
niceverb.sty

—

Minimizing Markup

for Documenting LATEX packages∗

Uwe Lück†

August 22, 2011

Abstract

niceverb.sty provides very decent syntax (through active characters) for
describing LATEX packages and the syntax of macros conforming to LATEX
syntax conventions.

Keywords: literate programming, syntactic sugar, .txt to .tex enhance-
ment, macro programming

Contents

1 Presenting niceverb 2
1.1 Purpose . 2
1.2 Acknowledgement/Basic Ideas . 2
1.3 The Commands and Features of niceverb 3
1.4 Examples . 6
1.5 What is Wrong with the Present Version 6

2 Implementation of the Markup Syntax 7
2.1 Switching Category Codes . 7
2.2 Robustness by \IfTypesetting 9
2.3 \NVerb . 9
2.4 Single Quotes Typeset Meta-Code 10
2.5 Ampersand (or \cstx) Typesets Meta-Code 11
2.6 Escape Character Typesets Meta-Code 12
2.7 Meta-Variables . 14
2.8 Hash Mark is Code . 15
2.9 Single Right Quotes for \textsf 15

∗This document describes version v0.43 of niceverb.sty as of 2011/08/20.
†http://contact-ednotes.sty.de.vu

1

http://contact-ednotes.sty.de.vu

1 PRESENTING NICEVERB 2

2.10 Command-Highlighting Boxes . 17
2.11 When niceverb Gets Nasty . 19

2.11.1 Meta-Variables . 19
2.11.2 Quotes . 19
2.11.3 hyperref . 20
2.11.4 hyper-xr . 21
2.11.5 Turning off and on altogether 21

2.12 Activating the niceverb Syntax 21
2.13 Leave Package Mode . 21
2.14 VERSION HISTORY . 22

1 Presenting niceverb

1.1 Purpose

The niceverb package provides “minimal” markup for documenting LATEX pack-
ages, reducing the number of keystrokes/visible characters needed (kind of poor
man’s WYSIWYG).1 It conveniently handles command names in arguments of
macros such as \footnote or even of sectioning commands. If you use make-
doc.sty additionally, commands for typesetting a package’s code are inserted
automatically (just using TEX). As opposed to tools that are rather common
on UNIX/Linux, this operation should work at any TEX installation, irrespective
of platform.

Both packages may at least be useful while working at a very new package
and may suffice with small, simple packages. After having edited your package’s
code (typically in a .sty file—〈jobname〉.sty), you just “latex” the manual
file (maybe some .tex file—〈jobname〉.tex) and get instantly the corresponding
updated documentation.

niceverb and makedoc may also help to generate without much effort docu-
mentations of nowadays commonly expected typographical quality for packages
that so far only had plain text documentations.

1.2 Acknowledgement/Basic Ideas

Four ideas of Stephan I. Böttcher’s in documenting his lineno inspired the
present work:

1. The markup and its definitions are short and simple, markup commands
are placed at the right “margin” of the ASCII file, so you hardly see them
in reading the source file, you rather just read the text that will be printed.

2. An awk script removes the %s starting documentation lines and inserts
the commands for typesetting the package’s code (you don’t see these
commands in the source).2

1“What you see is what you get.” Novices are always warned that WYSIWYG is essentially
impossible with LATEX.

2The corresponding part of the “present work” is makedoc.sty.

http://ctan.org/pkg/lineno

1 PRESENTING NICEVERB 3

3. An active character (‘|’) issues a \string and switches to typewriter type-
face for typesetting a command verbatim—so this works without changing
category codes (which is the usual idea of typesetting code), therefore it
works even in macro arguments.

4. ‘<meta-variable>’ produces ‘〈meta-variable〉’. (‘\lessthan’ stores the
original ‘<’.)

1.3 The Commands and Features of niceverb

Actually, it is the main purpose of niceverb to save you from “commands” . . .
Single quotes ‘, ’, “less than” < (accompanied with >), the “vertical” |, the

hash mark #, ampersand &, and in an extended “auto mode” even backslash \

become \active characters with “special effects.”
The package mainly aims at typesetting commands and descriptions of their

syntax if the latter is “standard LATEX-like”, using “meta-variables.” A string
to be typeset “verbatim” thus is assumed to start with a single command like
\foo, maybe followed by stars (‘*’) and pairs of square brackets (‘[〈opt-arg〉]’)
or curly braces (‘{〈mand-arg〉}’), where those pairs contain strings indicating
the typical kinds of contents for the respective arguments of that command. A
typical example is this:

\foo*[〈opt-arg〉]{〈mand-arg〉}

This was achieved by typing

&\foo*[<opt-arg>]{<mand-arg>}

In “auto mode” of the package, even typing

\foo*[<opt-arg>]{<mand-arg>}

would have sufficed—WYSIWYG! I call such mixtures of verbatim and “meta-
variables” ‘meta-code’.

Outside macro arguments, you obtain the same by typing

‘\foo*[<opt-arg>]{<mand-arg>}’

Details:

“Meta-variables:” The package supports the “angle brackets” style of “meta-
variables” (as with 〈meta-variable〉). You just type ‘<bar>’ to get ‘〈bar〉’.
This works due to a sloppy variant \NVerb of \verb which doesn’t care
about possible ligatures and definitions of active characters. Instead,
it assumes that the “verbatim” font doesn’t contain ligatures anyway.3

‘\verb+<foo>+’, by contrast, just yields ‘<foo>’.

Almost the same feature is offered by ltxguide.cls which formats the basic
guides from the LATEX Project Team. The present feature, however, also
works in plain text outside verbatim mode.

3On the other hand, \NVerb is more careful with niceverb’s special characters.

1 PRESENTING NICEVERB 4

Single quotes (left/right) for “short verb:” The package “assumes” that
quoting refers to code, therefore ‘‘foo’’ is typeset as ‘foo’, or (generally)
‘〈content〉’ turns 〈content〉 into meta-code with the meta-variable fea-
ture as above. This somewhat resembles the \MakeShortVerb feature of
doc.sty. You can “abuse” our feature just to get typewriter typeface.

Problems with this feature will typically arise when you try to typeset
commands (and their syntax) in macro arguments—e.g.,

\footnote{‘\bar’ is a celebrated fake example!}

will try to execute \bar instead of typesetting it, giving an “undefined”
error or so. \verb fails in the same situation, for the same reason. ‘&’
(\footnote{&\bar〈remaining〉}) or “auto mode” (see below) may then
work better.4 More generally, the quoting feature still works in macro
arguments in the sense that you then have to mark difficult characters
with & (simply as short for \string). However, it still won’t work with
curly braces that don’t follow a command name (such pairs of braces will
simply get lost, single braces will give errors or so).

