
niceverb.sty
—

Minimizing Markup
for Documenting LATEX packages∗

Uwe Lück
http://contact-ednotes.sty.de.vu

February 23, 2009

Contents

1 Presenting niceverb 2
1.1 Purpose . 2
1.2 Acknowledgement/Basic Ideas 2
1.3 The Commands and Features of niceverb 3
1.4 What is Wrong with the Present Version 5

2 Implementation of the Markup Syntax 6
2.1 Switching category codes . 6
2.2 Sloppy variant of \verb . 6
2.3 Single quotes typeset meta-code 7
2.4 Ampersand typesets meta-code 8
2.5 Escape character typesets meta-code 9
2.6 Meta-variables . 10
2.7 Hash mark is code . 10
2.8 Single right quote for \textsf 10
2.9 Leave package mode . 11

3 Code Preparing Source for Typesetting 11

∗This manual describes package version version 0.1 as of February 23, 2009.

1

1 Presenting niceverb

1.1 Purpose

The niceverb package provides “minimal” markup for documenting LATEX
packages, reducing the number of keystrokes/visible characters needed (kind
of poor man’s WYSIWYG).1 It conveniently handles command names in
arguments of macros such as \footnote or even of sectioning commands.
Commands for typesetting a package’s code are inserted automatically (just
using TEX). As opposed to tools that are rather common on UNIX/Linux,
this operation should work at any TEX installation, irrespective of platform.

The package may at least be useful while working at a very new package
and may suffice with small, simple packages. After having edited your pack-
age’s code (typically in a .sty file), you just “latex” the manual file (maybe
some .tex file) and get instantly the corresponding refreshed documentation.

niceverb may also help to generate without much effort documentations
of nowadays commonly expected typographical quality for packages that so
far only had ASCII documentations.

1.2 Acknowledgement/Basic Ideas

Three ideas of Stephan I. Böttcher’s in documenting his lineno.sty inspired
the present work:

1. The markup and its definitions are short and simple, markup com-
mands are placed at the right “margin” of the ASCII file, so you hardly
see them in reading the source file, you rather just read the text that
will be printed.

2. An AWK script removes the %s starting documentation lines and inserts
the commands for typesetting the package’s code (you don’t see them
in the source).

3. An active character (‘|’) issues a \string and switches to typewriter
typeface for typesetting a command verbatim—so this works without
changing category codes (which is the usual idea of typesetting code),
therefore it works even in macro arguments.

1“What you see is what you get.” Novices are always warned that WYSIWYG is
essentially impossible with LATEX.

2

1.3 The Commands and Features of niceverb

Single quotes ‘, ’, “less than” < (accompanied with >), the hash mark #,
ampersand &, and in an extended “auto mode” even backslash \ become
\active characters with “special effects.”

The package mainly aims at typesetting commands and descriptions of
their syntax if the latter is “standard LATEX-like”, using “meta-variables.”
A string to be typeset “verbatim” thus is assumed to start with a single
command like \foo, maybe followed by stars (‘*’) and pairs of square brackets
([. . .]) or curly braces ({. . .}), where those pairs contain strings indicating
the typical kinds of contents for the respective arguments of that command.
A typical example is this:

\foo*[〈opt-arg〉]{〈mand-arg〉}

This was achieved by typing &\foo*[<opt-arg>]{<mand-arg>}. In “auto
mode” of the package, even typing

\foo*[<opt-arg>]{<mand-arg>}

would have sufficed—WYSIWYG! (I call such mixtures of verbatim and
“meta-variables” ‘meta-code’.)

Now for the details:

“Meta-variables:” The package supports the “angle brackets” style of
“meta-variables” (as with 〈meta-variable〉). You just type ‘<foo>’ to
get ‘〈foo〉’.
This works due to a sloppy variant \SimpleVerb of \verb which doesn’t
care about possible ligatures and definitions of active characters. In-
stead, it assumes that the “verbatim” font doesn’t contain ligatures
anyway. ‘\verb|<foo>|’, by contrast, just yields ‘<foo>’.

Almost the same feature is offered by ltxguide.cls which formats the ba-
sic guides from the LATEX Project Team. The present feature, however,
also works in plain text outside verbatim mode.

