makedoc—Preprocessing documentation by TEX

Uwe Liick —http://contact-ednotes.sty.de.vu

April 16, 2009

Abstract

makedoc provides commands for generating ITEX input from a package
file in order to typeset documentation of the latter (somewhat similar and
opposite to docstrip). Certain comment marks are removed, and listing
commands are inserted. This continues the policy of niceverb to minimize
documentation markup in package files. makedoc extends and exemplifies
the parsing package fifinddo. After an edit (and test) of your package, you
get the new documentation in one run (or two or three runs—for labels and
TOC, as usual) of the documentation driver file.—This is an alternative
to the standard doc package and its \DocInput. The present approach
provides less than doc does, rather deliberately. It may be helpful at least
for the development of small packages, or at least at early stages.

Contents
1 Introduction 2
1.1 Prior work and what isnew 2
1.2 Basics on using makedoc L oL 3
1.3 Examples 4
2 Implementation 4
2.1 Preliminaries 4
2.2 \MakeDocCorrectHook 5
2.3 Distinguish package code from comments 6
2.4 Dealing with comments 7
2.5 Sectioning 7
2.6 Commented code 9
2.7 Dealing with empty input lines 9
2.8 Bundling typical things: script commands 9
2.8.1 Filepreamble oL 10
2.9 Leavethepackage 11
2.10 VERSION HISTORY 11

1 INTRODUCTION 2

3 Examples: documentation of fifinddo 12
3.1 makedoc.cfgo 12
3.2 mkfddoctex 13
3.3 mdecorrcfg 14

1 Introduction

The abstract will not be repeated in this section. Let me add instead that I
was in dire need of such a package, I got stuck with my packages because I
lost orientation in them, and I was unhappy with the forms of documentations
of my other packages, and documenting them with the doc system was not
attractive for me (neither considered helpful). T also worked on Windows until
September 2008, and I find a system like the present one still more attractive
then using (learning!) other filtering utilities (see below on awk). And I may
work on Windows once again and don’t want to depend on installing some ...
there.

1.1 Prior work and what is new

It is, of course, not a new idea to get around comment marks % to typeset the
documentation. doc’s \DocInput does this by making % an “ignored” character.
This way you cannot use % for commenting comments (so doc offers a “new
comment mark” ~~A). You also cannot use % for commenting out code (that
you are pondering or use for debugging only).

Moreover, doc requires enclosing package code explicitly by environment
commands (behind comment marks). Stephan I. Béttcher with his lineno.sty and
Grzegorz Murzynowski in gmdoc aimed at doing away with this requirement.
lineno.sty contains awk scripts to remove starting comment marks and to insert
listing commands. A file lineno.tex is generated that typesets the documenta-
tion. By the way, lineno.sty is full of discussions, but it is not docstripped—the
maintainers never have received a complaint that inputting lineno.sty were too
slow.

gmdoc seems to get around comment marks and insert listing commands
while typesetting by a refined version of \DocInput, through some careful de-
tecting and analysing comment marks, the approach resembles detection of lists
in wiki.sty.! And this is a matter of principles—comparing the approaches of
preprocessing (lineno.sty) and “smart typesetting” (gmdoc, wiki). Sometimes
preprocessing seems to be simpler, sometimes detecting while typesetting. (An-
other example is the preprocessor easylatex of which wiki.sty is a much reduced
“while typesetting” variant.) “While typesetting” may be easier when single
characters or sequences of two or three encode markup information—but such
detection can badly interfere with other packages etc. “Preprocessing” may be

1See gmdoc.pdf on \DocInput. You can learn a lot from this 220 pages document! I also
find pauldoc and xdoc inspiring.

1 INTRODUCTION 3

easier when entire “strings” of characters decide, which may be anywhere in a
file line.

makedoc chooses preprocessing, as lineno.sty, but by TgX. There is a general
discussion of this choice in the documentation of fifinddo. Preprocessing here
can be done in the same EXTEX run as typesetting, though you can avoid incom-
patabilities with packages needed for typesetting (by inputting them only after
preprocessing).

lineno.sty exemplifies why preprocessing with TEX may be preferable to pre-
processing with other utilities: When I took over maintenance of lineno.sty, 1
needed hard work to get the awk script running. The Munich awk seemed not
to behave as the Kiel awk (I chose a Munich nawk and reworked the script a
little). TEX seems to have better fixed functionality than other utilities!

