nameauth — Name authority mechanism
for consistency in text and index*

Charles P. Schaum?

Released 2017/03/22

Abstract

The nameauth package automates the correct formatting and indexing of
names for professional writing. This aids the use of a name authority and
the editing process without needing to retype name references.

Contents

1 Quick Start 2 2.5.4 Index Sorting 33
1.1 Introduction. 2 2.5.5 Index Tags 35
1.2 Basic Concepts 3 2.6 “Text Tags” 36
1.3 Traditional Interface 4 2.7 Name Decisions 37
1.4 Simplified Interface 6 2.7.1 Testing Decisions . . . 37
1.5 Older Syntax 9 2.7.2 Changing Decisions . . 40
1.6 Reference Tables 10 2.8 Name Variant Macros 42
2.9 Longer Examples 46
2 Detailed Usage 13 2.9.1 Variant Names 46
2.1 Package Options 13 2992 \LocalNames 48
2.2 Naming Macros 16 2.9.3 Unicode + inputenc . 49
221 \Name and \Namex . . 16 2.9.4 BIEX Engines 51
2.2.2 Forenames: \FName . . 17 295 Hooks: Intro 52
2.3 Language Issues. 18 2.9.6 Hooks: Life Dates .. 53
2.3.1 Affixes Need Commas 18 297 THooks: Advanced . . . 55
2.3.2 Eastern Names 19 2.9.8 Full Redesign 62
2.3.3 Initials . T 20 2.10 Technical Notes 63
2.3.4 H.yp.henatlon """ 20 2.11 Errors and Warnings 64

2.3.5 Listing by Surname . 21
2.3.6 Particles 21 3 Implementation 65
2.3.7 Accented Names . .. 24 3.1 Flags and Registers 65
2.4 Formatting 24 3.2 Hooks 67
2.4.1 Spaces & Full Stops . 24 3.3 Package Options 68
2.4.2 Formatting in the Text 25 3.4 Internal Macros 68
2.4.3 Alternate Format . . . 27 3.5 User Interface Macros 79

2.5 Indexing Macros 30
2.5.1 Indexing Control . . . 30 4 Change History 103

2.5.2 Index Entries 31
2.5.3 Index Cross-References 32 5 Index 105

*This file describes version 3.2, last revised 2017/03/22.
tE-mail: charles dot schaum at comcast dot net

3.1

1 Quick Start

1.1 Introduction

Disclaimer

This manual uses names of living and dead historical figures because users refer
to real people. At no time do I intend any disrespect or statement of bias for or
against any particular person, culture, or tradition. All names herein (as I know
them) are used only for teaching purposes, and I strive to respect those names.

Denotative Signs

In the index, fictional names have an asterisk (*). In this manual, “non-native”
Eastern names are shown with a dagger (f). Names that use the older non-Western
syntax are shown with a double dagger (i). These signs are not added by the
package macros and will not appear in users’ works unless they add them.

Design

When publications use hundreds of names, it takes time and money to manage
and check them. This package handles much of that work in order to save time
and money. One can implement a name authority, a master list of related names
and variants.

e Automate name forms to aid professional writing.

— Move blocks of text and see the names reformat themselves.
— Default to long name references first, then shorter ones.
— Use name variants only in the body text, not the index.

e Permit complex name formatting. Default is English typography.

e More cross-cultural naming conventions are possible. A basic form of
“Continental” formatting has been integrated into the package instead of
being a user add-on (Sections 2.3.7, 2.4.3, 2.5.4, and 2.9.7).

e Automatic sort keys and tags aid indexing.
e One can automate information retrieval about names.

e Indexing generally conforms to the standard in Nancy C. Mulvany, Indezing
Books (Chicago: University of Chicago Press, 1994). All references [Mulvany]
refer to this edition. This was thought suitable for most disciplines.

e Notable changes correspond to package version numbers in the margin.

e The “dangerous bend” is used throughout this manual to show where caution
is needed to sort out some technical points.

e Please see Section 2.10 for technical notes regarding general questions about
package design, this manual, and the package building and release process.

Thanks

Thanks to Marc van Dongen, Enrico Gregorio, Philipp Stephani, Heiko Oberdiek, Uwe
Lueck, and Robert Schlicht for their assistance in the early versions of this package.
Thanks also to users for valuable feedback.

1.2 Basic Concepts

Name forms are ambiguous apart from historical and cultural contexts. This pack-
age uses that ambiguity to encode names in order to avoid changing the order in
which one enters names in one’s native culture. In this manual we refer to three
general classes of names, shown below. It is helpful to become familiarized with
this terminology. Other naming systems can be adapted to these general categories
with some caveats, e.g., Icelandic, Hungarian, etc.

For teaching purposes, we highlight names using sans-serif and use color to
show first and subsequent uses of names (see also Sections 2.4.2 and 2.7.2).

Professional writing calls for the full form of a person’s name when first used,
with shorter forms used thereafter. The name parts that define each class are
shown in black, with optional elements in red.!

1. Western name: George Washington

Forename(s) Surname(s) Sobriquet, etc.

| \
/ Family designator:

ather’s famil Sobriquet / title:
Personal name(s): J ,f v quet /
) mother’s family Sr., Jr., II. ..
baptismal name
oo ancestor notable feature
Christian name .)
) occupation notable attribute
first and middle . .
place of origin place of origin
names . .
territory territory
praenomen
nomen,/cognomen agnomen
patronym

2. Eastern name: Sun Yat-sen

Family name Given name

/ AN

Family Multiple names are rare, but multi-
designator character names do exist.

3. Ancient name: Elizabeth |

Given name Sobriquet, etc.

\

Sobriquet / title:
senior, junior, III. ..
notable feature

P 1
ersona notable attribute
name g7
place of origin
territory
patronym

LCompare [Mulvany, 152-82] and the Chicago Manual of Style. That approach is adapted to
TEX and its way of handling optional arguments.

Based on the classes of names, the nameauth macros halt with an error in the
following cases:

e The required name argument (SNN) expands to the empty string.
e The required argument (SNN, Affiz) expands to (empty), (Affix).

e No shorthand is present for a name in the simplified interface (Section 1.4).

1.3 Traditional Interface

For all categories, the fields that define each category are shown in black, with
optional elements in red.

Western Names

Add only if text in

Add to force full name. brackets [1 follows.

\Name * [(FNN)] {(SNN, Affiz)} [(Alternate names)] {}

/ / \

Forename(s) Surname(s) Used only in text
Examples:

One always must include all fields for consistent index entries.

\Name [George]{Washingtonl} George Washington
\Name* [George]{Washington} George Washington
\Name [Georgel{Washingtonl} Washington
\FName [George]{Washington} George
\Name [George S.]{Patton, Jr.} George S. Patton Jr.
\Name* [George S.]{Patton, Jr.} George S. Patton Jr.
\Name [George S.]{Patton, Jr.} Patton
\FName [George S.]{Patton, Jr.} George S.

(Alternate names) with Western forms require the (FNN) argument to have a
name in it. (Alternate names) print only in the text. (FNN) prints in the text and
index. For alternate surnames see Section 2.9.1.

\Name [Clive Staples]{Lewis} Clive Staples Lewis
\Name* [Clive Staples]{Lewis}[C.S.] C.S. Lewis
\Name [Clive Staples]{Lewis} Lewis
\Name [Clive Staples]{Lewis}[C.S.] Lewis
\Name* [Clive Staples]{Lewis}[Jack] Jack Lewis
\FName [Clive Staples]{Lewis}[Jack] Jack

Both affixes and alternate names can vary in the text. Western names require a
comma to delimit affixes; see Sections 1.5 and 2.3.1. Using alternate names does
not trigger an explicit first use. That is intentional.

\Name [John David]{Rockefeller, IV} John David Rockefeller 1V
\Name* [John David]{Rockefeller, IV}[Jay]l........... Jay Rockefeller IV
\DropAffix\Name* [John David]{Rockefeller, IV}[Jay] Jay Rockefeller
\Name [John David]{Rockefeller, IV}[Jayl................ Rockefeller

3.0

4

“Non-Native” Eastern Names in the Text, Western Index Entry

Add only if text in

Add to force full name. brackets [] follows.

\RevName \Name * [(FNN)] {(SNN)} [(Alternate names)] {}

] \

Given name Family name Used only in text

Examples:

These are encoded using Western name forms without affixes. The reversing macros
(Section 2.3.2) cause them to display in Eastern order in the body text. [Mulvany,
166] shows Hungarian names compatible with this category. Index entries are for-
matted as: (SNN), (FNN). We show these names with a dagger (7).

\Name [Fumimaro]{Konoe} Fumimaro Konoet
\Name* [Fumimaro] {Konoe} [Prime Minister] Prime Minister Konoef
\RevName\Name* [Fumimaro] {Konoe} Konoe Fumimarot
\RevName\Name [Frenec]{Molnar} Molnér Frenect

This “non-native” form of Eastern names excludes both comma-delimited suffixes
and the older non-Western syntax (Sections 1.5). This form will not share control
sequences and index entries with the non-Western forms described below.

“Native” Eastern Names in the Text, Eastern Index Entry

Add only if text in
brackets [] follows.

N

\Name * {(SNN, FNN)} [(Alternate names)] {}

N AN

Family name Given name Used only in text

Add to force full name.

Examples:

The main feature of non-Western forms in nameauth is the comma-delimited suffix.
Eastern names have the family name in (SNN) where ancient names have the
personal name, but that root name remains the required argument.

These names always take the form (SNN FNN) in the index. See Section 2.3.2.
In this manual we refer to the “native” Eastern form below:

\Nameq{Yamamoto, Isorokul}................ Yamamoto Isoroku
\Name{Yamamoto, Isorokul}. Yamamoto
\RevName\Name*{Yamamoto, Isorokul}................. Isoroku Yamamoto
\RevName\Name*{Yamamoto, Isoroku}[Admiral] Admiral Yamamoto

Non-Western forms also can have alternate names, except for mononyms (for which
alternate names make no sense). Alternate names do not work with the older syntax
for non-Western names (see Section 1.5).

nameauth

Ancient Names

Add only if text i
Add to force full name. Name(s) oty 1L text mn

\ / brackets [] follows.

\Name * {(SNN, Affiz)} {}
Examples:

These forms are meant for royalty and ancient figures. They have one or more
personal names that may or may not have suffixes.

\Name{Aristotle}. Aristotle
\Name{Aristotle}. Aristotle
\Name{Elizabeth, I} @ @i Elizabeth |
\Name{Elizabeth, I} Elizabeth

1.4 Simplified Interface

The nameauth environment replaces \Name, \Name*, and \FName with shorthands.
Using nameauth in the preamble is not required, but it helps prevent undefined
control sequences. We set some names up below. Comments (shown in red) are
added for explanation; they are not part of the environment itself.