Double quotes and apostrophes should still work the usual way. For dif-
ficult cases, you can still use the standard \verb command from LATEX.
To get usual single quotes, you can use their standard substitutes \lq

and \rq, or for pairs of them, \qtd{〈text〉} in place of \lq 〈text〉\rq—or
even \lq 〈text〉\rq\ . To get single quotes around some verbatim 〈verb〉,
often \qtd{&〈verb〉} works. It is for this reason that I have refrained from
different solutions as in newverbs (so far).

Single right quotes for \textsf: Package names are (by some convention I
often yet not always see working) typeset with \textsf; it was natural to
use a remaining case of using single quotes for abbreviating

\textsf{〈text〉}

by ’〈text〉’ . This idea of switching fonts continues font switching of
wiki.sty which uses the syntax for editing Wikipedia pages (font switching
by sequences of right single quotes).

Verticals for setting-off command descriptions: |〈code〉| works like
‘‘〈code〉’’ except putting the result into a framed box (just as all around
here)—or something else that you can achieve using some hooks described
with the implementation. There are variants like \cmdboxitem|〈code〉| .

Ampersand shows command syntax &c. even in arguments: E.g.,
type ‘&\foo{<arg>}’ to get ‘\foo{〈arg〉}’. This may be even more con-
venient for typing than the single quotes method, although looking some-
what strange. However, in macro arguments this does not work with
private letters (@ and _ here), for this case, use \cs{〈characters〉} or
\cstx{〈characters〉}〈parameters〉 .5

4\bar indeed!
5Moreover, & currently has a limited xspace functionality only.

http://ctan.org/pkg/newverbs

1 PRESENTING NICEVERB 5

This choice of & rests on the assumption that there won’t be many ta-
bles in the documenation. You can restore the usual meaning of & by
\MakeNormal\& and turn the present special meaning on again by

\MakeActive\& or \MakeActiveLet\&\CmdSyntaxVerb

You could also redefine (\renewcommand) \descriptionlabel using
\CmdSyntaxVerb (the “normal command” that is equivalent to &, its “per-
manent alias”) so \item[\foo] works as wanted.

Another feature of niceverb’s & is getting (some of the) special characters
(as listed in the standard macro \dospecials) verbatim in arguments
(where \verb and the like fail). It just acts similarly as TEX’s primitive
\string (which it actually invokes—cf. discussion on the left quote feature
above).

“Auto mode” typesets commands verbatim unless . . . In “auto mode,”
the backslash ‘\’ is an active character that builds a command name
from the ensuing letters and typesets the command (and its syntax, al-
lowing meta-variables) verbatim. However, there are some exceptions,
which are collected in a macro \niceverbNoVerbList . \begin, \end,
and \item belong to this list, you can redefine (\renewcommand) it, or
add 〈macros〉 to it by \AddToNoVerbList}{〈macros〉} There is also a
command \NormalCommand{〈letters〉} issuing the command \〈letters〉 in-
stead of typesetting it. Since auto mode is somewhat dangerous, you
have to start it explicitly by \AutoCmdSyntaxVerb . You can end it by
\EndAutoCmdSyntaxVerb . \AutoCmdInput{〈file〉} is probably most im-
portant.

Auto mode is motivated by the observation that there are package files con-
taining their documentation as pure (well-readable) ASCII text—contain-
ing the names of the new commands without any kind of quotation marks
or verbatim commands. Auto mode should typeset such documentation
just from the same ASCII text.

Hash mark ‘#’ comes verbatim. No macro definitions are expected in the
document environment.6 Rather, ‘#’ is an active character for taking the
next character (assuming it is a digit) to form a reference to a macro
parameter—‘#1’ becomes ‘#1’–WYSIWYG indeed! (So the general syntax
is #〈digit〉 .)

Escaping from niceverb (generally). To get rid of the functionality of some
active character 〈char〉 (‘&’, single quote, ampersand, hash mark—not
“auto mode,” see above) here, use \MakeNormal\〈char〉—may be within
a group. To revive it again, use \MakeActive\〈char〉 . This may fail when
a different package overtook the active 〈char〉 (but I expect more failures

6This idea appeared 2009 on the LATEX-L mailing list. It may be wrong, as I have some-
times experienced . . .

1 PRESENTING NICEVERB 6

then), in this case \MakeActiveLet\〈char〉\〈perm-alias〉 revives the nice-
verb meaning of 〈char〉 where \〈perm-alias〉 is the “permanent alias” for
that active 〈char〉 according to the documentation below. E.g., \LQverb
is the “permanent alias” for active single left quote, niceverb activates it
by \MakeActiveLet\’\LQverb.—You can turn off niceverb syntax allto-
gether by \noNiceVerb and revive it by \useNiceVerb (without “auto
mode”).

Right Quotes: Disabling/reviving replacement of \textsf by single
right quotes requires

\nvRightQuoteNormal or \nvRightQuoteSansSerif

respectively.

1.4 Examples

The file mdoccorr.cfg providing some .txt→LATEX functionality—i.e., typo-
graphical corrections—documents itself using niceverb syntax. Its code and
the documentation that is typeset from it are in the ‘examples’ section
of makedoc.pdf.—Moreover, the documentation niceverb.pdf of niceverb.sty
was typeset from niceverb.tex and niceverb.sty using niceverb syntax, likewise
fifinddo.pdf and makedoc.pdf. The example of niceverb shows the most frequent
use of the & feature.

nicetext bundle release v0.4 contains a file substr.tex that should typeset the
documentation of the version of Harald Harders’ substr.sty7 that your TEX finds
first, as well as arseneau.tex typesetting a few packages by Donald Arseneau.
The outcomes (with me) are substr.pdf and arseneau.pdf. These are the first
applications of niceverb’s “auto mode” to (unmodified) third-party package files.
(I also made a more ambitious documentation of Donald Arseneau’s import.sty
v3.0 before I found that CTAN already has a nicely typeset documentation of
import.sty v5.2.)

1.5 What is Wrong with the Present Version

1. niceverb.sty should be an extension of wiki.sty; yet their font selection
mechanisms are currently not compatible. Especially, the feature of

’’〈text〉’’

replacing \textit{〈text〉} or \emph{〈text〉} may be considered missing.

2. Font switching or horizontal spacing may fail in certain situations. You
can correct spacing by ‘\ ’.

3. The “vertical” character ‘|’ produces inline boxes only at present. It might
as well provide a version of the decl tabular environment of ltxguide.cls.

