trick
474 2009/04/11 \@ after \SimpleVerb
475 2009/04/14 noted TODO below
476 2009/04/15 change v0.1 to 2009/02/21
477 v0.30 2010/02/27 short, more explained, \AssignCatCodeTo,
478 use \MakeActive for re-activating, \MakeNormal
479 2010/02/28 fixed @ and _ with & by moving \begin_min_verb;
480 replaced \lq by ‘; Capitals in Titles
481 2010/03/05 \SimpleVerb -> \NVerb;
482 use \MakeActive + \MakeNormal; \rq -> ’;
483 renamed some sections; \lq_verb -> \LQverb,
484 \niceverb_meta -> \MetaVar,
485 \param_verb -> \HashVerb
486 2010/03/06 removed \MakeAlign; removed @ and _ todo below;
487 \NVerb makes ‘ and ’ other;
488 \nvAllowRQSF allows ’ in column titles,
489 2010/03/08 \LQverb and & work in column titles,
490 \RQverb works with \noindent;
491 bookmark substitutions
492 2010/03/09 extended notes on ’hyperref’ (in)compatibility;
493 \MakeLetter\@ in \CmdSyntaxVerb only;
494 |...| implemented as \prepareCmdBox etc.!
495 2010/03/10 \colorbox example, \thinspace; ltxguide!;
496 removed todo; ..._exec -> \DoRQsansserif;
497 minor doc changes in ‘‘Nasty"
498 2010/03/11 doc changes in ‘‘Escape Character ..." and
499 ‘‘Ampersand"
500 2010/03/12 \niceverb_aux_cat, \MakeActiveHere etc.,
501 \IfTypesetting, \noNiceVerb, \useNiceVerb,
502 corr. bracing mistake in \MakeNormal!
503 2010/03/14 0.31 -> 0.3; \HardNVerb, \GenCmdBox,
504 \prepareCmdBox -> \nvCmdBox
505 2010/03/15 \endcell; \cmdboxitem; remark on \sfcode‘/
506 2010/03/16 corr. -> \endline;

2 THE PACKAGE FILE 31

507 advice on \cs{par}, \cs{if...}, \cs{fi};
508 redefined \ignorespaces for RQ feature
509 2010/03/17 corr. ‘\fututelet’, corr. \cs PDF substitution
510 2010/03/18 |\niceverbNoVerbList|, |\AddToMacro| etc.;
511 corr. \AddToMacro;
512 \lastskip-fix of \niceverb_ignore,
513 another fix of \niceverb_noindent
514 2010/03/19 another fix of \niceverb_ignore: \spacefactor
515 2010/03/20 ... again: \niceverb_spacefactor
516
517 NOT DISTRIBUTED, just stored saved as separate version
518
519 v0.31 2010/03/20 right quote feauture: letters get \sfcode=1001
520 ‘column title’ -> ‘page headers’, \ctanpkgref
521
522 NOT DISTRIBUTED, just stored as separate version
523
524 v0.32 2010/03/21 taking best things from v0.30 and v0.31
525 2010/03/23 removed \relax from \IfTypesetting
526 SENT TO CTAN
527
528 v0.4 2010/03/27 restoring ‘_’ with "auto mode" safer
529 2010/03/28 \AddToNoVerbList
530 2010/03/29 note above, renamed v0.4
531 SENT TO CTAN
532
533 v0.41 2010/04/03 v0.33 -> v0.4
534 2010/04/05 corrected \AutoCmdInput list
535 SENT TO CTAN as part of NICETEXT release r0.41
536
537 v0.41a 2010/11/09 typo corrected
538 v0.42 2010/12/30 corr. ‘\ ’ emulation in auto mode
539 2010/12/31 \MetaVar in ...maybe_meta...
540 2011/01/19 ‘...’ fix
541 2011/01/24 \ctanpkgref moves to texlinks.sty
542 2011/01/26 update (C)
543 with nicetext RELEASE r0.42
544 v0.43 2011/05/09 \gt, \lt
545 2011/05/27 \cs uses \@backslashchar
546 2011/06/20 \MakeActiveLetHere in \nice_maybe_meta_verb !!!
547 2011/06/27 2011/05/27 undone
548 2011/08/20 ‘r0.42’, ‘v0.43’
549 with nicetext RELEASE r0.43
550 v0.44 2011/09/09 \AddQuotes, \DontAddQuotes
551 with nicetext RELEASE r0.44
552 v0.45 2011/11/05 mod. \niceverb_collect_egroup/\VerticalCmdBox,
553 tried \output problem without avail
554 2011/12/05 clarified "r0.44"
555 with nicetext RELEASE r0.5
556