1.2 Basics on using makedoc

At least in the long run, using makedoc should not imply commitment to a cer-
tain design or to certain TEX packages for typesetting listings and documenta-
tions. Therefore, makedoc.cfg (currently) contains local or personal choices, but
also experiments with future features of niceverb. Especially, (at present) the
packagecode environment that makedoc \writes must be chosen. Currently
this is the listing environment from moreverb with some modifications or ex-
tra settings. It may be vital to \MakeOther the active characters from niceverb
in the setup of packagecode. See the example in section 3.

Finally, each package file to be typeset will need its own script of makedoc
commands. It should fit into the preamble of the main file for documenting the
package (currently just 5 commands seem to suffice, see the example in section 3
and section 2.8 on typical “bundling” script commands). As an alternative, you
may prefer to have “content only” (as much as possible) in the main typesetting
file and in its preamble only \input a separate script file.

Yes, the idea of documenting a package here is to have a separate “driver”
file for typsetting the documentation. It may contain an introduction and a
guide for users. The documentation of the package code that has been prepared
by the makedoc script will be \input. Alternatively, the “driver file” could have
title etc. only, or preamble and a minimal document environment only.

So there may be many files, which may look confusing, especially as com-
pared with the doc procedure. However,

1. “One file distribution” still is possible thanks to the filecontents envi-
ronment.

2. The makedoc script can create a batch file (fitting the system, maybe using
Will Robertson’s ifplatform, or texsys.cfg, or ...) that removes certain
auxiliary files or moves them to a certain directory.

3. I find it helpful to have rather little “contentual” text in the package file.

2 IMPLEMENTATION 4

4. The procedure now runs very smoothly, once the stumbling blocks have
been overcome.?

1.3 Examples

The documentations of fifinddo and of makedoc itself are typeset using makedoc
(niceverb.pdf as well, yet comments remained scarce). fifinddo.pdf documents
fifinddo.sty, typeset from fifinddo.tex, likewise makedoc.pdf. Section 3 contains
listings of makedoc.cfg and the makedoc script file mkfddoc.tex especially made
for fifinddo.pdf. fifinddo.doc, makedoc.doc, and niceverb.doc are the TEX input
files that were made with makedoc.sty—I have only looked at them when some-
thing was wrong (often syntax mistakes in typing).

The Wikipedia syntax feature %%_===_subsubsection_ === is only used in
fifinddo.sty and niceverb.sty.

2 Implementation

2.1 Preliminaries
Head of file (Legalese):

%% Macro package ‘makedoc.sty’ for LaTeX2e,

%% copyright (C) 2009 Uwe L\"uck,

%% http://wuw.contact-ednotes.sty.de.vu

%% —-- author-maintained in the sense of LPPL below --
%% for preparing documentations from packages.

\def\fileversion{0.2} \def\filedate{2009/04/13}

© 00 N O Uk W N

%% This file can be redistributed and/or modified under

%% the terms of the LaTeX Project Public License; either

%% version 1.3a of the License, or any later version.

%% The latest version of this license is in

W http://wuw.latex-project.org/lppl.txt

%% We did our best to help you, but there is NO WARRANTY.

hh

%) Please report bugs, problems, and suggestions via

hh

%% http://wuw.contact-ednotes.sty.de.vu

hh

\NeedsTeXFormat{LaTeX2e}[1994/12/01]

% 1994/12/01: \newcommand* etc.

\ProvidesPackage{makedoc} [\filedate\space v\fileversion\space
TeX input from *.sty (UL)]

NN NN = = = =
W N O © 0O Ok W NN = O

2niceverb v0.1 was too sloppy with some things, and self-documentation of makedoc.sty

was difficult—its parsing and that from verbatim cannot distinguish between markup code
and typeset code.

2 IMPLEMENTATION 5)

\PackageCodeTrue and \PackageCodeFalse set \ifPackageCode globally, so
redefinition of ~ may be kept local. Note the capital T and F!

24 \newcommand*{\PackageCodeTrue} {\globall\let\ifPackageCode\iftrue}
25 \newcommand*{\PackageCodeFalse}{\global\let\ifPackageCode\iffalse}

\ifPackageCode is used to determine whether a listing environment must be
\begun or \ended. You may also want to suppress empty code lines, while
empty lines should issue a \par break in “comment” mode.