7http://ctan.org/pkg/substr

http://ctan.org/pkg/substr

2 IMPLEMENTATION OF THE MARKUP SYNTAX 7

The inline boxes badly deal with long command names and many argu-
ments. Doubled verticals could ensure the decl mode. Moreover, such a
box might issue an index entry.

4. One may have opposite ideas about using quotes—maybe rather "〈code〉"
should typeset 〈code〉 verbatim. There might be a package option for this.
If ordinary ‘‘‘〈text〉"’ still should work, awful tricks as now with the right
quote feature would be needed.

5. “auto mode” seems not to work in section titles. (2011/01/26)

6. Certain difficulties with typesetting code in macro arguments may be over-
come easily using ε-TEX features, I need to find out . . .

2 Implementation of the Markup Syntax

1 \NeedsTeXFormat{LaTeX2e}[1994/12/01]

2 \ProvidesPackage{niceverb}[2011/08/20 v0.43

3 minimize doc markup (UL)]

4

5 %% Copyright (C) 2009-2011 Uwe Lueck,

6 %% http://www.contact-ednotes.sty.de.vu

7 %% -- author-maintained in the sense of LPPL below --

8 %%

9 %% This file can be redistributed and/or modified under

10 %% the terms of the LaTeX Project Public License; either

11 %% version 1.3a of the License, or any later version.

12 %% The latest version of this license is in

13 %% http://www.latex-project.org/lppl.txt

14 %% We did our best to help you, but there is NO WARRANTY.

15 %%

16 %% Please report bugs, problems, and suggestions via

17 %%

18 %% http://www.contact-ednotes.sty.de.vu

19 %%

2.1 Switching Category Codes

v0.3 introduces \AssignCatCodeTo and \MakeNormal.
\CatCode{\〈character〉} (or simply \CatCode\〈character〉) saves one to-

ken per use and works when the category code of ‘‘’ (“single left quote”) has
changed.

20 \newcommand*{\CatCode}{\catcode‘}

21 % \newcommand*{\CatCode}[1]{\catcode‘#1 } %% no better 2010/02/27

With \AssignCatCodeTo{〈number〉}{\〈char〉} , \CatCode may still be useful
for displaying (debugging or playing). Note that \〈char〉 is the second argument
here.

2 IMPLEMENTATION OF THE MARKUP SYNTAX 8

22 \newcommand*{\AssignCatCodeTo}[2]{\catcode‘#2=#1\relax}

\MakeLetter\〈char〉 is used for private letters, i.e., to allow 〈char〉 in “in-
ternal”, non-user control sequences (TEXbook Chap. 3). \MakeOther is just a
different implementation of LATEX’s \@makeother.

23 \newcommand*\MakeLetter{\AssignCatCodeTo{11}}

24 \def \MakeOther {\AssignCatCodeTo{12}}

. . . overriding fifinddo if . . .
\MakeActive\〈char〉 just revives the meaning of 〈char〉 it had most re-

cently (as an \active character . . . maybe “Undefined control sequence” unless
. . .) This is fine for reviving niceverb functionality after having disabled it by
\MakeNormal—provided no other package used 〈char〉 actively in the meantime
. . .

25 \providecommand*{\MakeActive}{\AssignCatCodeTo\active} %% used v0.3

We take a copy \MakeActiveHere of \MakeActive as the latter may become a
dangerous thing for compatibility with hyperref.

26 \@ifdefinable\MakeActiveHere{%

27 \let\MakeActiveHere\MakeActive}

28 %% <- TODO aliascid + elsewhere 2010/03/12

\MakeActiveLet\〈char〉〈macro name〉 activates 〈char〉 and then gives it the
meaning of 〈macro name〉.

29 \newcommand*{\MakeActiveLet}[2]{%% cf. \@sverb/\do@noligs (doc.sty)

30 \MakeActiveHere#1% %% 2010/03/12

31 \begingroup

32 \lccode‘\~‘#1\relax \lowercase{\endgroup \let~#2}}

We take a copy \MakeActiveLetHere as well.

33 \@ifdefinable\MakeActiveLetHere{%

34 \let\MakeActiveLetHere\MakeActiveLet}

We use the “underscore” as a private letter (the LATEX2 Project Team likes it
as well). Its usual meaning can be restored by \MakeNormal_ For restoring
the usual category codes of TEX’s special characters later, we store them now.
(I.e., these characters are listed in the macro \dospecials that expands to

\do\ \do\\\do\{\do\}\do\$\do\&\do\#\do\^\do_\do\%\do\~

their category codes are 10, 0, 1, 2, 3, 4, 6, 7, 8, 14, 13 respectively; “end of line”,
“ignored”, “letter”, “other”, and “invalid” are missing—cf. TEXbook Chap. 7.)

35 \def\do#1{\expandafter

36 \chardef \csname normal_catcode_\string#1\expandafter \endcsname

37 \CatCode#1\relax}

38 \dospecials

2 IMPLEMENTATION OF THE MARKUP SYNTAX 9

Tests: “normal category code” of \ is 0, “normal category code” of $ is 3;
“normal category code” of & is 4.8

Here we switch to the “underscore” as a “letter” indeed (for the rest of the
package):

39 \MakeLetter_

40

41 % \newcommand*{\make_iii_other}{\MakeOther\\\MakeOther\{\MakeOther\}}

42 %% <- replaced 2009/04/05

\MakeNormal\〈char〉 saves you from remembering . . .

43 \newcommand*{\MakeNormal}[1]{%

44 \@ifundefined{\norm_catc_str#1}%

45 {\MakeOther#1}%

46 {\AssignCatCodeTo{\csname\norm_catc_str#1\endcsname}#1}}

47 \newcommand*{\norm_catc_str}{normal_catcode_\string}

48 %% TODO add ^^I and ^^M

We take a copy \MakeNormalHere of \MakeNormal as with \MakeActive.

49 \@ifdefinable\MakeNormalHere{\let\MakeNormalHere\MakeNormal}

2.2 Robustness by \IfTypesetting

It seems we need some own ways to achieve various compatibilities—using
\IfTypesetting{〈if 〉}{〈unless〉} . It also saves some \expandafters.

50 \providecommand*{\IfTypesetting}{%

51 % \relax

This \relax suppressed ligatures of single right quotes!

52 \ifx \protect\@typeset@protect

53 \expandafter \@firstoftwo

54 \else \expandafter \@secondoftwo \fi}

2.3 \NVerb

\begin_min_verb is a beginning shared by some macros here. It begins like
LATEX’s \verb, apart from the final \tt.

55 \newcommand*{\begin_min_verb}{%

56 \relax \ifmmode \hbox \else \leavevmode\null \fi

57 \bgroup \tt}

\NVerb〈char〉〈code〉〈char〉

58 \newcommand*{\NVerb}{%

59 _no_nice_meta_verb_false \nice_maybe_meta_verb}

8LATEX’s \nfss@catcodes is similar, but it makes space-like characters ignored. Also cf.
ltfinal.dtx. TODO: \RestoreNormalCatcodes.

