
fifinddo

—

Filtering TEX(t) Files by TEX

Uwe Lück— http://contact-ednotes.sty.de.vu

April 16, 2009

FIDO, FIND!
or:

FIND FIDO!
oder:

FIFI, SUCH!

Abstract

fifinddo starts implementing parsing of plain text or TEX files using TEX,
generalizing the philosophy behind docstrip, based on how TEX reads
macro arguments. Rather than typsetting the edited input stream im-
mediately, results are written to another file, in the first instance as in-
put for TEX. Rather than presenting a “complete study” of a computer-
scientific idea, it aims at practical applications. The main one at present
is makedoc which removes certain comment marks from package files and
inserts listing commands. Parsing macros are not defined anew at ev-
ery input chunk, but once before a file is processed. This also allows for
expandable sequences of replacements, e.g., with txt→TEX functionality.
The method of testing for substrings is carefully discussed, revealing an
earlier mistake shared with substr.sty and LATEX’s internal \in@.

Contents

1 Introduction: The Gnome of the Aim 2
1.1 Parsing by TEX—are you mad? 2
1.2 Useful for . 3

1.2.1 Missing . 5
1.3 For insiders . 5

2 Preliminaries 6
2.1 Head of file (Legalese) . 6
2.2 Format and package version . 6
2.3 Category codes . 7

1

1 INTRODUCTION: THE GNOME OF THE AIM 2

3 File handling 7

4 Basic handling of substring conditionals 9
4.1 “Substring Theory” . 9
4.2 Plan for proceeding . 10
4.3 Set up conditionals . 10
4.4 Set up sandboxes . 11
4.5 Getting rid of the tildes . 13
4.6 Calling conditionals . 13
4.7 Copy jobs . 14

5 Programming tools 14
5.1 Tails of conditionals . 14
5.2 Line counter . 15
5.3 The “identity job” LEAVE . 16

6 Setup for expandable chains of replacements 16

7 Leave package mode 18

8 Pondered 18

9 VERSION HISTORY 19

1 Introduction: The Gnome of the Aim

1.1 Parsing by TEX—are you mad?

The package name fifinddo is a \listfiles-compatible abbreviation of ‘file-find-
do’1 (or think of ‘if found do’). fifinddo implements (or aims at) general parsing
(extracting, replacing [converting], expanding, . . .) using TEX where texhax
posters strongly urge to use sed, awk, or Perl. fifinddo’s opposed rationales are:

• It works instantly on any TEX installation. (Restrictions: Some TEX ver-
sions \write certain hex codes for certain characters, cf. TEXbook p. 45,
I have seen this with PCTEX. However, some applications of fifinddo are
nothing but technical steps where you will read the result files rarely any-
way. And I have not yet explored extended encodings.)

• You can apply and customize it like any TEX macros, knowing just TEX (or
even only the documentation of some user-friendly extension of fifinddo),
without the need of learning any additional script language.

1‘file’ possibly for “searching TEX(t) files” (I don’t remember my thoughts!), while there
were requests for doing replacements on LATEX environments on texhax. However, the package
might be enhanced in this direction . . . so the name may be wrong . . . but now I like it so much
. . . Or the reason was that results are written to a separate file, not typeset immediately.—Let
me also mention that ‘Fifi’ (as the package name starts) is a kind of German equivalent to
the “English” ‘Fido’, or may have been.

1 INTRODUCTION: THE GNOME OF THE AIM 3

• The syntax of usual utilities (e.g., “wildcards”) is sometimes difficult with
TEX files with all their backslashes, square brackets, stars, question marks
. . .

At least the first item is just the philosophy of the docstrip program, standard
for installing TEX packages; and while I am typing this, I find at least 14 other
similar packages in Jürgen Fenn’s Topic Index of the TEX Catalogue:

http://mirror.ctan.org/help/Catalogue/bytopic.html#parsingfiles

(Some of them may have been reactance to texhax and other postings urging
not to try something like this; some seem just to be celebrations of the power
of TEX—yes, celebrate!)

Actually, TEX’s mechanism of collecting macro arguments is hard-wired pars-
ing at quite a high level. LATEX hides this from “simple-minded” users by a
convention not to use that full power of TEX for end-user macros. Internally,
LATEX does use it in reading lists of options and file dates as well as to implement
certain FOR- and WHILE-like loop programming structures. LATEX’s \in@/\ifin@
construction is an implementation of a “〈string1 〉 occurs in 〈string2 〉” test. More
packages seem to use this idea for extracting file informations, like texshade.

However, such packages don’t make much ado about parsing, there seems to
be no general setup mechanism as are presented by fifinddo. Indeed, tayloring
parsing macros to specific applications may often be more efficient than a general
approach.

1.2 Useful for . . .

My main application of fifinddo at present is typesetting documentations of
packages using makedoc which removes certain percent marks and inserts listing
commands, so you edit a package file with as little documentation markup as
possible. This may be extended to other kinds of documents as an alternative
to easylatex or wiki (the approach of which is dangerous and incompatible with
certain other things).

I have used a similar own package txtproc successfully, where more features
were implemented for practical purposes than are here so far, yet I don’t like
its implementation, want to improve it here. This package also created batch
files, e.g., to remove temporary files. This could be used for package handling:
typset the documentation at the desired place in the tree, write the packages to
another, write a batch file to remove files that are not needed any more after
installation (cf. make).

