
niceverb.sty

—

Minimizing Markup

for Documenting LATEX packages

Uwe Lück
http://contact-ednotes.sty.de.vu

April 16, 2009

Abstract

niceverb.sty provides very decent syntax for describing LATEX packages and
the syntax of macros conforming to LATEX syntax conventions.

Contents

1 Presenting niceverb 2
1.1 Purpose . 2
1.2 Acknowledgement/Basic Ideas . 2
1.3 The Commands and Features of niceverb 2
1.4 Examples . 5
1.5 What is Wrong with the Present Version 5

2 Implementation of the Markup Syntax 6
2.1 Switching category codes . 6
2.2 Sloppy variant of \verb . 6
2.3 Single quotes typeset meta-code 7
2.4 Ampersand typesets meta-code 8
2.5 Escape character typesets meta-code 8
2.6 Meta-variables . 9
2.7 Hash mark is code . 9
2.8 Single right quote for \textsf 10
2.9 Leave package mode . 10
2.10 VERSION HISTORY . 10

1

1 PRESENTING ’NICEVERB’ 2

1 Presenting niceverb

1.1 Purpose

The niceverb package provides “minimal” markup for documenting LATEX pack-
ages, reducing the number of keystrokes/visible characters needed (kind of poor
man’s WYSIWYG).1 It conveniently handles command names in arguments of
macros such as \footnote or even of sectioning commands. If you use make-
doc.sty additionally, commands for typesetting a package’s code are inserted
automatically (just using TEX). As opposed to tools that are rather common
on UNIX/Linux, this operation should work at any TEX installation, irrespective
of platform.

Both packages may at least be useful while working at a very new package
and may suffice with small, simple packages. After having edited your package’s
code (typically in a .sty file), you just “latex” the manual file (maybe some
.tex file) and get instantly the corresponding refreshed documentation.

niceverb and makedoc may also help to generate without much effort docu-
mentations of nowadays commonly expected typographical quality for packages
that so far only had plain text documentations.

1.2 Acknowledgement/Basic Ideas

Three ideas of Stephan I. Böttcher’s in documenting his lineno.sty inspired the
present work:

1. The markup and its definitions are short and simple, markup commands
are placed at the right “margin” of the ASCII file, so you hardly see them
in reading the source file, you rather just read the text that will be printed.

2. An awk script removes the %s starting documentation lines and inserts the
commands for typesetting the package’s code (you don’t see them in the
source).

3. An active character (‘|’) issues a \string and switches to typewriter type-
face for typesetting a command verbatim—so this works without changing
category codes (which is the usual idea of typesetting code), therefore it
works even in macro arguments.

1.3 The Commands and Features of niceverb

Single quotes ‘, ’, “less than” < (accompanied with >), the hash mark #, am-
persand &, and in an extended “auto mode” even backslash \ become \active
characters with “special effects.” ‘| . . . |’ should highlight descriptions of user
commands and their syntax.

1“What you see is what you get.” Novices are always warned that WYSIWYG is essentially
impossible with LATEX.

1 PRESENTING ’NICEVERB’ 3

The package mainly aims at typesetting commands and descriptions of their
syntax if the latter is “standard LATEX-like”, using “meta-variables.” A string
to be typeset “verbatim” thus is assumed to start with a single command like
\foo, maybe followed by stars (‘*’) and pairs of square brackets ([. . .]) or curly
braces ({. . .}), where those pairs contain strings indicating the typical kinds of
contents for the respective arguments of that command. A typical example is
this:

\foo*[〈opt-arg〉]{〈mand-arg〉}

This was achieved by typing

&\foo*[<opt-arg>]{<mand-arg>}

In “auto mode” of the package, even typing

\foo*[<opt-arg>]{<mand-arg>}

would have sufficed—WYSIWYG! (I call such mixtures of verbatim and “meta-
variables” ‘meta-code’.)

Now for the details:

“Meta-variables:” The package supports the “angle brackets” style of “meta-
variables” (as with 〈meta-variable〉). You just type ‘<foo>’ to get ‘〈foo〉’.
This works due to a sloppy variant \SimpleVerb of \verb which doesn’t
care about possible ligatures and definitions of active characters. Instead,
it assumes that the “verbatim” font doesn’t contain ligatures anyway.
‘\verb|<foo>|’, by contrast, just yields ‘<foo>’.

Almost the same feature is offered by ltxguide.cls which formats the basic
guides from the LATEX Project Team. The present feature, however, also
works in plain text outside verbatim mode.

