makedoc—Preprocessing documentation by TEX

Uwe Liick*
March 23, 2010

Abstract

makedoc provides commands for generating KTEX input from a pack-
age file in order to typeset the latter’s documentation (somewhat similar
and opposite to docstrip)—with v0.3 a single one usually suffices. Cer-
tain comment marks are removed, listing commands are inserted, and
some (configurable) typographical txt—TEX corrections are applied.—
This continues the policy of niceverb to minimize documentation markup
in package files. makedoc extends and exemplifies the parsing package
fifinddo. After an edit (and test) of your package, you get the new docu-
mentation in one run (or the usual number of runs) of the documentation
driver file.—The present approach is meant to be an alternative to the
standard doc package and its \DocInput. It provides less than doc does,
rather deliberately. It may be helpful at least for the development of small
packages, or at least at early stages.

Contents
[1__Introductionl
P TR |

|3 Styles supported (parsers provided)|
3.1 Telling code from comments|
8.2 Markup in comments|.o

4 Requirements|

[Using makedoc the simplest way]

|6 Steps of advanced usage|
6.1 Different main parsers (second mandatory argument)|.
6.2 Different extensions (optional arguments)|

6.3 Commands modifying \MakeInputJobDoc’s behaviour|
[6.4 Separating preprocessing from typesetting]

*http://contact-ednotes.sty.de.vu

=~

B\ BN I eI}

http://contact-ednotes.sty.de.vu

1 INTRODUCTION 2

[6.5 Other makedoc (and fifindo) script commands| 8
[6.5.1 Choosing parameter values for next preprocessing run] . . 8
6.5.2 “Manual” insertions to the output file| 9
16.5.3 Processing input and closing output| 9

|7 Examples (documentation of mdoccorr.cfg)| 10
|8 Implementation 13

BRI Preliminaries . . .« v v v v vv e e 13

8.2 \MakeDocCorrectHook (“txt2TeX”)| 14

8.3 Distinguish package code from comments| 14

[8.4 _Choice of package code environment| 15

[B5 Dealing with comments| i 16

8.6 ol . e 17

8.7 Commentedcodelo 18

8.8 Dealing with empty input lines| 19

8.9 Bundling typical things: script commands| 19
[8.9.1 Output file and \filelist entry| 19
3.9.2 oose input file and run!|o oL 19
[B:9.3 Prcamble vs. main part of input file] 20
8.9.4 Screen messages| 21
8.9.5 Bundling-bundling Standalones| 21

I8.10 Leave the packagel 23

.11 VERSION HISTORY] 23

1 Introduction

The abstract will not be repeated in this section. Let me add instead that I
was in dire need of such a package, I got stuck with my packages because I
lost orientation in them, and I was unhappy with the forms of documentations
of my other packages, and documenting them with the standard ETEX doc
system was not attractive for me (neither considered helpful). I also worked
on Windows until September 2008, and I find a system like the present one
still more attractive then using (learning!) other filtering utilities (see below on
awk). And I may work on Windows once again and don’t want to depend on
installing some . . . there—1I really would like to have powerful tools for everything
depending on nothing but TEX/BTEX!

2 Prior work and what is new

It is, of course, not a new idea to get around comment marks % to typeset the
documentation. doc’s \DocInput does this by making % an “ignored” character.
This way you cannot use % for commenting comments (so doc offers a “new
comment mark” ~~A). You also cannot use % for commenting out code (that
you are pondering—or using for debugging—only).

3 STYLES SUPPORTED (PARSERS PROVIDED) 3

Moreover, doc requires enclosing package code explicitly by environment
commands (behind comment marks). Stephan I. Bottcher with his lineno.sty and
Grzegorz Murzynowski in gmdoc aimed at doing away with this requirement.
lineno.sty contains awk scripts to remove starting comment marks and to insert
listing commands. A file lineno.tex is generated that typesets the documenta-
tion. By the way, lineno.sty is full of discussions, but it is not docstripped—the
maintainers never have received a complaint that inputting lineno.sty were too
slow.

gmdoc seems to get around comment marks and insert listing commands
while typesetting by a refined version of \DocInput, through some careful de-
tecting and analysing comment marks, the approach resembles detection of lists
in Wiki.styE| And this is a matter of principles—comparing the approaches of
preprocessing (lineno.sty) and “smart typesetting” (gmdoc, wiki). Sometimes
preprocessing seems to be simpler, sometimes detecting while typesetting. (An-
other example is the preprocessor leasylatex of which wiki.sty is a much reduced
“while typesetting” variant.) “While typesetting” may be easier when single
characters or sequences of two or three encode markup information—but such
detection can badly interfere with other packages etc. “Preprocessing” may be
easier when entire “strings” of characters decide, which may be anywhere in a
file line.

makedoc chooses preprocessing, as lineno.sty, but by TgX. There is a general
discussion of this choice in the documentation of fifinddo. Preprocessing here
can be done in the same IWTEX run as typesetting, though you can avoid incom-
patabilities with packages needed for typesetting (by inputting them only after
preprocessing).

lineno.sty exemplifies why preprocessing with TEX may be preferable to pre-
processing with other utilities: When I took over maintenance of lineno.sty, I
needed hard work to get the awk script running. The Munich awk seemed not
to behave as the Kiel awk (I chose a Munich nawk and reworked the script a
little). TEX seems to have better fixed functionality than other utilities!

A different alternative to KTEX’s doc system is Paul Isambert’s |[CodeDoc
where the code environments extract package code in typesetting the documen-
tation.

3 Styles supported (parsers provided)

We find different styles of documenting I¥TEX packages. As the main aspects
I consider (i) telling code from comments and (ii) markup in comments. (You
may find more details on the next matters in the “implementation” section.)

1See gmdoc.pdf on \DocInput. You can learn a lot from this 220 pages document! I also
find |pauldoc| and xdoc| inspiring.

http://ctan.org/pkg/lineno
http://ctan.org/pkg/gmdoc
http://ctan.org/pkg/easylatex
http://ctan.org/pkg/codedoc
http://ctan.org/pkg/pauldoc
http://ctan.org/pkg/xdoc

3 STYLES SUPPORTED (PARSERS PROVIDED) 4

3.1 Telling code from comments

Comment marks (usually ‘% in the case of TEX) probably were named so to
mark “comments” as opposed to code ... great, but actually, in “daily practice,”
they are so handy—and used—for “commenting out” code, i.e., managing code
versions in a simple way: one does not actually want to delete code, one might
want to use it another time, maybe for debugging ... or to remind of earlier
attempts that should not be tried again ...