Single quotes (left/right) for “short verb:” The package “assumes”
that quoting refers to code, therefore ‘‘foo’’ is typeset as ‘foo’. This
somewhat resembles the \MakeShortVerb feature of doc.sty.

It will typically fail when you try to typeset commands (and their
syntax) in macro arguments—e.g.,

\footnote{‘\bar’ is a celebrated fake example!}

3

will try to execute \bar instead of typesetting it, giving an “undefined”
error so. \verb fails in the same situation, for the same reason. ‘&’
(\footnote{&\bar〈remaining〉}) or “auto mode” (see below) may then
work better.

Double quotes and apostrophes should still work the usual way; oth-
erwise you could control the parsing mechanisms using curly braces
(outside and inside don’t interact). To get usual single quotes, you
can use their standard substitutes \lq and \rq. You can “abuse” this
“single quotes” feature just to get typewriter typeface.2 For difficult
cases, you can still use the standard \verb command from LATEX.

Single right quotes for \textsf: Package names are (by some unwritten
convention!?) typeset with \textsf; it was natural to use a remaining
case of using single quotes for replacing \textsf{〈text〉} by ’〈text〉’.3

This idea of switching fonts continues font switching of wiki.sty which
uses the syntax for editing Wikipedia pages.

Ampersand ‘&’ typesets command syntax even in arguments: e.g.,
type ‘&\foo{<arg>}’ to get ‘\foo{〈arg〉}’. This may be even more
convenient for typing than the single quotes method, although looking
somewhat strange. However, & may terminate verbatim unexpectedly,
being designed for displaying “LATEX-like command syntax” in the first
instance.45

This choice of & rests on the assumption that there won’t be many
tables in the documenation. You can restore the usual meaning of &
by \MakeAlign\& and turn the present special meaning on again by

\MakeActiveLet\&\CmdSyntaxVerb.

You could also redefine (\renewcommand) \descriptionlabel us-
ing \CmdSyntaxVerb (the “normal command” equivalent to &) so
\item[\foo] works as wanted.

“Auto mode” typesets commands verbatim unless . . . In “auto
mode”, the backslash ‘\’ is an active character that builds a command

2In macro arguments this requires that the right single quote ’ is \active.
3Font switching by sequences of single quotes is a feature of the syntax for editing

Wikipedia pages and of wiki.sty.
4Moreover, & currently has a limited xspace functionality only.
5You can even use & for referring to active characters like & in footnotes etc.!

4

name from the ensuing letters and typesets the command (and its syn-
tax, allowing meta-variables) verbatim. However, there are some excep-
tions, which are collected in a macro \niceverbNoVerbList. \begin,
\end, and \item belong to this list, you can redefine (\renewcommand)
it. There is also a command \NormalCommand{〈letters〉} issu-
ing the command \〈letters〉 instead of typesetting it. Since auto
mode is somewhat dangerous, you have to start it explicitly by
\AutoCmdSyntaxVerb. You can end it by \EndAutoCmdSyntaxVerb.

Auto mode is motivated by the observation that there are package files
containing their documentation as pure (well-readable) ASCII text—
containing the names of the new commands without any kind of quo-
tation marks or verbatim commands. Auto mode should typeset such
documentation just from the same ASCII text.

Hash mark # comes verbatim. No macro definitions are expected in the
document environment.6 Rather, ‘#’ is an active character for taking
the next character (assuming it is a digit) to form a reference to a
macro parameter—‘#1’ becomes ‘#1’ (WYSIWYG indeed!).

1.4 What is Wrong with the Present Version

1. niceverb.sty should be an extension of wiki.sty; yet their font selection
mechanisms are currently not compatible.

2. Font switching or horizontal spacing may fail in certain situations with
parentheses. (You can correct spacing by ‘\ ’.)

3. The feature of mixing high-quality-typeset comments into the pack-
age code listing is implemented in a very rudimentary way only. The
“comment detector” detects Wikipedia-style subsection titles instead
of lines beginning with percent characters.7

4. The code listing currently uses the listing and listingcont environ-
ments of moreverb.sty; the code font and the line numbers may be too
large.