Single quotes (left/right) for “short verb:” The package “assumes” that
quoting refers to code, therefore ‘‘foo’’ is typeset as ‘foo’. This somewhat
resembles the \MakeShortVerb feature of doc.sty.

It will typically fail when you try to typeset commands (and their syntax)
in macro arguments—e.g.,

\footnote{‘\bar’ is a celebrated fake example!}

will try to execute \bar instead of typesetting it, giving an “undefined”
error so. \verb fails in the same situation, for the same reason. ‘&’
(\footnote{&\bar〈remaining〉}) or “auto mode” (see below) may then
work better.

Double quotes and apostrophes should still work the usual way; otherwise
you could control the parsing mechanisms using curly braces (outside and
inside don’t interact). To get usual single quotes, you can use their stan-
dard substitutes \lq and \rq. You can “abuse” this “single quotes” feature

1 PRESENTING ’NICEVERB’ 4

just to get typewriter typeface.2 For difficult cases, you can still use the
standard \verb command from LATEX.

Single right quotes for \textsf: Package names are (by some unwritten
convention!?) typeset with \textsf; it was natural to use a remaining
case of using single quotes for abbreviating \textsf{〈text〉} by ’〈text〉’.3

This idea of switching fonts continues font switching of wiki.sty which uses
the syntax for editing Wikipedia pages.

Ampersand ‘&’ typesets command syntax even in arguments: e.g.,
type ‘&\foo{<arg>}’ to get ‘\foo{〈arg〉}’. This may be even more conve-
nient for typing than the single quotes method, although looking somewhat
strange. However, & may terminate verbatim unexpectedly, being designed
for displaying “LATEX-like command syntax” in the first instance.45

This choice of & rests on the assumption that there won’t be many ta-
bles in the documenation. You can restore the usual meaning of & by
\MakeAlign\& and turn the present special meaning on again by

\MakeActiveLet\&\CmdSyntaxVerb.

You could also redefine (\renewcommand) \descriptionlabel us-
ing \CmdSyntaxVerb (the “normal command” equivalent to &) so
\item[\foo] works as wanted.

“Auto mode” typesets commands verbatim unless . . . In “auto mode”,
the backslash ‘\’ is an active character that builds a command name from
the ensuing letters and typesets the command (and its syntax, allowing
meta-variables) verbatim. However, there are some exceptions, which are
collected in a macro \niceverbNoVerbList. \begin, \end, and \item
belong to this list, you can redefine (\renewcommand) it. There is also
a command \NormalCommand{〈letters〉} issuing the command \〈letters〉
instead of typesetting it. Since auto mode is somewhat dangerous, you
have to start it explicitly by \AutoCmdSyntaxVerb. You can end it by
\EndAutoCmdSyntaxVerb.
Auto mode is motivated by the observation that there are package files con-
taining their documentation as pure (well-readable) ASCII text—contain-
ing the names of the new commands without any kind of quotation marks
or verbatim commands. Auto mode should typeset such documentation
just from the same ASCII text.

Hash mark # comes verbatim. No macro definitions are expected in the
document environment.6 Rather, ‘#’ is an active character for taking the

2In macro arguments this requires that the right single quote ’ is \active.
3Font switching by sequences of single quotes is a feature of the syntax for editing Wikipedia

pages and of wiki.sty.
4Moreover, & currently has a limited xspace functionality only.
5You can even use & for referring to active characters like & in footnotes etc.!
6This idea recently appeared on the latex-l mailing list. It may be wrong, not sure at the

moment, think of latexa.ltx . . .

1 PRESENTING ’NICEVERB’ 5

next character (assuming it is a digit) to form a reference to a macro
parameter—‘#1’ becomes ‘#1’ (WYSIWYG indeed!).

1.4 Examples

The local configuration file mdcorr.cfg documents itself using niceverb syntax.
Its code and the documentation that is typeset from it are at the end of the
‘examples’ section of makedoc.pdf. (2009/04/15)

Moreover, the documentation niceverb.pdf of niceverb.sty was typeset from
niceverb.tex and niceverb.sty using niceverb syntax, likewise fifinddo.pdf and make-
doc.pdf. The example of niceverb shows the most frequent use of the & feature.

It seems to me that I could type so many pages on fifinddo and makedoc in
little more than a week only due to the “minimal” verbatim and syntax-display
syntax.

1.5 What is Wrong with the Present Version

1. niceverb.sty should be an extension of wiki.sty; yet their font selection
mechanisms are currently not compatible.