This is a problem for high-quality typesetting of documentation. Code should
be typeset about as you see it on the screen—monospaced, this allows structuring
by indenting, it is common practice to use a typewriter typeface for this. Real
comments should be typeset in high quality as usual with IXTEX. Little dilemmas
therefore occur with “hidden code” (“commented-out”). A comment mark starts
the line, but obviously it is not really a comment and rather should be typeset
like code (and otherwise they may break). Another problem are comments at
the end of a code line. Sometimes they are “real comments” (gmdoc supports
this style). But sometimes this is only another version of “version management,”
code “commented-out”.

I like the style of writing packages described before and use it all the time.
I mark “real comments” with two adjacent comment marks and an ensuing
space to distinguish them clearly from code commented out. Only this style is
presently supported by makedoc! More precisely, makedoc at present has only
one method to distinguish code from comment: Only a line starting with
is considered a “real” comment line. The first three characters are removed, and
the rest is typeset in high quality. Any other lines are typeset verbatim. The
makedoc parser doing this has an “identifier” (“percent, percent,
space”). Another identifier is planned to be placeholder for the parser
to be used, but currently is just an alias for PPScomment. Lines just containing
(without the space) may be used to suppress empty code lines preceding
section titles and for keeping some visual, relieving space between code and
comment lines.

The style I described previously may be considered “unprofessional.” The
many ITEX packages documented using the doc/.dtx system don’t use com-
ment marks for “commenting-out”. Or one may mark code commented out by
putting no space between the percent mark and the code. I could add a parser

to deal with this kind of packages later.

3.2 Markup in comments

Packages using the doc/.dtx system as well as alternative highly developed sys-
tems mentioned above use (enhanced) usual ETEX syntax for markup of com-
ments. Other packages just use an ASCII style without any markup. My idea
was to support the latter style by some txt—KTEX functionality. makedoc does
this using a file mdoccorr.cfg which is very small right now.

I also thought of introducing another sort of “decent” markup not needing
much more space than the “ASCII kernel” of the comments. This is to some

4 REQUIREMENTS 5)

extent implemented in niceverb.sty. I thought of the syntax of editing Wikipedia
pages; this is partially implemented in wiki.sty which unfortunately is not yet
compatible with niceverb.

But makedoc implements one Wikipedia feature in a different way than
wiki.sty (cf. wikicheat.pdf) that looks about as follows:

%hu==_Section ==
%%u===_Subsection ===

hh====_Subsubsection ====

i.e., you type == (title) == in place of \section{(title)} etc. The parser must
replace ====(title3)=== before ===(title2)=== and the latter before ==(title1)==.
In fact, makedoc provides three parsers for these situations:

[\SectionLevelThreeParseInput| is the most general parser offered. If it does
not find two strings ‘====" enclosing something, it passes to

[\SectionLevelTwoParseInput| which unless finding two strings === enclosing
something passes to

[\SectionLevelOneParseInput| ... passes to the comment detector [comment].

4 Requirements

makedoc requires IATEX 2¢ (supporting star forms of \newcommand etc.) as TEX-
format, the package fifinddo.sty from the same directory (on CTAN etc.) as
where makedoc.sty is, and the I¥TEX-package moreverb by Robin Fairbairns (af-
ter others)—it should be installed anyway, or you can get its latest version (v2.3,
2008/06,/03?) from CTAN.

makedoc’s .txt—TEX functionality moreover needs a file mdoccorr.cfg that
should have come along with makedoc.sty and fifinddo.sty. You may need to
have a modified copy of it in the directory of your main .tex file (jobname).tex
fitting special needs of your project.

5 Using makedoc the simplest way

In the most simple case, you are preparing documentation for a package file
(jobname) . sty only, and you prepare a file (jobname).tex containing

\title{\textsf{(jobname)}---a \LaTeX\ Package for (whatever)}

and \maketitle etc. about your packageE] The documentation will be produced
by running (jobname) .tex with WTEX (e.g., latex (jobname).tex).

2With niceverb and \title after \begin{document}, you may replace ‘\textsf{(jobname)}’
by ’ (jobname)’’.

6 STEPS OF ADVANCED USAGE 6

First, (jobname).tex must have [\usepackage{makedoc}| in its preamble.
There are no package options.

Second, to typeset the commented implementation from (jobname).sty, in-
clude in (jobname).tex’s document environment a line

[\MakeInputJobDoc{(header-lines)}{\SectionLevelThreeParseInput}|

(header-lines) refers to a non-negative integer as follows: We think the most
simple and useful way of typesetting the first lines of a package file including
license and copyrights is “depicting them as image,” i.e., verbatim. We could
try to determine the number of these lines by parsing, but we won’t do so soon.
Please just count them and enter the number as (header-lines)—and change it
until you can accept the outcome.

6 Steps of advanced usage

6.1 Different main parsers (second mandatory argument)

\MakeInputJobDoc’s mandatory syntax actually is

[\MakeInputJobDoc{(header-lines)}{(main-parser)}|

(main-parser) refers to the parsing macro that is applied to each input line whose
number is greater than (header-lines). Examples for (main-parser) are named
in section [3| above. \SectionLevelThreeParseInput is just the most general
one. For efficiency (1?7 or also to avoid problems?) you may replace Three by
Two or by One, if the ==== or the === feature is not used in (jobname).sty. If
the “Wikipedia sectioning” feature is not used at all, use

[\MakeInputJobDocq{(header-lines)}{\ProcessInputWith{comment}}|

6.2 Different extensions (optional arguments)

If your package to be documented is a class (jobname) . cls, a local configuration
file (jobname) . cfg or something else—(jobname).{ext-in), e.g., {ext-iny=cls or
(ext-in)=cfg, use

[\MakeInputJobDoc [{ext-in)]1{{header)}{{parser)}]

Moreover, \MakeInputJobDoc writes an intermediate file (jobname).doc and
then \inputs it. If you do not like doc as extension for the written file name
(maybe you use (jobname).doc for something different already), preferring ex-
tension (ext-out), use

[\MakeInputJobDoc [{ext-in)] [{ext-out)]{(header){{parser)}|

Yes, you must state (ext-in) then as well, T can’t help ...
If even (jobname) is wrong in your view, see next step ...

