
niceverb.sty

—

Minimizing Markup

for Documenting LATEX packages∗

Uwe Lück†

September 27, 2012

Abstract

niceverb.sty provides very decent syntax (through active characters) for
describing LATEX packages and the syntax of macros conforming to LATEX
syntax conventions.

Keywords: literate programming, syntactic sugar, .txt to .tex enhance-
ment, macro programming

Contents

1 Presenting niceverb 2
1.1 Purpose . 2
1.2 Acknowledgement/Basic Ideas . 2
1.3 The Commands and Features of niceverb 3
1.4 Examples . 6
1.5 What is Wrong with the Present Version 6

2 Implementation of the Markup Syntax 7
2.1 Switching Category Codes . 7
2.2 Robustness by \IfTypesetting 9
2.3 \NVerb . 9
2.4 Single Quotes Typeset Meta-Code 10
2.5 Ampersand (or \cstx) Typesets Meta-Code 11
2.6 Escape Character Typesets Meta-Code 12
2.7 Meta-Variables . 14
2.8 Hash Mark is Code . 14
2.9 Single Right Quotes for \textsf 15

∗This document describes version v0.5 of niceverb.sty as of 2012/09/27.
†http://contact-ednotes.sty.de.vu

1

http://contact-ednotes.sty.de.vu

1 PRESENTING NICEVERB 2

2.10 Command-Highlighting Boxes . 17
2.11 When niceverb Gets Nasty . 19

2.11.1 Meta-Variables . 19
2.11.2 Quotes . 19
2.11.3 hyperref . 20
2.11.4 hyper-xr . 21
2.11.5 Turning off and on altogether 21

2.12 Activating the niceverb Syntax 22
2.13 Leave Package Mode . 22
2.14 VERSION HISTORY . 22

1 Presenting niceverb

1.1 Purpose

The niceverb package provides “minimal” markup for documenting LATEX pack-
ages, reducing the number of keystrokes/visible characters needed (kind of poor
man’s WYSIWYG).1 It conveniently handles command names in arguments of
macros such as \footnote or even of sectioning commands. If you use make-
doc.sty additionally, commands for typesetting a package’s code are inserted
automatically (just using TEX). As opposed to tools that are rather common
on UNIX/Linux, this operation should work at any TEX installation, irrespective
of platform.

Both packages may at least be useful while working at a very new package
and may suffice with small, simple packages. After having edited your package’s
code (typically in a .sty file—〈jobname〉.sty), you just “latex” the manual
file (maybe some .tex file—〈jobname〉.tex) and get instantly the corresponding
updated documentation.

niceverb and makedoc may also help to generate without much effort docu-
mentations of nowadays commonly expected typographical quality for packages
that so far only had plain text documentations.

1.2 Acknowledgement/Basic Ideas

Four ideas of Stephan I. Böttcher’s in documenting his lineno inspired the
present work:

1. The markup and its definitions are short and simple, markup commands
are placed at the right “margin” of the ASCII file, so you hardly see them
in reading the source file, you rather just read the text that will be printed.

2. An awk script removes the %s starting documentation lines and inserts
the commands for typesetting the package’s code (you don’t see these
commands in the source).2

1“What you see is what you get.” Novices are always warned that WYSIWYG is essentially
impossible with LATEX.

2The corresponding part of the “present work” is makedoc.sty.

http://ctan.org/pkg/lineno

1 PRESENTING NICEVERB 3

3. An active character (‘|’) issues a \string and switches to typewriter type-
face for typesetting a command verbatim—so this works without changing
category codes (which is the usual idea of typesetting code), therefore it
works even in macro arguments.

4. ‘<meta-variable>’ produces ‘〈meta-variable〉’. (‘\lessthan’ stores the
original ‘<’.)

1.3 The Commands and Features of niceverb

Actually, it is the main purpose of niceverb to save you from “commands” . . .
Single quotes ‘, ’, “less than” < (accompanied with >), the “vertical” |, the

hash mark #, ampersand &, and in an extended “auto mode” even backslash \

become \active characters with “special effects.”
The package mainly aims at typesetting commands and descriptions of their

syntax if the latter is “standard LATEX-like”, using “meta-variables.” A string
to be typeset “verbatim” thus is assumed to start with a single command like
\foo, maybe followed by stars (‘*’) and pairs of square brackets (‘[〈opt-arg〉]’)
or curly braces (‘{〈mand-arg〉}’), where those pairs contain strings indicating
the typical kinds of contents for the respective arguments of that command. A
typical example is this:

\foo*[〈opt-arg〉]{〈mand-arg〉}

This was achieved by typing

&\foo*[<opt-arg>]{<mand-arg>}

In “auto mode” of the package, even typing

\foo*[<opt-arg>]{<mand-arg>}

would have sufficed—WYSIWYG! I call such mixtures of verbatim and “meta-
variables” ‘meta-code’.

Outside macro arguments, you obtain the same by typing

‘\foo*[<opt-arg>]{<mand-arg>}’

Details:

“Meta-variables:” The package supports the “angle brackets” style of “meta-
variables” (as with 〈meta-variable〉). You just type ‘<bar>’ to get ‘〈bar〉’.
This works due to a sloppy variant \NVerb of \verb which doesn’t care
about possible ligatures and definitions of active characters. Instead,
it assumes that the “verbatim” font doesn’t contain ligatures anyway.3

‘\verb+<foo>+’, by contrast, just yields ‘<foo>’.

Almost the same feature is offered by ltxguide.cls which formats the basic
guides from the LATEX Project Team. The present feature, however, also
works in plain text outside verbatim mode.

3On the other hand, \NVerb is more careful with niceverb’s special characters.

1 PRESENTING NICEVERB 4

Single quotes (left/right) for “short verb:” The package “assumes” that
quoting refers to code, therefore ‘‘foo’’ is typeset as ‘foo’, or (generally)
‘〈content〉’ turns 〈content〉 into meta-code with the meta-variable fea-
ture as above. This somewhat resembles the \MakeShortVerb feature of
doc.sty. You can “abuse” our feature just to get typewriter typeface.

Problems with this feature will typically arise when you try to typeset
commands (and their syntax) in macro arguments—e.g.,

\footnote{‘\bar’ is a celebrated fake example!}

will try to execute \bar instead of typesetting it, giving an “undefined”
error or so. \verb fails in the same situation, for the same reason. ‘&’
(\footnote{&\bar〈remaining〉}) or “auto mode” (see below) may then
work better.4 More generally, the quoting feature still works in macro
arguments in the sense that you then have to mark difficult characters
with & (simply as short for \string). However, it still won’t work with
curly braces that don’t follow a command name (such pairs of braces will
simply get lost, single braces will give errors or so).