% Field 1 Field 2 Field 3 Field 4

\begin{nameauth}
\< Wash & George & Washington & > % Western
\< Soto & Hernando & de Soto & > % Western
\< Pat & George S. & Patton, Jr. & > % W+affix
\< JRIV & John David & Rockefeller, IV & > % W+affix
\< Lewis & Clive Staples & Lewis & > % Western
\< Aris & & Aristotle & > % Ancient
\< Aeth & & Ethelred, II & > % Ancient
\< Eliz & & Elizabeth, I & > % Ancient
\< Attil & & Attila, the Hun & > % Ancient
\< Konoe & Fumimaro & Konoe & > % Was Fast.
\< Miyaz & & Miyazaki, Hayao & > % Eastern
\< Yamt & & Yamamoto, Isoroku & > % Fastern

\end{nameauth}

e Field 1 contains text that will be turned into three control sequences. For
example, Wash generates \Wash (like \Name): George Washington, \LWash (L
for Long; like \Name*): George Washington, and \SWash (S for Short; like
\FName): George.

e Fields 2 and 3 hold the name arguments.

e Field 4 usually remains empty. It handles the older non-Western syntax (Sec-
tion 1.5) and permanent alternate names (next page).

e In this context, “\<” is an escape character and a control sequence. If you
forget it or just use < without the backslash, you will get errors.

e There must be four argument fields (three ampersands) per line. Leaving out
an ampersand will cause an error.

e Extra spaces in each &-delimited field are stripped, as is also the case in the

traditional interface (Section 2.4.1).

e Put trailing braces { } or something else after the shorthands to prevent sub-
sequent text in brackets [] from becoming an optional argument.

So, why use it?

The simplified interface can save work.

Instead of the traditional interface macros

on the left, one uses the simplified macros on the right:

\Name [Georgel{Washington}
\Name* [George] {Washington}
\Name [George]{Washington}
\FName [George] {Washington}

\IndexName [George] {Washington}

\ForgetName [George] {Washingtonl}V,
\Name [George] {Washington}

\SubvertName [George] {Washington}y
\Name [George] {Washington}

Examples:

: George Washington
: George Washington

: Washington

: George

\ForgetThis\Wash: George Washington

\SubvertThis\Wash: Washington

Below, “non-native” Eastern name forms are shown with a dagger (). Please see
Section 2.3.2 to avoid pitfalls with Eastern names and reversing macros. We reset
some “first uses” of names from before (Section 2.7.2).

WESTERN:

\Wash George Washington
\LWash George Washington
\WWash Washington
\SWash George
\RevComma\LWash Washington, George
PARTICLES: (Section 2.3.6)
\Soto Hernando de Soto
\Soto ... de Soto
\CapThis\Soto De Soto
AFFIXES: (Section 2.3.1)
\Pat George S. Patton Jr.
\LPat George S. Patton Jr.
\DropAffix\LPat .. George S. Patton
\Pat Patton
\SPat George S.
NICKNAMES: (Section 2.2.2)
\JRIV ... John David Rockefeller IV
\DropAffix\LJRIV[Jay] Jay Rockefeller
\SJRIV[Jayl Jay
\Lewis Clive Staples Lewis
\LLewis[Jack] Jack Lewis
\SLewis[Jack] Jack
\LCSL C.S. Lewis
\SCSL cs.

ANCIENT / MONONYM

\Aris Aristotle
\Aris Aristotle
MEDIEVAL/ROYAL:

\Eliz Elizabeth |
\Eliz Elizabeth
\LEliz[the First] Elizabeth the First
NABEEL L Attila the Hun
NAEEil . Attila

“NON-NATIVE” EASTERN:

\Konoe Fumimaro Konoet
\LKonoe Fumimaro Konoef
\LKonoe [Minister] Minister Konoet
\Konoe Konoet
\SKonoe Fumimarot
\CapName\RevName\LKonoe KONOE Fumimarof}
\CapName\Konoe KONOEf{

“NATIVE” EASTERN:

\CapName\Yamt YAMAMOTO Isoroku
\CapName\LYamt YAMAMOTO Isoroku
\CapName\Yamt YAMAMOTO
\RevName\LYamt Isoroku Yamamoto
\RevName\LYamt [Admiral] Admiral Yamamoto
\SYamt Yamamoto
\ForceFN\SYamt Isoroku

Some Devils in the Detalils:

English keeps the prefix with the surname in the text and the index, while German
keeps particles separate:

\begin{nameauth}
\< JWG & J.W. von & Goethe & > Y Western; German
\< VBuren & Martin & Van Buren & > % Western; English
\end{nameauth}

Martin Van Buren is “Van Buren, Martin” in the index. \JWG prints J.W.
von Goethe and Goethe, with “Goethe, J.W. von” in the index. You get a
quasi-Anglicized von Goethe with \LJWG[von]. Either \CapThis\LJWG[Von] or
\LJWG [Von] produce Von Goethe; see Section 2.3.6. Additionally, [Mulvany, 152—
82] and the Chicago Manual of Style offer helpful guidance.

Normally you would use something like \LLewis[C.S.] to get C.S. Lewis in-
stead of Clive Staples Lewis. You can make that permanent, where C.S. always
prints in the text, yet the index always shows “Lewis, Clive Staples. Some perma-
nent alternate names are shown below:

\begin{nameauth}
\< JayR & John David & Rockefeller, IV & Jay > % Western
\< CSL & Clive Staples & Lewis & C.S. > % Western
\< Unraed & & Ethelred, II & Unradig > % Ancient
\< MSens & & Miyazaki, Hayao & Sensei > Y FEastern
\end{nameauth}

With the names above you get Jay Rockefeller IV, C.S. Lewis, Athelred Unradig,
and Miyazaki Sensei instead of those from the previous page: John David Rocke-
feller IV, Clive Staples Lewis, Athelred I, and Miyazaki Hayao.? They all have the
same respective index entries and first/subsequent uses, which is why we forced
the formatting in the names above. Also \LLewis [Jack] prints Jack Lewis while
\LCSL [Jack] prints C.S. Lewis[Jack]. Section 2.2.2 explains why.

The simplified interface can tempt one into completely equating a name with
its shortcut. Here we show that to be false. \ForgetThis\CSL prints C.S. Lewis.
Then \Lewis prints Lewis. Likewise, \ForgetThis\Lewis prints Clive Staples Lewis.
Then \CSL prints Lewis. The name itself is the pattern that governs everything.
Internally, that detokenized pattern is CliveStaples!Lewis. Non-western names
have patterns like Elizabeth,I and Yamamoto, Isoroku. Mononyms are their own
pattern: Aristotle.

For the same reasons, when index tagging or pre-tagging names, the (Alternate
names) field has no effect on index tags. \JRIV and \JayR need only one tag, as
do \Lewis and \CSL:

\TagName [John David]{Rockefeller, IV}{(something)}
\TagName [Clive Staples]{Lewis}{({something)}

Sections 2.3.6, 2.3.7, and 2.5.4 deal with the pitfalls of accents and capitaliza-
tion, as well as why you should use \PretagName when dealing with names that
contain control sequences or active Unicode characters.

20ne could use \AKA to create a cross-reference Jay Rockefeller. See Sections 2.5.3 and 2.8.

1.5 Older Syntax

An older syntax for non-Western names remains for backward compatibility with
early versions of nameauth. The older syntax prevents the use of alternate names,
limits the use of \AKA (Section 2.8) and excludes comma-delimited suffixes. Oth-
erwise it works seamlessly with the new syntax.

The big change is, instead of using a comma-delimited affix, this form uses
the final optional argument for personal names and affixes. When nameauth was
young, this seemed the intuitive approach to take. Now it only remains so that
older documents still work today.

\Name{Henry} [VIII] % royal name
\Name{Chiang}[Kai-shek] yA Eastern name
\begin{nameauth}
\< Dagb & & Dagobert & I > pA royal name
\< Yosh & & Yoshida & Shigeru > 7 Eastern name
\end{nameauth}

Since the (FNN) fields are empty, the final field becomes either (affiz) or (FNN)
and will appear in the index. We show these names with a double dagger (1):

\Name{Henry} [VIII] Henry VIIIZ
\Name{Henry} [VIII] Henryi
\Name{Chiang}[Kai-shek] Chiang Kai-shek}
\Name{Chiang}[Kai-shek] Chiang}

\Dagb Dagobert I
\Dagb Dagobert?
\CapName\Yosh YOSHIDA Shigerut

\CapName\RevName\LYosh Shigeru YOSHIDA}

\Name{Henry} [VIII] (older syntax) will share name occurrences, tags, and index
entries with \Name{Henry, VIII} (new syntax), as we see below. We recommend
using the newer syntax unless otherwise needed.

\NameAddInfo{Henry} [VIII]{ (\emph{Defensor Fidei})} % older
... \Name*{Henry, VIII}\NameQueryInfo{Henry, VIII} % new

Henry VIII (Defensor Fidei)

Presently \Name*{Henry, VIII}[Tudor] prints “Henry Tudor” in the body
text and “Henry VIII” in the index. Before version 3.0 it would have produced
“Henry VIII Tudor” in the text and in the index. The older behavior was dis-
couraged. It is obsolete and not supported. See also Sections 2.5.5 and 2.6.

1.6 Reference Tables
Getting Things Done

Here we link from general tasks to relevant sections. The end of each section listed
in the table has a return link to this section.

I want to... Topic Section
implement standard scholarly names \Name 2.2.1
refer to forenames and affixes \FName 2.2.2
forcing references 2.7.2
use surnames with inflected or alternate indexing control 2.5.1
forms without creating unwanted index forcing references 2.7.2
entries alternate spellings 2.9.1
use affixes in names comma delimiter 2.3.1
use “native” Eastern name forms comma delimiter 2.3.1
Fastern names 2.3.2
use reversing and all caps for all Eastern Eastern names 2.3.2
name forms in body text only
use discretionary caps in body text only particles 2.3.6
use discretionary caps in text and index advanced hooks 2.9.7
handle non-English names and particles 2.3.6
Continental formatting accents 2.3.7
non-English format 24.3
indexing control 2.5.1
index sorting 2.5.4
advanced hooks 2.9.7
not have affixes be present by default index tags 2.5.5
in long name forms text tags 2.6
manage index cross-references cross-references 2.5.3
alternate names 2.8
format variant name forms formatting 2.4.2
indexing control 2.5.1
forcing references 2.7.2
alternate spellings 2.9.1
use nameauth with beamer overlays formatting 2.4.2
or design a game book index tags 2.5.5
or design a history book text tags 2.6
or use many dynamic name elements name tests 2.7.1
or force name elements to be constant forcing references 2.7.2
life dates 2.9.6
advanced hooks 2.9.7

10

Form and Format Overview

Below we see how the naming macros generate output. First uses of a name are
full references and call first-use formatting hooks. Subsequent uses can be longer
or shorter, calling their own hooks unless \ForceName changes that (Section 2.4.2).
Section 2.7.2 also has more information on how to change things. For changes to
\AKA and friends, the alwaysformat option may be needed (Section 2.8).