6 STEPS OF ADVANCED USAGE 7

6.3 Commands modifying \MakeInputJobDoc’s behaviour

Already (jobname) may not be what you want. E.g., you may want to collect
documentations of some other files (job-1), (job-2), ... in a single (jobname).
Then precede \MakeInputJobDoc with

\renewcommand*{\mdJobName}{(job-1)}

etc. (please reason yourself about additional requirements ...) As a matter of
fact, \MakeInputJobDoc reads

\mdJobName . (ext-in) and writes \mdJobName. (ext-out)

Stated another way, (jobname) above referred to |\mdJobName|.

\MakeInputJobInput moreover (by default) produces one dot per input line
processed on screen to show progress. The reason is that makedoc issues the
command [\ProcessLineMessage{\message{.}}| Already this trivial thing
seems to slow down processing considerably (nowadays). \MakeInputJobInput
will run faster if preceded by

[\ProcessLineMessage{}|

which will suppress any message about processing. However, the message may
be helpful in trouble-shooting.

6.4 Separating preprocessing from typesetting

To some surprise, I observe that \MakeInputJobDoc works. This is quite a new
discovery of mine (2010/03/13); before I thought that, for safety, preprocessing
should happen inside a local group preceding \documentclass.
works like \MakeInputJobDoc described above, yet it just preprocesses the pack-
age to be documented, waiting for an

\input{{jobname). {ext-out)}

in the document environment to typeset the documentation. So makedoc.tex
once had in its preamble

{\RequirePackage{makedoc}
u\ProcessLineMessage{}
Lu\MakeJobDoc{22}{\ProcessInputWith{comment}}}
\documentclass{article}

I did experience some truth in my earlier safety policy: With niceverb “run-
ning,” \MakeJobDoc cannot (easily) be used in the document environment.
\MakeInputJobDoc in fact does some niceverb switching (provided niceverb has
been loaded) when making use of \MakeJobDoc.

Thinking of this “safety” approach, especially grouping ({\code}), I had not
much cared for compatibility with other packages in choosing makedoc macro
names.

6 STEPS OF ADVANCED USAGE 8

6.5 Other makedoc (and fifindo) script commands

The next script commands may be considered of a lower level than \MakeJobDoc
and \MakeInputJobDoc, they underlie the latter commands. We also list com-
mands from fifinddo.sty that may be useful or, indeed, are needed for preparing
package documentations. This may result in ideas on how do use the script com-
mands for different purposes than for preparing package documentations—e.g.,
apply txt—TEX preprocessing to arbitrary text files.

6.5.1 Choosing parameter values for next preprocessing run

This actually continues section

[\ResultFile{({output)}| (from fifinddo) determines (and opens through the
TEX primitive \openout) the file {(output) which will contain the result
of preprocessing the package file.

[\LaTeXresultFile{(output)}| —see next section.

[\Headerlines{{number)}| determines the (number) of lines starting the input
file to be copied verbatim (the first mandatory argument of \MakeJobDoc).

[\MainDocParser{(parser)}| determines the (parser) as in the second manda-
tory argument of \MakeJobDoc.

We are now describing some parameters which rather must be switched
“manually” instead of being modifiable by comfortable makedoc script com-
mands.

With the “Wikipedia sectioning” feature, you may change the outcome
regarding levels. Assume, e.g., the package file has titles along the scheme
==_(title) == only, but these should become subsections of the “implementa-
tion” section of the corresponding .tex file. Then

\renewcommand*{\mdSectionLevelOne}{\string\subsection}

— see the implementation of the sectioning feature for details.
There is a command

[\NoEmptyInputLines| and a parameter macro [\OnEmptyInputLine]

which is modified by the former. However, I cannot say much about them right
now, I think they just were a difficult matter that I soon decided no longer to
think about for a while (cf. the implementation). About the same holds for the
hook [\EveryComment|.

The txt—TEX functionality is implemented through a hook

[\MakeDocCorrectHook{{characters)}|

makedoc initializes it as an alias of IWTEX’s \@firstofone, i.e., it won’t change
(characters). mdoccorr.cfg should redefine it so it really “corrects” (characters).

6 STEPS OF ADVANCED USAGE 9

You might try other definitions of \MakeDocCorrectHook for different “correct-
ing” functions. It should be noted that (currently) \MakeDocCorrectHook must
be ezpandable, fifinddo.sty provides setup for (expandable) chains of expandable
replacements. The “Wikipedia” sectioning feature moreover uses expandable
trimming (single) surrounding spaces, this might be provided in a more general
way

6.5.2 “Manual” insertions to the output file

[\WriteResult{({balanced)}| (from fifinddo) writes (balanced) to (output) ac-
cording to the earlier command \ResultFile{(output)}.

[\WriteProvides| (from fifindo) writes a \ProvidesFile line into (output) that
declares the file to be generated by fifindo.

[\LaTeXresultFile{(output)}| issues \ResultFile{(output)} and then writes
a \ProvidesFile line into (output) that declares the file to be generated
by makedoc.

6.5.3 Processing input and closing output

[\MakeDoc{(input)}] reads mdoccorr.cfg (for \MakeDocCorrectHook, see above),
copies (number) according to \HeaderLines (see above) from (input) into
(output) (according to \ResultFile), then processes the remaining lines of
(input) according to \MainDocParser (writing several things to (output)).
\MakeDoc invokes

[\ProcessFileWith{(input)}{{loop-body)}| (from fifindo) reads (input) line by
line—each one stored as macro [\fdInputLine| and applies (loop-body)
to it. TEX’s “special” character codes (of characters listed in macro
\dospecials) are replaced by 12 (“other”) by default—see the fifinddo
documentation.

[\CloseResultFile| (from fifinddo) closes (output) (using TEX’s primitive
\closeout).

[\MakeCloseDoc{{input)}| issues \MakeDoc{(input)}\CloseResultFile.

Using \MakeDoc instead of \MakeCloseDoc allows processing additional (input)
files writing into the same (output). Or maybe you want to add some additional
lines manually to (output) using \WriteResult.