Double quotes and apostrophes should still work the usual way. For dif-
ficult cases, you can still use the standard \verb command from LATEX.
To get usual single quotes, you can use their standard substitutes \lq

and \rq, or for pairs of them, \qtd{〈text〉} in place of \lq 〈text〉\rq—or
even \lq 〈text〉\rq\ . To get single quotes around some verbatim 〈verb〉,
often \qtd{&〈verb〉} works. It is for this reason that I have refrained from
different solutions as in newverbs (so far).

Single right quotes for \textsf: Package names are (by some convention I
often yet not always see working) typeset with \textsf; it was natural to
use a remaining case of using single quotes for abbreviating

\textsf{〈text〉}

by ’〈text〉’ . This idea of switching fonts continues font switching of
wiki.sty which uses the syntax for editing Wikipedia pages (font switching
by sequences of right single quotes).

Verticals for setting-off command descriptions: |〈code〉| works like
‘‘〈code〉’’ except putting the result into a framed box (just as all around
here)—or something else that you can achieve using some hooks described
with the implementation. There are variants like \cmdboxitem|〈code〉| .

Ampersand shows command syntax &c. even in arguments: E.g.,
type ‘&\foo{<arg>}’ to get ‘\foo{〈arg〉}’. This may be even more con-
venient for typing than the single quotes method, although looking some-
what strange. However, in macro arguments this does not work with
private letters (@ and _ here), for this case, use \cs{〈characters〉} or
\cstx{〈characters〉}〈parameters〉 .5

4\bar indeed!
5Moreover, & currently has a limited xspace functionality only.

http://ctan.org/pkg/newverbs

1 PRESENTING NICEVERB 5

This choice of & rests on the assumption that there won’t be many ta-
bles in the documenation. You can restore the usual meaning of & by
\MakeNormal\& and turn the present special meaning on again by

\MakeActive\& or \MakeActiveLet\&\CmdSyntaxVerb

You could also redefine (\renewcommand) \descriptionlabel using
\CmdSyntaxVerb (the “normal command” that is equivalent to &, its “per-
manent alias”) so \item[\foo] works as wanted.

Another feature of niceverb’s & is getting (some of the) special characters
(as listed in the standard macro \dospecials) verbatim in arguments
(where \verb and the like fail). It just acts similarly as TEX’s primitive
\string (which it actually invokes—cf. discussion on the left quote feature
above).

“Auto mode” typesets commands verbatim unless . . . In “auto mode,”
the backslash ‘\’ is an active character that builds a command name
from the ensuing letters and typesets the command (and its syntax, al-
lowing meta-variables) verbatim. However, there are some exceptions,
which are collected in a macro \niceverbNoVerbList . \begin, \end,
and \item belong to this list, you can redefine (\renewcommand) it, or
add 〈macros〉 to it by \AddToNoVerbList}{〈macros〉} There is also a
command \NormalCommand{〈letters〉} issuing the command \〈letters〉 in-
stead of typesetting it. Since auto mode is somewhat dangerous, you
have to start it explicitly by \AutoCmdSyntaxVerb . You can end it by
\EndAutoCmdSyntaxVerb . \AutoCmdInput{〈file〉} is probably most im-
portant.

Auto mode is motivated by the observation that there are package files con-
taining their documentation as pure (well-readable) ASCII text—contain-
ing the names of the new commands without any kind of quotation marks
or verbatim commands. Auto mode should typeset such documentation
just from the same ASCII text.

Hash mark ‘#’ comes verbatim. No macro definitions are expected in the
document environment.6 Rather, ‘#’ is an active character for taking the
next character (assuming it is a digit) to form a reference to a macro
parameter—‘#1’ becomes ‘#1’–WYSIWYG indeed! (So the general syntax
is #〈digit〉 .)

Escaping from niceverb (generally). To get rid of the functionality of some
active character 〈char〉 (‘&’, single quote, ampersand, hash mark—not
“auto mode,” see above) here, use \MakeNormal\〈char〉—may be within
a group. To revive it again, use \MakeActive\〈char〉 . This may fail when
a different package overtook the active 〈char〉 (but I expect more failures

6This idea appeared 2009 on the LATEX-L mailing list. It may be wrong, as I have some-
times experienced . . .

1 PRESENTING NICEVERB 6

then), in this case \MakeActiveLet\〈char〉\〈perm-alias〉 revives the nice-
verb meaning of 〈char〉 where \〈perm-alias〉 is the “permanent alias” for
that active 〈char〉 according to the documentation below. E.g., \LQverb
is the “permanent alias” for active single left quote, niceverb activates it
by \MakeActiveLet\’\LQverb.—You can turn off niceverb syntax allto-
gether by \noNiceVerb and revive it by \useNiceVerb (without “auto
mode”).

Right Quotes: Disabling/reviving replacement of \textsf by single
right quotes requires

\nvRightQuoteNormal or \nvRightQuoteSansSerif

respectively.

1.4 Examples

The file mdoccorr.cfg providing some .txt→LATEX functionality—i.e., typo-
graphical corrections—documents itself using niceverb syntax. Its code and
the documentation that is typeset from it are in the ‘examples’ section
of makedoc.pdf.—Moreover, the documentation niceverb.pdf of niceverb.sty
was typeset from niceverb.tex and niceverb.sty using niceverb syntax, likewise
fifinddo.pdf and makedoc.pdf. The example of niceverb shows the most frequent
use of the & feature.

nicetext bundle release v0.4 contains a file substr.tex that should typeset the
documentation of the version of Harald Harders’ substr.sty7 that your TEX finds
first, as well as arseneau.tex typesetting a few packages by Donald Arseneau.
The outcomes (with me) are substr.pdf and arseneau.pdf. These are the first
applications of niceverb’s “auto mode” to (unmodified) third-party package files.
(I also made a more ambitious documentation of Donald Arseneau’s import.sty
v3.0 before I found that CTAN already has a nicely typeset documentation of
import.sty v5.2.)

1.5 What is Wrong with the Present Version

1. niceverb.sty should be an extension of wiki.sty; yet their font selection
mechanisms are currently not compatible. Especially, the feature of

’’〈text〉’’

replacing \textit{〈text〉} or \emph{〈text〉} may be considered missing.

2. Font switching or horizontal spacing may fail in certain situations. You
can correct spacing by ‘\ ’.

3. The “vertical” character ‘|’ produces inline boxes only at present. It might
as well provide a version of the decl tabular environment of ltxguide.cls.

7http://ctan.org/pkg/substr

http://ctan.org/pkg/substr

2 IMPLEMENTATION OF THE MARKUP SYNTAX 7

The inline boxes badly deal with long command names and many argu-
ments. Doubled verticals could ensure the decl mode. Moreover, such a
box might issue an index entry.

4. One may have opposite ideas about using quotes—maybe rather "〈code〉"
should typeset 〈code〉 verbatim. There might be a package option for this.
If ordinary ‘‘‘〈text〉"’ still should work, awful tricks as now with the right
quote feature would be needed.