2 IMPLEMENTATION OF THE MARKUP SYNTAX 10

\HardNVerb〈char〉〈code〉〈char〉 does not recognize meta-variables:

60 \newcommand*{\HardNVerb}{%

61 _no_nice_meta_verb_true \nice_maybe_meta_verb}

62 \newif\if_no_nice_meta_verb_

63 \newcommand*{\nice_maybe_meta_verb}[1]{%

Mainly avoid \verb’s noligs list which overrides definitions of some active char-
acters, while cmtt doesn’t have any ligatures anyway.

64 \IfTypesetting{%

65 \begin_min_verb

66 \let\do\MakeOther \dospecials

Turn off niceverb specials:

67 \MakeOther\|\MakeOther\‘\MakeOther\’%

68 \if_no_nice_meta_verb_ \MakeOther\<%

69 %%% \else \MakeActiveLet\<\MetaVar %% 2010/12/31

70 \else \MakeActiveLetHere\<\MetaVar %% 2011/06/20

71 \fi

72 \MakeActiveLetHere #1\niceverb_egroup

73 \verb@eol@error %% TODO change message 2009/04/09

74 }{\string\NVerb \string#1}}

2009/04/11: about etc. [preceding a box!? 2010/03/14]

75 \newcommand*{\niceverb_normal_egroup}{\egroup \ifmmode\else\@\fi}

76 \@ifdefinable\niceverb_egroup

77 {\let\niceverb_egroup\niceverb_normal_egroup}

2.4 Single Quotes Typeset Meta-Code

\LQverb will be a “permanent alias” for the active left single quote.
The verbatim feature must not act when another single left quote is ahead—

we assume a double quote is intended then (thus the left quote feature does not
allow to typeset something verbatim that starts with a single left quote). Rather,
double quotes should be typeset then. In page headers, a \protect may be in
the way. (A hook for \relaxing certain things in \markboth and \markright

would have been an alternative.)

78 \MakeActive\‘

79 \newcommand*{\LQverb}{%

80 \IfTypesetting{\lq_double_test}{\protect‘}}

81 \MakeOther\‘

82 \newcommand*{\lq_double_test}{%

This test settles the next catcode, so better switch to “other” in advance (won’t
harm if left quote isn’t next):

2 IMPLEMENTATION OF THE MARKUP SYNTAX 11

83 \begingroup

84 \let\do\MakeOther \dospecials

85 \MakeOther\|%% 2010/03/09!

86 \futurelet\let_token \lq_double_decide}

87 \newcommand*{\lq_double_decide}{%

88 \ifx\let_token\LQverb

89 \endgroup

90 ‘‘\expandafter \@gobble

Corresponding right quotes will become “other” due to having no space at the
left. TODO to be changed with wiki.sty.

91 \else

92 \ifx\let_token\protect

93 \expandafter\expandafter\expandafter \lq_double_decide_ii

94 \else

95 \endgroup

96 \expandafter\expandafter\expandafter \NVerb

97 \expandafter\expandafter\expandafter \’%

98 \fi

99 \fi}

\lq_double_decide_ii continues test behind \protect.

100 \newcommand*{\lq_double_decide_ii}[1]{%

101 \futurelet\let_token \lq_double_decide}

2.5 Ampersand (or \cstx) Typesets Meta-Code

\CmdSyntaxVerb will be a permanent alias for the active &.

102 \MakeActive\&

103 \newcommand*{\CmdSyntaxVerb}{%

104 \IfTypesetting{%

105 \begin_min_verb

v0.3 moves the previous line from \cmd_syntax_verb where it is too late to
establish private letters according to next line which was in \begin_min_verb

earlier—an important bug fix!

106 \MakeLetter\@\MakeLetter_%

107 \cmd_syntax_verb

108 }{\protect&\string}}

109 \MakeNormal\&

110 \newcommand*{\cmd_syntax_verb}[1]{%

111 \string#1\futurelet\let_token \after_cs}

However, & (or \CmdSyntaxVerb) may fail with private letters (there should be
a hook for them), especially in macro arguments and with hyperref in titles of
sections bearing \labels, so we provide something like \cs{〈characters〉} from
tugboat.sty.

http://ctan.org/pkg/tugboat

2 IMPLEMENTATION OF THE MARKUP SYNTAX 12

112 \DeclareRobustCommand*{\cs}[1]{%

113 \begin_min_verb \backslash_verb #1\egroup}

114 \newcommand*{\backslash_verb}{\char‘\\}

Moreover, typing &\par in “short” macro arguments fails, you better type
\cs{par} then. Likewise, \cs{if〈letters〉} and \cs{fi} is safer in case you
want to skip some part of the documentation (e.g., a package option skips
commented code) by \if〈letters〉\fi. Finally, there will be PDF bookmarks
support for \cs rather than for a real & or \CmdSyntaxVerb analogue like
\cstx{〈charcters〉}*[〈opt〉]{〈mand〉} as follows.

115 \DeclareRobustCommand*{\cstx}[1]{% %% corr. 2010/03/17

116 \begin_min_verb \backslash_verb #1\futurelet\let_token \after_cs}

117 \newcommand*{\after_cs}{%

118 \ifcat\noexpand\let_token a\egroup \space

119 \else \expandafter \decide_verb \fi}

120 \newcommand*{\test_more_verb}{\futurelet\let_token \decide_verb}

121 \newcommand*{\decide_verb}{%

122 \jumpteg_on_with\bgroup\braces_verb

123 \jumpteg_on_with[\brackets_verb

124 \jumpteg_on_with*\star_verb

125 \egroup}

126 %% CAUTION/TODO wrong before (... if cmd without arg

127 %% use \ then or choose usual verb...

128 %% or \MakeLetter\(etc. ... or \xspace

129 \newcommand*{\jumpteg_on_with}[2]{%

130 \ifx\let_token#1\do_jumpteg_with#2\fi}

TODO cf. xfor, xspace (\break@loop); \DoOrBranch#1 . . . #1 or so.

131 \def\do_jumpteg_with#1#2\egroup{\fi#1}

132 \def\braces_verb#1{\string{#1\string}\test_more_verb}

133 \def\brackets_verb[#1]{[#1]\test_more_verb}

134 \def\star_verb*{*\test_more_verb}

135 %% not needed with \Auto... OTHERWISE useful in args!