Since \newif is not used, \ifPackageCode must be declared explicitly. Dec-
laration of new \ifs must be early in case they occur in code that is skipped
by another \if...

26 \PackageCodeFalse
makedoc is an extension of fifinddo on which it depends.
27 \RequirePackage{fifinddo}[2009/04/13]

Both fifinddo and makedoc use the “underscore” as “private letter” and make it
“other” at their end (functionality as with “at” and \RequirePackage is missing
here). So after loading fifinddo, T must restore the new private letter.

28 \catcode‘_=11 %% underscore used in control words

2.2 \MakeDocCorrectHook

\MakeDocCorrectHook is predefined to leave its argument without the enclosing
braces, otherwise unchanged:

29 \let\MakeDocCorrectHook\@firstofone
Less efficiently, the same could have been set up as
30 % \newcommand*{\MakeDocCorrectHook}[1]{\ProcessStringWith{#1}{LEAVE}}

according to fifinddo.

It may be redefined in a configuration file like makedoc.cfg or the makedoc
script file applying to a single package file in order to, e.g., converting plain text
to TEX input conforming to typographical conventions, making \dots from
\dots, e.g. Replace LEAVE in the previous suggestion by an identifier whose
job you have defined before, and use \renewcommand in place of \newcommand.
See an example in makedoc.cfg.

You can test your own \MakeDocCorrectHook by

\typeout{\MakeDocCorrectHook{(test-string)}}

. provided (sometimes) \MakeOther\, ... You can even change it using
\IfInputLine from fifinddo in the midst of preprocessing a package documen-
tation.

2 IMPLEMENTATION 6

2.3 Distinguish package code from comments

Use of comment marks is a matter of personal style. Only lines starting with
the sequence %%, are typeset in TEX quality under the present release. Lines
just containing %% (without the space) are used to suppress empty code lines
preceding section titles (while keeping some visual space in the package file).
There is a preferable way to do this, however not in the present release ...

The parsing macros must be set up reading % and , as “other” characters.
Using the optional arguments for this creates difficulties that can be somewhat
avoided by redefining \PatternCodes .

31 \renewcommand*{\PatternCodes}{\MakeOther\/\MakeOther\ }%% 2009/04/02

Look here: the line became too long and could not be broken. Must we really
introduce new comment marks?

32 % \MakeSetupSubstringCondition{comment} [\MakeOther\’%\MakeOther\]

The next line sets the “sandbox” for the detecting macro, as it is coined in the
documentation of fifinddo, with “identifier” PPScomment .

33 \MakeSetupSubstringCondition{PPScomment}{%% }{{#1}}

The last argument stores the expanded input line for reference by macros called.
The next line is a test whether the setup works.

34 % \expandafter \show \csname \setup_substr_cond PPScomment\endcsname

Here comes the definition of the corresponding testing macro. #3 is the expanded
input line from above. The \If...commands, \fdInputLine, \fdInputLine,
and \RemoveDummyPatternArg are from fifinddo.

35 % \MakeSubstringConditional{comment}[\MakeOther\’%\MakeOther\]
36 \MakeSubstringConditional{PPScomment}{%} }#3{%% #3 entire test string
37 \IfFDinputEmpty{\OnEmptyInputLine}{’

The empty line test comes early to offer control with \OnEmptyInputLine both
code and comment mode. Maybe it should always?

38 \IfFDempty{#1}%%

39 {\TreatAsComment{Y

40 \RemoveDummyPatternArg\MakeDocCorrectHook{#2}}}%
41 {\ifx\fdInputLine\PPstring

42 \ifPackageCode\else \WriteResult{}\fi’%% 2009/04/05
43 %% <- allow paragraphs in comments

44 \else \TreatAsCode{#3}\fi}}}

45 % \expandafter \show \csname \substr_cond PPScomment\endcsname
\PPstring stores the line suppressing empty code lines.
46 \newcommand*{\PPstring}{} \xdef\PPstring{\PercentChar\PercentChar}

comment will be a “generic” identifier to call a comment line detector. It might
be predefined to issue an “undifined” error; however this release predefines it to
behave like PPScomment.