2. Font switching or horizontal spacing may fail in certain situations (paren-
theses, titles, footnotes; you can correct spacing by ‘\ ’).

3. The “vertical” character ‘|’ was planned to be active and provide a version
of the decl environment of ltxguide.cls. Currently makedoc.cfg installs in-
line, coloured/framed boxes instead (2009/04/09). They have their merits!
See fifinddo.pdf and makedoc.pdf. However, they badly deal with long com-
mand names and many arguments . . . (They could also issue an \index
command!)—Doubled verticals could make the difference, calling a decl
table indeed.

4. “Auto mode” has not been tested on a serious application yet.

5. niceverb’s font switching tricks sometimes turn against their inventor (and
other users?). There must be some switching “off” (and “on” again).7

Also, there might better help with weird errors, some syntax checks might
intercept earlier.

Similarly, some choices reflect a personal style and should be modifiable,
especially by package options.8

7fifinddo/makedoc allow inserting such commands from a driver script, invisible in the file
that contains the “contentual” documentation.

8Please sponsor the project or support it otherwise!

2 IMPLEMENTATION OF THE MARKUP SYNTAX 6

2 Implementation of the Markup Syntax

1 \NeedsTeXFormat{LaTeX2e}[1994/12/01]

2 \ProvidesPackage{niceverb}[2009/04/15 v0.2

3 minimize \string\verb\space code (UL)]

4

5 %% Copyright (C) 2009 Uwe Lueck,

6 %% http://www.contact-ednotes.sty.de.vu

7 %% -- author-maintained in the sense of LPPL below --

8 %%

9 %% This file can be redistributed and/or modified under

10 %% the terms of the LaTeX Project Public License; either

11 %% version 1.3a of the License, or any later version.

12 %% The latest version of this license is in

13 %% http://www.latex-project.org/lppl.txt

14 %% We did our best to help you, but there is NO WARRANTY.

15 %%

16 %% Please report bugs, problems, and suggestions via

17 %%

18 %% http://www.contact-ednotes.sty.de.vu

19 %%

2.1 Switching category codes

20 \providecommand{\CatCode}{\catcode‘}

21 % \providecommand*{\MakeActive}[1]{\CatCode#1\active}

22 \providecommand*{\MakeAlign} [1]{\CatCode#14\relax}

23 \providecommand*{\MakeLetter}[1]{\CatCode#111\relax}

24 \providecommand*{\MakeOther} [1]{\CatCode#112\relax}

25 \providecommand*{\MakeSub} [1]{\CatCode#18\relax}

26

27 \newcommand*{\MakeActiveLet}[2]{%% cf. \@sverb & \do@noligs

28 \CatCode#1\active

29 \begingroup

30 \lccode‘\~‘#1\relax \lowercase{\endgroup \let~#2}}

31

32 \MakeLetter_

33

34 % \newcommand*{\make_iii_other}{\MakeOther\\\MakeOther\{\MakeOther\}}

35 %% <- replaced 2009/04/05

2.2 Sloppy variant of \verb

36 \newcommand*{\begin_min_verb}{%

37 \relax \ifmmode \hbox \else \leavevmode\null \fi

38 %% <- standard, for $$...$$

39 \bgroup \tt %%%\let\do\MakeOther \dospecials

40 \MakeLetter_\MakeLetter\@}

41 \newcommand*{\SimpleVerb}[1]{%

2 IMPLEMENTATION OF THE MARKUP SYNTAX 7

Mainly avoid \verb’s noligs list which overrides definitions of some active char-
acters, while cmtt doesn’t have any ligatures anyway.

42 \ifx\protect\@typeset@protect

43 \begin_min_verb %%%\make_iii_other %% much usual 2009/04/05

44 \let\do\MakeOther \dospecials %% 2009/04/06

45 \MakeOther\|%% probably ’niceverb’

46 \MakeActiveLet#1\niceverb_egroup %% 2009/04/11

47 \verb@eol@error %% TODO change message 2009/04/09

48 \else \string\SimpleVerb \string#1\fi}

2009/04/11: about etc.