As latex.ltx has \endgraf as a permanent alias for the primitive version of \par
and \endline for \cr, we offer \endcell as a replacement for the original &:

136 \let\endcell&

2.6 Escape Character Typesets Meta-Code

\BuildCsSyntax will be a permanent alias for the active escape character.

137 \DeclareRobustCommand*{\BuildCsSyntax}{%

138 \futurelet\let_token \build_cs_syntax_sp}

139 \newcommand*{\build_cs_syntax_sp}{%

140 \ifx\let_token\@sptoken

141 \@% %% 2010/12/30

142 \else %% TODO ^^M!?

2 IMPLEMENTATION OF THE MARKUP SYNTAX 13

143 \expandafter \start_build_cs_syntax

144 \fi}

145 \newcommand*{\start_build_cs_syntax}[1]{%

146 \edef\string_built{\string#1}%

#1 may be active.—With Donald Arseneau’s import.sty (e.g.), ‘_’ may be needed
to be \active with the meaning of \textunderscore, therefore restoring its
category code needs some more care than with v0.32 and earlier:

147 \edef\before_build_cs_sub{\the\CatCode_}%

148 \MakeLetter_\MakeLetter\@%% CAUTION, cf. ...

149 \test_more_cs}

150 \newcommand*{\test_more_cs}{%

151 \futurelet\let_token \decide_more_cs}

152 \newcommand*{\decide_more_cs}{%

153 \ifcat\noexpand\let_token a\expandafter \add_to_cs

154 \else

155 % \MakeNormalHere_

Restoring ‘_’ more carefully with v0.4 (\begingroup . . . \endgroup!?):

156 \CatCode_\before_build_cs_sub

157 \MakeOther\@%

158 \expandafter \in@ \expandafter

159 {\csname \string_built \expandafter \endcsname

160 \expandafter}\expandafter{\niceverbNoVerbList}%

161 \ifin@

162 \csname \string_built

163 \expandafter\expandafter\expandafter \endcsname

164 \else

165 \begin_min_verb \backslash_verb\string_built

166 \expandafter\expandafter\expandafter \test_more_verb

167 \fi

168 \fi}

169 %% TODO such \if nestings with ifthen!?

170 %% cf.:

171 % \let\let_token,\typeout{\meaning\let_token}

172 %% TEST TODO fuer xspace!? (\ifin@)

173 \newcommand*{\add_to_cs}[1]{%

174 \edef\string_built{\string_built#1}\test_more_cs}

\AutoCmdSyntaxVerb starts, \EndAutoCmdSyntaxVerb ends “auto mode.”

175 \newcommand*{\AutoCmdSyntaxVerb}{%

176 \MakeActiveLetHere\\\BuildCsSyntax}

177 \newcommand*{\EndAutoCmdSyntaxVerb}{\CatCode\\\z@}

\NormalCommand{〈characters〉} executes \〈characters〉 in “auto mode.”

178 \newcommand*{\NormalCommand}{} \let\NormalCommand\@nameuse

2 IMPLEMENTATION OF THE MARKUP SYNTAX 14

Once I may want to use this feature in Wikipedia-like section titles as supported
by makedoc, yet I cannot really apply the present feature soon, so this must
wait . . . (There is a special problem with \newlabel and hyperref . . .)

Former tests:

179 % \futurelet\LetToken\relax \relax

180 % \show\LetToken \typeout{\ifcat\noexpand\LetToken aa\else x\fi}

\niceverbNoVerbList is the list of macros that will be executed instead of
being typeset.

181 \newcommand*{\niceverbNoVerbList}{%

182 \begin\end\item\verb\EndAutoCmdSyntaxVerb\NormalCommand

183 \section\subsection\subsubsection} %% TODO!?

\AddToMacro{\niceverbNoVerbList}{〈macros〉} can be used to add 〈macros〉
to that list.

184 \providecommand*{\AddToMacro}[2]{% %% TODO move to ... 2010/03/05

185 \expandafter \def \expandafter #1\expandafter {#1#2}}

186 %% <- was very wrong 2010/03/18

Hey, or just \AddToNoVerbList{〈macros〉} :

187 \newcommand*{\AddToNoVerbList}{\AddToMacro\niceverbNoVerbList}

“Auto mode” probably ain’t mean a thing if it ain’t invoked using

\AutoCmdInput{〈file〉}

for typesetting 〈file〉 in “auto mode:”

188 \newcommand*{\AutoCmdInput}[1]{%

189 \begingroup

190 \AddToMacro\niceverbNoVerbList{\ProvidesFile}%

191 %% <- removed ‘\endinput’, will be code! 2010/04/05

192 \AutoCmdSyntaxVerb

193 \input{#1}%

194 \EndAutoCmdSyntaxVerb

195 \endgroup

196 }

2.7 Meta-Variables

\MetaVar〈var-id〉> will be a permanent alias for the active ‘<’.

197 \def\MetaVar#1>{%

198 \mbox{\normalfont\itshape \langle#1\/\rangle}}

199 %% TODO offer without angles as well

As opposed to ltxguide.cls, this works outside verbatim as well.

2 IMPLEMENTATION OF THE MARKUP SYNTAX 15

2.8 Hash Mark is Code

\HashVerb〈digit〉 will be a permanent alias for the active hash mark.

200 \newcommand*{\HashVerb}[1]{{\tt\##1}}

2.9 Single Right Quotes for \textsf

\RQsansserif will be a permanent alias for the active single right quote.
The basic problem with the “single right quote feature” is that a single right

quote may be meant to be an apostrophe. This is certainly the case at the right
of a letter. On the other hand, we assume that it is not an apostrophe (i) in
vertical mode (opening a new paragraph), (ii) after a horizontal skip.

For page headers, in expanding without typesetting, the expansion of
\RQsansserif must contain another active single right quote.

201 \MakeActive\’

202 \newcommand*{\RQsansserif}{%

203 \IfTypesetting{\niceverb_rq_sf_test}{\protect’}}

204 \MakeOther\’

Another macro just to avoid more sequences of \expandafter:

205 \newcommand*{\niceverb_rq_sf_test}{%

206 \ifhmode

207 \ifdim\lastskip>\z@

208 \expandafter\expandafter\expandafter \DoRQsansserif

209 \else

210 \ifnum\niceverb_spacefactor

211 \expandafter\expandafter\expandafter\expandafter

212 \expandafter\expandafter\expandafter

213 \DoRQsansserif

214 \else ’\fi

215 \fi

216 \else \ifvmode

217 \expandafter\expandafter\expandafter \DoRQsansserif

218 \else ’\fi

219 \fi}

\DoRQsansserif is another (possible) alias for the active single right quote,
see below.