2 IMPLEMENTATION 7

47 \CopyFDconditionFromTo{PPScomment}{comment}
Alternative still to be considered:

48 % \@namedef{\setup_substr_cond comment}{’
49 % \PackageError{makedoc}{Job ‘comment’ not defined}%
50 % {Use \string\CopyFDconditionFromTo{comment}}}

2.4 Dealing with comments

\TreatAsComment{(fext)} writes (text) to the documentation file. If we had

“package code” (were in “code mode”) so far, the listing environment is ended
first.

51 \newcommand*{\TreatAsComment} [1]{%
52 \ifPackageCode
53 \WriteResult{\string\end{packagecode\@empty}1}’

The \@empty here is a lazy trick to save self-documentation fighting verbatim’s
“highlight” of finding ends of listings (to be improved).

We always use \string to prevent macro expansion in \writeing in place of
ETREX’s \protect, as long as fifinddo simply uses the primitive \write in place
of INTEX’s \proteced@urite ...

54 \PackageCodeFalse

55 \EveryComment

56 h _empty_code_lines_false
57 \fi

58 \WriteResult{#1}}

Here, \EveryComment is a macro hook for inserting material that should not
appear in a listing environment.

59 \globalllet\EveryComment\relax %7, should be changed globally.

2.5 Sectioning

We provide a facility from wiki.sty that imitates the sectioning syntax used in
editing Wikipedia pages, in a different implementation (better compatibility)
and in a more general way. On Wikipedia, == Definition, == works similar
as \section{Definition} does with INTEX. With the present implementation,
you can type, e.g.,

ToloTo oo ToTo o o o 7o o o o oo o Jo oo o T ==LD€ £ ini t i ony ==L ol lo ool o oto o o ololo o oto o oo ols

to get a similar result. The number of %, characters doesn’t matter, and there can
be other stuff, however: additional = symbols may harm. Three sectioning levels
are supported, through ==(text)==, ===(text)===, and ====(text)==== (deepest).

There are three detector macros made for programmers. The most
general one is In the following definitions, there is a single tilde to
prevent = symbols being gobbled by the test (realized by accident).
\SectionLevelThreeParseInput :

60
61

62
63

65

67
68
69
70
71
72
73
74
75
76
7

2 IMPLEMENTATION 8

\newcommand*{\SectionLevelThreeParseInput}{’
\expandafter \test_sec_level_iii \fdInputLine ~========§}

\SectionLevelTwoParseInput

\newcommand*{\SectionLevelTwoParseInput}{/
\expandafter \test_sec_level_ii \fdInputLine “======§}

and \SectionLevelOneParseInput

\newcommand*{\SectionLevelOneParseInput}{%
\expandafter \test_sec_level_i \fdInputLine ~====g}

allow skipping deeper levels for efficiency.

In the terminology of the fifinddo documentation, the previous three com-
mands are “sandbox builders.” The following three commands are the cor-
responding “substring conditionals.” However, fifinddo so far only deals with
single substrings, while here we are dealing with pairs of substrings. We are
not using general setup macros, but define the parsing macros “manually,” as
it is typical in many other macros in latex.ltx and other IXTEX packages. You
can fool our macros easily, there is no syntax check.

\def\test_sec_level_iii#l====#2====#3&{%
\IfFDempty{#2}/,
{\test_sec_level_ii #1l======4}},

{\WriteSection\mdSectionLevelThree{#2}}}
\def\test_sec_level_ii#l1===#2===#3&{},
\IfFDempty{#2}%
{\test_sec_level_i #1====41}Y,
{\WriteSection\mdSectionLevelTwo{#2}}}
\def\test_sec_level_i#1==#2==#3&{},
\IfFDempty{#2}/
{\RemoveTildeArg \ProcessStringWith{#1}{comment}}%
{\WriteSection\mdSectionLevelOne{#2}}}

\ProcessStringWith here passes the expanded \fdInputLine to the general
comment detector.
\WriteSection{(command)}{(text)} replaces an input line with a line

(command){\hspace{1lsp}\ignorespaces (text)\unskip,}

in the documentation file and switches into “comment mode.” \hspace{1lsp}
ensures that niceverb’s package name feature works. \ignorespaces and
\unskip undo the spaces between title text and the = symbols that usually
are typed for readability.

\newcommand*{\WriteSection} [2]{%
\TreatAsComment{%
~~J#1{\string\hspace{1lsp}\ignorespaces
\MakeDocCorrectHook{#2}\unskip}~"J}}

We insert \section using \mdSectionLevelOne etc. which the programmer can
redefine, e.g., when the documentation is part of a \section (or even deeper)
according to the “documentation driver” file.