3The trimspaces package has been a model for this feature here. It cannot be used directly
here because it reads blank spaces as TEX characters with category code 10 while makedoc
reads blank spaces as “other” characters (category code 12) in order to keep all blank spaces.

http://ctan.org/pkg/trimspaces

7 EXAMPLES (DOCUMENTATION OF MDOCCORR.CFG) 10

7 Examples (documentation of mdoccorr.cfg)

The documentations of fifinddo, makedoc, and niceverb themselves are typeset
using makedoc. fifinddo.pdf documents fifinddo.sty, typeset from fifinddo.tex,
likewise makedoc.pdf and niceverb.pdf. The Wikipedia syntax feature

%%ho===_subsection ===

is used in fifinddo.sty and niceverb.sty only.

Along with makedoc should come files makedoc.tpl—a template make-
doc script, and a file fdtxttex.tex that should start a dialogue on trying
\MakeDocCorrectHook if you can manage to run it (WinShell?). With other
definitions of \MakeDocCorrectHook—see below—you can use this dialogue for
arbitrary replacement jobs (as an application of fifinddo rather than makedoc).

fifinddo.pdf, makedoc.pdf, and niceverb.pdf were typeset with the following
typographical corrections in mdoccorr.cfg that defines \MakeDocCorrectHook:

10

20

25

30

\ProvidesFile{mdoccorr.cfg}[2010/03/23
local typographical corrections
with ‘makedoc.sty’]
%% ... also demonstrates ’niceverb.sty’. Some sanitizing:
hh
\renewcommand*{\PatternCodes}{\MakeOther\\\MakeOther\ }
He

%% |\MakeExpandableAllReplacer{<id>}{<find>}{<subst>}{<id-next>}|%

%% \footnote{Yes,

%% &\MakeExpandableAllReplacer{<id>}{<find>}{<subst>}{<id-next>}.}

\MakeExpandableAllReplacer{etc}{etc. }{etc.\ }{LEAVE}

%% So you can keep inter-sentence space after ‘etc.’

%% by a code line break.

hh

%% |\PrependExpandableAllReplacer{<id>}{<find>}{<subst>}|:

\PrependExpandableAl1Replacer{cf}{cf. }{cf.\ } %% corr. 2010/03/23

%% ... but think of ‘cf.”’. Don’t leave ‘cf.’ at code line end!

\PrependExpandableAllReplacer{dots}{...}{\dots}

%% ... chain starts here, and here |\MakeDocCorrectHook| enters:

\renewcommand*{\MakeDocCorrectHook} [1]
{\ProcessStringWith{#1}{dots}}

Hoth

\renewcommand*{\PatternCodes}{\fdPatternCodes}

%% ... restores ’fifinddo’ default.

\endinput

HISTORY

2009/04/05 with makedoc v0.2
2010/03/11 broke some too long code lines
2010/03/16 rendered ‘mdoccorr.cfg’

1

4

5

10

11
12
13
14
15
16
17
18
19

1

7 EXAMPLES (DOCUMENTATION OF MDOCCORR.CFG) 11

2010/03/22 try \Prepend...
2010/03/23 corrected ‘cf’

This code also exemplifies the syntax niceverb provides for writing about IXTEX
macros. It is typeset here with makedoc.sty and then looks thus:

\ProvidesFile{mdoccorr.cfg}[2010/03/23
local typographical corrections
with ‘makedoc.sty’]

... also demonstrates niceverb.sty. Some sanitizing:

\renewcommand*{\PatternCodes}{\MakeOther\\\MakeOther\ }

[\MakeExpandableAllReplacer{(id) H {find)}{(subst)}{(id-next)}[]

\MakeExpandableAllReplacer{etc}{etc. }{etc.\ }{LEAVE}

So you can keep inter-sentence space after etc. by a code line break.
[\PrependExpandableAllReplacer{(id) H{find)}{ (subst)} |

\PrependExpandableAllReplacer{cf}{cf. }{cf.\ } %/ corr. 2010/03/23
. but think of cf.”. Don’t leave cf. at code line end!

\PrependExpandableAl1lReplacer{dots}{...}{\dots}

. chain starts here, and here [\MakeDocCorrectHook| enters:

\renewcommand*{\MakeDocCorrectHook} [1]
{\ProcessStringWith{#1}{dots}}
\renewcommand*{\PatternCodes}{\fdPatternCodes}

. restores fifinddo default.

\endinput

HISTORY

2009/04/05 with makedoc v0.2

2010/03/11 Dbroke some too long code lines
2010/03/16 rendered ‘mdoccorr.cfg’
2010/03/22 try \Prepend...

2010/03/23 corrected ‘cf’

And this is the content of the intermediate generated file:

\ProvidesFile{mdoccorr.doc}[2010/03/23 automatically generated with makedoc.sty]
\begin{mdPackageCode}
\ProvidesFile{mdoccorr.cfg}[2010/03/23

local typographical corrections

with ‘makedoc.sty’]

4Yes, \MakeExpandableAllReplacer{(id)}{(find)}{(subst)}{(id-next)}.

10

15

20

25

30

35

40

45

7 EXAMPLES (DOCUMENTATION OF MDOCCORR.CFG) 12

\end{mdPackageCode}
\dots also demonstrates ’niceverb.sty’. Some sanitizing:

\begin{mdPackageCode}
\renewcommand*{\PatternCodes}{\MakeOther\\\MakeOther\ }
\end{mdPackageCode}

| \MakeExpandableAllReplacer{<id>}{<find>}{<subst>}{<id-next>}1%
\footnote{Yes,
&\MakeExpandableAllReplacer{<id>}{<find>}{<subst>}{<id-next>}.}
\begin{mdPackageCode}

\MakeExpandableAllReplacer{etc}{etc. }{etc.\ }{LEAVE}
\end{mdPackageCode}

So you can keep inter-sentence space after ‘etc.’

by a code line break.

| \PrependExpandableAllReplacer{<id>}{<find>}{<subst>}|:

\begin{mdPackageCode}

\PrependExpandableAl1Replacer{cf}{cf. }{cf.\ } %% corr. 2010/03/23

\end{mdPackageCode}

\dots but think of ‘cf.”’. Don’t leave ‘cf.’ at code line end!

\begin{mdPackageCode}

\PrependExpandableAllReplacer{dots}{...}{\dots}

\end{mdPackageCode}

\dots chain starts here, and here |\MakeDocCorrectHook| enters:

\begin{mdPackageCode}

\renewcommand*{\MakeDocCorrectHook} [1]
{\ProcessStringWith{#1}{dots}}

\renewcommand*{\PatternCodes}{\fdPatternCodes}

\end{mdPackageCode}

\dots restores ’fifinddo’ default.

\begin{mdPackageCode}

\endinput

HISTORY

2009/04/05 with makedoc v0.2

2010/03/11 broke some too long code lines
2010/03/16 rendered ‘mdoccorr.cfg’
2010/03/22 try \Prepend...