5. The “vertical” character ‘|’ should be active and provide a version of
the decl environment of ltxguide.cls.

6This idea recently appeared on the latex-l mailing list. It may be wrong, not sure at
the moment, think of latexa.ltx . . .

7Percent characters will definitely not be “ignored” as with \DocInput, rather they
will hide rests of documentation lines as usually, while they will be typeset verbatim in
package code lines.

5

2 Implementation of the Markup Syntax

1 \NeedsTeXFormat{LaTeX2e}[1994/12/01]

\ProvidesPackage{niceverb}[2009/02/22 v0.1

minimize \string\verb\space code (UL)]

%% Copyright (C) 2009 Uwe Lueck,

5 %% http://www.contact-ednotes.sty.de.vu

%% -- author-maintained in the sense of LPPL below --

%%

%% This file can be redistributed and/or modified under

%% the terms of the LaTeX Project Public License; either

10 %% version 1.3a of the License, or any later version.

%% The latest version of this license is in

%% http://www.latex-project.org/lppl.txt

%% We did our best to help you, but there is NO WARRANTY.

%%

15 %% Please report bugs, problems, and suggestions via

%%

%% http://www.contact-ednotes.sty.de.vu

%%

2.1 Switching category codes

\providecommand{\CatCode}{\catcode‘}

20 % \providecommand*{\MakeActive}[1]{\CatCode#1\active}

\providecommand*{\MakeAlign} [1]{\CatCode#14\relax}

\providecommand*{\MakeLetter}[1]{\CatCode#111\relax}

\providecommand*{\MakeOther} [1]{\CatCode#112\relax}

\providecommand*{\MakeSub} [1]{\CatCode#18\relax}

25 \newcommand*{\MakeActiveLet}[2]{%% cf. \@sverb & \do@noligs

\CatCode#1\active

\begingroup

\lccode‘\~‘#1\relax \lowercase{\endgroup \let~#2}}

\MakeLetter_

30 \newcommand*{\make_iii_other}{\MakeOther\\\MakeOther\{\MakeOther\}}

2.2 Sloppy variant of \verb

\newcommand*{\begin_min_verb}{%

\relax \ifmmode \hbox \else \leavevmode\null \fi

%% standard, for $$...$$

6

\bgroup \tt %%%\let\do\MakeOther \dospecials

35 \MakeLetter_\MakeLetter\@}

\newcommand*{\SimpleVerb}[1]{%

%% mainly avoid \verb’s noligs list which overrides definitions

%% of some active characters, while cmtt doesn’t have any

%% ligatures anyway.

40 \ifx\protect\@typeset@protect

\begin_min_verb \make_iii_other \MakeActiveLet#1\egroup

\else \string\SimpleVerb \string#1\fi}

2.3 Single quotes typeset meta-code

\newcommand*{\lq_verb}{%

\ifx\protect\@typeset@protect

45 \expandafter \lq_double_test

\else \lq \fi}

% \ifcat\noexpand’\noexpand~%

% \expandafter\expandafter\expandafter

% \protect_corresp_quotes

50 % \else

% \rq_verb

% \fi

% \fi}

\newcommand*{\lq_double_test}{%

55 %% test settles next catcode, better switch to ‘‘other’’

%% in advance:

\begingroup \let\do\MakeOther \dospecials

\futurelet\let_token \lq_double_decide}

\newcommand*{\lq_double_decide}{%

60 \ifx\let_token\lq_verb

\endgroup

\lq\lq \expandafter \@gobble

%% corresponding right quotes will become ‘‘other’’ due to

%% having no space at the left. TODO to be changed with

65 %% wiki.sty

\else

\endgroup

% \expandafter \rq_verb

\expandafter \SimpleVerb \expandafter \’%

70 \fi}

% \newcommand*{\rq_verb}{\SimpleVerb\’}

7

% \AtBeginDocument{\MakeActiveLet\‘\rq_verb}

\AtBeginDocument{\MakeActiveLet\‘\lq_verb}

%% Strings referred to will be code

75 %% TODO to be changed with wiki.sty

2.4 Ampersand typesets meta-code

\newcommand*{\CmdSyntaxVerb}{%

\ifx\protect\@typeset@protect

\expandafter \cmd_syntax_verb

\else %% thinking of .aux only

80 \string\CmdSyntaxVerb \expandafter \string

\fi}

\newcommand*{\cmd_syntax_verb}[1]{%

\begin_min_verb \string#1\futurelet\let_token \after_cs}

\AtBeginDocument{\MakeActiveLet\&\CmdSyntaxVerb}

85 %% not needed with \Auto... OTHERWISE useful in args!