I used txtproc also for large-scale substitutions (it had been decided to change
the orthography in a part of a book). Other large-scale substitutions may be:

• inserting \index commands;

• inserting (soft) hyphenation commands near accents;

1 INTRODUCTION: THE GNOME OF THE AIM 4

• manual umlaut-conversion.2

• typographical (or even orthographical) corrections (same mistake many
times on each of hundreds of pages). You may turn ... into \dots
and etc. into etc.\ etc.3 This could replace packages like easylatex,
txt2latex, txt2tex in a customizable way, using, e.g., the “correct” hook
from makedoc.sty as exemplified in mdcorr.cfg (2009/04/12, see examples
section of makedoc.pdf). Section 6 provides setup for such macros.

• as to easylatex again, lists could be detected and transformed into LATEX
list commands. This could re-implement the lists functionality of wiki.sty
that is somewhat dangerous.

• introduce your own shorthands to be expanded not as TEX macros, but
by text substitution;

• in EPS files, copy the bounding box to the top two lines for the graphics
bundle.

In certain cases, insertions deteriorate readability, hyphenation corrections even
make text search difficult. It is therefore suggested to

1. keep editing the file without the insertions,

2. run the script (commands based on fifinddo) for insertions in the preamble
of the main file (“\jobname.tex”, maybe \input the script file) and

3. \input the result file within the document environment.

In general, differences to “manual” replacing by the substitution function of
your text editor is that

• you first keep the original version,

• you can check the resulting file before you replace the original file by it,

• you can store the replacement script in order to check for mistakes at a
later stage of your work,

• you can do all the replacements in one run (by one script to check for
mistakes),

• you can store replacement scripts for future applications, so you needn’t
type the patterns and replacement strings anew.

2If you know the “names” of the encodings, Heiko Oberdiek’s stringenc may be preferable.
3But what when a new sentence is starting indeed? Well, cf. is an easier example.—etc.

even showed a problem in niceverb. mdcorr.cfg replaces etc. only, so you can keep the extra
space by a code line break (2009/04/11)

1 INTRODUCTION: THE GNOME OF THE AIM 5

1.2.1 Missing

It should be noted (perhaps here) that the present approach to parsing is a quite
simple one and in this respect much different to the string handling mechanisms
of stringstrings, ted, xstrings (as I understand them, perhaps also coolstr) which
are much more powerful than what is offered here—but perhaps slow and for
practical applications possibly replaceable by the present approach. Expandable
replacement seems not to exist outside fifinddo (2009/04/13).

Much is missing, I know.4 I am just implementing what I actually need and
what could show that this approach is worth being pursued. It may need being
sponsored or otherwise supported.

1.3 For insiders

Warning: You may (at least at the present state of the work) have little success
with this package, if you don’t know about TEX’s category codes and how TEX
macros are defined. The package rather provides tools for package writers. You
may, however, be able to run other packages which just load fifinddo as required
background.

That fifinddo acts on “TEX(t)” files or so means that (at present) I think
of applications on “plain text” files which will usually be TEX input files. “At
present” they are read without “special characters,” so essentially category codes
of input characters are either 11 (“letter”) or 12 (“other”). This way some things
are easier than with usual TEX applications:

1. You can “look into” curly braces and “behind” comment characters.

2. There are exact or safe tests especially of empty macro arguments that
are “expandable,” i.e., they are “robust,” don’t need assignments, can be
executed in \writeing and in \edef definitions. “Usually,” the safe way
to test emptiness is storing a macro argument as a macro, say \tempo,
in order to test \ifx\tempo\empty where \empty has been defined by
\def\empty{} in the format. But this requires some \def\tempo{#〈n〉}
which breaks in “mere expanding” (TEX evaluates \tempo instead of defin-
ing it). An expandable test on emptiness is, e.g. \ifx$#〈n〉$, where we
hope that it becomes \iftrue just if macro argument #〈n〉 is empty in-
deed. However, “usually” it may also become \iftrue when #〈n〉 starts
with $—if the latter has category code 3 (“math shift”). But fifinddo does
not assign category code 3 to any character from the input file! Therefore
\ifx$#〈n〉$ is \iftrue exactly if #〈n〉 is empty.

3. You can avoid interference with packages that are needed for typesetting.
You can do the “preprocessing” in one run with typesetting, but you
should do the preprocessing before you load packages needed for typeset-
ting. One may even try to keep the macros and settings for preprocessing
local to a group.

4There is more in my badly implemented txtproc.sty.

2 PRELIMINARIES 6

Once there may be an option to read input with some usual TEX category codes
as well, it may be useful to (some of)

• avoid matching substrings of control words,

• skip blank spaces as TEX does it usually,

• catch balanced input pieces,

• ignore comments,

• ignore certain characters.

The essential approach of fifinddo to looking for single strings is described
in some detail in section 4.

The implementation of fifinddo is as follows. User commands are specially
highlighted (boxed/coloured), together with their syntax description.

2 Preliminaries

2.1 Head of file (Legalese)

1 %% Macro package ‘fifinddo.sty’ for LaTeX2e, %% FIDO, FIND!

2 %% copyright (C) 2009 Uwe L\"uck,

3 %% http://www.contact-ednotes.sty.de.vu

4 %% -- author-maintained in the sense of LPPL below --

5 %% for processing tex(t) files

6 %% (checking, filtering, converting, substituting, expanding, ...)