2 IMPLEMENTATION 9

82 \newcommand*\mdSectionLevelOne {\string\section}
83 \newcommand*\mdSectionLevelTwo {\string\subsection}
84 \newcommand*\mdSectionLevelThree{\string\subsubsection}

This sectioning feature is not used in makedoc.sty since the definitions of the

parsing macros fool the same macros ...

2.6 Commented code
\TreatAsCode{(text)} is the opposite to \TreatAsComment{(text)}:

85 \newcommand*{\TreatAsCode}[1]{%

86 \ifPackageCode

87 h _empty_code_lines_true

88 \else

89 \WriteResult{\string\begin{packagecode}}%
90 \PackageCodeTrue

91 \fi

92 \WriteResult{#1}/

93 % \WriteResult{\maybe_result_empty_line #1}J,
94 % \let\maybe_result_empty_line\empty
95 }

2.7 Dealing with empty input lines

\OnEmptyInputLine is a default setting (or hook) for what to do with empty
lines in the input file. The default is to insert an empty line in the output file:

96 \newcommand*{\OnEmptyInputLine}{\WriteResult{}}

\NoEmptyCodeLines changes the setting to suppressing empty code lines, while
in “comment mode” an empty input line does insert an empty line, for starting
a new paragraph:

97 \newcommand*{\NoEmptyCodeLines}{/% suppress empty code lines
98 \renewcommand*{\OnEmptyInputLine}{%
99 \ifPackageCode \else \WriteResult{}\fil}}

There is a better policy—didn’t work so far ...

2.8 Bundling typical things: script commands

First practical experiences suggest the following shorthands. They should sim-
plify matters so much that the makedoc script for a single package really should
need about five lines only, and even they should be so simple that you should
hardly spend a minute about them.

\LaTeXresultFile{(output)} saves you the extra line for inserting the
\ProvidesFile line ... no, actually it is makedoc that wants to be mentioned
with \ProvidesFile ... (otherwise copied from fifinddo) ...

2 IMPLEMENTATION 10

100 \newcommand*{\LaTeXresultFile}[1]1{%

101 \ResultFile{#1}%%} \WriteProvides}

102 \WriteResult{’%

103 \string\ProvidesFile{\result_file_name},

104 [\the\year/\two@digits\month/\two@digits\day\space
105 automatically generated with makedoc.styl]}}%

\MakeDoc{ (input)} preprocesses (input) to render input for IMTEX, considering
what is typical for a WTEX package as the (input) one here:

106 \newcommand*{\MakeDoc}[1]{/

In case of a “header” (see below) we change into “code mode”:

107 \ifnum\header_lines>\z@

108 \WriteResult{\string\begin{packagecodel}}/

109 \PackageCodeTrue %} TODO both lines makedoc command!?
110 T 2009/04/08

111 \else \PackageCodeFalse \fi

The loop follows. There is a placeholder \makd_doc_line_body that is prede-
fined below and can be changed while processing the (input) file.

112 \ProcessFileWith{#1}{/

113 \CountInputLines %% stepping line counter is standard
114 \make_doc_line_body

115 \process_line_messagel

Currently the “VERSION HISTORY” is typeset verbatim (for “tabbing”), we
then must leave “code mode” here:

116 \ifPackageCode

117 \WriteResult{\string\end{packagecode\@empty}}%/ self-doc-trick
118 \PackageCodeFalse %) TODO both lines makedoc command!? 2009/04/08
119 \fi

When the (input) file has been processed, certain default settings might be
restored—in case another (input) file is processed for the same documentation
document:

120 % \HeaderLines{0}/
121 % \MainDocParser{\SectionLevelThreeParseInput}/,% TODO!? 2009/04/08
122}

2.8.1 File preamble

A BTEX package typically has a “header” or “preamble” (automatically inserted
by docstrip) with very scarce information on which file it is and what it provides,
and with much more Legalese. Typesetting it in TEX quality may be more
misleading than typesetting it verbatim. So we typeset it verbatim. Now: where
does the “header” end? \NeedsTeXFormat might be considered the border.—
Yet it seems to be more simple and reliable just to act in terms of the number of
lines that the header should be long. This length (how-many-lines) is declared
by \HeaderLines{(how-many-lines)} :

2 IMPLEMENTATION 11

123 \newcommand*{\HeaderLines}{\def\header_lines}
124 \HeaderLines{0}

So the default is that there aren’t any header lines, unless another \HeaderLines
is issued before some \MakeDoc. The way input is parsed after the “header” is
set by \MainDocParser{(parsing-command)} .