%% TODO \MakeAmpCmdSyntax

%% TODO \let\endcell& (wie \endline, \endgraf) \MakeEndCell

\newcommand*{\after_cs}{%

\ifcat\noexpand\let_token a\egroup \space

90 \else \expandafter \decide_verb \fi}

\newcommand*{\test_more_verb}{\futurelet\let_token \decide_verb}

\newcommand*{\decide_verb}{%

% \show\let_token

\jumpteg_on_with\bgroup\braces_verb

95 \jumpteg_on_with[\brackets_verb

\jumpteg_on_with*\star_verb

\egroup}

%% CAUTION/TODO wrong before (... if cmd without arg

%% use \ then or choose usual verb...

100 %% or \MakeLetter\(etc. ... or \xspace

\newcommand*{\jumpteg_on_with}[2]{%

\ifx\let_token#1\do_jumpteg_with#2\fi}

%% TODO cf. xfor, xspace (break@loop);

%% \DoOrBranch#1...#1 or so

105 \def\do_jumpteg_with#1#2\egroup{\fi#1}

\def\braces_verb#1{\string{#1\string}\test_more_verb}

\def\brackets_verb[#1]{[#1]\test_more_verb}

\def\star_verb*{*\test_more_verb}

\makeatletter

8

2.5 Escape character typesets meta-code

110 \DeclareRobustCommand*{\BuildCsSyntax}{%

\futurelet\let_token \build_cs_syntax_sp}

\newcommand*{\build_cs_syntax_sp}{%

\ifx\let_token\@sptoken \else %% TODO ^^M!?

\expandafter \start_build_cs_syntax

115 \fi}

\newcommand*{\start_build_cs_syntax}[1]{%

\edef\string_built{\string#1}%% #1 may be active

\MakeLetter_\MakeLetter\@%% CAUTION, cf. ...

\test_more_cs}

120 \newcommand*{\test_more_cs}{%

\futurelet\let_token \decide_more_cs}

\newcommand*{\decide_more_cs}{%

\ifcat\noexpand\let_token a\expandafter \add_to_cs

\else

125 \MakeSub_\MakeOther\@%

\expandafter \in@ \expandafter

{\csname \string_built \expandafter \endcsname

\expandafter}\expandafter{\niceverbNoVerbList}%

\ifin@

130 \csname \string_built

\expandafter\expandafter\expandafter \endcsname

\else

\begin_min_verb \@backslashchar\string_built

\expandafter\expandafter\expandafter \test_more_verb

135 \fi

\fi}

%% TODO such \if nestings with ifthen!?

%% cf.:

% \let\let_token,\typeout{\meaning\let_token}

140 %% TEST TODO fuer xspace!? (\ifin@)

\newcommand*{\add_to_cs}[1]{%

\edef\string_built{\string_built#1}\test_more_cs}

\newcommand*{\AutoCmdSyntaxVerb}{\MakeActiveLet\\\BuildCsSyntax}

%% TODO or \niceverbswitch...

145 \newcommand*{\EndAutoCmdSyntaxVerb}{\CatCode\\\z@}

\newcommand*{\NormalCommand}{} \let\NormalCommand\@nameuse

%% Were tests:

% \futurelet\LetToken\relax \relax

9

% \show\LetToken \typeout{\ifcat\noexpand\LetToken aa\else x\fi}

150 \newcommand*{\niceverbNoVerbList}{%

\begin\end\item\verb\EndAutoCmdSyntaxVerb\NormalCommand

\section\subsection}%% TODO!?