7

8 \def\fileversion{0.3} \def\filedate{2009/04/15}

9

10 %% This file can be redistributed and/or modified under

11 %% the terms of the LaTeX Project Public License; either

12 %% version 1.3a of the License, or any later version.

13 %% The latest version of this license is in

14 %%

15 %% http://www.latex-project.org/lppl.txt

16 %%

17 %% We did our best to help you, but there is NO WARRANTY.

18 %% Please report bugs, problems, and suggestions via

19 %%

20 %% http://www.contact-ednotes.sty.de.vu

21 %%

22 %% For the full documentation, look for ‘fifinddo.pdf’.

23 %% Its source starts in ‘fifinddo.tex’.

2.2 Format and package version

24 \NeedsTeXFormat{LaTeX2e}[1994/12/01]

25 % 1994/12/01: \newcommand* etc.

3 FILE HANDLING 7

26 \ProvidesPackage{fifinddo}[\filedate\space v\fileversion\space

27 filtering TeX(t) files by TeX (UL)]

2.3 Category codes

We use the “underscore” as “compound identifier.”

28 \catcode‘_=11 %% underscore used in control words

\MakeOther is a synonym for \@makeother, needed for matching special char-
acters from the input file. It is exemplified by \fdPatternCodes which is the
default of \PatternCodes . The latter is used in setup macros for reading pat-
terns.

29 \@ifundefined{MakeOther}{\let\MakeOther\@makeother}{}

30 \newcommand*{\fdPatternCodes}{\MakeOther\&\MakeOther\$}

31 \newcommand*{\PatternCodes}{} \let\PatternCodes\fdPatternCodes

32 %% TODO adding/removing

It would be bad to have \MakeOther\% and \MakeOther\ here in that this
may have unexpected, weird effects with arguments of setup macros. There-
fore neither \dospecials nor \@sanitize are used. Curly braces remain un-
touched as default delimiters in setup macros. For matching them, you must
use \MakeOther\{ and \MakeOther in your \PatternCodes, or \Delimiters
to introduce new ones at the same time, e.g., \Delimiters\[\]:

33 \newcommand*{\Delimiters}[2]{%

34 \MakeOther\{\MakeOther\}\catcode‘#1=1\catcode‘#2=2\relax}

For replacing strings or for defining other strings of “other” characters by
\edef, you can use some LATEX constructs—here are copies \PercentChar and
\BackslashChar of them (do you need more?):

35 \newcommand*{\PercentChar}{} \let\PercentChar\@percentchar

36 \newcommand*{\BackslashChar}{} \let\BackslashChar\@backslashcar

3 File handling

37 \newwrite\result_file %% or write to \@mainaux!?

\ResultFile{〈output〉} opens (and empties) a file 〈output〉 to be written into.

38 \newcommand*{\ResultFile}[1]{%

39 \def\result_file_name{#1}%

40 \immediate\openout\result_file=#1}

\WriteResult{〈balanced〉} writes a 〈balanced〉 line into 〈output〉 (or more lines
with ^^J).

41 \newcommand*{\WriteResult}[1]{%

42 \immediate\write\result_file{#1}}

3 FILE HANDLING 8

\WriteProvides writes a \ProvidesFile command to the opened 〈output〉
file. This should be used when 〈output〉 is made as LATEX 2ε input.

43 \newcommand*{\WriteProvides}{%

44 \WriteResult{%

45 \string\ProvidesFile{\result_file_name}%

46 [\the\year/\two@digits\month/\two@digits\day\space

47 automatically generated with fifinddo.sty]}}%

\ProcessFileWith{〈input〉}{〈loop-body〉} opens a file 〈input〉 and runs a loop
on its lines the main body of which is 〈loop-body〉. When it starts, a new line
of 〈input〉 is stored as macro \fdInputLine .

48 \newcommand*{\ProcessFileWith}[2]{%

49 \openin\@inputcheck=#1%

50 % \ifeof\@inputcheck %% bad ‘exists?’ test

51 % \PackageError{fifinddo}{File ‘#1’ not here}%

52 % {Mistyped?}%

53 % \else

54 \global\c@fdInputLine=\z@ %% line counter reset

55 \begingroup

56 \MakeOther\{\MakeOther\}\@sanitize

57 %% from docstrip.tex:

58 % \MakeOther\^^A\MakeOther\^^K%% irrelevant, not LaTeX

59 \endlinechar\m@ne

60 %% <- cf. TeXbook "extended keyboards" up-/downarrow

61 %% -> "math specials", cf. "space specials"

62 \MakeOther\^^I% ASCII horizontal tab -- guessed!? ^^L!?

63 \loop \ifeof\@inputcheck \else

64 \read\@inputcheck to \fdInputLine

65 \ignorespaces #2%

66 \repeat

67 \endgroup

68 % \fi

69 \closein\@inputcheck}

\CloseResultFile closes 〈output〉.

70 \newcommand*{\CloseResultFile}{\immediate\closeout\result_file}

Peter Wilson’s newfile provides more powerful file handling.

4 BASIC HANDLING OF SUBSTRING CONDITIONALS 9

4 Basic handling of substring conditionals

4.1 “Substring Theory”

I wished I could study string theory,
but I only could study substring theory.