\Name or Unmodified Shorthand

. \NamesFormat \MainNameHook
First Reference Full Short \FrontNamesFormat \FrontNameHook
Yes No Yes No
Subsequent Ref. §Cf. \ForceName

*Western Surname No §No Yes
*Eastern Surname No §No Yes
*Ancient Name No §No Yes

\Name* or L-modifier + Shorthand

Full - Short oot e \erentmanenoo
First Reference Yes No Yes No
§Cf. \ForceName
Subsequent Ref. Yes No §No Yes

\FName or S-modifier + Shorthand

. \NamesFormat \MainNameHook
First Reference Full Short \FrontNamesFormat \FrontNameHook
Yes No Yes No
Subsequent Ref. §Cf. \ForceName

*Western Forename No §No Yes
*Eastern Surname No §No Yes
*Ancient Name No §No Yes

\ForceFN\FName or \ForceFN S-modifier 4+ Shorthand

. \NamesFormat \MainNameHook
First Reference Full Short \FrontNamesFormat \FrontNameHook
Yes No Yes No
Subsequent Ref. §Cf. \ForceName

*Western Forename No §No Yes
*Eastern Forename No §No Yes
*Ancient Affix No §No Yes

11

Selected Macro Patterns:

(prefix macros) \Name (optional *) (arguments)
(prefiz macros) \FName (optional *) (arguments)
(prefiz macros) \AKA (optional *) (target args) (zref args)
\SeeAlso \IndexName (arguments)
\SeeAlso \IndexRef (arguments) (target)
\ExcludeName (arguments)
\IncludeName (optional *) (arguments)
\PretagName (arguments) (sort key)
\TagName (arguments) (tag)
\UntagName {arguments)
\NameAddInfo (arguments) (tag)
\NameQueryInfo (arguments)
\NameClearInfo {arguments)
\IfMainName (arguments) {(y)}(n)}
\IfFrontName (arguments) {{y)H(n)}
\IfAKA (arguments) {(y)}{(n)}
\ForgetName {arguments)
\SubvertName (arguments)

Prefix Macros (One-Time Effect):

They stack: \CapThis\SubvertThis\SkipIndex\Name [foo] {bar}: Bar

\CapThis
\CapName

Capitalize first letter of all name components in body text.?
Cap entire (SNN) in body text. Works also with \CapThis.

\RevName

Reverse name order in body text (e.g., for Eastern names).

\RevComma Reverse Western names to (SNN), (FNN).*
\ShowComma Add comma between (SNN) and (Affiz).
\NoComma No comma between (SNN) and (Affiz). Excludes \ShowComma.
\ForceFN Force Eastern ForeName or ancient FiNal affix.’
\DropAffix Drop name affix of Western name (in long name reference).5
\KeepAffix Insert non-breaking space between (SNN) and (Affiz).”
\KeepName Insert non-breaking space between all syntactic name elements.
\ForceName Have a subsequent name use call first-use formatting hooks.
\ForgetThis Next naming macro prints a first use. Excludes \SubvertThis.
\SubvertThis The next naming macro prints a subsequent use.
\SeeAlso The next cross-reference macro creates a see also reference.®
\SkipIndex The next naming macro does not create index entries.
\JustIndex The next \Name or \FName acts just like a call to \IndexName.

Ignored and reset by \AKA and \PName.

3\AccentCapThis is a fall-back for when the nameauth package is used where system architec-
ture or file encoding might cause errors with the automatic Unicode detection under NFSS.

4Has no effect on non-Western name forms.

50nly affects non-Western name forms.

50nly affects Western name forms.

"Used best with Western and ancient name forms.

8Works only with \IndexRef, \AKA, \PName and their respective starred variants.

12

3.0

3.1

3.0

4

2 Detailed Usage

2.1 Package Options
One includes the nameauth package thus:
\usepackage [{option,), (options),...]{nameauth}

The options have no required order. Still, we discuss them from the general to the
specific, as the headings below indicate. In the listings below, implicit default
options are boldface and need not be invoked by the user. Non-default
options are in red and must be invoked explicitly.

Choosing Features

Enable Package Warnings
verbose Show warnings about index cross-references.

The default suppresses package warnings from the indexing macros. Warnings from
the nameauth environment are not suppressed.

Choose Formatting

mainmatter Start with “main-matter names” and for-
matting hooks (see also page 15).

frontmatter Start with “front-matter names” and hooks.

alwaysformat Use only respective “first use” formatting hooks.

formatAKA Format the first use of a name with \AKA like the
first use of a name with \Name.
0l1dAKA Force \AKA* to act like it did before v.3.0.

The mainmatter option and the frontmatter option enable two different systems
of name use and formatting. They are mutually exclusive. \NamesActive starts
the main matter system when frontmatter is used. See Section 2.4.2.

The alwaysformat option forces “first use” hooks globally in both naming
systems. Its use is limited in current versions of nameauth.

The formatAKA option permits \AKA to use the “first use” formatting hooks.
This enables \ForceName to trigger those hooks at will (Section 2.8). Otherwise
\AKA uses “subsequent use” hooks.

Using the 01dAKA option forces \AKA* always to print a “forename” field in the
text, as it did in versions 2.6 and older. Otherwise the current behavior of \AKA*
prints in the same fashion as \FName (see Sections 2.2.2 and 2.8).

Enable/Disable Indexing
index Create index entries in place with names.
noindex Suppress indexing of names.

These apply only to the nameauth package macros. The default index option en-
ables name indexing right away. The noindex option disables the indexing of names
until \IndexActive enables it. Caution: using noindex and \IndexInactive pre-
vents index tags until you call \IndexActive, as explained also in Section 2.5.1.

13

Enable/Disable Index Sorting

pretag Create sort keys used with makeindex.
nopretag Do not create sort keys.
The default allows \PretagName to create sort keys used with NFSS or makeindex

and its analogues. The nopretag option disables the sorting mechanism, e.g., if a
different sorting method is used with xindy. See Section 2.5.4.

Affect the Syntax of Names

Show/Hide Affix Commas

nocomma Suppress commas between surnames and
affixes, following the Chicago Manual of
Style and other conventions.

comma Retain commas between surnames and affixes.

If you use modern standards, choose the default nocomma option to get, e.g., James
Earl Carter Jr. If you need to adopt older standards that use commas between
surnames and affixes, you have two choices:

1. The comma option globally produces, e.g., James Earl Carter, Jr.

2. Section 2.3.1 shows how one can use \ShowComma with the nocomma
option and \NoComma with the comma option to get per-name results.

Capitalize Entire Surnames

normalcaps Do not perform any special capitalization.

allcaps Capitalize entire surnames, such as romanized
Eastern names.

This only capitalizes names printed in the body text. English standards usually
do not propagate typographic changes into the index.

Still, you can use this package with non-English conventions (just not via these
options). You can add, e.g., uppercase or small caps in surnames, formatting them
also in the index. See also Sections 2.4.3 and 2.9.7. The simplified interface aids the
embedding of control sequences in names. Section 2.3.2 deals with capitalization
on a section-level and per-name basis.

Reverse Name Order

notreversed Print names in the order specified by \Name
and the other macros.

allreversed Print all name forms in “smart” reverse order.

allrevcomma Print all names in “Surname, Forenames” order,

meant for Western names.

These three options are mutually exclusive. Section 2.3.2 speaks more about re-
versing. The allreversed option, \ReverseActive, and \RevName work with all
names and override allrevcomma and its macros.

So-called “last-comma-first” lists of names via allrevcomma and the reversing
macros \ReverseCommaActive and \RevComma (Section 2.3.5) are not the same as
the comma option. They only affect Western names.

14

2.5

2.4

\global

Typographic Post-Processing

Formatting Attributes

noformat Do not define a default format.
smallcaps First use of a main-matter name in small caps.
italic First use of a main-matter name in italic.
boldface First use of a main-matter name in boldface.

Current versions assign no default formatting to names. Most users have pre-
ferred the noformat option as the default and then design their own hooks as
needed.” The options above are “quick” solutions based on English typography.

What was “typographic formatting” has become a generalized concept of “post-
processing” via hook macros.'” Post-processing does not affect the index. Sections
2.4.2,2.9.5,2.9.6, and 2.9.7 explain these hooks in greater detail:

e \NamesFormat formats first uses of main-matter names.
e \MainNameHook formats subsequent uses of main-matter names.
o \FrontNamesFormat formats first uses of front-matter names.

e \FrontNameHook formats subsequent uses of front-matter names.

Changes to the formatting hooks apply within the scope where they are made.
Use \global explicitly to alter that. \NamesFormat originally was the only hook,
so any oddity in the naming of these hooks results from the need for backward
compatibility with old versions.

Alternate or Continental Formatting

Alternate Syntactic Formatting

altformat Make available the alternate formatting frame-
work from the start of the document. Activate
formatting by default.

A Dbuilt-in framework provides an alternate formatting mechanism that can be
used for “Continental” formatting that one sees in German, French, and so on.
Continental standards format surnames only, both in the text and in the index.
Section 2.4.3 introduces the topic, while Section 2.9.7 goes into greater detail.
The previous methods the produced Continental formatting still ought to work.
The error protection that prevents \CapThis from breaking alternately formatted
names is available by using this option or other macros in Section 2.4.3.

9For those that want the old default option from the early days of this package, one can recover
that behavior with the smallcaps option.

0This package was designed with type hierarchies in mind, although it has become more
flexible. See Robert Bringhurst, The Elements of Typographic Style, version 3.2 (Point Roberts,
Washington: Hartley & Marks, 2008), 53-60. I drew some inspiration from the typography in
Bernhard Lohse, Luthers Theologie (Gottingen: Vandenhoeck & Ruprecht, 1995) and the five-
volume series by Jaroslav J. Pelikan Jr., The Christian Tradition: A History of the Development
of Doctrine (Chicago: Chicago UP, 1971-89). Each volume in the series has its own title.

15

\Name
\Name*

3.0

2.2 Naming Macros

Although the formatting hooks do nothing by default, we use them here for teach-
ing purposes. We also force first and subsequent uses as needed. See also Sec-
tions 2.4.2 and 2.7.2, which explain the concept in detail.