5. “auto mode” seems not to work in section titles. (2011/01/26)

6. Certain difficulties with typesetting code in macro arguments may be over-
come easily using ε-TEX features, I need to find out . . .

2 Implementation of the Markup Syntax

1 \NeedsTeXFormat{LaTeX2e}[1994/12/01]

2 \ProvidesPackage{niceverb}[2012/09/27 v0.5

3 minimize doc markup (UL)]

4

5 %% Copyright (C) 2009-2012 Uwe Lueck,

6 %% http://www.contact-ednotes.sty.de.vu

7 %% -- author-maintained in the sense of LPPL below --

8 %%

9 %% This file can be redistributed and/or modified under

10 %% the terms of the LaTeX Project Public License; either

11 %% version 1.3a of the License, or any later version.

12 %% The latest version of this license is in

13 %% http://www.latex-project.org/lppl.txt

14 %% We did our best to help you, but there is NO WARRANTY.

15 %%

16 %% Please report bugs, problems, and suggestions via

17 %%

18 %% http://www.contact-ednotes.sty.de.vu

19 %%

2.1 Switching Category Codes

Underscore as a “private letter,” using stacklet with v0.5:

20 \RequirePackage{stacklet} \PushCatMakeLetter_ %% 2012/08/27

v0.3 introduced \AssignCatCodeTo and \MakeNormal. v0.5 abolishes the former
again and uses actcodes for some part of \catcode switching:

21 \RequirePackage{actcodes}

\CatCode{\〈character〉} (or simply \CatCode\〈character〉) saves one token
per use and works when the category code of ‘‘’ (“single left quote”) has
changed. As of v0.5, it may be defined by a different package:

2 IMPLEMENTATION OF THE MARKUP SYNTAX 8

22 \providecommand*{\CatCode}{\catcode‘} %% \provi... 2012/08/27

23 % \newcommand*{\CatCode}[1]{\catcode‘#1 } %% no better 2010/02/27

\CatCode is near to be moved into the catcodes bundle, and basic commands
from stacklet and actcodes may be reimplemented using it (manycats; allcats for
loading entire catcodes in good order).

\AssignCatCodeTo{〈number〉}{\〈char〉} no longer is considered useful
(counted tokens in memory.tex) and replaced by \CatCode.

24 % \newcommand*{\AssignCatCodeTo}[2]{\catcode‘#2=#1\relax}

\MakeLetter\〈char〉 is replaced by the stacklet package—I thought, but here it
is also needed to declare the “private letters” of the package that is documented.
This should be “variable.” OK, the new (v0.5) \private_letters is a step
towards this:

25 \newcommand*{\private_letters}{\CatCode\@11\CatCode_11\relax}

\MakeOther\〈char〉 and \MakeActive\〈char〉 were implemented here before
v0.5, now they are in actcodes . . .

26 % \def \MakeOther {\AssignCatCodeTo{12}}

\MakeActiveLet\〈char〉\〈macro name〉 likewise is in actcodes. niceverb takes
a copy \MakeActiveLetHere of it for dealing with hyperref (see Section 2.11.3).
hyperref-compatibility of mere \MakeActive is not provided any longer:

27 \@ifdefinable\MakeActiveLetHere{%

28 \let\MakeActiveLetHere\MakeActiveLet}

For restoring the usual category codes of TEX’s special characters later, we
store them now. (I.e., these characters are listed in the macro \dospecials

that expands to

\do\ \do\\\do\{\do\}\do\$\do\&\do\#\do\^\do_\do\%\do\~

their category codes are 10, 0, 1, 2, 3, 4, 6, 7, 8, 14, 13 respectively; “end of line”,
“ignored”, “letter”, “other”, and “invalid” are missing—cf. TEXbook Chap. 7.)

29 \def\do#1{\expandafter

30 \chardef \csname normal_catcode_\string#1\expandafter \endcsname

31 \CatCode#1\relax}

32 \dospecials

Tests: “normal category code” of \ is 0, “normal category code” of $ is 3;
“normal category code” of & is 4.8

33 % \newcommand*{\make_iii_other}{\MakeOther\\\MakeOther\{\MakeOther\}}

34 %% <- replaced 2009/04/05

8LATEX’s \nfss@catcodes is similar, but it makes space-like characters ignored. Also cf.
ltfinal.dtx. TODO: \RestoreNormalCatcodes.

2 IMPLEMENTATION OF THE MARKUP SYNTAX 9

\MakeNormal\〈char〉 saves you from remembering . . .

35 \newcommand*{\MakeNormal}[1]{%

36 \@ifundefined{\norm_catc_str#1}%

37 {\MakeOther#1}%

38 {\CatCode#1\csname\norm_catc_str#1\endcsname\relax}}

39 \newcommand*{\norm_catc_str}{normal_catcode_\string}

40 %% TODO add ^^I and ^^M

41 %% TODO save char tokens %% 2012/08/27

We take a copy \MakeNormalHere of \MakeNormal as with \MakeActive.

42 \@ifdefinable\MakeNormalHere{\let\MakeNormalHere\MakeNormal}

2.2 Robustness by \IfTypesetting

It seems we need some own ways to achieve various compatibilities—using
\IfTypesetting{〈if 〉}{〈unless〉} . It also saves some \expandafters.

43 \providecommand*{\IfTypesetting}{%

44 % \relax

This \relax suppressed ligatures of single right quotes!

45 \ifx \protect\@typeset@protect

46 \expandafter \@firstoftwo

47 \else \expandafter \@secondoftwo \fi}

2.3 \NVerb

\begin_min_verb is a beginning shared by some macros here. It begins like
LATEX’s \verb, apart from the final \tt.

48 \newcommand*{\begin_min_verb}{%

49 \relax \ifmmode \hbox \else \leavevmode\null \fi

50 \bgroup \tt}

\NVerb〈char〉〈code〉〈char〉

51 \newcommand*{\NVerb}{%

52 _no_nice_meta_verb_false \nice_maybe_meta_verb}

\HardNVerb〈char〉〈code〉〈char〉 does not recognize meta-variables:

53 \newcommand*{\HardNVerb}{%

54 _no_nice_meta_verb_true \nice_maybe_meta_verb}

55 \newif\if_no_nice_meta_verb_

56 \newcommand*{\nice_maybe_meta_verb}[1]{%

Mainly avoid \verb’s noligs list which overrides definitions of some active char-
acters, while cmtt doesn’t have any ligatures anyway.