220 \MakeActive\’

221 \@ifdefinable\DoRQsansserif

222 {\def\DoRQsansserif#1’{\textsf{#1}}}

223 \MakeOther\’

The following cases are typical and cannot be decided by the previous cri-
teria: (i) parenthesis, (ii) footnotes and after “horizontal” environments like
\[〈math〉\], (iii) section titles, (iv) \noindent. We introduce some danger-
ous tricks—redefinitions of LATEX’s internal \@sect and of TEX’s primitives

2 IMPLEMENTATION OF THE MARKUP SYNTAX 16

\noindent and \ignorespaces as well as by a signal \spacefactor value of
1001. In page headers, LATEX equips the single right quote with the meaning of
\active@math@prime which must be overridden.

224 \newcommand*{\nvAllowRQSS}{%

225 \MakeActiveLetHere\’\RQsansserif

226 \niceverb_ignore} %% 2010/03/16

These and the entire right quote functionality are activated by

\nvRightQuoteSansSerif and disabled by \nvRightQuoteNormal

—at \begin{document}—where we collect previous settings—or later:

227 \AtBeginDocument{%

228 \edef\before_niceverb_parenthesis{\the\sfcode‘\(}%

229 \let \before_niceverb_ignore \ignorespaces %% 2010/03/16

230 \let \before_niceverb_sect \@sect

231 \let \before_niceverb_noindent \noindent} %% 2010/03/08

We assume that \@sect has the same parameters there as in LATEX (even if
redefined by another package, like hyperref).

232 \def\niceverb_sect#1#2#3#4#5#6[#7]#8{%

233 \before_niceverb_sect{#1}{#2}{#3}{#4}{#5}{#6}%

234 [{\protect\nvAllowRQSS #7}]%

235 {\protect\nvAllowRQSS #8}}

2010/03/20:

236 \newcommand*{\niceverb_spacefactor}{\spacefactor=1001\relax}

237 \newcommand*{\niceverb_noindent}{%

238 \before_niceverb_noindent \niceverb_spacefactor}

239 \newcommand*{\niceverb_ignore}{%

240 \ifhmode \niceverb_spacefactor \fi \before_niceverb_ignore}

Here are the main switches:

241 \newcommand*{\nvRightQuoteSansSerif}{%

242 \MakeActiveLet\’\RQsansserif

243 \sfcode‘\(=1001 %% enable in parentheses 2009/04/10

I also added \sfcode‘/=1001 in the preamble of makedoc.tex.

244 % \let\@footnotetext\niceverb_footnotetext

245 \let\ignorespaces\niceverb_ignore %% 2010/03/16

246 \let\@sect\niceverb_sect

247 \let\noindent\niceverb_noindent} %% 2010/03/08

248 \newcommand*{\nvRightQuoteNormal}{%

249 \MakeNormal\’% %% 2010/03/21

250 \sfcode‘\(=\before_niceverb_parenthesis\relax

251 \let\ignorespaces\before_niceverb_ignore %% 2010/03/16

252 \let\@sect\before_niceverb_sect

253 \let\noindent\before_niceverb_noindent} %% 2010/03/08

2 IMPLEMENTATION OF THE MARKUP SYNTAX 17

\nvAllRightQuotesSansSerif (after \begin{document}!) forces the \textsf
feature without testing for apostrophes. You then must be sure—DANGER!
CARE!—to use ‘\rq’ only for obtaining an apostrophe and the double quote
character ‘"’ for closing double quotes, or our \dqtd{〈text〉} for the entire quot-
ing.

254 \newcommand*{\nvAllRightQuotesSansSerif}{%

255 \nvRightQuoteNormal

256 \MakeActiveLet\’\DoRQsansserif}

I started v0.31 (signal \sfcode=1000, lowercase letters get \sfcode=1001) be-
cause \href{http://ctan.org/pkg/〈pkg〉}{〈pkg〉} failed. However, what I ac-
tually needed was \ctanpkgref{〈pack-name〉} :

257 % \DeclareRobustCommand*{\ctanpkgref}[1]{%

258 % \href{http://ctan.org/pkg/#1}{\textsf{#1}}}

. . . moves to texlinks.sty 2011/01/24.

2.10 Command-Highlighting Boxes

With v0.3, we include one kind of command syntax boxes whose 〈content〉 is
(in niceverb syntax) delimited as |〈content〉| .

259 \newsavebox\niceverb_savebox

\GenCmdBox〈char〉〈content〉〈char〉} works like \NVerb〈char〉〈content〉〈char〉
except putting the latter’s result into a framed (or coloured or . . .) box.

260 \newcommand*{\GenCmdBox} {_no_nice_meta_verb_false \gen_cmd_box}

\HardVerbBox is a variant of \GenCmdBox with the meta-variable feature dis-
abled (for the documentation of the present package).

261 \newcommand*{\HardVerbBox}{_no_nice_meta_verb_true \gen_cmd_box}

262 \newcommand*{\gen_cmd_box}{%

263 \bgroup

264 \let\niceverb_egroup\nice_collect_verb_egroup

265 \global %% TODO!? for \cmdboxitem 2010/03/15

266 %% <- TODO replace \niceverb_egroup by parameter,

267 %% save one nesting level 2010/03/15

268 \setbox\niceverb_savebox \hbox\bgroup

269 \if_no_nice_meta_verb_

270 \expandafter \HardNVerb

271 \else \expandafter \NVerb \fi}

272 \newcommand*{\nice_collect_verb_egroup}{%

273 \egroup \egroup

274 \ifvmode \expandafter \VerticalCmdBox

275 \else \ifmmode \hbox \fi

276 \expandafter \InlineCmdBox \fi

277 {\box\niceverb_savebox}%

278 \niceverb_normal_egroup}

2 IMPLEMENTATION OF THE MARKUP SYNTAX 18

\nvCmdBox will be the permanent alias for ‘|’.

279 \newcommand*{\nvCmdBox}{\GenCmdBox\|}

\VerticalCmdBox{〈content〉} may eventually start a decl environment as in
ltxguide.cls, looking ahead for another ‘|’ in order to (perhaps) append another
row. Another possibility is first to do some

\if@nobreak\else \pagebreak[2]\fi

etc. and then invoke \InlineCmdBox. The user can choose later by some
\renewcommand. We do the perhaps most essential thing here (again cf.
\begin_min_verb):

280 \newcommand*{\VerticalCmdBox}{\leavevmode\null\InlineCmdBox}

The command declaration boxes in the documentation of Nicola Talbot’s data-
tool would be an especially nice realization of \VerticalCmdBox.

\InlineCmdBox{〈content〉} , according to our idea, should not change base-
line skip, even with some \fboxsep and \fboxrule. (However, it may be a good
idea to increase the overall normal baseline skip.) We therefore replace actual
height and depth of the content by the height and depth of math parentheses.