2.2.1 \Name and \Namex*

\Name displays and indexes names. It always prints the required “surname” field.
\Name prints the full name at the first occurrence, then a partial form thereafter.
\Name* always prints the full name. These macros generate index entries before
and after a name in the body text in case of a page break. The general syntax is:

\Name [(FNN)I{(SNN, opt. FNN/Affix)} [{ Alternate names)]
\Name* [(FNN)1{(SNN, opt. FNN/Affiz)} [{Alternate names)]

In the body text, not the index, the (Alternate names) field replaces the (FNN)
field or the (opt. FNN/Affiz) field if they exist. If neither of the latter exist, then
the older non-Western syntax is used (Section 1.5).

\begin{nameauth}
\< Einstein & Albert & Einstein & >
\< Cicero & M.T. & Cicero & >
\< Confucius & & Confucius & >
\< Miyaz & & Miyazaki, Hayao & >
\< Eliz & & Elizabeth, I & >
\end{nameauth}

\Name [Albert]{Einstein} or \Einstein
\Name* [Albert] {Einstein} or \LEinstein
\Name [Albert]{Einstein} or \Einstein

Albert Einstein
Albert Einstein
Einstein

\Name [M.T.]{Cicero} or \Cicero
\Name* [M.T.]{Cicero}[Marcus Tullius]
\Name [M.T.]J{Cicero} or \Cicero

M.T. Cicero
Marcus Tullius Cicero
Cicero

\Name {Confucius} or \Confucius

Confucius

\Name {Miyazaki, Hayao} or \Miyaz
\Name*{Miyazaki, Hayaol}[Sensei]

Miyazaki Hayao
Miyazaki Sensei

\Name {Miyazaki, Hayaol} or \Miyaz Miyazaki
\Name {Elizabeth, I} or \Eliz Elizabeth |
\Name*{Elizabeth, I} or \LEliz Elizabeth |
\Name {Elizabeth, I} or \Eliz Elizabeth

When using the simplified interface, the preferred way to get alternate names
is \LCicero[Marcus Tullius] and \LMiyaz[Sensei]: Marcus Tullius Cicero and
Miyazaki Sensei. The next section explains why that is so.

Note also that the alternate forename goes away in subsequent short name
references. \Name [M.T.]{Cicero}[Marcus Tullius] shows up as just Cicero in
that case. By default, subsequent name references are surnames only.

Back to Section 1.6

16

\FName
\FNamex*

\ForceFN
3.0

2.2.2 Forenames: \FName

\FName and its synonym \FName* print personal names only in subsequent name
uses. They print full names for first uses. The two macros are the same in case you
edit \Name* by adding an F to get a first reference. They print a full name, not a
short name, when a name is used for the first time. The syntax is:

\FName [(FNN)I1{(SNN, opt. FNN/Affix)} [(Alternate names)]

These macros work with both Eastern and Western names, but to get an East-
ern personal name, one must precede these macros with \ForceFN.'! See also
Section 2.7.2 on how to vary some of the forms below. The standard results for
subsequent name uses below are:

\FName [Albert]{Einstein} or \SEinstein Albert

\FName [M.T.]{Cicero}[Marcus Tullius]

or \SCicero[Marcus Tullius] Marcus Tullius
\FName{Confucius} or \SConfucius Confucius
\FName{Miyazaki, Hayao} or \SMiyaz Miyazaki
\ForceFN\FName{Miyazaki, Hayao}

or \ForceFN\SMiyaz Hayao
\ForceFN\FName{Miyazaki, Hayaol}[Sensei]

or \ForceFN\SMiyaz[Senseil Sensei
\FName{Elizabeth, I} or \SEliz Elizabeth

\ForceFN\FName{Elizabeth, I} |

\ForceFN\SEliz[the First] the First

The (Alternate names) argument always replaces the forenames in the text.
Sometimes this is a good thing, and sometimes it is not:

\begin{nameauth}

\< Lewis & Clive Staples & Lewis & >

\< CSL & Clive Staples & Lewis & C.S. >

\< Ches & Chesley B. & Sullenberger, III & >

\< Sully & Chesley B. & Sullenberger, III & Sully >
\end{nameauth}

For example, if a book section refers always to C.S. Lewis, but another section
introduces him as Clive Staples Lewis, one can use both \CSL and \Lewis. \Lewis
and \CSL share common first and subsequent uses because they both point to the
same (FNN) (Clive Staples) and (SNN) (Lewis).

The drawback lies in remembering that \Ches gives us Chesley B. Sullenberger
[11, while \LSully produces Sully Sullenberger Ill. Likewise, \SCSL [Jack] produces
C.S.[Jack]. The final field in the nameauth environment populates the (Alternate
Names) argument, making [Jack] normal text.

Back to Section 1.6

HOtherwise you would get poor results with some royal and ancient names.

17

4

\KeepAffix

\KeepName
3.1

\DropAffix
3.0

\ShowComma
\NoComma

2.6

2.3 Language Issues

Here we engage topics that relate to specific aspects of grammar and cultural
standards. The nameauth package is designed with a keen awareness of cross-
cultural use and tries to implement such aspects in a smooth fashion.

2.3.1 Affixes Need Commas

Comma-delimited affixes are shown below. For Western names, they separate a
surname and an affix. For non-Western names, they separate either a surname and
a forename or a name and an affix. Always use a comma as an affiz delimiter, even
when commas are not printed. Spaces between the comma and affix are ignored.
See also Section 2.4.1.

\Name [Oskar] {Hammerstein, II} Oskar Hammerstein Il
\Name [Oskar] {Hammerstein, II} Hammerstein

\Name{Louis, XIV} Louis XIV
\Name{Louis, XIV} Louis
\Name{Sun, Yat-sen} Sun Yat-sen
\Name{Sun, Yat-sen} Sun

Western names with suffixes must use the comma-delimited syntax. Using the
older non-Western syntax \Name [Oskar] {Hammerstein} [II] produces || Hammer-
stein (index entry skipped). Also, one must use comma-delimited suffixes with the
cross-reference target of \AKA (Section 2.8).

In the text only, \KeepAffix turns the space between (SNN) and (Affix) into a
non-breaking space. This holds for a Western surname and affix, an ancient name
and affix, and a native Eastern family name and personal name.

In the text only, \KeepName turns all spaces between name components (FNN),
(SNN), (Affiz), and (Alternate name(s)) into non-breaking spaces. You get no bad
breaks with \KeepName\LJWG [von] von Goethe.

\KeepAffix and \KeepName affect all nameauth macros that print names in the
text. Spaces between multiple names within each name component (think Spanish
surnames and French or German forenames) are not affected.

Preceding the naming macros with \DropAffix will suppress an affix in a
Western name. \DropAffix\Name* [Oskar]{Hammerstein, II} produces “Oskar
Hammerstein.” This does not affect non-Western names.

\ShowComma forces a comma between a Western name and its affix. It works
like the comma option on a per-name basis, and only in the body text. \NoComma
works like the nocomma option in the body text on a per-name basis.

\ShowComma\Name* [Louis] {Gossett, Jr.} Louis Gossett, Jr.
\NoComma\Name* [Louis] {Gossett, Jr.} Louis Gossett Jr.

\RevComma\ShowComma\Name* [Louis] {Gossett, Jr.} Gossett, Jr., Louis
\RevComma\NoComma\Name* [Louis] {Gossett, Jr.} Gossett Jr., Louis

Back to Section 1.6

18

non-native

native

\ReverseActive
\ReverseInactive
\RevName

3.0

\global

2.3.2 Eastern Names

The nameauth package offers “non-native” and “native” ways to handle romanized
Eastern names. The “non-native” form is entered as a Western name and it is
indexed as such. \RevName reverses its order in the body text:

\RevName\Name* [(FNN)]1{(SNN)} [{Alternate names)]

The index entry of this name form looks like (SNN), (FNN) (including the
comma). This type of entry is a Western form. Pick this form also when using
Hungarian names. Apologies for needing to enter Hungarian names in reverse, as
in \RevName\Name* [Frenec]{Molnar} Molnar Frenecf.

In contrast, there are two general forms of syntax for “native” Eastern name
forms, which are indexed as such and appear in Eastern name order in the body
text. Apologies for using quasi-Western (SNN) and (FNN) nomenclature for East-
ern names. The new syntax permits alternate names; the old does not:

\Name{(SNN, FNN)}[(Alternate names)] (new syntax)
\Name{(SNN)}[(FNN)] (older syntax)

The index entry of this name form looks like (SNN) (FNN) (no comma). This
type of entry bears similarity with ancient and medieval forms. Pick native Eastern
names when you want to use Eastern forms in the index.

In addition to the class options for reversing and capitalization (Section 2.1),
\ReverseActive and \ReverselInactive reverse name order for blocks of text and
\RevName does that once per name. These macros only affect names in the text.
They work also with \AKA and its derivatives.

The reverse output mechanism affects full names only. Nevertheless, it does
not force full names. Results vary, based on the type of Eastern name forms being
used. Non-native forms are shown by a dagger (1):

unchanged \RevName
\LKonoe Fumimaro Konoef Konoe Fumimarot
\LKonoe [Prime Minister] Prime Minister Konoet (not appropriate)
\Konoe Konoet Konoet
\SKonoe Fumimarof Fumimarof
\LYamt Yamamoto Isoroku Isoroku Yamamoto
\LYamt [Admiral]l (not appropriate) Admiral Yamamoto
\Yamt Yamamoto Yamamoto
\SYamt Yamamoto Yamamoto
\ForceFN\SYamt Isoroku Isoroku

Creating “last-comma-first” listings by surname (Section 2.3.5) only makes
sense with Western names and maybe non-native Eastern names, but not with
native Eastern names or ancient forms. That is why native Eastern forms and
ancient forms are unaffected by the comma form of reversing.

Please note that \ReverseActive and \ReverseInactive can be used explic-
itly as a pair. They also can be used singly within an explicit scope, where the
effects cease after leaving that scope. Use \global to force a global effect.

19

\AllCapsActive
\AllCapsInactive
\CapName

\global

Using \AllCapsActive \AllCapsInactive for blocks of text and \CapName for
specific names, the nameauth package allows one to capitalize (SNN) in the body
text only. These macros also work with \AKA and friends. For caps in the text and
index see Sections 2.4.3 and 2.9.7.

Below, non-native Eastern forms (first Western, then reversed) are marked
with a dagger (f). All other names are in native Eastern, then Western order.
Older-syntax forms have a double dagger():

\CapName only \CapName\RevName

\Name* [Yoko]{Kanno} Yoko KANNOf KANNO Yokot
\Namex*{Arai, Akino} ARAI Akino Akino ARAI
\Name*{Ishidal}[Yoko] ISHIDA Yokoi Yoko ISHIDA}
\Name*{Yohko} YOHKO YOHKO

Both \AllCapsActive and \AllCapsInactive have the same local restrictions
as the other state-changing macros. Use \global to force a global effect.

Back to Section 1.6

2.3.3 Initials

Omit spaces between initials if possible; see also Bringhurst’s Elements of Typo-
graphic Style. If your publisher wants spaces between initials, try putting thin
spaces \, between them. Use \PretagName to get the correct index sorting:

\PretagName [E.\,B.]{White}{White, E. B.} \White E.B. White
\begin{nameauth} ” ||

\< White & E.\,B. & White & > || ||
\end{nameauth} Normal text: E. B. White

2.3.4 Hyphenation

In English, some names come from other cultures. These names, like John Stri-
etelmeier (\Name [John] {Strietelmeier}, index entry skipped) can break badly.
One solution consistently uses optional hyphens, while another uses either babel or
polyglossia. If using both solutions with a name, suppress unwanted index entries.