2010/03/23 corrected ‘cf’

\end{mdPackageCode}

50

55

60

65

70

8 IMPLEMENTATION 13

8 Implementation

8.1 Preliminaries
Head of file (Legalese):

%% Macro package ‘makedoc.sty’ for LaTeX2e,

%% copyright (C) 2009 2010 Uwe L\"uck,

%% http://www.contact-ednotes.sty.de.vu

%% —-- author-maintained in the sense of LPPL below --
%% for preparing documentations from packages.

\def\fileversion{0.3} \def\filedate{2010/03/19}

%% This file can be redistributed and/or modified under

%% the terms of the LaTeX Project Public License; either

%% version 1.3a of the License, or any later version.

%% The latest version of this licemnse is in

hh http://wuw.latex-project.org/lppl.txt

%% We did our best to help you, but there is NO WARRANTY.

N

%% Please report bugs, problems, and suggestions via

Nt

%% http://www.contact-ednotes.sty.de.vu

hh

\NeedsTeXFormat{LaTeX2e}[1994/12/01]

% 1994/12/01: \newcommand#* etc.

\ProvidesPackage{makedoc} [\filedate\space v\fileversion\space
TeX input from *.sty (UL)]

[\PackageCodeTrue| and [\PackageCodeFalse]|set \ifPackageCode globally, so
redefinition of ~ (playing a key role in fifinddo) may be kept local. Note the
capital T and F!

\newcommand*{\PackageCodeTrue} {\globall\let\ifPackageCode\iftrue}
\newcommand*{\PackageCodeFalse}{\global\let\ifPackageCode\iffalse}

[\ifPackageCode| is used to determine whether a listing environment must be
\begun or \ended. You may also want to suppress empty code lines, while
empty lines should issue a \par break in “comment” mode.

Since \newif is not used, \ifPackageCode must be declared explicitly. Dec-

laration of new \ifs must be early in case they occur in code that is skipped
by another \if...[TODO!? cf. others 2010/03/15]

\PackageCodeFalse
makedoc is an extension of fifinddo on which it depends.
\RequirePackage{fifinddo} [2009/04/13]

Both fifinddo and makedoc use the “underscore” _ as “private letter” and restore
its standard “subscript” function (TgXbook Chap.7) at their end. Push/pop
functionality as with @ and \RequirePackage is missing here. So after loading
fifinddo, we need to declare our private letter (again).

8 IMPLEMENTATION 14

\catcode‘_=11 %% underscore used in control words

8.2 \MakeDocCorrectHook (“txt2TeX”)

[\MakeDocCorrectHook]| is predefined to leave its argument without the enclos-
ing braces, otherwise unchanged:

5 \let\MakeDocCorrectHook\@firstofone
Less efficiently, the same could have been set up as
% \newcommand*{\MakeDocCorrectHook} [1]{\ProcessStringWith{#1}{LEAVE}}

according to fifinddo.

It may be redefined in a configuration file like makedoc.cfg or the makedoc
script file applying to a single package file in order to, e.g., converting plain text
to TEX input conforming to typographical conventions, making \dots from
‘...7, e.g. Replace LEAVE in the previous suggestion by an identifier whose job
you have defined before, and use \renewcommand in place of \newcommand. See
an example in makedoc.cfg.

You can test your own \MakeDocCorrectHook by

\typeout{\MakeDocCorrectHook{(test-string)}}

. provided (sometimes) \MakeOther\, ... You can even change it using
\IfInputLine from fifinddo in the midst of preprocessing a package documen-
tation.

8.3 Distinguish package code from comments

Use of comment marks is a matter of personal style. Only lines starting with
the sequence are typeset in TEX quality under the present release. Lines
just containing (without the space) are used to suppress empty code lines
preceding section titles (while keeping some visual space in the package file).
There is a preferable way to do this, however not in the present release ...

The parsing macros must be set up reading % and ., as “other” characters.
Using the optional arguments for this creates difficulties that can be somewhat
avoided by redefining [\PatternCodes|

\renewcommand*{\PatternCodes}{\MakeOther\/\MakeOther\ }%% 2009/04/02

The next line sets the “sandbox” for the detecting macro, as it is coined in the

documentation of fifinddo, with “identifier” [PPScomment|.

\MakeSetupSubstringCondition{PPScomment}{%% }{{#1}}

The last argument stores the expanded input line for reference by macros called.
The next line is a test whether the setup works.

% \expandafter \show \csname \setup_substr_cond PPScomment\endcsname

8 IMPLEMENTATION 15

Here comes the definition of the corresponding testing macro. #3 is the expanded
input line from above. The \If...commands, \fdInputLine, \fdInputLine,
and \RemoveDummyPatternArg are from fifinddo.

80 \MakeSubstringConditional{PPScomment}{%} }#3{%% #3 entire test string
\IfFDinputEmpty{\OnEmptyInputLine}{%

The empty line test comes early to offer control with \OnEmptyInputLine both
code and comment mode. Maybe it should always?

\IfFDempty{#1}%%

{\TreatAsComment{%

\RemoveDummyPatternArg\MakeDocCorrectHook{#2}}}%
85 {\ifx\fdInputLine\PPstring

\ifPackageCode\else \WriteResult{}\fi%} 2009/04/05
%% <- allow paragraphs in comments

\else \TreatAsCode{#3}\fi}}}

% \expandafter \show \csname \substr_cond PPScomment\endcsname

\PPstring| stores the line suppressing empty code lines.

90 \newcommand*{\PPstring}{} \xdef\PPstring{\PercentChar\PercentChar}

will be a “generic” identifier to call a comment line detector. It might
be predefined to issue an “undefined” error; however this release predefines it
to behave like PPScomment.

\CopyFDconditionFromTo{PPScomment}{comment}
Alternative still to be considered:

% \@namedef{\setup_substr_cond comment}{%
% \PackageError{makedoc}{Job ‘comment’ not definedl},
% {Use \string\CopyFDconditionFromTo{comment}}}

8.4 Choice of package code environment

With v0.3, we adopt the solution for typesetting package code that was imple-
mented in the former makedoc.cfg. So we rely on the 1isting and listingcont
environments of the moreverb package.