2 IMPLEMENTATION OF THE MARKUP SYNTAX 10

57 \IfTypesetting{%

58 \begin_min_verb

59 \let\do\MakeOther \dospecials

Turn off niceverb specials:

60 \MakeOther\|\MakeOther\‘\MakeOther\’%

61 \if_no_nice_meta_verb_ \MakeOther\<%

62 %%% \else \MakeActiveLet\<\MetaVar %% 2010/12/31

63 \else \MakeActiveLetHere\<\MetaVar %% 2011/06/20

64 \fi

65 \MakeActiveLetHere #1\niceverb_egroup

66 \verb@eol@error %% TODO change message 2009/04/09

67 }{\string\NVerb \string#1}}

2009/04/11: about etc. [preceding a box!? 2010/03/14]

68 \newcommand*{\niceverb_normal_egroup}{%

69 \egroup

2011/09/09 adding \niceverb_maybe_rq for \AddQuotes:

70 \niceverb_maybe_rq

71 \ifmmode\else\@\fi}

72 \@ifdefinable\niceverb_egroup

73 {\let\niceverb_egroup\niceverb_normal_egroup}

2.4 Single Quotes Typeset Meta-Code

\LQverb will be a “permanent alias” for the active left single quote.
The verbatim feature must not act when another single left quote is ahead—

we assume a double quote is intended then (thus the left quote feature does not
allow to typeset something verbatim that starts with a single left quote). Rather,
double quotes should be typeset then. In page headers, a \protect may be in
the way. (A hook for \relaxing certain things in \markboth and \markright

would have been an alternative.)

74 \MakeActive\‘

75 \newcommand*{\LQverb}{%

76 \IfTypesetting{\lq_double_test}{\protect‘}}

77 \MakeOther\‘

78 \newcommand*{\lq_double_test}{%

This test settles the next catcode, so better switch to “other” in advance (won’t
harm if left quote isn’t next):

79 \begingroup

80 \let\do\MakeOther \dospecials

81 \MakeOther\|%% 2010/03/09!

82 \futurelet\let_token \lq_double_decide}

83 \newcommand*{\lq_double_decide}{%

84 \ifx\let_token\LQverb

85 \endgroup

86 ‘‘\expandafter \@gobble

2 IMPLEMENTATION OF THE MARKUP SYNTAX 11

Corresponding right quotes will become “other” due to having no space at the
left. TODO to be changed with wiki.sty.

87 \else

88 \ifx\let_token\protect

89 \expandafter\expandafter\expandafter \lq_double_decide_ii

90 \else

91 \endgroup

92 \niceverb_maybe_qs %% 2011/09/09

93 \expandafter\expandafter\expandafter \NVerb

94 \expandafter\expandafter\expandafter \’%

95 \fi

96 \fi}

\lq_double_decide_ii continues test behind \protect.

97 \newcommand*{\lq_double_decide_ii}[1]{%

98 \futurelet\let_token \lq_double_decide}

2.5 Ampersand (or \cstx) Typesets Meta-Code

\CmdSyntaxVerb will be a permanent alias for the active &.

99 \MakeActive\&

100 \newcommand*{\CmdSyntaxVerb}{%

101 \IfTypesetting{%

102 \begin_min_verb

v0.3 moves the previous line from \cmd_syntax_verb where it is too late to
establish private letters according to next line which was in \begin_min_verb

earlier—an important bug fix!

103 \private_letters %% v0.5

104 \cmd_syntax_verb

105 }{\protect&\string}}

106 \MakeNormal\&

107 \newcommand*{\cmd_syntax_verb}[1]{%

108 \string#1\futurelet\let_token \after_cs}

However, & (or \CmdSyntaxVerb) may fail with private letters (there should be
a hook for them), especially in macro arguments and with hyperref in titles of
sections bearing \labels, so we provide something like \cs{〈characters〉} from
tugboat.sty.

109 \DeclareRobustCommand*{\cs}[1]{%

110 \begin_min_verb \backslash_verb #1\egroup}

111 \newcommand*{\backslash_verb}{\char‘\\}

Moreover, typing &\par in “short” macro arguments fails, you better type
\cs{par} then. Likewise, \cs{if〈letters〉} and \cs{fi} is safer in case you
want to skip some part of the documentation (e.g., a package option skips

http://ctan.org/pkg/tugboat

2 IMPLEMENTATION OF THE MARKUP SYNTAX 12

commented code) by \if〈letters〉\fi. Finally, there will be PDF bookmarks
support for \cs rather than for a real & or \CmdSyntaxVerb analogue like
\cstx{〈charcters〉}*[〈opt〉]{〈mand〉} as follows.

112 \DeclareRobustCommand*{\cstx}[1]{% %% corr. 2010/03/17

113 \begin_min_verb \backslash_verb #1\futurelet\let_token \after_cs}

114 \newcommand*{\after_cs}{%

115 \ifcat\noexpand\let_token a\egroup \space

116 \else \expandafter \decide_verb \fi}

117 \newcommand*{\test_more_verb}{\futurelet\let_token \decide_verb}

118 \newcommand*{\decide_verb}{%

119 \jumpteg_on_with\bgroup\braces_verb

120 \jumpteg_on_with[\brackets_verb

121 \jumpteg_on_with*\star_verb

122 \egroup}

123 %% CAUTION/TODO wrong before (... if cmd without arg

124 %% use \ then or choose usual verb...

125 %% or \MakeLetter\(etc. ... or \xspace

126 \newcommand*{\jumpteg_on_with}[2]{%

127 \ifx\let_token#1\do_jumpteg_with#2\fi}

TODO cf. xfor, xspace (\break@loop); \DoOrBranch#1 . . . #1 or so.

128 \def\do_jumpteg_with#1#2\egroup{\fi#1}

129 \def\braces_verb#1{\string{#1\string}\test_more_verb}

130 \def\brackets_verb[#1]{[#1]\test_more_verb}

131 \def\star_verb*{*\test_more_verb}

132 %% not needed with \Auto... OTHERWISE useful in args!

As latex.ltx has \endgraf as a permanent alias for the primitive version of \par
and \endline for \cr, we offer \endcell as a replacement for the original &:

133 \let\endcell&

2.6 Escape Character Typesets Meta-Code

\BuildCsSyntax will be a permanent alias for the active escape character.

134 \DeclareRobustCommand*{\BuildCsSyntax}{%

135 \futurelet\let_token \build_cs_syntax_sp}

136 \newcommand*{\build_cs_syntax_sp}{%

137 \ifx\let_token\@sptoken

138 \@% %% 2010/12/30

139 \else %% TODO ^^M!?