125 \newcommand*{\MainDocParser}{\def\main_doc_parser}

\SectionLevelThreeParselInput from section 2.5 is the default, two alter-
natives are defined there, another one is \ProcessInputWith{comment} from
fifinddo.

126 \MainDocParser{\SectionLevelThreeParseInput}
Here is how \HeaderLines and \MainDocParser act:

127 \def\make_doc_line_body{%

128 \IfInputLine{>\header_lines}/,

129 {\let\make_doc_line_body\main_doc_parser

130 \make_doc_line_body}% %% switch to deciding
131 {\TreatAsCode{\fdInputLine}}} %/, header verbatim

\ProcessLineMessage{(command)} is designed to define a screen (or log) mes-
sage (command). \ProcessLineMessage{\message{.}} has a result like with
docstrip. You just get one dot on screen per input line as a simple confirmation
that the program is not hung up. However, the message may slow down a run
considerably (if so, choose \ProcessLineMessage{} in the script). But it is
better for beginner users of the package, so made default.

132 \newcommand*{\ProcessLineMessage}{\def\process_line_message}
133 % % \ProcessLineMessage{} %) no, still more efficient:

134 % \let\process_line_message\relax

135 \ProcessLineMessage{\message{.}}

2.9 Leave the package

136 \catcode‘_=8 Y/ restores underscore use for subscripts
137
138 \endinput

2.10 VERSION HISTORY

139 v0.1 2009/04/03 very first version, tested on morgan.sty
140 v0.2 2009/04/05 \OnEmptyInputLine, \NoEmptyCodeLines

141 comment -> PPScomment, \IfFDinputEmpty,

142 \EveryComment, \PPstring may be par break

143 2009/04/08 \InputString -> \fdInputLine,

144 \section -> \subsection; documentation!

145 2009/04/08f. \MakeDoc

146 2009/04/12 ‘‘line too long’’ w/o redefining \PatternCodes;
147 \MakeDocCorrectHook

148 2009/04/13 tilde with sectioning

149

1

10

20

25

30

35

3 EXAMPLES: DOCUMENTATION OF ’FIFINDDO’ 12

The previous empty code line is the one TEX insists to add at every end of a
file it writes.

3 Examples: documentation of fifinddo

3.1 makedoc.cfg

fifinddo.pdf and makedoc.pdf were typeset with the following configuration file
makedoc.cfg:

\ProvidesFile{makedoc.cfg}[2009/04/15
local settings for ‘makedoc.sty’ etc.]

\RequirePackage{moreverb}
\newenvironment{packagecode}
{\PackageCode}
{\endPackageCode}
\gdef\PackageCode{’
\small
%% Get rid of ’niceverb’ stuff:
% \MakeOther\‘\MakeOther\’%J, probably 0K with moreverb
\MakeOther<\MakeOther\ |%
%% <- TODO should be ’niceverb’ command 2009/04/08
\listing{1}}
\gdef\endPackageCode{’
\endlisting
\global\def\PackageCode{’
\small
% \MakeOther\‘\MakeOther\’7%J, probably 0K with moreverb
\MakeOther<\MakeOther\|% niceverb
\listingcontl}V
\globall\let\endPackageCode\endlistingcont}
\renewcommand*{\listinglabel} [1]{%
\1lap{\scriptsize\rmfamily\the#1}\hskip\listingoffset\relax}

\RequirePackage{niceverb}[2009/04/11] %/ (’ and ’’; ‘etc.’\@
\DeclareRobustCommand{\cs}[1]{\texttt{\char ‘\\#1}}

%h <— ‘&\@tempa’ and ‘&_tempa’ fail 2009/04/14
\RequirePackage{color}

%% TODO rather in ’niceverb’ 2009/04/06:
\CatCode\ |\active
\newcommand*{\CmdBox}{%
\ifvmode \pagebreak[1]\fi %)% TODO!? 2009/04/06
\begingroup \let\do\MakeOther \dospecials \tt \TypesetCmdBox}
\def\TypesetCmdBox#1|{%/, redefine for changing design