2 THE PACKAGE FILE 32

557 v0.5 2012/08/27 using ’catcodes’, \providecommand\CatCode,
558 rm. \AssignCatCodeTo, \private_letters
559 2012/08/28 fixed \private_letters;
560 rewording for filling lines
561 2012/09/27 corrections about \MakeActive...
562 with nicetext RELEASE r0.6
563
564 v0.6 2012/11/27 \[d]qtd only \provide’d
565 v0.61 2014/03/18 doc.: rm. TODO on private letters hook,
566 folding history tighter,
567 RM CODE COMMENTED OUT IN 2011;
568 \VerticalCmdBox gets \pagebreak[2]
569 2014/03/19 doc.: strange replaced, restructured,
570 Command-Highlighting Boxes -> Boxes
571 Highlighting ...;
572 opt. arg. for \NVerb etc. replaces
573 \niceverb_egroup, \cs/\cstx enhanced,
574 reimpl.s with \SetNiceVerbSaveBox,
575 \nice_maybe_meta_verb -> \NiceMaybeMetaVerb
576 2014/03/20 reworking robustness -- doc., ...; doc. on
577 ‘Shared ...’, \qtdnverb
578 2014/03/21 "debugging": \noexpand vs. \protect
579 2014/03/22 ... continued; mod. \MakeNormal
580 2014/03/23 ..., hiding ...
581 2014/03/24 TODO on left quotes, doc. test there,
582 rm. babel-TODO
583 2014/03/25 doc. about left quotes shorter, rm. earlier page
584 breaks, doc. problems with right quotes; \newlet;
585 dealing with \active@math@prime
586 2014/03/26 corr. test for right single quote, more about
587 \active@math@prime, corr. \CmdSyntaxVerb
588 2014/03/27 different treatment of \active@math@prime ...
589 main work for sec:listmv and independent
590 switching for rqsf, \NewSelfProtectedCommand
591 (3 applications); doc. corr., TODO;
592 \typeout test
593 2014/03/28 test section; [TODO?]; \nvShowProtectedEdef,
594 \MetaVar: protection and hyperref version;
595 remark \NVerb; [\NiceVerbHere]; \protect test
596 with RQ removed; \do_protect_noligs fixed
597 and used
598 2014/07/16 \BuildCsSyntax with hyperref
599 2014/07/17 remarks on \BuildCsSyntax and removing useless
600 braces there (hours of trying better)
601 2015/02/23 doc.: \PDFstring -> \pdfstring
602 2015/04/07 doc.: page headings -> page headers
603 2015/11/09 bugfixes \nvRightQuoteNormal and
604 \do_protect_noligs; doc. typo fix
605

	Presenting 'niceverb'
	Purpose
	Acknowledgement/Basic Ideas
	The Commands and Features of 'niceverb'
	Examples
	What is Wrong with the Present Version

	The Package File
	Preliminaries
	File Header
	\newlet
	Switching Category Codes
	Robustness by \IfTypesetting or So
	Shared Shorthand Macros

	Implementation of the ``Nice" Syntax
	\NVerb
	Single Quotes Typeset Meta-Code
	Ampersand (or \cstx) Typesets Meta-Code
	Escape Character Typesets Meta-Code
	Meta-Variables
	Hash Mark is Code
	Single Right Quotes for \textsf
	Boxes Highlighting Commands and Syntax

	When 'niceverb' Gets Nasty
	Meta-Variables
	Quotes
	'hyperref'
	'hyper-xr'
	Listings and Moving
	Turning off and on altogether

	Minor Final Things
	Activating the 'niceverb' Syntax
	Leave Package Mode
	VERSION HISTORY