140 \expandafter \start_build_cs_syntax

141 \fi}

142 \newcommand*{\start_build_cs_syntax}[1]{%

143 \edef\string_built{\string#1}%

#1 may be active.—With Donald Arseneau’s import.sty (e.g.), ‘_’ may be needed
to be \active with the meaning of \textunderscore, therefore restoring its
category code needs some more care than with v0.32 and earlier:

2 IMPLEMENTATION OF THE MARKUP SYNTAX 13

144 \edef\before_build_cs_sub{\the\CatCode_}%

145 \private_letters %% v0.5

146 \test_more_cs}

147 \newcommand*{\test_more_cs}{%

148 \futurelet\let_token \decide_more_cs}

149 \newcommand*{\decide_more_cs}{%

150 \ifcat\noexpand\let_token a\expandafter \add_to_cs

151 \else

152 % \MakeNormalHere_

Restoring ‘_’ more carefully with v0.4 (\begingroup . . . \endgroup!?):

153 \CatCode_\before_build_cs_sub

154 \MakeOther\@%

155 \expandafter \in@ \expandafter

156 {\csname \string_built \expandafter \endcsname

157 \expandafter}\expandafter{\niceverbNoVerbList}%

158 \ifin@

159 \csname \string_built

160 \expandafter\expandafter\expandafter \endcsname

161 \else

162 \begin_min_verb \backslash_verb\string_built

163 \expandafter\expandafter\expandafter \test_more_verb

164 \fi

165 \fi}

166 %% TODO such \if nestings with ifthen!?

167 %% cf.:

168 % \let\let_token,\typeout{\meaning\let_token}

169 %% TEST TODO fuer xspace!? (\ifin@)

170 \newcommand*{\add_to_cs}[1]{%

171 \edef\string_built{\string_built#1}\test_more_cs}

\AutoCmdSyntaxVerb starts, \EndAutoCmdSyntaxVerb ends “auto mode.”

172 \newcommand*{\AutoCmdSyntaxVerb}{%

173 \MakeActiveLetHere\\\BuildCsSyntax}

174 \newcommand*{\EndAutoCmdSyntaxVerb}{\CatCode\\\z@}

\NormalCommand{〈characters〉} executes \〈characters〉 in “auto mode.”

175 \newcommand*{\NormalCommand}{} \let\NormalCommand\@nameuse

Once I may want to use this feature in Wikipedia-like section titles as supported
by makedoc, yet I cannot really apply the present feature soon, so this must
wait . . . (There is a special problem with \newlabel and hyperref . . .)

Former tests:

176 % \futurelet\LetToken\relax \relax

177 % \show\LetToken \typeout{\ifcat\noexpand\LetToken aa\else x\fi}

\niceverbNoVerbList is the list of macros that will be executed instead of
being typeset.

2 IMPLEMENTATION OF THE MARKUP SYNTAX 14

178 \newcommand*{\niceverbNoVerbList}{%

179 \begin\end\item\verb\EndAutoCmdSyntaxVerb\NormalCommand

180 \section\subsection\subsubsection} %% TODO!?

\AddToMacro{\niceverbNoVerbList}{〈macros〉} can be used to add 〈macros〉
to that list.

181 \providecommand*{\AddToMacro}[2]{% %% TODO move to ... 2010/03/05

182 \expandafter \def \expandafter #1\expandafter {#1#2}}

183 %% <- was very wrong 2010/03/18

Hey, or just \AddToNoVerbList{〈macros〉} :

184 \newcommand*{\AddToNoVerbList}{\AddToMacro\niceverbNoVerbList}

“Auto mode” probably ain’t mean a thing if it ain’t invoked using

\AutoCmdInput{〈file〉}

for typesetting 〈file〉 in “auto mode:”

185 \newcommand*{\AutoCmdInput}[1]{%

186 \begingroup

187 \AddToMacro\niceverbNoVerbList{\ProvidesFile}%

188 %% <- removed ‘\endinput’, will be code! 2010/04/05

189 \AutoCmdSyntaxVerb

190 \input{#1}%

191 \EndAutoCmdSyntaxVerb

192 \endgroup

193 }

2.7 Meta-Variables

\MetaVar〈var-id〉> will be a permanent alias for the active ‘<’.

194 \def\MetaVar#1>{%

195 \mbox{\normalfont\itshape \langle#1\/\rangle}}

196 %% TODO offer without angles as well

As opposed to ltxguide.cls, this works outside verbatim as well.

2.8 Hash Mark is Code

\HashVerb〈digit〉 will be a permanent alias for the active hash mark.

197 \newcommand*{\HashVerb}[1]{{\tt\##1}}

2 IMPLEMENTATION OF THE MARKUP SYNTAX 15

2.9 Single Right Quotes for \textsf

\RQsansserif will be a permanent alias for the active single right quote.
The basic problem with the “single right quote feature” is that a single right

quote may be meant to be an apostrophe. This is certainly the case at the right
of a letter. On the other hand, we assume that it is not an apostrophe (i) in
vertical mode (opening a new paragraph), (ii) after a horizontal skip.

For page headers, in expanding without typesetting, the expansion of
\RQsansserif must contain another active single right quote.

198 \MakeActive\’

199 \newcommand*{\RQsansserif}{%

200 \IfTypesetting{\niceverb_rq_sf_test}{\protect’}}

201 \MakeOther\’

Another macro just to avoid more sequences of \expandafter:

202 \newcommand*{\niceverb_rq_sf_test}{%

203 \ifhmode

204 \ifdim\lastskip>\z@

205 \expandafter\expandafter\expandafter \DoRQsansserif

206 \else

207 \ifnum\niceverb_spacefactor

208 \expandafter\expandafter\expandafter\expandafter

209 \expandafter\expandafter\expandafter

210 \DoRQsansserif

211 \else ’\fi

212 \fi

213 \else \ifvmode

214 \expandafter\expandafter\expandafter \DoRQsansserif

215 \else ’\fi

216 \fi}

\DoRQsansserif is another (possible) alias for the active single right quote,
see below.

217 \MakeActive\’

218 \@ifdefinable\DoRQsansserif

219 {\def\DoRQsansserif#1’{\textsf{#1}}}

220 \MakeOther\’

The following cases are typical and cannot be decided by the previous cri-
teria: (i) parenthesis, (ii) footnotes and after “horizontal” environments like
\[〈math〉\], (iii) section titles, (iv) \noindent. We introduce some danger-
ous tricks—redefinitions of LATEX’s internal \@sect and of TEX’s primitives
\noindent and \ignorespaces as well as by a signal \spacefactor value of
1001. In page headers, LATEX equips the single right quote with the meaning of
\active@math@prime which must be overridden.

221 \newcommand*{\nvAllowRQSS}{%

222 \MakeActiveLetHere\’\RQsansserif

223 \niceverb_ignore} %% 2010/03/16

2 IMPLEMENTATION OF THE MARKUP SYNTAX 16

These and the entire right quote functionality are activated by

\nvRightQuoteSansSerif and disabled by \nvRightQuoteNormal

—at \begin{document}—where we collect previous settings—or later:

224 \AtBeginDocument{%

225 \edef\before_niceverb_parenthesis{\the\sfcode‘\(}%

226 \let \before_niceverb_ignore \ignorespaces %% 2010/03/16

227 \let \before_niceverb_sect \@sect

228 \let \before_niceverb_noindent \noindent} %% 2010/03/08

We assume that \@sect has the same parameters there as in LATEX (even if
redefined by another package, like hyperref).