A TEX macro, say, \find whose parameter text (cf. TEXbook p. 203) starts with
#1〈pattern〉#2& stops TEX with an error if it does not find 〈pattern〉 and then &.
Otherwise we have a situation \find〈split1 〉〈pattern〉〈split2 〉&, and \find reads
〈split1 〉 as #1 and 〈split2 〉 as #2. An important point to note is that 〈split1 〉 will
not contain 〈pattern〉, but possibly 〈pattern〉 has more occurrences in 〈split2 〉.
In this sense, \find uses the first occurrence of 〈pattern〉 it finds in order to
delimit #1. Finding the last occurrence of 〈pattern〉 therefore needs a special
idea.

In order to use \find for a test whether 〈pattern〉 is in 〈target〉, we build
a “sandbox” \find〈sand〉& , where 〈sand〉 contains 〈target〉 and additionally
〈pattern〉—as a “dummy;” so & delimits the search and \find finds 〈pattern〉
either in 〈target〉 or somewhere else before &.

Consider the simple sandbox \find〈target〉〈pattern〉& . We can test #1 and
#2 on being empty by \ifx$#1$ and \ifx$#2$. If #2 is empty, 〈pattern〉 is
not in 〈target〉. If #1 is empty at the same time, 〈target〉 is empty. If #1 is
empty and #2 is not, 〈pattern〉 starts 〈target〉! This can be used to implement
Wikipedia-like lists and to distinguish package code from comments in makedoc.

If #2 is not empty, 〈pattern〉 occurs in 〈target〉—or this once was thought,
some time in developping the present package, as well as in the version of sub-
str.sty marked 2005-11-29,5 try

\IfSubStringInString{〈str1 〉〈str2 〉〈str1 〉}{〈str1 〉〈str2 〉}{YES}{NO}

which works verbatim as well as considering 〈str1 〉 and 〈str2 〉 placeholders, e.g.,
for

\IfSubStringInString{day after day}{day after }{YES}{NO}6

\IfSubStringInString{AMSTERDAM}{AMSTERD}{YES}{NO}
\IfSubStringInString{TORONTO}{TORON}{YES}{NO}
\IfSubStringInString{bonbon}{bon}{YES}{NO}7

\IfSubStringInString{bonobo}{bono}{YES}{NO} (an ape)

or \IfSubStringInString{ionization}{ionizat}{YES}{NO}.8 Same with
LATEX’s internal \in@:

\makeatletter \in@{bonbon}{bon}\ifin@ YES\else NO\fi \makeatother

5substr does not change category codes and uses \@nil as delimiter instead of our &.
6Likewise t\^ete-\‘a-t\^te . . .
7Polynesian: aku aku, rongorongo, wiki wiki . . .
8Read substr.sty or try “normal” things to convince yourself that the syntax indeed is

\IfSubStringInString{〈pattern〉}{〈target〉}{〈yes〉}{〈no〉}.

4 BASIC HANDLING OF SUBSTRING CONDITIONALS 10

In general, the previous approach fails if and exactly if 〈pattern〉 has a
period p—less than its length—in the sense of that the pth token to the right
or left of each token in 〈pattern〉 is the same token. AMSTERDAM has a period 8,
day after day 10, bonbon 3, bonobo 4. There is a counterexample 〈target〉 of
length p iff 〈pattern〉 has period p, namely the first substring of 〈pattern〉 having
length p. If the length of 〈pattern〉 exceeds a multiple mp of its period, the first
mp tokens of 〈pattern〉 form a counterexample 〈target〉.

Therefore, a sandbox must have something between 〈target〉 and 〈pattern〉.
We choose \find〈target〉~〈pattern〉$& as standard. The $ will be used as an
argument delimiter to get rid of the dummy 〈pattern〉 in 〈split2 〉, as well as to
decide whether the match was in 〈target〉 or in the dummy part of the sandbox.
The $ can be replaced by another tilde ~ in order to test whether 〈target〉 ends
on a 〈pattern〉, defining a macro like \findatend whose parameter text starts
with #1〈pattern〉~#2&.

4.2 Plan for proceeding

When we check a file for several patterns, we seem to need two macros for each
pattern: one that has the pattern in its parameter text and one that stores the
pattern for building the sandbox.9 We use a separate “name space” for each of
both kinds. The parsing macro and the macro building the sandbox will have
a common “identifier” by which the user or programmer calls them. Actually,
she will usually (first) call the sandbox box builder. The sandbox builder calls
the parsing macro. When all occurrences of a pattern in the target are looked
for, the parser may call itself.

Actually, the parsing macro will execute certain actions depending on what
it finds in the sandbox, so we call it a “substring conditional”. It may read
additional arguments after the sandbox that store information gathered before.
This is especially useful for designing “expandable” chains (sequences) of con-
ditionals where macros cannot store information in macros. The macro setting
up the sandbox will initialize such extra arguments at the same time.

It may be more efficient not to use the following setup macros but to type
the macros yourself, just using the following as templates. The setup macros
are especially useful with patterns that contain “special characters,” as when
you are looking for lines that might be package comments.

4.3 Set up conditionals

substr_cond is the “name space” for substring conditionals. A colon separates
it from “job identifiers” in the actual macro names.

71 \def\substr_cond{substr_cond:}

9If it were for the pattern only, the parsing macro might suffice and the macro calling
it might extract the pattern from a “dummy expansion.” Somewhat too much for me now;
on the other hand the calling macro also hands some “current” informations to the parsing
macro—oh, even this could be handled by a general “calling” macro . . .

