
The newpax package, v0.54
Reinserting annotations from included pdf file

Ulrike Fischer*

2023-09-11

1 Introduction

Links in a PDF are created with annotation objects. Such an object is not connected to the
content or text, but simply describes an (rectangular) area on the page and defines an action
if the cursor is in the area. The coordinates of the area are given in absolute page coordinates.
The action of such an annotation can be an external URL, but also an internal destination.
Such destination are objects describing a page and some instructions how to display the
page—again using absolute coordinates.

WhenaPDF is included inanotherPDF—may it bewith\includegraphicsorwith\includepdf
—the annotation coordinates no longer make sense as they don’t refer to the receiving page
(and often the action of an annotation doesn’t make sense either), so all TeX-engines and
backends strip them away when including a PDF: the net effect is that external and internal
links are lost.

The pax package from Heiko Oberdiek offers a solution for this problem: it extracts all the
annotations anddestinations of the includedPDF ina text file, does someclever recalculations
of their coordinates and reinserts them. The package works basically fine but has a few
drawbacks: To collect the annotation one has to run an external java program which relies
on an now outdated library, and it works only with pdfLATEX.

The newpax tries to address these problems. It offers a lua script to extract the annotations.
The script can be used with lua(la)tex and no external tools are needed. The annotations can
then be reinserted either with the pax.sty or with the new newpax.stywhose code based in
large parts on the pax package: it uses its data structure and the original code to calculate
the coordinates (with a few minor bug corrections), but the pdfLATEX primitives have been
replaced by commands from the new LATEX PDFmanagement in pdfmanagement-testphase
so it should works with all major engines and backends (with the exception of dvips).

*fischer@troubleshooting-tex.de

1

2 Quick use instructions

2.1 Step 1: extract and collect the annotations

The lua script offers a function which take as argument the name of a PDF (without the
extension). The function can be used in some lua scripts but also in a document which then
must be compiled with lualatex.

Listing 1: doc-extract-newpax.tex
\documentclass{article}
% load the lua code
\directlua{require("newpax")}
% write .newpax files for newpax.sty
\directlua
{
newpax.writenewpax("doc-input1")
newpax.writenewpax("doc-input2")

}
\begin{document}
\end{document}

Running this document will create the files doc-input1.newpax and doc-input2.newpax.

To find the graphics kpathsea is used. This means that graphics in texmf trees will work and
you can also use paths to directories, but settings in \graphicspath are ignored. The newpax
file is currently written into the current directory, which means that graphics with the same
name in different locations won’t work easily (with lualatex you could create the newpax file
in the document just before it is needed). Later versions of the package will probably add
some options for this case, but for now use at best distinct file names.

2.2 Step 2: Using the .newpax-file with newpax

The package newpax is based on the package pax but extends it in various way. It is still an
experimental package, and it requires thenewLATEXPDFmanagement code in pdfmanagement-
testphase package. This new code is—as the name implies—currently in the testphase and
not compatible with every package!

The following listing shows how to use newpax.

• It should work with pdflatex, lualatex and xelatex. The latex/dvips route fails as this
can’t include PDF anyway.

• Some provision have been added to allow multiple inclusion of the same PDF, but if
you insert different sets of pages from a PDF some destinations can still be missing. So
better avoid it.

• You can choose for every file if border color and styles of links are taken from the source
PDF or from the hyperref settings. But you can’t adjust or change colored links.