229 \def\niceverb_sect#1#2#3#4#5#6[#7]#8{%

230 \before_niceverb_sect{#1}{#2}{#3}{#4}{#5}{#6}%

231 [{\protect\nvAllowRQSS #7}]%

232 {\protect\nvAllowRQSS #8}}

2010/03/20:

233 \newcommand*{\niceverb_spacefactor}{\spacefactor=1001\relax}

234 \newcommand*{\niceverb_noindent}{%

235 \before_niceverb_noindent \niceverb_spacefactor}

236 \newcommand*{\niceverb_ignore}{%

237 \ifhmode \niceverb_spacefactor \fi \before_niceverb_ignore}

Here are the main switches:

238 \newcommand*{\nvRightQuoteSansSerif}{%

239 \MakeActiveLet\’\RQsansserif

240 \sfcode‘\(=1001 %% enable in parentheses 2009/04/10

I also added \sfcode‘/=1001 in the preamble of makedoc.tex.

241 % \let\@footnotetext\niceverb_footnotetext

242 \let\ignorespaces\niceverb_ignore %% 2010/03/16

243 \let\@sect\niceverb_sect

244 \let\noindent\niceverb_noindent} %% 2010/03/08

245 \newcommand*{\nvRightQuoteNormal}{%

246 \MakeNormal\’% %% 2010/03/21

247 \sfcode‘\(=\before_niceverb_parenthesis\relax

248 \let\ignorespaces\before_niceverb_ignore %% 2010/03/16

249 \let\@sect\before_niceverb_sect

250 \let\noindent\before_niceverb_noindent} %% 2010/03/08

\nvAllRightQuotesSansSerif (after \begin{document}!) forces the \textsf
feature without testing for apostrophes. You then must be sure—DANGER!
CARE!—to use ‘\rq’ only for obtaining an apostrophe and the double quote
character ‘"’ for closing double quotes, or our \dqtd{〈text〉} for the entire quot-
ing.

2 IMPLEMENTATION OF THE MARKUP SYNTAX 17

251 \newcommand*{\nvAllRightQuotesSansSerif}{%

252 \nvRightQuoteNormal

253 \MakeActiveLet\’\DoRQsansserif}

I started v0.31 (signal \sfcode=1000, lowercase letters get \sfcode=1001) be-
cause \href{http://ctan.org/pkg/〈pkg〉}{〈pkg〉} failed. However, what I ac-
tually needed was \ctanpkgref{〈pack-name〉} :

254 % \DeclareRobustCommand*{\ctanpkgref}[1]{%

255 % \href{http://ctan.org/pkg/#1}{\textsf{#1}}}

. . . moves to texlinks.sty 2011/01/24.

2.10 Command-Highlighting Boxes

With v0.3, we include one kind of command syntax boxes whose 〈content〉 is
(in niceverb syntax) delimited as |〈content〉| .

256 \newsavebox\niceverb_savebox

\GenCmdBox〈char〉〈content〉〈char〉} works like \NVerb〈char〉〈content〉〈char〉
except putting the latter’s result into a framed (or coloured or . . .) box.

257 \newcommand*{\GenCmdBox} {_no_nice_meta_verb_false \gen_cmd_box}

\HardVerbBox is a variant of \GenCmdBox with the meta-variable feature dis-
abled (for the documentation of the present package).

258 \newcommand*{\HardVerbBox}{_no_nice_meta_verb_true \gen_cmd_box}

259 \newcommand*{\gen_cmd_box}{%

260 % \ifvmode\let\niceverb_boxtype\VerticalCmdBox %% 2011/11/05

261 % \else\let\niceverb_boxtype\InlineCmdBox \fi

262 \let\niceverb_egroup\nice_collect_verb_egroup

263 \setbox\niceverb_savebox \hbox\bgroup

264 \if_no_nice_meta_verb_

265 \expandafter \HardNVerb

266 \else \expandafter \NVerb \fi}

267 \newcommand*{\nice_collect_verb_egroup}{%

268 \egroup \egroup

269 \ifvmode \expandafter \VerticalCmdBox

270 \else \ifmmode \hbox \fi

271 \expandafter \InlineCmdBox \fi

272 % \ifmmode\hbox\fi \niceverb_boxtype %% 2011/11/05

273 {\box\niceverb_savebox}%

Modifying invocation of \niceverb_normal_egroup 2011/11/05 according to
remark of 2010/03/15 for saving nesting level:

274 \ifmmode\else\@\fi

275 \let\niceverb_egroup\niceverb_normal_egroup

276 }

2 IMPLEMENTATION OF THE MARKUP SYNTAX 18

\nvCmdBox will be the permanent alias for ‘|’.

277 \newcommand*{\nvCmdBox}{\GenCmdBox\|}

\VerticalCmdBox{〈content〉} may eventually start a decl environment as in
ltxguide.cls, looking ahead for another ‘|’ in order to (perhaps) append another
row. Another possibility is first to do some

\if@nobreak\else \pagebreak[2]\fi

etc. and then invoke \InlineCmdBox. The user can choose later by some
\renewcommand. We do the perhaps most essential thing here (again cf.
\begin_min_verb):

278 \newcommand*{\VerticalCmdBox}{\leavevmode\InlineCmdBox}

(2011/11/05 removing \null.) The command declaration boxes in the docu-
mentation of Nicola Talbot’s datatool would be an especially nice realization of
\VerticalCmdBox.

\InlineCmdBox{〈content〉} , according to our idea, should not change base-
line skip, even with some \fboxsep and \fboxrule. (However, it may be a good
idea to increase the overall normal baseline skip.) We therefore replace actual
height and depth of the content by the height and depth of math parentheses.

279 \newcommand*{\InlineCmdBox}[1]{%

280 \bgroup

. . . needed in math mode with \begin_min_verb.

281 \fboxsep 1pt

282 \kern\SetOffInlineCmdBoxOuter

283 \smash{\SetOffInlineCmdBox{\kern\SetOffInlineCmdBoxInner

284 \InlineCmdBoxArea{#1}%

285 \kern\SetOffInlineCmdBoxInner}}%

286 \mathstrut

287 \kern\SetOffInlineCmdBoxOuter

288 \egroup

289 }

The default choice for \SetOffInlineCmdBox is \fbox:

290 \@ifdefinable\SetOffInlineCmdBox{\let\SetOffInlineCmdBox\fbox}

You can \renewcommand it to change \fboxsep, \fboxrule etc. or to use a
\colorbox with the color package, e.g., I used the following setting so far:

\RequirePackage{color}

\renewcommand*{\SetOffInlineCmdBox}

{\colorbox[cmyk]{.1,0,.2,.05}}

\SetOffInlineCmdBoxInner enables controlling the inner horizontal space to
the box margin independently of \fboxsep.

http://ctan.org/pkg/datatool

2 IMPLEMENTATION OF THE MARKUP SYNTAX 19

291 \newcommand*{\SetOffInlineCmdBoxInner}{-\fboxsep\thinspace}

This choice is inspired by \cstok for “boxed” things in Knuth’s manmac.tex
which formats The TEXbook.