\newcommand\de [1]{\foreignlanguage{ngerman}{#1}}
% or polyglossia: \newcommand\de[1]{\textgerman{#1}}
\begin{nameauth}

\< Striet & John & Strie\-tel\-meier & >

\< Strieti & John & \de{Strietelmeier} & >
\end{nameauth}
\PretagName [John] {Strie\-tel\-meier}{Strietelmeier, John}
\PretagName [John]{\de{Strietelmeier}}{Strietelmeier, John}

In English, some names come from other cultures. These names, like John Strietel-
meier, (\Striet, index entry skipped) could break badly unless handled correctly.
In English, some names come from other cultures. These names, like John Strietel-
meier, (\Strieti) could break badly if not handled correctly.

20

\ReverseCommaActive
\ReverseCommalnactive
\RevComma

3.0

3.0

\global

non-breaking
spaces

\CapThis

3.2

2.3.5 Listing by Surname

The macros \ReverseCommaActive, \ReverseCommaInactive, and \RevComma let
us reorder long Western names (via \Name* and the like). The first two are broad
toggles, while the third works on a per-name basis.

These macros do not affect “native” Eastern and ancient name forms. Also, see
below how long uses are not always first uses:

Martin Van Buren Van Buren, Martin OK
Oskar Hammerstein Il Hammerstein I, Oskar OK
Fthelred 1l Fthelred 1l no change
Chiang Kai-shek Chiang Kai-shek no change
Confucius Confucius no change

Since reversing with commas does not change “native” Kastern and ancient
names, we see its effects on “non-native” Eastern names:

\ForgetThis\Konoe Fumimaro Konoet
\RevName\LKonoe Konoe Fumimarof
\RevComma\LKonoe Konoe, Fumimarof

Both \ReverseCommaActive and \ReverseCommaInactive have the same local
restrictions as the other state-changing macros unless you use \global.

2.3.6 Particles

According to [Mulvany, 165f.] and the Chicago Manual of Style, English names
with the particles de, de la, d’, von, van, and ten generally keep them with the
last name, using varied capitalization. Le, La, and L’ always are capitalized unless
preceded by de. To Anglicize Goethe in the text as von Goethe, but indexed under
“Goethe, J.W. von,” we use \LJWG [von]. \Name [Catherine de’]{Medici} should
be indexed as “Medici, Catherine de’” instead of modern “De Medici.” See also
Sections 2.5.1 and especially 2.9.1 for name variants.

We recommend inserting ~ or \nobreakspace between particles and names to
prevent bad breaks.'? Some particles look very similar. For example, L’ and d’ are
two separate glyphs each. L and d are one Unicode glyph each.

In English and modern Romance languages, e.g., Hernando de Soto shows that
these particles go in the (SNN) field of \Name: de Soto. When the particle appears
at the beginning of a sentence, one must capitalize it:

\CapThis\Soto\ was a famous Spanish explorer in North America.

De Soto was a famous Spanish explorer in North America.

\CapThis, rather, the capitalizing mechanism that it triggers, has undergone a
significant overhaul in recent versions of nameauth. Earlier versions tried to take a
few “shortcuts” that appeared to work. Problems arose with specific cases where
capitalization did not work. We have addressed those problems, most of which
involved macro expansion.

12With v.3.0, \CapThis does not eat the space between a single-letter particle and a name.

21

\AccentCapThis
3.0

Now, \CapThis should work as expected with all of the Unicode characters
available in the T1 encoding. Section 2.9.3 has a list, yet see also the table on
pages 455—63 in The Latex Companion. For a broader set of Unicode characters,
consider using xelatex and lualatex.

Without going into the gory details, it became clear that:

1. There must be one “regular” test for a leading active Unicode character
and a separate test when that occurs in a comma-delimited suffix.

2. We cannot use the suffix designed for printing and for testing if we
even have a suffix. The test requires a “raw” form of the suffix.

3. The token list test for active Unicode characters can be its own com-
ponent shared by the two test forms above.

4. One should do one of the two tests, then pick one of two capitalization
methods. Keeping everything separate will help the expansion work
properly in every case.

5. Every name component is modified. The idea is that you decide to
use \CapThis in a short name form when the leading element needs
to be capitalized. Chances are, you will not need a full name reference
with suffix, etc. By capping every element, you have access to caps on
demand using any form of short name reference.

\CapThis will not cause errors if one uses the altformat option and the pro-
vided macros for Continental surname formats because that option entirely by-
passes the normal in-text capitalization mechanism. \CapThis still triggers the
alternate capping macros, but the mechanism is different and far more manual.
Otherwise \CapThis could cause errors in some cases where control sequences in
the macro arguments conflict with the capitalization process. See Section 2.4.3.

For another example, we suppose that you want to mention poet e.e. cummings.
You might be in a situation where an editor wants: “Cummings’ motif of the goat-
footed balloon man has underlying sexual motifs that nevertheless have a childish
facade.” We got that form using:

\SkipIndex\SubvertThis\CapThis\Name[e.e.]{cummings’}

A long-name reference to E.e. Cummings really does not work, nor is it meant
to. \CapThis is not meant for general situations. Using \CapName replaces both
the original (SNN) and the (SNN) created by \CapThis. Again, this usage is
situation-dependent.

Names are beautiful, yet ambiguous creatures whose forms change greatly, de-
pending on one’s needs and circumstances. This package allows for such variation,
yet it provides consistent in the index. We do try to minimize the amount of typ-
ing, allowing for automatic reformatting if one moves blocks of text around. We
hope that this approach is useful.

If the source files for the nameauth package have Unicode encoding and run on
a Unicode-compliant system, \AccentCapThis is not necessary. See also page 69. If
the text encoding of the source files is changed or there are system encoding issues,
\AccentCapThis might be needed with NFSS when the first name character is an
active Unicode character. See also Section 2.9.3.

22

Medieval name
issues

3.1

Medieval names present some interesting difficulties, often based on the ex-
pected standards of the context in which they are used:

\PretagName{Thomas, &~Kempis}{Thomas a Kempis} medieval
\PretagName [Thomas] {&~Kempis}{Thomas a Kempis} Western
\begin{nameauth}
\< KempMed & & Thomas, a~Kempis & > medieval, new syntax
\< KempAlt & & Thomas & &a~Kempis > medieval, older syntax
\< KempW & Thomas & a~Kempis & > Western
\end{nameauth}

The medieval forms are Thomas a Kempis and Thomas, indexed as “Thomas a Kem-
pis.” The suffixed place name “a Kempis” (Latin for von Kempen) is used by some
as a surname and achieved by using \ForceFN\SKempMed. A Kempis can start a
sentence via \CapThis\ForceFN\SKempMed. The old syntax works just as well:
A Kempis occurs via \CapThis\ForceFN\SKempAlt.

Western forms like \KempW: Thomas a Kempis are different from medieval forms
and create different index entries. \CapThis\KempW gives “A Kempis” in the text
and “&4 Kempis, Thomas” in the index, which we suppress here.'> The publisher’s
way of handling names may differ from the standard way. This package allows for
such variations.' Developing a good rapport with the publisher and the editor
will help you apply this package to the company’s style.

Using \CapThis with forms like \ ‘a~Kempis will work (A Kempis) in all situ-
ations where one uses the preamble snippet in Section 2.9.4.17

Non-English contexts do not necessarily bind particles to surnames. One can
use the alternate names field or “text tags” and “index tags.” See also Sections 2.5.5,
2.6, and 2.9.6. The macros below allow us to show Friedrich | Barbarossa, Friedrich
I, and Friedrich via \Name{Friedrich, I}:

\NameAddInfo{Friedrich, I}{Barbarossa}
\PretagName{Friedrich, I}{Friedrich 1}
\TagName{Friedrich, I}{ Barbarossa, emperor|hyperpage}

\makeatletter\renewcommand*\NamesFormat [1] {\begingroup,
\protected@edef\temp{\endgroup{\color{naviolet}\sffamily #1 %
\noexpand\NameQueryInfo[\unexpanded\expandafter{\the\@nameauth@toksa}]
{\unexpanded\expandafter{\the\@nameauth@toksbl}}
[\unexpanded\expandafter{\the\@nameauth@toksc}]}}\temp}\makeatother

Back to Section 1.6

3Name variants result from work flow constraints, name authorities, and publisher styles. This
package works with that, over against this author’s plea for cultural sensitivity.

Yet some publishers have problems with some name forms. An example of a true error is
the index entry “Yat-sen, Sun” (as if Sun were a forename) in Immanuel Geiss, Personen: Die
biographische Dimension der Weltgeschichte, Geschichte Griffbereit vol. 2 (Munich: Wissen Media
Verlag, 2002), 720. Still, the six-volume set is a helpful reference work.

15This little example is among one of the longest uses of prefix macros in this manual:
\SkipIndex\CapThis\SubvertThis\ForceFN\ForceName\FName{Thomas, \‘a Kempis}.

23

2.3.7 Accented Names

For names that contain accented characters, using xelatex or lualatex with
xindy (texindy) is recommended. See also Section 2.9.4.

In NFSS, many Unicode characters are active. Especially with makeindex, use
\PretagName to sort all names with active characters (Sections 2.5.4 and 2.9.3).
These active characters differ from explicit control sequences that one might type.
We suppress unwanted index entries below among the names that truly are differ-
ent, yet look the same.

o \Name{Ethelred, II} creates Athelred Il and Athelred. Now we have a dif-
ferent name: \Name{\AE thelred, II} Athelred Il (a “first reference”).

e \Name{Bo\"ethius} Boéthius is not the same as \Name{Boéthius} Boéthius.
Both differ from \Name{\textsf{Boéthius}} Boéthius.

See Section 2.9.3 on how to add additional Unicode glyphs to the default set
under NFSS, inputenc, and fontenc.

Back to Section 1.6

2.4 Formatting
2.4.1 Spaces & Full Stops

The nameauth package is forgiving with spaces; extra spaces usually do not create
unique names, as we see below:

Macro Example Resulting Text

\Name* [Martin Luther]{King,Jr.} Martin Luther King Jr.
\Namex* [Martin Luther ,]{ _King, Jr..u} Martin Luther King Jr.

In Western names, affixes like “Jr.” (junior), “Sr.” (senior), “d. J.” (der Jingere),
and “d. A (der Altere) can collide with the full stop in a sentence and produce
two of them. \Name, \FName, and \AKA detect this in the printed form of a name
and gobble the subsequent full stop as needed:

Macro Example Result Resulting Text

\Name [Martin Luther]{King, Jr.} gobbled Martin Luther King Jr.
\Name [Martin Luther]{King, Jr.}. stayed King.
\Name* [Martin Luther]{King, Jr.} gobbled Martin Luther King Jr.
\DropAffix\Name* [Martin Luther]{King, Jr.} stayed Martin Luther King.
\FName [Martin Luther]{King, Jr.}[M.L.]. gobbled M.L.

Grouping tokens inhibit gobbling: {\Name* [Martin Luther]{King, Jr.}}. This
produces “Martin Luther King Jr.” We see two periods. Enclosing {Jr.} within
braces or making the whole suffix a macro argument also prevents gobbling. Leave
the final period outside the macro or group, for example:

\Name [Martin Luther]{\textSC{Kingl}, \textSC{Jr}.}

Compare Sections 2.4.3 and 2.9.7.