2

• You can add additional settings to the annotations, for example an /F flag, with
\ExplSyntaxOn
\pdfannot_dict_put:nnn {link/URI}{F}{4}
\ExplSyntaxOff

Listing 2: doc-use-newpax.tex
% The next command needs LaTeX 2022-06-01, for older formats see documentation
% of pdfmanagement-testphase
\DocumentMetadata{uncompress}
\documentclass{article}

\usepackage{pdfpages,xcolor}

\usepackage{hyperref}
\hypersetup{linkbordercolor=blue}

\usepackage{newpax}

%use the link border color and style of the imported pdf
%and not hyperref colors
\newpaxsetup{usefileattributes=true}

\begin{document}

\includegraphics[scale=0.5,trim=4cm 15cm 8cm 3cm,clip,page=1]{doc-input1}
\includegraphics[scale=0.5,trim=5cm 15cm 8cm 3cm,clip,page=2]{doc-input1}

%set a unique suffix if the pdf is imported twice
\newpaxsetup{destsuffix=B}
\includegraphics[scale=0.5,trim=4cm 15cm 8cm 3cm,clip,page=1]{doc-input1}
\includegraphics[scale=0.5,trim=5cm 15cm 8cm 3cm,clip,page=2]{doc-input1}

% suppress the adding of annotations
\newpaxsetup{addannots=false}
\includegraphics[scale=0.5,trim=4cm 15cm 8cm 3cm,clip,page=1]{doc-input1}

%reactivate, don't use file attributes
\newpaxsetup{addannots=true,usefileattributes=false}
\includepdf[pages=-]{doc-input2}
\end{document}

2.3 Combining the steps

When using lualatex both step can be simply in the same document. With other engines you
can use ifluatex.

3

3 Setup options

\newpaxsetup{key-val option list}

This command allows to change the behaviour inclusion. It knows the following keys:

usefileattributes This is a boolean key. If set to true, the reinserted annotations will use
the linkborder settings (color and style) of the included file, if set to false, the settings of
the receiving PDF will take precendence.

destsuffix This allows to add a suffix to the destination names. This is needed if a file with
destinations is included more than once, to avoid to get multiple destinations.

addannots This is a boolean key. It allows to switch on and off the reinserting of the anno-
tations. When set to false it also suppress warnings in the log if the .newpax file is not
found. It is recommended to set it to false for graphics which don’t have links.

dests This is a choice key. Currently the values used (the default) and all are allowed. In the
first case only destinations that are targets of links in the included PDF will be included,
in the second case all destinations (if they are in the included pages) will be included.
The second can be useful if you want to link to destinations “from the outside”, see
below section 6.1.

4 More Background

Clickable links in a PDF are one example of an annotation. Annotations are areas on a page
which are associated with an action. A typical annotation object could look like this in the
PDF:

15 0 obj
<<
/Type /Annot
/Subtype/Link
/Rect [147.716 654.025 301.887 665.15]
/Border[0 0 1]/BS<</S/U/W 1>>/H/I/C[0 1 1]
/A<</Type/Action/S/URI/URI(https://www.latex-project.org)>>
>>
endobj

This is an object of type Annot and subtype Link. The /Rect value describes the rectangle of
this annotation. The coordinates are absolute coordinates related to the current page. It is
important to understand that an annotation is not connected to some page content but only
to a location! The /Border setting and the other values in this line describe the look and color
of annotation. The /A value contains the action, in this case it is an url to an external website.

To “reactivate” the annotations of an included pdf one has to do a number of tasks.

4

• Onemust retrieve and store the annotations of the included pdf. For links to external
url’s this requires to find only one object like the one shown above. But e.g. internal
links point to destination objects and these must be found too.

• Onemust recalculate the rectangle coordinates to fit to the coordinate system of the
target page: as the included pdf can be placed at various positions, scaled, rotated and
even clipped this is not an easy task. Destinations have rectangles too that must be
recalculated.

• One must reinsert the annotation and related objects. This has to take into account
that a pdf is perhaps not included completely, a link shouldn’t point to a missing page
or a clipped annotation. It also has to take into account that a pdf is perhaps inserted
more than once or in steps.

4.1 Retrieving and storing annotations

Theoretically one can do it manually: Uncompress the PDF (or when using LATEX, create
directly an uncompressed one), open it in an editor and copy and paste all needed objects.
Practically one naturally want some tool.