49 \newcommand*{\niceverb_egroup}{\egroup\ifmmode\else\@\fi}

2.3 Single quotes typeset meta-code

50 \newcommand*{\lq_verb}{%

51 \ifx\protect\@typeset@protect

52 \expandafter \lq_double_test

53 \else \lq \fi}

54 % \ifcat\noexpand’\noexpand~%

55 % \expandafter\expandafter\expandafter

56 % \protect_corresp_quotes

57 % \else

58 % \rq_verb

59 % \fi

60 % \fi}

61 \newcommand*{\lq_double_test}{%

62 %% test settles next catcode, better switch to ‘‘other’’

63 %% in advance:

64 \begingroup \let\do\MakeOther \dospecials

65 \futurelet\let_token \lq_double_decide}

66 \newcommand*{\lq_double_decide}{%

67 \ifx\let_token\lq_verb

68 \endgroup

69 \lq\lq \expandafter \@gobble

Corresponding right quotes will become “other” due to having no space at the
left.

70 %%TODO to be changed with ’wiki.sty’.

71 \else

72 \endgroup

73 % \expandafter \rq_verb

74 \expandafter \SimpleVerb \expandafter \’%

75 \fi}

76 % \newcommand*{\rq_verb}{\SimpleVerb\’}

77 % \AtBeginDocument{\MakeActiveLet\‘\rq_verb}

78 \AtBeginDocument{\MakeActiveLet\‘\lq_verb}

79 %% Strings referred to will be code

80 %% TODO to be changed with wiki.sty

2 IMPLEMENTATION OF THE MARKUP SYNTAX 8

2.4 Ampersand typesets meta-code

81 \newcommand*{\CmdSyntaxVerb}{%

82 \ifx\protect\@typeset@protect

83 \expandafter \cmd_syntax_verb

84 \else %% thinking of .aux only

85 \string\CmdSyntaxVerb \expandafter \string

86 \fi}

87 \newcommand*{\cmd_syntax_verb}[1]{%

88 \begin_min_verb \string#1\futurelet\let_token \after_cs}

89

90 \AtBeginDocument{\MakeActiveLet\&\CmdSyntaxVerb}

91 %% not needed with \Auto... OTHERWISE useful in args!

92 %% TODO \MakeAmpCmdSyntax

93 %% TODO \let\endcell& (wie \endline, \endgraf) \MakeEndCell

94 \newcommand*{\after_cs}{%

95 \ifcat\noexpand\let_token a\egroup \space

96 \else \expandafter \decide_verb \fi}

97 \newcommand*{\test_more_verb}{\futurelet\let_token \decide_verb}

98 \newcommand*{\decide_verb}{%

99 % \show\let_token

100 \jumpteg_on_with\bgroup\braces_verb

101 \jumpteg_on_with[\brackets_verb

102 \jumpteg_on_with*\star_verb

103 \egroup}

104 %% CAUTION/TODO wrong before (... if cmd without arg

105 %% use \ then or choose usual verb...

106 %% or \MakeLetter\(etc. ... or \xspace

107 \newcommand*{\jumpteg_on_with}[2]{%

108 \ifx\let_token#1\do_jumpteg_with#2\fi}

109 %% TODO cf. xfor, xspace (break@loop);

110 %% \DoOrBranch#1...#1 or so

111 \def\do_jumpteg_with#1#2\egroup{\fi#1}

112 \def\braces_verb#1{\string{#1\string}\test_more_verb}

113 \def\brackets_verb[#1]{[#1]\test_more_verb}

114 \def\star_verb*{*\test_more_verb}

2.5 Escape character typesets meta-code

115 \DeclareRobustCommand*{\BuildCsSyntax}{%

116 \futurelet\let_token \build_cs_syntax_sp}

117 \newcommand*{\build_cs_syntax_sp}{%

118 \ifx\let_token\@sptoken \else %% TODO ^^M!?

119 \expandafter \start_build_cs_syntax

120 \fi}

121 \newcommand*{\start_build_cs_syntax}[1]{%

122 \edef\string_built{\string#1}%% #1 may be active

123 \MakeLetter_\MakeLetter\@%% CAUTION, cf. ...

124 \test_more_cs}

125 \newcommand*{\test_more_cs}{%

2 IMPLEMENTATION OF THE MARKUP SYNTAX 9

126 \futurelet\let_token \decide_more_cs}

127 \newcommand*{\decide_more_cs}{%

128 \ifcat\noexpand\let_token a\expandafter \add_to_cs

129 \else

130 \MakeSub_\MakeOther\@%

131 \expandafter \in@ \expandafter

132 {\csname \string_built \expandafter \endcsname

133 \expandafter}\expandafter{\niceverbNoVerbList}%

134 \ifin@

135 \csname \string_built

136 \expandafter\expandafter\expandafter \endcsname

137 \else

138 \begin_min_verb \@backslashchar\string_built

139 \expandafter\expandafter\expandafter \test_more_verb

140 \fi

141 \fi}

142 %% TODO such \if nestings with ifthen!?