24

\NamesFormat
\FrontNamesFormat
\MainNameHook
\FrontNameHook

2.5

\NamesActive
\NamesInactive

\global

\ForceName

3.1

2.4.2 Formatting in the Text
There are two kinds of formatting at work that interact with each other:

1. Syntactic Formatting: Displayed name elements, reversing, and caps nor-
mally occur only in the body text, not the index.

2. Name Post-Processing: Hook macros apply formatting to the printed form
of a name, which normally does not affect the name form.

Independent “main-matter” and “front-matter” systems format first and sub-
sequent name uses. The main-matter system uses \NamesFormat to post-process
first occurrences of names and \MainNameHook for subsequent uses. The front-
matter system uses \FrontNamesFormat for first occurrences and \FrontNameHook
for subsequent uses. The alwaysformat option causes only \NamesFormat and
\FrontNamesFormat to be used. Section 2.7.2 show how the name reference sys-
tems are independent of other data sets in nameauth.

\NamesInactive and the frontmatter option make names use the front matter
system. \NamesActive switches names to the main matter system.

Please note that these two macros can be used explicitly as a pair. They also
can be used singly within an explicit scope, where the effects cease after leaving
that scope. Use \global to force a global effect.

These two systems differ only with respect to first and subsequent name uses.
We show this here by using different colors. At the start of this manual, we set up
the following after defining our custom colors:

\renewcommand*\FrontNamesFormat [1]{\color{nagreen}\sffamily #1}
\renewcommand*\FrontNameHook [1]{\color{naolive}\sffamily #1}
\renewcommand*\NamesFormat [1]{\color{naviolet}\sffamily #1}
\renewcommand*\MainNameHook [1]{\color{naorange}\sffamily #1}

The two systems are meant to be used in distinct parts of the document, such as
front matter and main matter or text and footnotes. The look awkward when used
in the same block of text.

We switch to the “front matter” system:

\NamesInactive
\Name [Rudolph] {Carnap} Rudolph Carnap
\Name [Rudolph] {Carnap} Carnap

\Name [Nicolas]{Malebranche} Nicolas Malebranche
\Name [Nicolas]{Malebranche} Malebranche

Then we switch back to “main matter” system:

\NamesActive
\Name [Rudolph] {Carnap} Rudolph Carnap
\Name [Rudolph] {Carnap} Carnap

\Name [Nicolas]{Malebranche} Nicolas Malebranche
\Name [Nicolas]{Malebranche} Malebranche

Use this prefix macro to force “first use” formatting for the next \Name, etc.
This will not force a full name reference. One must use the formatAKA option when
using this with \AKA, etc. We show this macro in Sections 2.7.2, 2.8, and 2.9.6.

25

alwaysformat Below we simulate the alwaysformat option by manipulating the package
internals. Using first-use hooks will not force full name references.

e Using alwaysformat in the front matter will produce: Albert Einstein,
then Einstein; Confucius, then Confucius.

e Using alwaysformat in the main matter will produce: Marcus Tullius
Cicero, then Cicero; Elizabeth |, then Elizabeth.

Basic formatting changes can take either the font switch forms or the font
command forms. The following are equivalent:

\renewcommand#*\NamesFormat{\bfseries}
\renewcommand*\FrontNamesFormat{\textbf}

The hooks are called in a way that lets them either have one argument or none
and keeps changes local via: \bgroup(Hook){#1}\egroup

applied to The previous examples illustrate the independent systems or “species” of
footnotes names. Use different “species” in different parts of your document. When we do not
@ do this, for example, names in the body text like John Maynard Keynes affect names
in the footnotes.'® In this case, \MainNameHook is called instead of \NamesFormat

because the name already occurred in the text.

\makeatletter % text affects footnotes

\let\@oldfntext\@makefntext % restore this later

\long\def\@makefntext#1{/ % new format; same name system
\renewcommand*\NamesFormat{\color{naviolet}\scshapel}’
\@oldfntext{#1}}

\makeatother

The front-matter system keeps names in the footnotes independent of those
in the body text.'” You can synchronize the two naming systems if needed; see
Section 2.7.2. Using the front-matter system looks like:

\makeatletter % text does not affect footnotes

\long\def\@makefntext#1{% % new format; different name system
\renewcommand*\FrontNamesFormat{\color{nagreen}\scshapel}’
\NamesInactive\@oldfntext{#1}\NamesActive}

F\makeatother

Now we change footnotes back to normal, for example:

\makeatletter
\let\@makefntext\@oldfntext
\makeatother

Back to Section 1.6

16You get Keynes from \Name [John Maynard] {Keynes} instead of JOHN MAYNARD KEYNES.
"We have the expected JOHN MAYNARD KEYNES, then Keynes.

26

3.1

how to break stuff

4

\AltFormatActive

\AltFormatActivex*

\AltFormatInactive

\textSC
\textIT
\textBF
\textUC

2.4.3 Alternate Format

Basic Features

Name post-processing in the formatting hooks (Section 2.4.2) only affects the text.
Continental formatting occurs in both the text and in the index. Therefore you
need to use control sequences in the naming macro arguments.

Section 2.3.7 showed us that changing a control sequence will change a name,
even if one cannot see the difference. Those changes must be consistent in the
index to avoid spurious entries. Here is how we address that.

We use \AltFormatActive at the start of this section to enable alternate for-
matting and switch it “on.” We begin with basic examples that do not change. We
then move to advanced features that allow change in the text.

If made the (SNN) argument of a name macro, \textsc{a Name, Problem}
will cause an error due to using commas as suffix delimiters. We fix that by using:
\textsc{a Name}, \textsc{Problem}.

\CapThis still can break \textsc{a Name}, \textsc{Problem} under the
normal formatting regime. Alternate formatting prevents this by suppressing the
normal effects of \CapThis.

Previous methods to get Continental formatting still should work. Simply use
the altformat option or \AltFormatActive to add protection against \CapThis.

Both the altformat option and \AltFormatActive globally enable alternate
formatting and switch the formatting macros “on.” It will change the effects of
\AltFormatActivex*. It causes \CapThis only to work via \AltCaps.

When one wants to enable alternate formatting but keep the formatting macros
in the “off” state, use the starred form \AltFormatActivex. It can change the
effects of both the altformat option and \AltFormatActive. It causes \CapThis
only to work via \AltCaps.

When one needs to switch alternate formatting “off” and deactivate its mecha-
nism, use \AltFormatInactive to revert globally to standard formatting and the
normal function of \CapThis.

Enabled Switched “On”

\AltFormatActive Yes ’ Yes ‘
\AltFormatActivex* Yes No
\AltFormatInactive No No

Continental formatting can be as simple as using the short macro \textSC.
Three other macros also implement alternate formatting. These macros make
changes only when alternate formatting is active. We sort the index entry and
demonstrate the formatting activated by \AltFormatActive.

\PretagName [Greta] {\textSC{Garbo}}{Garbo, Greta}
\PretagName [Ada] {\textIT{Lovelace}}{Lovelace, Ada}
\PretagName [Charles]{\textBF{Babbagel}}{Babbage, Charles}
\PretagName{\textUC{Tokugawa}, Ieyasu}{Tokugawa Ieyasu}

27

4

comma karma

\Name [Greta] {\textSC{Garbo}} Greta GARBO; GARBO
\Name [Ada]{\textIT{Lovelace}} Ada Lovelace; Lovelace
\Name [Charles]{\textBF{Babbage}}........ Charles Babbage; Babbage
\Name{\textUC{Tokugawa}, Ieyasul}... TOKUGAWA leyasu; TOKUGAWA

Formatting also occurs in the index using this method. Any time that a naming
macro writes to the index, the flags that control these formatting macros must be
in the same state, or else you will get spurious index entries.

A comma delimiter splits the mandatory macro argument into a root and an
affix. To avoid errors, format the name and suffix separately. The example below
gives us John David ROCKEFELLER III, then ROCKEFELLER.

\PretagName [John David]{\textSC{Rockefeller},\textSC{III}}%
{Rockefeller, John David 3}
\begin{nameauth}
\< JRIII & John David & \textSC{Rockefeller},\textSC{III} & >
\end{nameauth}

For non-Western names, the new syntax and the older syntax produce the same
control sequence that identifies names. Again we are careful to avoid putting the
comma delimiter within a container macro.

\PretagName{\textUC{Fukuyama}} [Takeshi] {Fukuyama Takeshi}

\begin{nameauth}
\< Fukuyama & & \textUC{Fukuyama}, Takeshi & >
\< OFukuyama & & \textUC{Fukuyama} & Takeshi >
\end{nameauth}

\Fukuyama FUKUYAMA Takeshi
\OFukuyama FUKUYAMA

\LOFukuyama FUKUYAMA Takeshi
\Fukuyama FUKUYAMA

Only the new syntax allows one to use alternate names in the text. For
example, \LFukuyama[Sensei] FUKUYAMA Sensei wrote Nihon Fukuwin Ruteru
Kyokai Shi in 1954, after studying in the US in the 1930s. The old syntax
\LOFukuyama [Sensei], which we avoid, yields FUKUYAMA Takeshi[Sensei].

Advanced Features

A more complex version of alternate formatting allows us to make format changes
in the text while keeping format consistent in the index. We use \textSC, \textIT,
\textBF, and \textUC with \noexpand and special triggering macros. Using
\noexpand is crucial because we do not want to have the macros expand at the
wrong time, giving us the wrong results. Thus:

\Name [Martin] {\textSC{Luther}} basic
\Name [Martin] {\noexpand\textSC{Lutherl}} advanced

Remember \textsc{a Name}, \textsc{Problem}? With a little work adding
the alternate formatting macros and \noexpand we get:

\noexpand\textSC{\noexpand\AltCaps{a} Name}, \noexpand\textSC{Problem}}

28

With an additional change to the formatting hooks, whenever alternate formatting
is active, the naming macros will avoid A NAME PROBLEM. A Name Problem will
not occur even with \CapThis and a Name will work just fine. We suppressed the
index entries that would have been created here.

The macros below work together for advanced alternate formatting.

\A1tOff 1. The macro \A1tOff does nothing except when called in a formatting hook,
where it “switches off” alternate formatting. When that happens, \textSC,
\textBF, \textIT, and \textUC do nothing. This macro works with the
altformat option and when \AltFormatActive has been called.

\A1tOn 2. The macro \AltOon does nothing except when called in a formatting hook,
where it “switches on” alternate formatting. When that happens, \textSC,
\textBF, \textIT, and \textUC perform their changes. This macro works
when \AltFormatActive* has been called.

3. Using \noexpand is the golden key (clavis aurea) that lets us expand format-
ting changes only when desired. It enables this kind of formatting hook, which
we must implement:

\renewcommand*\MainNameHook{\A1tOff}

\AltCaps 4. Since the normal effects of \CapThis are disabled \AltCaps provides an al-
ternate means to this end. It capitalizes its argument in braces { } when it is
used in a macro hook and triggered by \CapThis.