4 BASIC HANDLING OF SUBSTRING CONDITIONALS 11

\MakeSubstringConditional{〈id〉}[〈changes〉]{〈pattern〉} starts the defini-
tion of a conditional with identifier 〈id〉 and pattern 〈pattern〉. 〈changes〉 op-
tionally add commands to be executed after \PatternCodes in a local group.
It may be more safe to redefine \PatternCodes instead.

72 \newcommand*{\MakeSubstringConditional}{%

73 \afterassignment\mk_substr_cond_san \def\cond_id}

74 \newcommand*{\mk_substr_cond_san}[1][]{%

75 \begingroup \PatternCodes #1\mk_substr_cond}

76 %% #1 more changes

\begingroup \mk_substr_cond{〈pattern〉} can be directly called by other pro-
grammer setup commands when \cond_id and 〈pattern〉 have been read.

77 \def\mk_substr_cond #1{%% #1 pattern string

78 \endgroup \@namedef{\substr_cond \cond_id}##1#1##2&}

This really is not LATEX. We are starting defining a macro \substr_cond:〈id〉
in primitive TEX with \def in the form

\def\substr_cond:〈id〉#1〈pattern〉#2&

where \csname etc. render ‘:〈id〉’ part of the macro name. The user or program-
mer macro produces the part of the definition until the delimiter & to match
the sandbox. You have to add (maybe) #3 etc. and the {〈definition text〉} just
as with primitive TEX.

4.4 Set up sandboxes

There was a question: will we rather see string macros or strings from macro
arguments? The input file content always comes as \fdInputLine first, so we
at least must account for the possibility of string macros as input.

One easy way to apply several checks and substitutions to \fdInputLine
before the result is written to 〈output〉 is \let\OutputString\fdInputLine
and then let \OutputString be to what each job refers as its input and output,
finally \WriteResult{\OutputString}. (\fdInputLine might better not be
touched, it could be used for a final test whether any change applied for some
message on screen, even with an entirely expandable chain of actions.) This
way each job, indeed each recursive substitution of a single string must start
with expanding \OutputString.

On the other hand, there is the idea of “expandable” chains of substitutions.
We may, e.g., define a macro, say, \manysubstitutions{〈macro-name〉}, such
that \WriteResult{\manysubstitutions{\fdInputLine}} writes to 〈output〉
the result of applying many expandable substitutions to \fdInputLine. Such
a macro \manysubstitutions may read \fdInputLine, but it must not rede-
fine any macros. Instead, the substitution macros it calls must read results of
previous substitutions as arguments.

Another aspect: the order of substitutions should be easy to change. There-
fore expanding of string macros should rather be controlled by the way a job is

4 BASIC HANDLING OF SUBSTRING CONDITIONALS 12

called, not right here at the definition of the job. For this reason, a variant of
the sandbox builder expanding some macro was given up.

setup_substr_cond is the name space for macros that build sandboxes and
initialize arguments for conditional macros.

79 \def\setup_substr_cond{setup_substr_cond:}

\MakeSetupSubstringCondition{〈id〉}[〈changes〉]{〈pattern〉}{〈more-args〉}
—same 〈id〉, 〈changes〉, 〈pattern〉 as for \MakeSubstringConditional (this is
bad, there may be \MakeSubstringConditional*{〈more-args〉})—creates the
corresponding sandbox, by default without tilde wrap. 〈more-args〉 may contain
{#1} to store the string that was tested, also {〈id〉} for calling repetitions and
{〈pattern〉} for screen or log informations.

80 \newcommand*{\MakeSetupSubstringCondition}{%

81 \afterassignment\mk_setup_substr_cond_san \def\cond_id}

82 \newcommand*{\mk_setup_substr_cond_san}[1][]{%

83 \begingroup \PatternCodes #1\mk_setup_substr_cond}

\begingroup \mk_setup_substr_cond{〈pattern〉}{〈more-args〉} can be di-
rectly called by other programmer setup commands after \cond_id and
〈pattern〉 have been read:

84 \def\mk_setup_substr_cond #1#2{%% #1 pattern string,

85 %% #2 additional arguments, e.g., ‘{#1}’ to keep tested string

86 \endgroup

87 \expandafter \edef

88 \csname \setup_substr_cond \cond_id \endcsname ##1{%

89 % \expandafter \noexpand

90 % \csname \substr_cond \cond_id \endcsname %% 2009/04/10:

91 \make_not_expanding_cs{\substr_cond \cond_id}%

By \edef, the name of the substring conditional is stored here as a single token.
The rest of the sandbox follows.

92 ##1\noexpand~#1\dollar_tilde}%

93 \let\dollar_tilde\sandbox_dollar}

If a tilde ~ has been used instead of $, the default is restored.

94 \def\sandbox_dollar{$}

95 \let\dollar_tilde\sandbox_dollar

The following general tool \make_not_expanding_cs has been used (many def-
initions in latex.ltx could have used it):

96 \def\make_not_expanding_cs#1{%

97 \expandafter \noexpand \csname #1\endcsname}

4 BASIC HANDLING OF SUBSTRING CONDITIONALS 13

4.5 Getting rid of the tildes

\let~\TildeGobbles can be used to suppress dummy patterns (contained in
〈split2 〉) in \writeing or with \edef. . . . will probably become obsolete . . .
however, it is helpful in that you needn’t care whether there is a dummy wrap
left at all. (2009/04/13)

98 \newcommand{\TildeGobbles}{} \def\TildeGobbles#1${}

\RemoveDummyPattern is used to remove the dummy pattern immediately, not
waiting for \writeing or other “total” expansion:

99 \newcommand{\RemoveDummyPattern}{} \def\RemoveDummyPattern#1~#2${#1}

\RemoveDummyPatternArg〈macro〉{〈arg〉} executes \RemoveDummyPattern in
the next argument:

100 \newcommand*{\RemoveDummyPatternArg}[2]{%

101 \expandafter #1\expandafter {\RemoveDummyPattern #2}}

\RemoveTilde is used to remove the tilde that separated the dummy pattern
from 〈split1 〉.