2.6 Meta-variables

\def\niceverb_meta#1>{%

\mbox{\normalfont\itshape \langle#1\/\rangle}}

155 %% TODO offer without angles as well

\AtBeginDocument{\MakeActiveLet\<\niceverb_meta}

%% difference to ltxguide.cls: also outside verbatim

2.7 Hash mark is code

\newcommand*{\param_verb}[1]{{\tt\##1}}

\AtBeginDocument{\MakeActiveLet\#\param_verb}

2.8 Single right quote for \textsf

160 %% TODO fails in parentheses due to preserving apostrophes

\newcommand*{\niceverb_rq_sf}{%

\ifx\protect\@typeset@protect

\expandafter \niceverb_rq_sf_test

\else \rq \fi}

165 %% introduced another macro just to avoid more sequences

%% of \expandafter ...

\newcommand*{\niceverb_rq_sf_test}{%

\ifhmode \ifdim\lastskip>\z@

\expandafter\expandafter\expandafter \niceverb_rq_sf_exec

170 %% TODO but after ‘(’!? make \(active, also for \after_cs!?

\else \rq \fi

\else \ifvmode

\expandafter\expandafter\expandafter \niceverb_rq_sf_exec

\else \rq \fi

175 \fi}

{\CatCode\’\active \gdef\niceverb_rq_sf_exec#1’{\textsf{#1}}}

%% TODO to be changed with wiki.sty:

\AtBeginDocument{\MakeActiveLet\’\niceverb_rq_sf}

%% TODO \niceverbswitch{<mode>}{<on/off>} (bzw. Doku ohne {})

10

2.9 Leave package mode

180 \makeatother

\MakeSub_

\endinput

3 Code Preparing Source for Typesetting

This is at present in a file makedoc.tex.

1 \ProvidesPackage{makedoc.tex}[2009/02/21 (UL)]

%% make packagecode environments and remove percents starting lines

\makeatletter \catcode‘_=11

5
\openin\@inputcheck=niceverb.sty %% JUST HERE

\newwrite\result_file

\immediate\openout \result_file=niceverb.doc %% JUST HERE

10 \newif\if_package_code_ _package_code_false

% \newif\if_empty_code_lines_ _empty_code_lines_false

%% <- FAILED SO FAR

% \let\maybe_result_empty_line\empty

% \def\result_empty_line{^^J}

15
\def\write_result{\immediate\write\result_file}

\def\process_file{%

%% This macro here to avoid category changes

20 %% affecting the present code

\begingroup

\let\do\@makeother \dospecials

%% from docstrip.tex:

\@makeother\^^A\@makeother\^^K\endlinechar\m@ne

25 %% <- cf. TeXbook "extended keyboards" up-/downarrow

%% -> "math specials", cf. "space specials"

\@makeother\^^I% ASCII horizontal tab -- guessed!? ^^L!?

% \tracingmacros=1

\loop \ifeof\@inputcheck \else

30 \read\@inputcheck to \InputLine

\expandafter \process_line \InputLine ======&%% primitive version

11

\repeat

\endgroup}

35 \def\process_line#1===#2===#3&{%% may be preferable to wiki.sty

\ifx$#2$%

\ifx$#1$%

% \show\InputLine

\if_package_code_

40 % \if_empty_code_lines_

% \write_result{}_empty_code_lines_false

% \fi

\else

\write_result{}%

45 % \let\maybe_result_empty_line\result_empty_line

\fi

\else

% \show\InputLine

\if_package_code_

50 % _empty_code_lines_true

\else

\write_result{\string\begin{packagecode}}%

_package_code_true

\fi

55 \write_result{#1}%

% \write_result{\maybe_result_empty_line #1}%

% \let\maybe_result_empty_line\empty

\fi

\else

60 \write_result{%

\string\end{packagecode}^^J^^J%

\string\subsection{\ignorespaces#2\unskip}^^J}%

_package_code_false

% _empty_code_lines_false

65 \fi}

\process_file

\write_result{\string\end{packagecode}}

70 \closein\@inputcheck \immediate\closeout\result_file

\endinput

12

\stop

75 %% TODO or \ThankYou; which NICEVERB.TEX may redefine into \endinput

%% or \ThankYou issues \endinput if jobname ...

%% the whole file may be enclosed in \begingroup ... \endgroup

%% ... this is a "driver file"!?

80 TODO make own listing environment like this -- own linewise processing,

without verbatim.sty

13