143 %% cf.:

144 % \let\let_token,\typeout{\meaning\let_token}

145 %% TEST TODO fuer xspace!? (\ifin@)

146 \newcommand*{\add_to_cs}[1]{%

147 \edef\string_built{\string_built#1}\test_more_cs}

148 \newcommand*{\AutoCmdSyntaxVerb}{\MakeActiveLet\\\BuildCsSyntax}

149 %% TODO or \niceverbswitch...

150

151 \newcommand*{\EndAutoCmdSyntaxVerb}{\CatCode\\\z@}

152 \newcommand*{\NormalCommand}{} \let\NormalCommand\@nameuse

153 %% Were tests:

154 % \futurelet\LetToken\relax \relax

155 % \show\LetToken \typeout{\ifcat\noexpand\LetToken aa\else x\fi}

156

157 \newcommand*{\niceverbNoVerbList}{%

158 \begin\end\item\verb\EndAutoCmdSyntaxVerb\NormalCommand

159 \section\subsection\subsubsection}%% TODO!?

160 \providecommand*{\AddToMacro}[1]{%

161 \expandafter \def \expandafter #1\expandafter}

2.6 Meta-variables

162 \def\niceverb_meta#1>{%

163 \mbox{\normalfont\itshape \langle#1\/\rangle}}

164 %% TODO offer without angles as well

165 \AtBeginDocument{\MakeActiveLet\<\niceverb_meta}

166 %% difference to ltxguide.cls: also outside verbatim

2.7 Hash mark is code

167 \newcommand*{\param_verb}[1]{{\tt\##1}}

168 \AtBeginDocument{\MakeActiveLet\#\param_verb}

2 IMPLEMENTATION OF THE MARKUP SYNTAX 10

2.8 Single right quote for \textsf

169 \newcommand*{\niceverb_rq_sf}{%

170 % \relax %% in case of \hskip1sp 2009/04/08

171 %% but spoils ligature 2009/04/09

172 \ifx\protect\@typeset@protect

173 \expandafter \niceverb_rq_sf_test

174 \else \rq \fi}

Another macro just to avoid more sequences of \expandafter:

175 \newcommand*{\niceverb_rq_sf_test}{%

176 \ifhmode

177 \ifdim\lastskip>\z@

178 \expandafter\expandafter\expandafter \niceverb_rq_sf_exec

179 \else

180 \ifnum\spacefactor=1001 %% in parentheses 2009/04/10

181 \expandafter\expandafter\expandafter\expandafter

182 \expandafter\expandafter\expandafter

183 \niceverb_rq_sf_exec

184 \else \rq \fi

185 % \rq

186 \fi

187 \else \ifvmode

188 \expandafter\expandafter\expandafter \niceverb_rq_sf_exec

189 \else \rq \fi

190 \fi}

191 \sfcode‘\(=1001 %% enable in parentheses 2009/04/10

192 {\CatCode\’\active \gdef\niceverb_rq_sf_exec#1’{\textsf{#1}}}

193 %% TODO to be changed with wiki.sty:

194 \AtBeginDocument{\MakeActiveLet\’\niceverb_rq_sf}

195

196 %% TODO \niceverbswitch{<mode>}{<on/off>} (bzw. Doku ohne {})

2.9 Leave package mode

197 \MakeSub_

198

199 \endinput

2.10 VERSION HISTORY

200 v0.1 2009/02/21 very first, sent to CTAN

201 v0.2 2009/04/04 ...NoVerbList: \subsubsection, \AddToMacro,

202 2009/04/05 \SimpleVerb makes more other than iii

203 2009/04/06 just uses \dospecials

204 2009/04/08 debugging code for rq/sf, +\relax

205 2009/04/09 +\verb@eol@error, prepared for new doc method,

206 removed spurious \makeat..., -\relax (ligature),

207 2009/04/10 (’-trick

2 IMPLEMENTATION OF THE MARKUP SYNTAX 11

208 2009/04/11 \@ after \SimpleVerb

209 2009/04/14 noted TODO below

210 2009/04/15 change v0.1 to 2009/02/21

211

212 TODO: choose expansions of active characters by options 2009/04/10

213 TODO: &\@tempa and &_tempa fail 2009/04/14

214