102 % %% An alternative policy is to pass

103 % %% <target> (as an argument) to the parsing macro.

104 \newcommand{\RemoveTilde}{} \def\RemoveTilde#1~{#1}

\RemoveTildeArg〈macro〉{〈arg〉} executes \RemoveTilde in the next argu-
ment:

105 \newcommand*{\RemoveTildeArg}[2]{%

106 \expandafter #1\expandafter {\RemoveTilde #2}}

4.6 Calling conditionals

\ProcessStringWith{〈target-string〉}{〈id〉} builds the sandbox to search
〈target-string〉 for the 〈pattern〉 associated with the parser-conditional that is
identified by 〈id〉, the sandbox then calls the parser.

107 \newcommand*{\ProcessStringWith}[2]{%

108 \csname \setup_substr_cond #2\endcsname{#1}}

\ProcessExpandedWith{〈string-macro〉}{〈id〉} does the same but with a
macro (like \fdInputLine or \OutputString) in which the string to be tested
is stored.

109 \newcommand*{\ProcessExpandedWith}[2]{%

110 \csname \setup_substr_cond #2\expandafter \endcsname

111 \expandafter{#1}}

I would have preferred the reversed order of arguments which seems to be more
natural, but the present is more efficient. Macros with reversed order are cur-
rently stored after \endinput in section 8, may be they once return.

Anyway, most desired will be \ProcessInputWith{〈id〉} just applying to
\fdInputLine:

5 PROGRAMMING TOOLS 14

112 \newcommand*{\ProcessInputWith}[1]{%

113 \csname \setup_substr_cond #1\expandafter \endcsname

114 \expandafter{\fdInputLine}}

(Definition almost copied for efficiency.)

115 %% TODO: error when undefined 2009/04/07

4.7 Copy jobs

A job identifier 〈id〉may also be considered a mere hook, a placeholder for a pars-
ing job. What function actually is called may depend on conditions that change
while reading the 〈input〉 file. \CopyFDconditionFromTo{〈id1 〉}{〈id2 〉} cre-
ates or redefines a sandbox builder with identifier 〈id2 〉 that afterwards behaves
like the sandbox builder 〈id1 〉. So you can store a certain behaviour as 〈id1 〉 in
advance in order once to change the behaviour of 〈id2 〉 into that of 〈id1 〉.

116 \newcommand*{\CopyFDconditionFromTo}[2]{%

117 \expandafter \let

118 \csname \setup_substr_cond #2\expandafter \endcsname

119 \csname \setup_substr_cond #1\endcsname}

(Only the sandbox is copied here—what about changing conditionals?)
An “almost” example is typesetting documentation from a package file where

the “Legalese” header might be typeset verbatim although it is marked as “com-
ment.” (The present example changes “hand-made” macros instead.)

This feature could have been placed more below as a “programming tool.”

5 Programming tools

5.1 Tails of conditionals

When creating complex expandable conditionals, this may amount to have prim-
itive \if . . . \fi conditionals nested quite deeply, once perhaps too deep for
TEX’s memory. To avoid this, you can apply the common \expandafter trick
which finishes the current \if . . . \fi before an inside macro is executed (cf.
TEXbook p. 219 on “tail recursion”).

Internally tests whether certain strings are present at certain places will
be carried out by tests on emptiness or onwards) on starting with ~. E.g.,
“#1 = 〈split1 〉 empty” indicates that either the 〈pattern〉 starts a line or the
line is empty altogether (this must be decided by another test).

\IfFDempty{〈arg〉}{〈when-empty〉}{〈when-not-empty〉} is used to test
〈arg〉 on emptyness (without expanding it):

120 \newcommand*{\IfFDempty}[1]{%

121 \ifx$#1$\expandafter \@firstoftwo \else

122 \expandafter \@secondoftwo \fi}

5 PROGRAMMING TOOLS 15

\IfFDinputEmpty{〈when-empty〉}{〈when-not-empty〉} is a variant of the pre-
vious to execute 〈when-empty〉 if the loop processing 〈input〉 finds an empty
line—otherwise 〈when-not-empty〉.

123 \newcommand*{\IfFDinputEmpty}{%

124 \ifx\fdInputLine\@empty \expandafter \@firstoftwo \else

125 \expandafter \@secondoftwo \fi}

\IfFDdollar{〈arg〉}{〈when-empty〉}{〈when-not-empty〉} is another variant,
testing 〈split2 〉 for being $, main indicator of there is a match anywhere in
〈target〉 (as opposed to starting or ending match):

126 \newcommand*{\IfFDdollar}[1]{%

127 \ifx$#1\expandafter \@firstoftwo \else

128 \expandafter \@secondoftwo \fi}

It is exemplified and explained in section 6. (The whole policy requires that ~
remains active in any testing macros here!)

However, you might always just type the replacement text (in one line)
instead of such an \If . . . (for efficiency . . .)

If expandability is not desired, you can just chain macros that rework (so
re-define) \OutputString or so.