281 \newcommand*{\InlineCmdBox}[1]{%

282 \bgroup

. . . needed in math mode with \begin_min_verb.

283 \fboxsep 1pt

284 \kern\SetOffInlineCmdBoxOuter

285 \smash{\SetOffInlineCmdBox{\kern\SetOffInlineCmdBoxInner

286 \InlineCmdBoxArea{#1}%

287 \kern\SetOffInlineCmdBoxInner}}%

288 \mathstrut

289 \kern\SetOffInlineCmdBoxOuter

290 \egroup

291 }

The default choice for \SetOffInlineCmdBox is \fbox:

292 \@ifdefinable\SetOffInlineCmdBox{\let\SetOffInlineCmdBox\fbox}

You can \renewcommand it to change \fboxsep, \fboxrule etc. or to use a
\colorbox with the color package, e.g., I used the following setting so far:

\RequirePackage{color}

\renewcommand*{\SetOffInlineCmdBox}

{\colorbox[cmyk]{.1,0,.2,.05}}

\SetOffInlineCmdBoxInner enables controlling the inner horizontal space to
the box margin independently of \fboxsep.

http://ctan.org/pkg/datatool
http://ctan.org/pkg/datatool

2 IMPLEMENTATION OF THE MARKUP SYNTAX 19

293 \newcommand*{\SetOffInlineCmdBoxInner}{-\fboxsep\thinspace}

This choice is inspired by \cstok for “boxed” things in Knuth’s manmac.tex
which formats The TEXbook.

\SetOffInlineCmdBoxOuter allows that the box hangs out into the margin
horizontally. We set it to 0 pt as default (it is a macro only, for a while).

294 \newcommand*{\SetOffInlineCmdBoxOuter}{\z@}

The height and depth of the frame should be the same for all inline boxes, we
think. The present choice \InnerCmdBoxArea for the spacing respects code
characters rather than the height and depth of the angle brackets that surround
meta-variable names.

295 \newcommand*{\InlineCmdBoxArea}[1]{%

296 \smash{#1}\vphantom{gjpq\backslash_verb}}

\cmdboxitem|〈content〉| is another variant of \GenCmdBox. It should replace
\item[〈content〉] in the description environment.

297 \newcommand*{\cmdboxitem}{%

298 \bgroup

299 \let\niceverb_egroup\cmd_item_egroup

300 \global %% TODO!? 2010/03/15

301 \setbox\niceverb_savebox \hbox\bgroup

302 \NVerb}

303 \newcommand*{\cmd_item_egroup}{%

304 \egroup \egroup \egroup

305 \item[\InlineCmdBox{\box\niceverb_savebox}]}

2.11 When niceverb Gets Nasty

These things are new with v0.3.

2.11.1 Meta-Variables

This is even newer than v0.3.
In case you actually need < and > in math mode, \lt and \gt are “pro-

vided” as aliases:

306 \providecommand*{\gt}{>}

307 \providecommand*{\lt}{<}

2.11.2 Quotes

In order to get real single quotes, you could use \lq 〈text〉\rq, maybe appending
a \ , but the code \qtd{〈text〉} may look better and be easier to type.

308 \newcommand*{\qtd}[1]{‘#1’}

2 IMPLEMENTATION OF THE MARKUP SYNTAX 20

However, here we get the problem that the left quote in \qtd{‘〈code〉’} will
be unable to switch into verbatim mode entirely—then use &, e.g., ‘\qtd{&&}’
typesets “&”, i.e., the ampersand in single (non-verbatim) quotes.

309 % TODO \qtdverb!? alternative meaning for \LQverb!? 2010/03/06

310 % rather rare, & takes less space 2010/03/09

\dqtd{〈text〉} can be used for enclosing in double quotes with the dangerous
\nvAllRightQuotesSansSerif (see above).

311 \newcommand*{\dqtd}[1]{‘‘#1"}

2.11.3 hyperref

This is for/about compatibility with the hyperref package. (One preliminary
thing: in doubt, don’t load niceverb earlier than hyperref.)

We need some substitutions for PDF bookmarks with hyperref. We issue
them at \begin{document} when we know if hyperref is at work.9

312 \AtBeginDocument{%

313 \@ifpackageloaded{hyperref}{%

314 \newcommand*{\PDFcstring}{% %% moved here 2010/03/09

315 \134\expandafter\@gobble\string}% %% ASCII octal encoding

316 \pdfstringdefDisableCommands{%

317 \let\nvAllowRQSS\empty %% not \relax 2010/03/12

318 %% 2010/03/12

319 \MakeActiveLetHere\‘\lq \MakeActiveLetHere\’\rq

320 \MakeActiveLetHere\&\PDFcstring

321 \def\cs{\134}% %% 2010/03/17, 2011/06/27

322 }%

Moreover, in order to avoid spurious Label(s) may have changed with hyper-
ref, a single right quote must be read as active by a \newlabel if and only if it
has been active when \@currentlabelname was formed.10 as \active. We use
\protected@write as this cares for \nofiles. \@auxout may be \@partaux

for \include.

323 \newcommand*{\niceverb_aux_cat}[2]{% %% 2010/03/14

324 \protected@write\@auxout{}{\string#1\string#2}}%

325 \renewcommand*{\MakeActive}[1]{%

326 \MakeActiveHere#1%

327 \niceverb_aux_cat\MakeActiveHere#1}%

328 \renewcommand*{\MakeActiveLet}[2]{%

329 \MakeActiveLetHere#1#2%

330 \niceverb_aux_cat\MakeActiveHere#1}%

331 \renewcommand*{\MakeNormal}[1]{%

332 \MakeNormalHere#1%

9An alternative approach would be using afterpackage by Alex Rozhenko.
10This uses \@onelevelsanitize, therefore \protect doesn’t change the behaviour of “ac-

tive” characters.

http://ctan.org/pkg/afterpackage

2 IMPLEMENTATION OF THE MARKUP SYNTAX 21

333 \niceverb_aux_cat\MakeNormalHere#1}%

334 }{}%

335 }

TODO doesn’t babel have the same problem? 2010/03/12

2.11.4 hyper-xr

With the hyper-xr package creating links into external documents, preceding
\externaldocument{〈file〉} with \MakeActiveLet\&\CmdSyntaxVerb may be
needed. I do not want to redefine something here right now as I have too little
experience with this situation.

2.11.5 Turning off and on altogether

These commands are new with v0.3.
\noNiceVerb disables all niceverb features.