\SetOffInlineCmdBoxOuter allows that the box hangs out into the margin
horizontally. We set it to 0 pt as default (it is a macro only, for a while).

292 \newcommand*{\SetOffInlineCmdBoxOuter}{\z@}

The height and depth of the frame should be the same for all inline boxes, we
think. The present choice \InnerCmdBoxArea for the spacing respects code
characters rather than the height and depth of the angle brackets that surround
meta-variable names.

293 \newcommand*{\InlineCmdBoxArea}[1]{%

294 \smash{#1}\vphantom{gjpq\backslash_verb}}

\cmdboxitem|〈content〉| is another variant of \GenCmdBox. It should replace
\item[〈content〉] in the description environment.

295 \newcommand*{\cmdboxitem}{%

296 \bgroup

297 \let\niceverb_egroup\cmd_item_egroup

298 \global %% TODO!? 2010/03/15

299 \setbox\niceverb_savebox \hbox\bgroup

300 \NVerb}

301 \newcommand*{\cmd_item_egroup}{%

302 \egroup \egroup \egroup

303 \item[\InlineCmdBox{\box\niceverb_savebox}]}

2.11 When niceverb Gets Nasty

These things are new with v0.3.

2.11.1 Meta-Variables

This is even newer than v0.3.
In case you actually need < and > in math mode, \lt and \gt are “pro-

vided” as aliases:

304 \providecommand*{\gt}{>}

305 \providecommand*{\lt}{<}

2.11.2 Quotes

In order to get real single quotes, you could use \lq 〈text〉\rq, maybe appending
a \ , but the code \qtd{〈text〉} may look better and be easier to type.

306 \newcommand*{\qtd}[1]{‘#1’}

2 IMPLEMENTATION OF THE MARKUP SYNTAX 20

However, here we get the problem that the left quote in \qtd{‘〈code〉’} will
be unable to switch into verbatim mode entirely—then use &, e.g., ‘\qtd{&&}’
typesets “&”, i.e., the ampersand in single (non-verbatim) quotes.

307 % TODO \qtdverb!? alternative meaning for \LQverb!? 2010/03/06

308 % rather rare, & takes less space 2010/03/09

\AddQuotes automatically surrounds code with single quotes. I have so often
felt that it was a design mistake to drop them (2011/09/09):

309 \newcommand*{\AddQuotes}{%

310 \let\niceverb_maybe_qs\niceverb_add_qs}

311 \newcommand*{\niceverb_add_qs}{%

In a math display, quotes are suppressed even with \AddQuotes:

312 \ifmmode\else

313 ‘\let\niceverb_maybe_rq\niceverb_rq

314 \fi}

315 \@ifdefinable\niceverb_maybe_rq{\let\niceverb_maybe_rq\relax}

316 \newcommand*{\niceverb_rq}{’\let\niceverb_maybe_rq\relax}

You can undo this by \DontAddQuotes :

317 \newcommand*{\DontAddQuotes}{\let\niceverb_maybe_qs\relax}

The default will be the behaviour that we had before:

318 \DontAddQuotes

\dqtd{〈text〉} can be used for enclosing in double quotes with the dangerous
\nvAllRightQuotesSansSerif (see above).

319 \newcommand*{\dqtd}[1]{‘‘#1"}

2.11.3 hyperref

This is for/about compatibility with the hyperref package. (One preliminary
thing: in doubt, don’t load niceverb earlier than hyperref.)

We need some substitutions for PDF bookmarks with hyperref. We issue
them at \begin{document} when we know if hyperref is at work.9

320 \AtBeginDocument{%

321 \@ifpackageloaded{hyperref}{%

322 \newcommand*{\PDFcstring}{% %% moved here 2010/03/09

323 \134\expandafter\@gobble\string}% %% ASCII octal encoding

324 \pdfstringdefDisableCommands{%

325 \let\nvAllowRQSS\empty %% not \relax 2010/03/12

326 %% 2010/03/12

327 \MakeActiveLetHere\‘\lq \MakeActiveLetHere\’\rq

328 \MakeActiveLetHere\&\PDFcstring

329 \def\cs{\134}% %% 2010/03/17, 2011/06/27

330 }%

9An alternative approach would be using afterpackage by Alex Rozhenko.

http://ctan.org/pkg/afterpackage

2 IMPLEMENTATION OF THE MARKUP SYNTAX 21

Moreover, in order to avoid spurious Label(s) may have changed with hyper-
ref, a single right quote must be read as active by a \newlabel if and only if it
has been active when \@currentlabelname was formed.10 as \active. We use
\protected@write as this cares for \nofiles. \@auxout may be \@partaux

for \include.

331 \newcommand*{\niceverb_aux_cat}[2]{% %% 2010/03/14

332 \protected@write\@auxout{}{\string#1\string#2}}%

v0.5 restricts “activating” to \MakeActiveLet:

333 % \renewcommand*{\MakeActive}[1]{%

334 % \MakeActiveHere#1%

335 % \niceverb_aux_cat\MakeActiveHere#1}%

336 \renewcommand*{\MakeActiveLet}[2]{%

337 \MakeActiveLetHere#1#2%

338 % \niceverb_aux_cat\MakeActiveHere#1}%

339 \protected@write\@auxout{}{%

340 \string\MakeActiveLetHere\string#1\string#2}}%

341 \renewcommand*{\MakeNormal}[1]{%

342 \MakeNormalHere#1%

343 \niceverb_aux_cat\MakeNormalHere#1}%

344 }{}%

345 }

TODO doesn’t babel have the same problem? 2010/03/12

2.11.4 hyper-xr

With the hyper-xr package creating links into external documents, preceding
\externaldocument{〈file〉} with \MakeActiveLet\&\CmdSyntaxVerb may be
needed. I do not want to redefine something here right now as I have too little
experience with this situation.

2.11.5 Turning off and on altogether

These commands are new with v0.3.
\noNiceVerb disables all niceverb features.

346 \newcommand*{\noNiceVerb} {\MakeNormal\‘%

347 \MakeNormal\&%

348 \MakeNormal\<%

349 \MakeNormal\#%

350 \nvRightQuoteNormal

351 \MakeNormal\|}

\useNiceVerb activates all the niceverb features (apart from “auto mode”).

352 \newcommand*{\useNiceVerb}{\MakeActiveLet\‘\LQverb

10This uses \@onelevelsanitize, therefore \protect doesn’t change the behaviour of “ac-
tive” characters.