2009/04/11: tending towards combining . . . Keeping empty input and empty
arguments apart is useful in that one test of emptiness per input line should
suffice—it may be left open whether this should be the first of all tests . . .

5.2 Line counter

A LATEX counter fdInputLine may be useful for screen or log messages, more-
over you can use it to control processing of the 〈input〉 file “from outside,” not
dependent on what the parsing macros find. The header of the file might be
typeset verbatim, but we may be too lazy to define the “header” in terms of
what is in the file. We just decide that the first . . . lines are the “header,” even
without counting just trying whether the output is fine. It may be necessary to
change that number manually when the header changes.

You also can insert lines in 〈output〉 which have no counterpart in 〈input〉—if
you know what you are doing. With makedoc, there is a hook \EveryComment
that can be used to issue commands “from outside” at a place where executing
the command is safe or appropriate.

129 \newcounter{fdInputLine}

You then must insert \CountInputLines in the second argument of
\ProcessFileWith (or in a macro called from there) so that the counter is
stepped.

130 \newcommand*{\CountInputLines}{\global\advance\c@fdInputLine\@ne}

At present the counter is reset by \ProcessFileWith, this may change.

6 SETUP FOR EXPANDABLE CHAINS OF REPLACEMENTS 16

\IfInputLine{〈relation〉〈number〉}{〈true〉}{〈false〉} , when called from the
processing loop (second argument of \ProcessFileWith) issues 〈true〉 com-
mands if \value{fdInputLine}〈relation〉〈number〉 is true, otherwise 〈false〉.
〈relation〉 may usually be just =.

131 \newcommand*{\IfInputLine}[1]{%

132 \ifnum\c@fdInputLine#1\relax \expandafter \@firstoftwo

133 \else \expandafter \@secondoftwo \fi}

5.3 The “identity job” LEAVE

The job with identifier LEAVE leaves an (expandable) chain of jobs (as expand-
able replacement in section 6) and leaves the processed string without changing
it and without the braces enclosing it:

134 \expandafter \let

135 \csname \setup_substr_cond LEAVE\endcsname \@firstofone

I.e., \ProcessStringWith{〈string〉}{LEAVE} expands to 〈string〉 . . . (Indeed!)

6 Setup for expandable chains of replacements

By the following means, you can create macros (\Transform among them) such
that, e.g.,

\edef\OutputString{\Transform{〈string〉}}

renders \OutputString the result of applying a chain (sequence) of stringwise
replacements to 〈string〉. You can even write a transformed input 〈string〉 to
a file without defining anything anything after \read to . . . In this case how-
ever, you don’t get any statistical message about what happened or not. With
\edef\OutputString you can at least issue some changed! or left! (maybe
\message{!} vs. \message{.}). There is an application in makedoc for “typo-
graphical upgrading” from plain text to TEX input.

\repl_all_chain_expandable will be the backbone of the replacements.
It is called by some parsing macro 〈parser〉 and receives from the latter
〈split1 〉 = #1 and 〈split2 〉 = #2. #3 is the result of what happened so far.

136 \def\repl_all_chain_expandable#1#2#3#4#5#6{%

137 %% #1, #2 splits, #3 past, #4 substitute,

138 %% #5 repeat parser, #6 pass to

139 % \ifx~#2\expandafter\@firstoftwo\else\expandafter\@secondoftwo\fi

The previous line would be somewhat faster, but let us exemplify \IfFDdollar
from section 5.1 instead:

140 \IfFDdollar{#2}%

If #2 starts with $—with category code 3, “math shift”!, it is $, due to not
reading $ from input with its standard category code 3 and the sandbox con-
struction (where $ appears with its standard category code). And this is the

6 SETUP FOR EXPANDABLE CHAINS OF REPLACEMENTS 17

case exactly when the 〈pattern〉 from 〈parser〉 didn’t match, again due to the
input category codes. Now on no match, the sandbox builder #6 is called with
target string #3#1 where the last tested string is attached to previous results.
The ending ~ is removed, #6 inserts a new wrap for the new dummy pattern.

141 {\RemoveTildeArg #6{#3#1}}%

Otherwise . . . the sandbox builder 〈sandbox 〉 (that will be shown below) that
called 〈parser〉 initialized #5 to be that 〈parser〉 itself. (〈parser〉 otherwise
wouldn’t know who it is.) So 〈parser〉 calls itself with another sandbox #2&.
Note that #2 contains ‘~〈pattern〉$’ due to the initial 〈sandbox 〉 building.

142 {#5#2&{#3#1#4}{#4}#5#6}}

#4 is the replacement string that 〈sandbox 〉 passed to 〈parse〉. The first ar-
gument after the & is previous stuff plus the recently skipped 〈split1 〉 plus #4
replacing the string 〈pattern〉 that was matched.

Finally, #5 and #6 again “recall” 〈parser〉 and the sandbox builder to which
to change in case of no other match.

\MakeExpandableAllReplacer{〈id〉}{〈pattern〉}{〈replace〉}{〈id-next〉}
creates sandbox and parser with common identifier 〈id〉 and search pattern
〈pattern〉. Each occurrence of 〈pattern〉 will be replaced by 〈replace〉. When
〈pattern〉 is not found, the sandbox builder for 〈id-next〉 is called. This may be
another replacing macro of the same kind. To return the result without further
transformations, call job LEAVE (section 5.3).