The earlier idea was that makedoc.sty uses an undefined BTEX environment
packagecode that will be defined in makedoc.cfg. An accompanying idea was
that makedoc works before the \documentclass line inside a group, while make-
doc.cfg is read after the \documentclass line.

We now want to simplify things. We replace

packagecode by mdPackageCode

and define the new environment globally here. moreverb and our choice for
\listinglabel are called at \begin{document}—outside the possible group.

95 \gdef\mdPackageCode{/
\small

8 IMPLEMENTATION 16

Get rid of niceverb stuff:

% \MakeOther\ ‘\MakeOther\’’J probably 0K with moreverb
\MakeOther\<\MakeOther\|%

From the next occurrence of the environment onwards, listing must be re-
placed by listingcont. We must copy the previous code diligently.

\gdef\mdPackageCode{\small \MakeOther\<\MakeOther\|7

100 \listingcont}%
\listing{1}}
\gdef\endmdPackageCode{/
\endlisting

\global\let\endmdPackageCode\endlistingcont}
105 \AtBeginDocument{Y
\RequirePackage{moreverbl}y,
\renewcommand*{\listinglabel} [1]{%
\llap{\scriptsize\rmfamily\the#1}\hskip\listingoffset\relaxl}/,

8.5 Dealing with comments

[\TreatAsComment{(text)}| writes (tezt) to the documentation file. If we had
“package code” (were in “code mode”) so far, the listing environment is ended
first.

110 \newcommand*{\TreatAsComment} [1]{%
\ifPackageCode
\WriteResult{\string\end{mdPackageCode\Q@emptyl}}%

The \@empty here is a lazy trick to save self-documentation fighting verbatim’s
“highlight” of finding ends of listings (to be improved).

We always use \string to prevent macro expansion in \writeing in place of
ETREX’s \protect, as long as fifinddo simply uses the primitive \write in place
of ¥TEX’s \proteced@urite ...

\PackageCodeFalse
\EveryComment
115 % _empty_code_lines_false
\fi
\WriteResult{#1}}

Here, [\EveryComment| is a macro hook for inserting material that should not
appear in a listing environment, I had tried this successfully:

\gdef\EveryComment{%
\global\let\EveryComment\relax
\WriteResult{\string\AutoCmdVerbSyntax}}

Initialized:

\global\let\EveryComment\relax %% should be changed globally.

120

130

135

8 IMPLEMENTATION 17

8.6 Sectioning

We provide a facility from wiki.sty that imitates the sectioning syntax used in
editing Wikipedia pages, in a different implementation (better compatibility)
and in a more general way. On Wikipedia, == Definition == works similar
as \section{Definition} does with ITEX. With the present implementation,
you can type, e.g.,

TloTo o ToTo o o o 7o o o JoTo o o JoTo o o T ==L D€ £ ini t i ony ==L ol toTololh o Totolo o otolo o oto o o ool

to get a similar result. The number of % characters doesn’t matter, and there can
be other stuff, however: additional = symbols may harm. Three sectioning levels
are supported, through ==(text)==, ===(text)===, and ====(text)==== (deepest).

There are three detector macros made for programmers. The most general
one is In the following definitions, there is a single tilde to prevent = symbols
being gobbled by the test (realized by accident).
[\SectionLevelThreeParseInput|:

\newcommand*{\SectionLevelThreeParseInput}{/
\expandafter \test_sec_level_iii \fdInputLine ~========§}

[\SectionLevelTwoParseInput|

\newcommand*{\SectionLevelTwoParseInput}{}
\expandafter \test_sec_level_ii \fdInputLine “======f}

and [\SectionLevelOneParseInput|

\newcommand*{\SectionLevelOneParseInput}{/
\expandafter \test_sec_level_i \fdInputLine ~====g}

allow skipping deeper levels for efficiency.

In the terminology of the fifinddo documentation, the previous three com-
mands are “sandbox builders.” The following three commands are the corre-
sponding “substring conditionals.” However, fifinddo so far only deals with sin-
gle substrings, while here we are dealing with pairs of substrings. We are not
using general setup macros, but define the parsing macros “manually,” as it is
typical in many other macros in latex.ltx and other BTEX packages. You can
fool our macros easily, there is no syntax check.

\def\test_sec_level_iii#l====#2====#3&{’
\IfFDempty{#2}/
{\test_sec_level_ii #l======¢}V,

{\WriteSection\mdSectionLevelThree{#2}}}
\def\test_sec_level_ii#tl===#2===#3&{J,
\IfFDempty{#2}%
{\test_sec_level_i #1====¢1},
{\WriteSection\mdSectionLevelTwo{#2}}}
\def\test_sec_level _i#1==#2==#3&{%
\IfFDempty{#2}/
{\RemoveTildeArg \ProcessStringWith{#1}{comment}}%
{\WriteSection\mdSectionLevelOne{#2}}}

8 IMPLEMENTATION 18

\ProcessStringWith here passes the expanded \fdInputLine to the general
comment detector.
[\WriteSection{{command)}{(text)}] replaces an input line with a line

(command){(text)}

in the documentation file and switches into “comment mode.” One possible
space between = and the beginning of (text) and one possible space between the
end of (text) and = are removed. The method of dealing with surrounding blank
spaces is new with v0.3, moreover we now rely on a new method in niceverb.sty
v0.3 to support its single right quote feature in section titlesE]

\newcommand*{\WriteSection}[2]{%
\TreatAsComment{~ " J#1{\trim_correct{#2}}"~J}}

Trimming “other” spaces is a little more clumsy than what the trimspaces pack-
age does whose code is by Morten Hggholm. It still has inspired the following.

\begingroup \MakeOther\ %) CARE! we must not indent ...
140 \long\gdef\trim_correct#1{\trim_fosp$#1$ $}

\long\gdef\trim_fosp#1$ {/

\IfFDempty{#1}{\trim_losp$}{\trim_losp#1$ }}

So we have a string ‘\trim_losp${text)$, $’.
\long\gdef\trim_losp$#1 ${\tidy_sp_trim#1$}
So we have a string ‘\tidy_sp_trim(tezt)$, $’or ‘\tidy_sp_trim(text)$$’.

\long\gdef\tidy_sp_trim#1$#2${\MakeDocCorrectHook{#1}}
145 \endgroup

We insert \section using [\mdSectionLevelOne| etc. which the programmer
can redefine, e.g., when the documentation is part of a \section (or even
deeper) according to the “documentation driver” file.