336 \newcommand*{\noNiceVerb} {\MakeNormal\‘%

337 \MakeNormal\&%

338 \MakeNormal\<%

339 \MakeNormal\#%

340 \nvRightQuoteNormal

341 \MakeNormal\|}

\useNiceVerb activates all the niceverb features (apart from “auto mode”).

342 \newcommand*{\useNiceVerb}{\MakeActiveLet\‘\LQverb

TODO to be changed with wiki.sty v0.2

343 \MakeActiveLet\&\CmdSyntaxVerb

344 \MakeActiveLet\<\MetaVar

345 \MakeActiveLet\#\HashVerb

346 \nvRightQuoteSansSerif

347 \MakeActiveLet\|\nvCmdBox}

2.12 Activating the niceverb Syntax

niceverb features are activated at \begin{document} so (some) other packages
can be loaded after niceverb. For v0.3, we do this after possible settings for
compatibility with hyperref.

348 \AtBeginDocument{\useNiceVerb}

2.13 Leave Package Mode

349 \MakeNormalHere_ %% 2010/03/12

350 \endinput

2 IMPLEMENTATION OF THE MARKUP SYNTAX 22

2.14 VERSION HISTORY

351 v0.1 2009/02/21 very first, sent to CTAN

352 v0.2 2009/04/04 ...NoVerbList: \subsubsection, \AddToMacro,

353 2009/04/05 \SimpleVerb makes more other than iii

354 2009/04/06 just uses \dospecials

355 2009/04/08 debugging code for rq/sf, +\relax

356 2009/04/09 +\verb@eol@error, prepared for new doc method,

357 removed spurious \makeat..., -\relax (ligature),

358 2009/04/10 (’-trick

359 2009/04/11 \@ after \SimpleVerb

360 2009/04/14 noted TODO below

361 2009/04/15 change v0.1 to 2009/02/21

362 v0.30 2010/02/27 short, more explained, \AssignCatCodeTo,

363 use \MakeActive for re-activating, \MakeNormal

364 2010/02/28 fixed @ and _ with & by moving \begin_min_verb;

365 replaced \lq by ‘; Capitals in Titles

366 2010/03/05 \SimpleVerb -> \NVerb;

367 use \MakeActive + \MakeNormal; \rq -> ’;

368 renamed some sections; \lq_verb -> \LQverb,

369 \niceverb_meta -> \MetaVar,

370 \param_verb -> \HashVerb

371 2010/03/06 removed \MakeAlign; removed @ and _ todo below;

372 \NVerb makes ‘ and ’ other;

373 \nvAllowRQSF allows ’ in column titles,

374 2010/03/08 \LQverb and & work in column titles,

375 \RQverb works with \noindent;

376 bookmark substitutions

377 2010/03/09 extended notes on ’hyperref’ (in)compatibility;

378 \MakeLetter\@ in \CmdSyntaxVerb only;

379 |...| implemented as \prepareCmdBox etc.!

380 2010/03/10 \colorbox example, \thinspace; ltxguide!;

381 removed todo; ..._exec -> \DoRQsansserif;

382 minor doc changes in ‘‘Nasty"

383 2010/03/11 doc changes in ‘‘Escape Character ..." and

384 ‘‘Ampersand"

385 2010/03/12 \niceverb_aux_cat, \MakeActiveHere etc.,

386 \IfTypesetting, \noNiceVerb, \useNiceVerb,

387 corr. bracing mistake in \MakeNormal!

388 2010/03/14 0.31 -> 0.3; \HardNVerb, \GenCmdBox,

389 \prepareCmdBox -> \nvCmdBox

390 2010/03/15 \endcell; \cmdboxitem; remark on \sfcode‘/

391 2010/03/16 corr. -> \endline;

392 advice on \cs{par}, \cs{if...}, \cs{fi};

393 redefined \ignorespaces for RQ feature

394 2010/03/17 corr. ‘\fututelet’, corr. \cs PDF substitution

395 2010/03/18 |\niceverbNoVerbList|, |\AddToMacro| etc.;

396 corr. \AddToMacro;

397 \lastskip-fix of \niceverb_ignore,

398 another fix of \niceverb_noindent

2 IMPLEMENTATION OF THE MARKUP SYNTAX 23

399 2010/03/19 another fix of \niceverb_ignore: \spacefactor

400 2010/03/20 ... again: \niceverb_spacefactor

401

402 NOT DISTRIBUTED, just stored saved as separate version

403

404 v0.31 2010/03/20 right quote feauture: letters get \sfcode=1001

405 ‘column title’ -> ‘page headers’, \ctanpkgref

406

407 NOT DISTRIBUTED, just stored as separate version

408

409 v0.32 2010/03/21 taking best things from v0.30 and v0.31

410 2010/03/23 removed \relax from \IfTypesetting

411 SENT TO CTAN

412

413 v0.4 2010/03/27 restoring ‘_’ with "auto mode" safer

414 2010/03/28 \AddToNoVerbList

415 2010/03/29 note above, renamed v0.4

416 SENT TO CTAN

417

418 v0.41 2010/04/03 v0.33 -> v0.4

419 2010/04/05 corrected \AutoCmdInput list

420 SENT TO CTAN as part of NICETEXT release r0.41

421

422 v0.41a 2010/11/09 typo corrected

423 v0.42 2010/12/30 corr. ‘\ ’ emulation in auto mode

424 2010/12/31 \MetaVar in ...maybe_meta...

425 2011/01/19 ‘...’ fix

426 2011/01/24 \ctanpkgref moves to texlinks.sty

427 2011/01/26 update (C)

428 with nicetext RELEASE r0.42

429 v0.43 2011/05/09 \gt, \lt

430 2011/05/27 \cs uses \@backslashchar

431 2011/06/20 \MakeActiveLetHere in \nice_maybe_meta_verb !!!

432 2011/06/27 2011/05/27 undone

433 2011/08/20 ‘r0.42’, ‘v0.43’

434

	Presenting 'niceverb'
	Purpose
	Acknowledgement/Basic Ideas
	The Commands and Features of 'niceverb'
	Examples
	What is Wrong with the Present Version

	Implementation of the Markup Syntax
	Switching Category Codes
	Robustness by \IfTypesetting
	\NVerb
	Single Quotes Typeset Meta-Code
	Ampersand (or \cstx) Typesets Meta-Code
	Escape Character Typesets Meta-Code
	Meta-Variables
	Hash Mark is Code
	Single Right Quotes for \textsf
	Command-Highlighting Boxes
	When 'niceverb' Gets Nasty
	Meta-Variables
	Quotes
	'hyperref'
	'hyper-xr'
	Turning off and on altogether

	Activating the 'niceverb' Syntax
	Leave Package Mode
	VERSION HISTORY