143 \newcommand*{\MakeExpandableAllReplacer}{%

144 \afterassignment\mk_setup_xpdbl_all_repl_san

145 \def\cond_id}

. . . usual intermezzo for reading patterns with non-standard category codes, this
time we read two patterns . . .

146 \newcommand*{\mk_setup_xpdbl_all_repl_san}[1][]{%

147 \begingroup \PatternCodes #1\mk_setup_xpdbl_all_repl}

Here comes the real work.

148 \newcommand*{\mk_setup_xpdbl_all_repl}[3]{%

149 %% #1 pattern, #2 substitute, #3 pass to

150 \endgroup

We take pains to call next jobs by single command strings and store them this
way, not by \csname, as \ProcessStringWith would do it. \edef\@tempa is
used for this purpose, but . . .

151 \edef\@tempa{%

152 \noexpand\mk_setup_substr_cond{#1}{%

153 {}{#2}%

154 \noexpand\noexpand

That \edef\@tempa must not expand the controll words after they have been
computed from \csname etc. Moreover, expansion of the parser commands must
be avoided another time, when \@tempa is executed.

7 LEAVE PACKAGE MODE 18

155 \make_not_expanding_cs{\substr_cond\cond_id}%

156 \noexpand\noexpand

157 \make_not_expanding_cs{\setup_substr_cond #3}}}%

Those internal setup commands start with \endgroup to switch back to standard
category codes. We must match them here by \begingroup.

158 \begingroup \@tempa

159 \begingroup \mk_substr_cond{#1}{%

160 \repl_all_chain_expandable{##1}{##2}}}

The final command is the one that we explained first.
Support for dozens of replacements in one sequence and for screen messages

must wait for another release, sorry!

7 Leave package mode

We restore the underscore _ for math subscripts. (This might better depend on
something . . .)

161 \catcode‘_=8 %% restores underscore use for subscripts

162

163 \endinput

TEX ignores the rest of the file when it is input “in the sense of \input”, as
opposed to just reading the file line by line to a macro like \fdInputLine.

8 Pondered

164 %% TODO abbreviated commands (aliases) \MkSubstrCond...

165 %% TODO \@onlypreamble!?

166 \newcommand*{\ApplySubstringConditional}[1]{%

167 %% #1 identifier; text to be searched expected next

168 \csname setup_substr_cond:#1\endcsname}

169 \newcommand*{\ApplySubstringConditionalToExpanded}[1]{% 2009/03/31+

170 \csname setup_substr_cond:#1\expandafter \endcsname \expandafter}

171 \newcommand*{\ApplySubstringConditionalToInputString}[1]{% 2009/03/31+

172 \csname setup_substr_cond:#1\expandafter \endcsname

173 \expandafter {\fdInputLine}}

174 %% TODO or ‘\OutputString’, even ‘\read’ to ‘\OutputString’!?

175 % \newcommand*{\ApplySubstringConditionalToExpanded}[2]{%

176 % %% note: without assignments, robust!

177 % %% BUT the ‘\csname ... \expandafter \endcsname’ method is faster

178 % \expandafter \reversed_apply_substr_cond

179 % \expandafter {#2}{#1}}

180 % \newcommand*{\reversed_apply_substr_cond}[2]{%

181 % \ApplySubstringConditional{#2}{#1}}

182 %% ODER:

183 % \newcommand*{\expand_attach_arg}[2]{%% 2009/03/31

9 VERSION HISTORY 19

184 % %% #1 command with previous args, TODO cf. LaTeX3

185 % \expandafter \attach_arg \expandafter {#1}{#2}}

186 % %% actually #1 may contain more than one token,

187 % %% only first expanded

188 % \newcommand*{\attach_arg}[2]{#2{#1}}

189 % \newcommand*{\ApplySubstringConditionalToExpanded}[2]{%

190 % \expandafter \attach_arg \expandafter

191 % {#2}{\ApplySubstringConditional{#1}}}

9 VERSION HISTORY

192 v0.1 2009/04/03 very first version, tested on morgan.sty

193 v0.2 2009/04/05 counter fdInputLine, \ProvidesFile moved from

194 \ProcessFile to \ResultFile, \CopyFD...,

195 category section first, more sectioning,

196 suppressing empty code lines before section

197 titles; discussion, \Delimiters

198 2009/04/06 more discussion

199 2009/04/07 more discussion, factored \WriteProvides out from

200 \ResultFile, \ProcessExpandedWith corrected

201 2009/04/08 \InputString -> \fdInputline;

202 removed \ignorespaces

203 2009/04/09 \WhenInputLine[2] -> \IfInputline[3],

204 \ProcessInputWith, typos,

205 \WriteProvides message ‘with’

206 2009/04/10 \make_not_expanding_cs

207 DISCOVERED ‘‘IF SUBSTRING’’ ALGORITHM WRONG

208 (<str1><str2><str1> in <str1><str2>)

209 v0.3 2009/04/11 SOME THINGS GIVEN UP EARLIER WILL BE REMOVED,

210 TO BE STORED IN THE COPY AS OF 2009/04/10

211 mainly: sandbox setup (tilde/dollar)

212 REAL ADDITION: setup for expandable replacing

213 2009/04/12 played with ‘chain’ vs. ‘sequence’;

214 plain ‘...’, ‘cf.’, ‘etc.’ for ‘mdcorr.cfg’

215 2009/04/13 \RemoveTilde...

216 2009/04/15 reworked text, same mistake \in@

217