Thepaxpackage fromHeikoOberdiek consists of aperl script anda java-jarfilePDFAnnotExtractor
which can extract the necessary objects. It writes the information to a file with the extension
pax. When it has been successfully installed it works quite fine. Problems with this approach
are

• PDFAnnotExtractor requires an external, old version of the java library of PDFboxwhich
must be installed manually;

• it requires a java installation and

• it is not extensible.

The newpax package comes with a lua-file. It uses the pdfe library embedded in luatex to
extract the annotations and other needed information. newpax writes the information to
a file with the extension pax or newpax. The content of the files is (nearly) identical to the
content of the pax-file written by PDFAnnotExtractor. The lua code was written by looking at
example outputs from PDFAnnotExtractor and reproducing it in lua. The ordering of some
elements is a bit different and some strings are output in a different way but for the examples
I used the resulting pax-files can be used together with the original pax.sty. But due to the
fact that the code was written without real spec simply by looking at examples, it is quite
probably that the lua code is not yet handling all objects or options that PDFAnnotExtractor
outputs. But the code can rather easily be extended when the needs arises.

The code also doesn’t handle structure elements, neither at the export nor at the import. I
have yet no real ideawhat would be sensible here (and I’m quite sure that PDFAnnotExtractor
doesn’t handle this either.)

5

5 Importing annotations

The import function has to handle twomain problems:

• Recalculation of coordinates if the imported PDF is scaled or moved

• Dropping of annotations and destinations if a PDF is only partially included, e.g. be-
cause the graphic is clipped, or because only a selection of pages are included.

The pax package from Heiko Oberdiek does here hard work to recalculate the annotation
rectangles and to decide which annotation and which destination should be reinserted
and patches \includegraphics command to automate this. newpaxmostly reuses the core
commands of pax and added only a number of switches and support for more engines and
backends.

6 Internal links

Internal links (GoTo links in PDF speach) are more complicated than the other link types.

At first they involve two objects: the link annotation and the target of the link (destination in
PDF speach). If a PDF is included partially, it is therefore not enough to check if the link area
is on the visible pages, one also has to check if the target of the link is there. As such a target
can be on a later page the pax/newpax uses the .aux file to record which targets exists and
which are required and in a second compilation decides which links and destinations should
be reinserted. As an example: if you include from a PDF the table of contents (with links) and
a few pages, only the links in the toc pointing to visible sections and only the destinations
needed for this links will be reinserted.

At second the targets are normally „named destinations“, thatmeans a link annotation points
to a string like section.1 and the name tree /Dests contains a mapping for this string to
an destination object. As names like section.1 are used in many PDFs produced by LATEX
they can not simply be reused when reinserting annotations. newpax tries to avoid name
clashes by generating names consisting of a prefix with the file name and number or name.
So e.g. the section.1 destination would be called file.newpax@section.1 in the receiving
file. If you set up a suffix, e.g. with destsuffix=A, it is appended with an @ symbol, so the
result would be file.newpax@section.1@A. If the original destination has not name (this can
happen if you include PDFs which haven’t been created by TeX), then a number is used, so
you get file.newpax@1.

6.1 Access from the „outside“

It is possible to link from the external document to destinations in the included PDF, for
example to build a table of contents with links. For this you need

• the included PDF must contain all destinations that you want to use. That means,
newpaxwon’t create destinations out of the blue.

6

• You must ensure that the destinations you need are imported. This will be the case
if they are targets of internal links in the imported PDF, if not you can force that all
destinations of visible pages are there by using the option dests=all, see above.