40

45

50

55

EXAMPLES: DOCUMENTATION OF ’FIFINDDO’ 13

% \fboxrule=.6pt \fboxsep=-\fboxrule
% \fcolorbox[cmyk]{0,0,0,1}{.1,0,.2,.1}3{%
% \kern2pt\strut\CmdSyntaxVerb#1\kern2pt}}}
% \kern2pt\strut#1\kern2pt}’J), \dospecials version
% \fboxrule=.6pt \fboxsep=.2pt
A \fbox{%
% \fboxrule=0pt \fboxsep=-1pt
\fboxrule=0pt \fboxsep=0pt
% \kern.2pt

\colorbox[cmyk]{.1,0,.2,.05}{%
\kernl.6pt\strut#1\kernl.6pt}/
A \kern.2pt
YA Y
\endgroup
\nopagebreak[3]} %/ TODO!? 2009/04/06
\let|\CmdBox

\pagestyle{headings}

\endinput

3.2 mkfddoc.tex

fifinddo.pdf was typeset with the following makedoc script file mkfddoc.tex:

1

10

15

20

\ProvidesFile{mkfddoc.tex}[2009/04/15
prepare typesetting fifinddo.sty]

\begingroup %% generate fifinddo.doc
\RequirePackage{makedoc}[2009/04/13]
\input{mdcorr.cfg}

% \NoEmptyCodeLines %% TODO
\ProcessLineMessage{}
\LaTeXresultFile{fifinddo.doc}
\HeaderLines{23}
\MainDocParser{%
% \IfInputLine{=33}{\tracingmacros=1 }{}
% \IfInputLine{=35}{\tracingmacros=0 }{}
\SectionLevelTwoParseInput}
% \tracingmacros=1
\MakeDoc{fifinddo.sty}
\CloseResultFile
\endgroup %% fifinddo.doc ready
\endinput

3 EXAMPLES: DOCUMENTATION OF ’FIFINDDO’ 14

3.3 mdcorr.cfg

fifinddo.pdf and makedoc.pdf were typeset with the following typographical cor-
rections in mdcorr.cfg:

1

10

15

\ProvidesFile{mdcorr.cfg}[2009/04/15

local typographical corrections with makedoc.sty]
%% Also demonstrates ’niceverb.sty’.
\renewcommand*{\PatternCodes}{\MakeOther\\\MakeOther\ }
\renewcommand*{\MakeDocCorrectHook} [1]{\ProcessStringWith{#1}{dots}}
%% |\MakeExpandableAllReplacer{<id>}{<find>}{<replace>}{<id-next>}|%
%% \footnote{Yes,
%% &\MakeExpandableAllReplacer{<id>}{<find>}{<replace>}{<id-next>}.}
\MakeExpandableAllReplacer{dots}{...}{\dots}I{cf}
\MakeExpandableAllReplacer{cf}{cf.}{cf.\ }{etc}
\MakeExpandableAllReplacer{etc}{etc. }{etc.\ }{LEAVE}
%% So you can keep inter-sentence space after ‘etc.’
%% by a code line break
\renewcommand*{\PatternCodes}{\fdPatternCodes}
%% ... restores ’fifinddo’ default.

This code also exemplifies the syntax niceverb provides for writing about
ETEX macros. It is typeset here with makedoc.sty again and then looks thus:

20

\ProvidesFile{mdcorr.cfg}[2009/04/15
local typographical corrections with makedoc.sty]

Also demonstrates niceverb.sty.

\renewcommand*{\PatternCodes}{\MakeOther\\\MakeOther\ }
\renewcommand*{\MakeDocCorrectHook} [1]{\ProcessStringWith{#1}{dots}}

\MakeExpandableAllReplacer{(id)}{(find)}{(replace)}{(id-next)}?

\MakeExpandableAllReplacer{dots}{...}{\dots}{cf}
\MakeExpandableAllReplacer{cf}{cf.}{cf.\ }{etc}
\MakeExpandableAllReplacer{etc}{etc. }{etc.\ }LEAVE}

So you can keep inter-sentence space after etc. by a code line break
\renewcommand*{\PatternCodes}{\fdPatternCodes}

. restores fifinddo default.

3Yes, \MakeExpandableAllReplacer{(id)}{(find)}{(replace)}{ (id-next)}.