Since we used \AltFormatActive in this section it has triggered formatting by
default. We only need to change \MainNameHook and \FrontNameHook because we
want to have formatting in first uses but suppress it in subsequent uses. Below we
match the style of this manual with the redesign of the formatting hooks and we
include a sample text:

\renewcommand*\MainNameHook [1]7%
{\color{naorange}\sffamily\AltOff}

With the 500th anniversary of the Reformation in 2017, studies should focus
both on the life of Martin LUTHER and on the social, religious, and political
factors of the time that influenced Luther.

We show alternate formatting and capitalization in the text, here being mindful
of how medieval Italian differs from modern Italian:

\begin{nameauth}
\< Cath & Catherine \noexpand\AltCaps{d}e’
& \noexpand\textSC{Medicil} & >
\end{nameauth}

This gives us Catherine de’ MEDICI and Medici. To get either De'" MEDICI or
De' Medici, use \CapThis\LCath[\noexpand\AltCaps{d}te’].

Sections 2.4.2 and 2.9.7 have more on these topics. We resume normal format-
ting with \A1tFormatInactive. We do not use alternately-formatted names in the
normal regime in order to prevent spurious index entries.

Back to Section 1.6

29

3.0

\IndexActive

\IndexInactive

\global

\SkipIndex
3.1

\JustIndex

4

2.5 Indexing Macros

Current versions of nameauth offer greater flexibility with indexing but still imple-
ment some error protection. We cover the indexing macros here because the later
macros in this manual build on many of their concepts. Some aspects of indexing
go beyond the scope of this package.'®

2.5.1 Indexing Control

Using the noindex option deactivates the indexing function of this package un-
til \IndexActive occurs. Another macro, \IndexInactive, will deactivate in-
dexing again. These can be used throughout the document. \ExcludeName and
\IncludeName do not deactivate indexing, but they leverage the cross-referencing
system to prevent page entries.

Please note that these two macros can be used explicitly as a pair. They also
can be used singly within an explicit scope, where the effects cease after leaving
that scope. Use \global to force a global effect.

\IndexInactive suppresses index sorting and tagging macros.

The prefix macro \SkipIndex will suppress indexing for just one instance of
a naming or cross-referencing macro. It will not alter name forms or formatting.
For example, \SkipIndex\Name [Monty]{Python} produces Monty Python in the
text with no index entry. The same thing again yields Python. Both \IndexName
and \IndexRef ignore \SkipIndex and allow its effect, with other prefix macros,
to “pass through” to the next naming macro.

This prefix macro makes \Name and \Fname act just like a call to \IndexName
one time only. That means, like \IndexName, the effects of all the other prefix
macros will “pass through” to the next naming macro. Both \AKA and \PName
ignore and reset the flag controlled by this macro.

All the changes made by the prefix macros pass through \JustIndex\(name;)
to the next instance of \Name, etc., \(names). This is exactly as if you called
\IndexName. This makes \JustIndex\(name;)\SkipIndex\(names) equivalent to
\SkipIndex\JustIndex\(name;)\(names).

Now we use tricks from Sections 2.5.2, 2.5.3 and 2.7.2 to modify name forms,
formatting, and indexing. Instead of using \SkipIndex, \IndexInactive, and
\IndexActive, here we let the name exclusion mechanism protect a name:

\begin{nameauth}

\< Washs & George & Washington’s & >
\end{nameauth}
\ExcludeName [George] {Washington’s}

\Washs and \Washs produce George Washington's and Washington's, but no index
entries. Use \JustIndex\Wash as needed. Remember that one only needs this
trick when using something other than default formatting. Otherwise just put an
inflected ending after the name macro.

Back to Section 1.6

8For example, search for “memoir babel index” at http://tex.stackexchange. com.

30

http://tex.stackexchange.com

\IndexName

2.5.2 Index Entries

The naming macros (\Name, etc.) use this macro to create index entries. You can
use it too. It prints nothing in the body text. The syntax is:

\IndexName [(FNN)1{(SNN)} [(Alternate names)]

\IndexName complies with the new syntax, where a suffixed pair in (SNN)
is a name/affix pair that can be ancient or Eastern. If (FNN) are present, it
ignores (Alternate names) for Western and native Eastern name forms. If (FNN)
are absent, \IndexName sees (Alternate names) as an affix or Eastern forename
using the older syntax.

If used after \IndexInactive this macro does nothing until \IndexActive
appears. It will not create index entries for cross-references made by \IndexRef
and \AKA. It will not index names excluded by \ExcludeName. This provides a
basic level of error protection for professional indexing.

The indexing mechanism in the nameauth package follows [Mulvany, 152-82]
and the Chicago Manual of Style regarding Western name affixes. Thus Chesley B.
Sullenberger Il becomes “Sullenberger, Chesley B., III” in the index.

To show what gets into the index entries, consider the following example, much
of which gets set up only once in the document.

\begin{nameauth}
\< Dem & & Demetrius, I & >
\< Harnack & Adolf & Harnack & >
\< JWG & J.W. von & Goethe & >
\< Miyaz & & Miyazaki, Hayao & >
\end{nameauth}

We add a text tag as a sobriquet and use the hook from Section 2.3.6:

\NameAddInfo{Demetrius, I}{Soter}

\makeatletter\renewcommand*\NamesFormat [1]{\begingroup’,
\protected@edef\temp{\endgroup{\color{naviolet}\sffamily #1 %
\noexpand\NameQueryInfo [\unexpanded\expandafter{\the\@nameauth@toksa}]
{\unexpanded\expandafter{\the\@nameauth@toksbl}}
[\unexpanded\expandafter{\the\@nameauth@toksc}]}}\temp}\makeatother

We also add an index tag: \TagName{Demetrius, I}{ Soter, king} and a sort
tag: \PretagName{Demetrius, I}{Demetrius 1}.

Text Source Index

Demetrius | Soter \LDem Demetrius I Soter, king
Demetrius | \LDem Demetrius I Soter, king
Adolf von Harnack \LHarnack [Adolf von] Harnack, Adolf

Adolf Harnack \LHarnack Harnack, Adolf

Joh. Wolfg. v. Goethe \LJWG[Joh. Wolfg. v.] Goethe, J.W. von

J.W. von Goethe \LJWG Goethe, J.W. von
Miyazaki Hayao \LMiyaz Miyazaki Hayao
Miyazaki Sensei \LMiyaz[Senseil Miyazaki Hayao

Everything in the (FNN) and (SNN) arguments, including the (Affiz), gets in the
index. When the final optional argument is interpreted as an alternate name, it
does not become part of the index entry. Text tags never get in the index, but
index tags always get in the index.

31

\IndexRef
3.0

\SeeAlso
3.0

\ExcludeName
3.0

2.5.3 Index Cross-References

The cross-referencing macros (\AKA, etc.) use this macro. Also available to users,
\IndexRef creates a see reference by default from the name defined by its first
three arguments to whatever one puts in the final argument. Section 2.7.2 show
how cross-references are independent of other data sets. The syntax is:

\IndexRef [(FNN)I{(SNN)} [(Alternate names)]{(reference target)}

The name used for the cross-reference is parsed like \IndexName. The final
argument is neither parsed nor checked to see if a corresponding main entry exists.
For example, to cross-reference “Sun King” with Louis XIV use: \IndexRef{Sun
King}{Louis XIV}. To format that reference in the text, use \AKA (Section 2.8).

Please see page 45 regarding complex cross-references.

One can precede \IndexRef, \AKA, or \PName with \SeeAlso to produce a see
also reference for a name that has appeared already in the index.'? However, this
should be used with caution, as the following points indicate:

e If on page 10 there is \SeeAlso\IndexRef{Bar}{Foo}, one cannot have in-
dex page entries for “Bar” thereafter. A see also reference comes after page
references.

e If on page 10 there is \SeeAlso\IndexRef{Bar}{Fool}, one can have index
page entries for “Foo” thereafter because it is the target of “Bar.”

e If on page 10 there is \Name{Bar} and on page 12 \IndexRef{Bar}{Foo},
that will not work because see references cannot contain page references.

e Suggestion: Group references together: \IndexRef{Bar}{Baz; Foo}.
Avoid \IndexRef{Bar}{Baz} \IndexRef{Bar}{Foo}.?’

\IndexRef causes an index tag with the format (some text)|(some macro) to
be reduced to (some text) in the cross-reference. This allows cross-references to
work with any index macro, e.g. |hyperpage, used by \TagName (Section 2.5.5).

This macro prevents a name from being used as either an index entry or as an
index cross-reference. It ignores extant cross-references. The syntax is:

\ExcludeName [(FNN)]{(SNN)} [{Alternate names)]

After \ExcludeName [Kris]{Kringle}, you can use \Name[Kris]{Kringle}
to get Kris Kringle and Kringle. After \ExcludeName [Santa]{Claus} you can use
\AKA [Kris]{Kringle} [Santa] {Claus} Santa Claus. No index entries are created.

This can be used to prevent references in the index after you are done with
a name. Unlike \IndexInactive and \IndexActive this macro does not suspend
the indexing system, but only works on a per-name basis.

9When the verbose option is selected, \IndexRef warns that a name once used as a page
number entry is now being used as a cross-reference. It also warns when one attempts to redefine
or alter an established cross-reference.

20Professional indexers often use programs like Cindex that enforce a rigorous, standard
methodology and syntax. The nameauth package likewise tries to follow suit.

32

\IncludeName
\IncludeName*

3.0

\PretagName

2.0

Feel like breaking the indexing rules set by nameauth? Some might want to do
things differently. These macros have the same syntax as \ExcludeName:

\IncludeName [(FNN)I{(SNN)}[({Alternate names)]
\IncludeName* [(FNN)]J{{SNN)}[(Alternate names)]

The unstarred form of \IncludeName only removes an exclusion created by
\ExcludeName. The starred form of \IncludeName completely unprotects a cross-
reference and allows it to have a page entry like a name.

For example, we used \ExcludeName{Attila, the Hun} after his appearance
in Section 1.4. Using \IfAKA{Attila, the Hun} (Section 2.7.1) tells us that,
“Attila is excluded.” Now if we \IncludeName{Attila, the Hun}, a reference
to \LAttil will create a name and an index entry on this page: Attila the Hun.
\IfAKA now tells us that “Attila is a name.”

Cross-references get more protection. \IfAKA[Jay]l{Rockefeller} (a refer-
ence in a footnote from Section 1.4) tells us that “Jay is a cross-reference.” Us-
ing \IncludeName [Jay]l{Rockefeller} changes nothing: we still get “Jay is a
cross-reference.” \IncludeName* [Jay] {Rockefeller} results in “Jay is a name,”
removing all protection of that cross-reference.