\newcommand*\mdSectionLevelOne {\string\section}
\newcommand*\mdSectionLevelTwo {\string\subsection}
\newcommand*\mdSectionLevelThree{\string\subsubsection}

This sectioning feature is not used in (the documentation) of makedoc.sty—
definitions of the parsing macros fool the same macros ...

8.7 Commented code

[\TreatAsCode{(fext)}] is the opposite to \TreatAsComment{(text)}:

\newcommand*{\TreatAsCode} [1]1{%
150 \ifPackageCode
% _empty_code_lines_true
\else

5\ignorespaces and \unskip used previously do not work in PDF bookmarks.

8 IMPLEMENTATION 19

\WriteResult{\string\begin{mdPackageCode}}%
\PackageCodeTrue
155 \fi
\WriteResult{#1}Y,
% \WriteResult{\maybe_result_empty_line #1}%
% \let\maybe_result_empty_line\empty
}

8.8 Dealing with empty input lines

[\OnEmptyInputLine]is a default setting (or hook) for what to do with empty
lines in the input file. The default is to insert an empty line in the output file:

160 \newcommand*{\OnEmptyInputLine}{\WriteResult{}}

[\NoEmptyCodeLines|changes the setting to suppressing empty code lines, while
in “comment mode” an empty input line does insert an empty line, for starting
a new paragraph:

\newcommand*{\NoEmptyCodeLines}{%/ suppress empty code lines
\renewcommand*{\OnEmptyInputLine}{}
\ifPackageCode \else \WriteResult{}\fi}}

There is a better policy—didn’t work so far ...

8.9 Bundling typical things: script commands

Practical experience suggested the following shorthands, combining commands
from makedoc and fifinddo.

8.9.1 Output file and \filelist entry

[\LaTeXresultFile{(oufput)}| chooses (output) as name for the output file and
saves you the extra line for inserting the \ProvidesFile line as with fifinddo’s
\WriteProvides—however, it differs, actually it is makedoc that wants to be
mentioned with \ProvidesFile ...

\newcommand*{\LaTeXresultFile} [1]{%
165 \ResultFile{#1}%%} \WriteProvides}
\WriteResult{%
\string\ProvidesFile{\result_file_namel},
[\the\year/\two@digits\month/\two@digits\day\space
automatically generated with makedoc.styl}}V

8.9.2 Choose input file and run!

[\MakeDoc{(input)}| preprocesses (input) to render input for WIEX, considering
what is typical for a WTEX package as the (input) one here:

170 \newcommand*{\MakeDoc}[1]{/

In case of a “header” (see below) we change into “code mode”:

8 IMPLEMENTATION 20

\ifnum\header_lines>\z@
\WriteResult{\string\begin{mdPackageCode}1}’
\PackageCodeTrue %} TODO both lines makedoc command!?

he 2009/04/08
175 \else \PackageCodeFalse \fi

The loop follows. There is a placeholder \makd_doc_line_body that is prede-
fined below and can be changed while processing the (input) file.

\ProcessFileWith{#1}{}
\CountInputLines %% stepping line counter is standard
\make_doc_line_body
\process_line_message}’

Currently the “VERSION HISTORY” or, more generally, a final part of the
(input) file is typeset verbatim (for “tabbing” in the version history), so we
must leave “code mode” finally:

180 \ifPackageCode
\WriteResult{\string\end{mdPackageCode\@empty}}%} self-doc-trick
\PackageCodeFalse %} TODO both lines makedoc command!? 2009/04/08
\fi

When the (input) file has been processed, certain default settings might be
restored—in case another (input) file is processed for the same documentation
document:

% \HeaderLines{0}%
185 % \MainDocParser{\SectionLevelThreeParseInputl}% TODO!? 2009/04/08
}

[\MakeCloseDoc{(input)}] just is a shorthand for

\MakeClose{(input)}\CloseResultFile

where \CloseResultFile is from fifinddo.
\newcommand*{\MakeCloseDoc} [1]{\MakeDoc{#1}\CloseResultFile}

\MakeDoc and \MakeCloseDoc actually process the (input) file, depending on
certain parameters some of which are set by the commands described next.

8.9.3 Preamble vs. main part of input file

A BTEX package typically has a “header” or “preamble” (automatically inserted
by docstrip) with very scarce information on which file it is and what it provides,
and with much more Legalese. Typesetting it in TEX quality may be more
misleading than typesetting it verbatim. So we typeset it verbatim. Now: where
does the “header” end? \NeedsTeXFormat might be considered the border.—
Yet it seems to be more simple and reliable just to act in terms of the number of
lines that the header should be long. This length (how-many-lines) is declared
by [\HeaderLines{(how-many-lines)}:

8 IMPLEMENTATION 21

\newcommand*{\HeaderLines}{\def\header_lines}
\HeaderLines{0}

So the default is that there aren’t any header lines, unless another \HeaderLines
is issued before some \MakeDoc. The way input is parsed after the “header” is
set by [\MainDocParser{(parsing-command)}|.

190 \newcommand*{\MainDocParser}{\def\main_doc_parser}

\SectionLevelThreeParseInput from section is the default, two alter-
natives are defined there, another one is \ProcessInputWith{comment} from
fifinddo and section (general dividing into code and comments).

\MainDocParser{\SectionLevelThreeParseInput}
Here is how \HeaderLines and \MainDocParser act:

\def\make_doc_line_body{%
\IfInputLine{>\header_lines}/,
{\let\make_doc_line_body\main_doc_parser
195 \make_doc_line_body}% %% switch to deciding
{\TreatAsCode{\fdInputLine}}} %), header verbatim

8.9.4 Screen messages

[\ProcessLineMessage{({command)}| is designed to choose a screen (or log)
message (command). \ProcessLineMessage{\message{.}} has a result like
with docstrip. You just get one dot on screen per input line as a simple confir-
mation that the program is not hung up. However, the message may slow down
a run considerably (if so, choose \ProcessLineMessage{} in the script). But
it is better for beginner users of the package, so made default.