• You need the names of the destinations. If the imported PDF has been created with
LATEX you can look in the toc or aux-file to find names. Then you can setup a filter to link
to the names used by newpax and e.g. load the toc or copy some of the content lines:

\newpaxsetup{dests=all}
\def\HyperDestNameFilter#1{myinput.newpax@#1}
\input{myinput.toc} %load toc
\includepdf[pages={2-4}]{myinput}

7 Example input

xlinktext
1 https://www.latex-project.org
As any dedicated reader can clearly see, the Ideal of practical reason is a

representation of, as far as I know, the things in themselves; as I have shown
elsewhere, the phenomena should only be used as a canon for our understanding.
The paralogisms of practical reason are what first give rise to the architectonic
of practical reason. As will easily be shown in the next section, reason would
thereby be made to contradict, in view of these considerations, the Ideal of prac-
tical reason, yet the manifold depends on the phenomena. Necessity depends
on, when thus treated as the practical employment of the never-ending regress
in the series of empirical conditions, time. Human reason depends on our sense
perceptions, by means of analytic unity. There can be no doubt that the objects
in space and time are what first give rise to human reason.

pdf

1 abc

2 abc

3 abc
file

1

https://www.latex-project.org
1 2 3

2

Check also the output of the listing above, doc-use-newpax.pdf.

8 Support for the pax package

8.1 Step 1: Extracting the annotations

The lua script is also able to write pax files for the pax package (and so can be used to replace
the java application).

For this extract the annotations like this:

Listing 3: doc-extract-pax.tex
\documentclass{article}
% load the lua code
\directlua{require("newpax")}

% and/or write .pax files for pax.sty
\directlua

7

https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org

{
newpax.writepax("doc-input")
newpax.writepax("doc-input2")

}
\begin{document}
\end{document}

8.2 Step 2: Using the .pax-file with pax.sty

Ensure that the .pax file created in step 1 can be found by your main document. You can
then insert your PDF files together with their annotations like in the following listing.

• This works with pdflatex and lualatex. lualatex needs the extra code demonstrated in
the document.

• It needs two or three compilations until every reference is correct.

• There is a small typo in pax.stywhich affects clipping, the patch shown in the listing
correct this.

• In some cases the catcode of # and %must be set to letter to avoid errors.

• Don’t include PDFs with destinations twice as this will lead to duplicate destinations
and pdflatex will complain.

• If annotations should not be reinserted remove the .pax-file.

• If hyperref is loaded you can change the color and style of link borders with hyperref
options.

Listing 4: doc-use-pax.tex
\documentclass{article}
\usepackage{ifluatex,etoolbox}
\usepackage{pdfpages}
%pax needs this to run with lualatex
\ifluatex
\usepackage{pdftexcmds}
\makeatletter
\let\pdfstrcmp\pdf@strcmp
\let\pdfescapename\pdf@escapename
\makeatother
\usepackage{luatex85}
\fi
%load pax
\usepackage{pax}
%correct a bug in pax affecting clipping
\makeatletter
\patchcmd\PAX@pdf@annot{\PAX@pagellx}{\PAX@page@llx}{}{\fail}
%allow hashes and percent in the pax file

8

\patchcmd\PAX@AddAnnots{\InputIfFileExists\PAX@file{}{\typeout{* Missing: \PAX@file}}}
{\begingroup \catcode`\#=12 \catcode`\%=12
\InputIfFileExists\PAX@file{}{\typeout{* Missing: \PAX@file}}\endgroup}{}{\fail}

\makeatother
\begin{document}
\includegraphics[scale=0.5,trim=5cm 15cm 8cm 3cm,clip,page=2]{doc-input1}
\includegraphics[scale=0.5,trim=5cm 15cm 8cm 3cm,clip,page=1]{doc-input1}

\includepdf[pages=-]{doc-input2}
\end{document}

9

	Introduction
	Quick use instructions
	Step 1: extract and collect the annotations
	Step 2: Using the .newpax-file with newpax
	Combining the steps

	Setup options
	More Background
	Retrieving and storing annotations

	Importing annotations
	Internal links
	Access from the „outside“

	Example input
	Support for the pax package
	Step 1: Extracting the annotations
	Step 2: Using the .pax-file with pax.sty