2 IMPLEMENTATION OF THE MARKUP SYNTAX 22

TODO to be changed with wiki.sty v0.2

353 \MakeActiveLet\&\CmdSyntaxVerb

354 \MakeActiveLet\<\MetaVar

355 \MakeActiveLet\#\HashVerb

356 \nvRightQuoteSansSerif

357 \MakeActiveLet\|\nvCmdBox}

2.12 Activating the niceverb Syntax

niceverb features are activated at \begin{document} so (some) other packages
can be loaded after niceverb. For v0.3, we do this after possible settings for
compatibility with hyperref.

358 \AtBeginDocument{\useNiceVerb}

2.13 Leave Package Mode

359 \PopLetterCat_ %% 2012/08/27

360 \endinput

2.14 VERSION HISTORY

361 v0.1 2009/02/21 very first, sent to CTAN

362 v0.2 2009/04/04 ...NoVerbList: \subsubsection, \AddToMacro,

363 2009/04/05 \SimpleVerb makes more other than iii

364 2009/04/06 just uses \dospecials

365 2009/04/08 debugging code for rq/sf, +\relax

366 2009/04/09 +\verb@eol@error, prepared for new doc method,

367 removed spurious \makeat..., -\relax (ligature),

368 2009/04/10 (’-trick

369 2009/04/11 \@ after \SimpleVerb

370 2009/04/14 noted TODO below

371 2009/04/15 change v0.1 to 2009/02/21

372 v0.30 2010/02/27 short, more explained, \AssignCatCodeTo,

373 use \MakeActive for re-activating, \MakeNormal

374 2010/02/28 fixed @ and _ with & by moving \begin_min_verb;

375 replaced \lq by ‘; Capitals in Titles

376 2010/03/05 \SimpleVerb -> \NVerb;

377 use \MakeActive + \MakeNormal; \rq -> ’;

378 renamed some sections; \lq_verb -> \LQverb,

379 \niceverb_meta -> \MetaVar,

380 \param_verb -> \HashVerb

381 2010/03/06 removed \MakeAlign; removed @ and _ todo below;

382 \NVerb makes ‘ and ’ other;

383 \nvAllowRQSF allows ’ in column titles,

384 2010/03/08 \LQverb and & work in column titles,

385 \RQverb works with \noindent;

386 bookmark substitutions

387 2010/03/09 extended notes on ’hyperref’ (in)compatibility;

2 IMPLEMENTATION OF THE MARKUP SYNTAX 23

388 \MakeLetter\@ in \CmdSyntaxVerb only;

389 |...| implemented as \prepareCmdBox etc.!

390 2010/03/10 \colorbox example, \thinspace; ltxguide!;

391 removed todo; ..._exec -> \DoRQsansserif;

392 minor doc changes in ‘‘Nasty"

393 2010/03/11 doc changes in ‘‘Escape Character ..." and

394 ‘‘Ampersand"

395 2010/03/12 \niceverb_aux_cat, \MakeActiveHere etc.,

396 \IfTypesetting, \noNiceVerb, \useNiceVerb,

397 corr. bracing mistake in \MakeNormal!

398 2010/03/14 0.31 -> 0.3; \HardNVerb, \GenCmdBox,

399 \prepareCmdBox -> \nvCmdBox

400 2010/03/15 \endcell; \cmdboxitem; remark on \sfcode‘/

401 2010/03/16 corr. -> \endline;

402 advice on \cs{par}, \cs{if...}, \cs{fi};

403 redefined \ignorespaces for RQ feature

404 2010/03/17 corr. ‘\fututelet’, corr. \cs PDF substitution

405 2010/03/18 |\niceverbNoVerbList|, |\AddToMacro| etc.;

406 corr. \AddToMacro;

407 \lastskip-fix of \niceverb_ignore,

408 another fix of \niceverb_noindent

409 2010/03/19 another fix of \niceverb_ignore: \spacefactor

410 2010/03/20 ... again: \niceverb_spacefactor

411

412 NOT DISTRIBUTED, just stored saved as separate version

413

414 v0.31 2010/03/20 right quote feauture: letters get \sfcode=1001

415 ‘column title’ -> ‘page headers’, \ctanpkgref

416

417 NOT DISTRIBUTED, just stored as separate version

418

419 v0.32 2010/03/21 taking best things from v0.30 and v0.31

420 2010/03/23 removed \relax from \IfTypesetting

421 SENT TO CTAN

422

423 v0.4 2010/03/27 restoring ‘_’ with "auto mode" safer

424 2010/03/28 \AddToNoVerbList

425 2010/03/29 note above, renamed v0.4

426 SENT TO CTAN

427

428 v0.41 2010/04/03 v0.33 -> v0.4

429 2010/04/05 corrected \AutoCmdInput list

430 SENT TO CTAN as part of NICETEXT release r0.41

431

432 v0.41a 2010/11/09 typo corrected

433 v0.42 2010/12/30 corr. ‘\ ’ emulation in auto mode

434 2010/12/31 \MetaVar in ...maybe_meta...

435 2011/01/19 ‘...’ fix

436 2011/01/24 \ctanpkgref moves to texlinks.sty

437 2011/01/26 update (C)

2 IMPLEMENTATION OF THE MARKUP SYNTAX 24

438 with nicetext RELEASE r0.42

439 v0.43 2011/05/09 \gt, \lt

440 2011/05/27 \cs uses \@backslashchar

441 2011/06/20 \MakeActiveLetHere in \nice_maybe_meta_verb !!!

442 2011/06/27 2011/05/27 undone

443 2011/08/20 ‘r0.42’, ‘v0.43’

444 with nicetext RELEASE r0.43

445 v0.44 2011/09/09 \AddQuotes, \DontAddQuotes

446 with nicetext RELEASE r0.44

447 v0.45 2011/11/05 mod. \niceverb_collect_egroup/\VerticalCmdBox,

448 tried \output problem without avail

449 2011/12/05 clarified "r0.44"

450 with nicetext RELEASE r0.5

451 v0.5 2012/08/27 using ’catcodes’, \providecommand\CatCode,

452 rm. \AssignCatCodeTo, \private_letters

453 2012/08/28 fixed \private_letters;

454 rewording for filling lines

455 2012/09/27 corrections about \MakeActive...

456

	Presenting 'niceverb'
	Purpose
	Acknowledgement/Basic Ideas
	The Commands and Features of 'niceverb'
	Examples
	What is Wrong with the Present Version

	Implementation of the Markup Syntax
	Switching Category Codes
	Robustness by \IfTypesetting
	\NVerb
	Single Quotes Typeset Meta-Code
	Ampersand (or \cstx) Typesets Meta-Code
	Escape Character Typesets Meta-Code
	Meta-Variables
	Hash Mark is Code
	Single Right Quotes for \textsf
	Command-Highlighting Boxes
	When 'niceverb' Gets Nasty
	Meta-Variables
	Quotes
	'hyperref'
	'hyper-xr'
	Turning off and on altogether

	Activating the 'niceverb' Syntax
	Leave Package Mode
	VERSION HISTORY