\newcommand*{\ProcessLineMessage}{\def\process_line_message}
% % \ProcessLineMessage{} %% no, still more efficient:
% \let\process_line_message\relax

200 \ProcessLineMessage{\message{.}}

8.9.5 Bundling-bundling Standalones

[\MakeInputJobDoc{{header-lines)H{ {main-parser)}| by default produces a file

\jobname.doc from \jobname.sty

with some standard settingsﬂ mdoccorr.cfg (for .txt—KETEX functionality) is
read, \HeaderLines{(header-lines)} and \MainDocParser{(main-parser)} and
finally \MakeCloseDoc{\jobname.sty}{\jobname.doc} are executed. Here
\jobname expands to the file name base of the .tex file you are running. It
is assumed that you are preparing documentation for \jobname.tex for your
\jobname.sty. In order to produce (my-job).doc from (my-job).sty instead,

\renewcommand{\mdJobName}{(my-job)}

6This command is new with v0.3.

205

210

215

220

8 IMPLEMENTATION 22

If your input file has a different file name extension (in-ext) than ‘sty’, use an
optional argument of \MakeInputJobDoc:

[\MakeInputJobDoc [{in-ext)]{{header)}H{ {parser)}|

If the output file should have a different extension (out-ext) than ‘doc’, you
must use two optional arguments as follows:

[\MakeInputJobDoc [(in-ext)] [{out-ext)]{(header)H{ (parser)}]

\MakeInputJobDoc does not execute \ProcessLineMessage, you can use the
latter before so \MakeInputJobDoc respects it.

\MakeJobDoc| does the same as \MakeInputJobDoc apart from typesetting

the (created) file, so the latter needs an additional \input{{created)}.

My original idea was that all preprocessing of package files to be documented
should (happen) before \documentclass—Iloading makedoc.sty included—inside
a group (‘{(happen)}’—in order to avoid compatibility issues). However, it now
appears to me that loading makedoc the usual way in the document preamble
and processing the package file (that is to be documented) within the document

environment works well enough and will be easier to comprehend.
This is the code for both \MakeJobDoc and \MakeInputJobDoc:

\@ifdefinable{\mdJobName}{\let\mdJobName\jobname}
\newif\if_makedoc_input_
\newcommand*{\MakeInputJobDoc}{_makedoc_input_true
\make_job_doc_read}
\newcommand*{\MakeJobDoc} {_makedoc_input_false
\make_job_doc_read}
\newcommand*{\make_job_doc_read}[1] [sty]
{\@testopt{\make_job_doc[#1]}{doc}}

Reading files as follows would fail with active niceverb settings, so we issue
\noNiceVerb if it is defined. We do it inside a group in case niceverb settings
are to be restored afterwards.

\def\make_job_doc [#1] [#2]#3#4{%
\begingroup
\@ifundefined{noNiceVerb}{}/,
{\let\MakeNormal\MakeNormalHere \noNiceVerbl},
\input{mdoccorr.cfgl}i
%% <- TODO warning if not found!?
%h or if one from TEXMF/ used inadvertently!?
%h avoid reading twice!? 2010/03/11
%% <- TODO stack danger in group!? 2010/03/13
%% <- TODO or read it from ’makedoc’ already! 2010/03/13
\LaTeXresultFile{\mdJobName.#2},
\HeaderLines{#3}/,
\MainDocParser{#4}/,
\MakeCloseDoc{\mdJobName.#1}%

225

230

235

240

8 IMPLEMENTATION

23

For typesetting the file just created, some nicetext features may be needed ...
so restore the previous ones ...

\endgroup

\if _makedoc_input_\input{\mdJobName.#2}\fi

}

This feature may change.

8.10 Leave the package

\catcode‘_=8 %% restores underscore use for subscripts

\endinput

8.11 VERSION HISTORY

v0.1 2009/04/03
v0.2 2009/04/05

2009/04/08

2009/04/08f .
2009/04/12

2009/04/13
v0.3 2010/03/08
2010/03/09

2010/03/10
2010/03/11

2010/03/12
2010/03/13

2010/03/14
2010/03/15
2010/03/16

2010/03/18
2010/03/19

very first version, tested on morgan.sty
\OnEmptyInputLine, \NoEmptyCodeLines

comment -> PPScomment, \IfFDinputEmpty,
\EveryComment, \PPstring may be par break
\InputString -> \fdInputLine,

\section -> \subsection; documentation!
\MakeDoc

¢‘line too long’’ w/o redefining \PatternCodes;
\MakeDocCorrectHook

tilde with sectioning

\WriteSection ’trimspaces’-like

"fool" ("wiki" sectioning) nicer worded,
¢...7 in place of ‘\dots’;
different treatment of package code environment
(new separate subsection); clarification on
\ProcessInputWith{comment}

supplied ‘\ref’

\MakeCloseDoc; corrected "undifined";
\par\noindent in ‘‘Sectioning"; \MakeJobDoc
&.&.&.; updated copyright

corr.: ‘_’ not ‘‘other"; tried to explain my
earlier reasoning about ‘\ifPackageCode’;
\MakeInputJobDoc

\make_doc_job without \niceverb_aux_cat
another remark to \ifPackageCode

use box with comment line markers;

mdcorr -> mdoccorr

report on using \EveryComment

2 _> n

more use of

The previous empty code line is the one TEX insists to add at every end of a

file it writes.

	1 Introduction
	2 Prior work and what is new
	3 Styles supported (parsers provided)
	3.1 Telling code from comments
	3.2 Markup in comments

	4 Requirements
	5 Using 'makedoc' the simplest way
	6 Steps of advanced usage
	6.1 Different main parsers (second mandatory argument)
	6.2 Different extensions (optional arguments)
	6.3 Commands modifying \MakeInputJobDoc's behaviour
	6.4 Separating preprocessing from typesetting
	6.5 Other 'makedoc' (and 'fifindo') script commands
	6.5.1 Choosing parameter values for next preprocessing run
	6.5.2 ``Manual" insertions to the output file
	6.5.3 Processing input and closing output

	7 Examples (documentation of 'mdoccorr.cfg')
	8 Implementation
	8.1 Preliminaries
	8.2 \MakeDocCorrectHook (```txt2TeX'")
	8.3 Distinguish package code from comments
	8.4 Choice of package code environment
	8.5 Dealing with comments
	8.6 Sectioning
	8.7 Commented code
	8.8 Dealing with empty input lines
	8.9 Bundling typical things: script commands
	8.9.1 Output file and \filelist entry
	8.9.2 Choose input file and run!
	8.9.3 Preamble vs. main part of input file
	8.9.4 Screen messages
	8.9.5 Bundling-bundling Standalones

	8.10 Leave the package
	8.11 VERSION HISTORY