Back to Section 1.6

2.5.4 Index Sorting

The general practice for sorting with makeindex -s involves creating your own
.ist file (pages 659-65 in The Latex Companion). Otherwise the following form
works with both makeindex and texindy: \index{(sort key)@(actual)}

Basic Sorting (for Makeindex and More)

The nameauth package integrates this sort of index sorting automatically by
using a “pretag.” Section 2.7.2 show how sorting tags are independent of other
data sets in nameauth. The syntax is:

\PretagName [(FNN)]1{(SNN)} [(Alternate names)]{(tag)}

\PretagName creates a sort key terminated with the “actual” character, which
is @ by default. Do not include the “actual” character in the “pretag.” For example:

\PretagName [Jan] {kukasiewicz}{Lukasiewicz, Jan}
\PretagName{Ethelred, II}{Aethelred 2}

One need only “pretag” names once in the preamble. Every time that one refers
to Jan tukasiewicz or /Ethelred Il, the proper index entry will be tagged and sorted
automatically.

Additionally, one can include sub-entry delimiters when sorting, so (Some
Name) can be sorted as a sub-entry of “MyCategory” by the following:

\PretagName [Some] {Name}{MyCategory!Name, Some}

One also can “pretag” a cross-reference created with \IndexRef, \AKA, and so
on. See also Sections 2.5.3 and 2.8.

33

\IndexActual

Although the \PretagName macro might look similar to the the other tagging
macros, its use is quite different:

e You can “pretag” any name and any cross-reference.
e You can “tag” and “untag” only names, not cross-references.

e There is no command to undo a “pretag.”

If you need to change the “actual” character, such as with gind.ist, you would
put \IndexActual{=} in the preamble before any use of \PretagName.

Extra Spaces and Sorting

Under NFSS, active Unicode characters expand to add one or two spaces after con-
trol sequences. See \indexentry and \item entries in your idx and ind files. For
example, & becomes \IeC_{\"a} (one added space) and E becomes \IeC_ {\AE }
(two added spaces).

Section 2.9.3 shows how this is related to the number of times the active char-
acter must be expanded. The character E must expand twice, through both \IeC
and \T1, while & expands only once through \IeC to a letter. The character 8
(scharfes Ess, Esszett) below expands twice.

Both xelatex and lualatex (using fontspec) avoid these issues by handling
the characters natively. Thus we have the following:

NFSS: \index{FuBball} — \indexentry{Fu\IeC {\ss }ball}{(page)}
fontspec: \index{FuBball} — \indexentry{FuBball}{(page)}
cseq: \index{Fu\ss ball} — \indexentry{Fu\ss_ball}{(page)}

A macro with the general form below, similar to \IndexName, will add two
spaces after other control sequences that are expanded multiple times. Those
spaces only affect index sorting, not appearance. Remember this when using and
modifying manual index entries with nameauth:

\newcommand\IndexExample [1]{%
\protected@edef\argument{#1}\index{\argument}}

\IndexExample{\textsc{football}} —
\indexentry{\textsc {football}}{(page)}

\index{\textsc{footballl}} —
\indexentry{\textsc{football}}{(page)}

These are not the only instances of macros inserting extra spaces. If something
is off in the index, the best advice is to look at the idx or ind files. You can use
the verbatim package to look at the ind file within your job itself:

\usepackage{verbatim}
\newif\ifdebug

\ifdebug
\verbatiminput{\jobname.ind}
\fi

Back to Section 1.6

34

\TagName

2.5.5 Index Tags

This macro creates an index tag that will be appended to all index entries for
a corresponding \Name from when it is invoked until the end of the document
or a corresponding \UntagName. Both \TagName and \UntagName handle their
arguments like \IndexName. If global tags are desired, tag names in the preamble.

\TagName [(FNN)]{(SNN)} [{Alternate names)1{(tag)}

Index tags are not “pretags.” Section 2.7.2 show how index tags are independent
of other data sets in nameauth. To help sort that out, we look at what parts of the
argument of \index get affected by these commands:

\PretagName
\index{|Aethelred 2@|Ethelred II|, king}
\TagName and \UntagName

All the tagging commands are keyed to the name arguments. \PretagName
generates the leading sort key while \TagName and \UntagName affect the trailing
content of the index entry.

Tags created by \TagName can be helpful in the indexes of history texts, as can
other package features. \TagName causes the nameauth indexing macros to append
“,upope” to the index entries for the popes below:

\TagName{Leo, I}{, pope}
\TagName{Gregory, I}{, pope}

\Name{Leo, I} was known as \AKA{Leo, I}{Leo, the Great}.
\Name{Gregory, I} was known as \Name{Gregory, I}
¢ “\ForceFN\AKA*{Gregory, I}{Gregory}[the Great].’’

Leo | was known as Leo the Great.
Gregory | was known as Gregory “the Great.”

We see both the old syntax and the new syntax used above. \TagName works
with all name types, but not with cross-references from \IndexRef, etc. Tags are
literal text that can be daggers, asterisks, and so on. For example, all fictional
names in the index of this manual are tagged with an asterisk. One must add any
desired spacing to the start of the tag. Tagging aids scholarly indexing and can
include life/regnal dates and other information.

You can use the {(tag)} field of \TagName to add specials to index entries
for names. Every name in this manual is tagged with at least |hyperpage to
allow hyperlinks in the index with ltxdoc and hypdoc. You may have to use
\string|hyperpage where a vertical bar is active, as in Itxdoc.

For example, \newcommand\orphan [2]{#1} allows one to use |orphan{(text)}
in an index tag to replace the page number with (text). The idx file will contain
\indexentry{(name) | orphan{(text)}}{(page)}. The ind file will have something
like \item (name), \orphan{(text)}{(page)}, depending on the index style.

35

\UntagName

\NameAddInfo

\TagName will replace one tag with another tag, but it does not remove a tag
from a name. That is the role of \UntagName. The syntax is:

\UntagName [{(FNN)1{(SNN)} [{Alternate names)]

By using \TagName and \UntagName, one can disambiguate different people
with the same name. For example, using macros from Section 2.7.2:

This refers to \Name[John]{Smithl}.\\

Now we have a new \TagName[John]{Smith}{ (second)l}’
\ForgetThis\Name [John] {Smith}.\\

Now we have a third \TagName[John]{Smith}{ (third)l}
\ForgetThis\Name [John] {Smith}.\\

Then back to the first \UntagName[John]{Smith}\Name*[John]{Smith}.

This refers to John Smith.

Now we have a new John Smith.
Now we have a third John Smith.
Then back to the first John Smith.

The tweaking macros (Section 2.7.2) make it seem like you are dealing with
three people who have the same name. The index tags will group together those
entries that have the same tag.”!

Back to Section 1.6

2.6 “Text Tags”

Section 2.5.5 deals with similar tagging features in the index. “Text tags” are not
printed automatically with every name managed by nameauth. Section 2.7.2 show
how text tags are independent of other data sets. Section 2.9.6 offers additional
examples on using these macros.

Several major uses include optional sobriquets, life dates, regnal dates, foot-
notes, biographical vignettes, margin paragraphs, and so on.

Text tags are independent of any other name conditionals, similar to index
tags. This \long macro’s syntax is:

\NameAddInfo [{FNN)I{(SNN)} [{Alternate names)]{(tag)}

For example, \NameAddInfo[George]l{Washington}{(1732--99)} will asso-
ciate the text “(1732-99)” with the name “George Washington.” Note, however,
that the tag does not print automatically with the name. The tag exists as the
value to which a control sequence based on Washington's name expands. Such a
tag always must expand in the index to have consistent entries. In the text that is
not required, so we do that explicitly with \NameQueryInfo.

21Gince this document, unlike the example above, puts an asterisk by all fictional names in the
index, it puts an asterisk at the beginning of the tags above and does not \UntagName John Smith,
but re-tags him with an asterisk again. We also used \string|hyperpage in all the index tags.
The information is not shown above for the sake of simplicity and pedagogy.

36

\NameQueryInfo

\NameClearInfo

To retrieve the information in a text tag, one uses the name as a key to the
corresponding information in the data set:

\NameQueryInfo [(FNN)]{(SNN)} [{Alternate names)]

Thus, ¢‘\NameQueryInfo[George]l{Washington}’’ expands to “(1732-99)”. As
with index tags, one can put a space at the start of a tag—or not. In text tags
one might use asterisks, daggers, and even footnotes, such as one for Schuyler
Colfax.?? We can include a “text tag” within another one, thus building complex
relations. Keeping this in mind, we look at the source for the footnote:

\NameAddInfo[Ulysses S.]{Grant}{(president 1869--77)1}%
\NameAddInfo [Schuyler]{Colfaxl}%

{\footnote{Seventeenth vice-president of the US duringy
the first term (1869--73) of \Name[Ulysses S.]{Grant}~%
\NameQueryInfo[Ulysses S.]{Grant}.}}

\Name [Schuyler]{Colfax}.\NameQueryInfo [Schuyler]{Colfax}

Please remember that text tags which query each other or themselves would
cause a stack overflow unless you prevented that.

\NameAddInfo will replace one text tag with another text tag, but it does not
delete a text tag. That is the role of \NameClearInfo. The syntax is:

\NameClearInfo [(FNN)]J{(SNN)}[(Alternate names)]

\NameClearInfo [George] {Washington} will cause the next attempt at mak-
ing a query, \NameQueryInfo[George] {Washington}, to produce nothing.

Back to Section 1.6

2.7 Name Decisions
2.7.1 Testing Decisions

The macros in this section permit conditional text that depends on the pres-
ence or absence of a name. These macros use \If... because they differ
from regular \if expressions. The following macros affect conditional branch-
ing: \Name, \Name*, \FName, \PName, \AKA, \AKA* \ForgetName, \SubvertName,
\ExcludeName, \IncludeName, and \IncludeNamex.

If one uses these macros inside other macros or passes control sequences to
them, the expansion of control sequences can create false results (see The TEXbook,
212-15). To get around those problems, consider using the following;:

e Use token registers to retrieve the arguments.
e Regulate expansion with \expandafter, \noexpand, etc.

e That affects accented characters in pdflatex/NFSS.

See Sections 2.9.6 and 2.9.7 for related ideas about tokens and expansion. Using
the trace package, \show, or \meaning can help you.

22Seventeenth vice-president of the US during the first term (1869-73) of Ulysses S. Grant (pres-
ident 1869-77).

37

\IfMainName If you want to produce output or perform a task based on whether a “main
body” name exists, use \IfMainName, whose syntax is:

\IfMainName [(FNN)1{(SNN)} [{Alternate names)1{{yes)}{(no)}

This is a long macro via \newcommandx, so you can have paragraph breaks in the
(yes) and (no) paths. A “main body” name is capable of being formatted by this
package, i.e., one created by the naming macros when the mainmatter option is
used or after \NamesActive. It is distinguished from those names that occur in
the front matter and those that have been used as cross-references.

For example, we get “I have not met Bob” because we have yet to invoke the
name \Name [Bob] {Hope}. We will create a manual index entry here.

\IfMainName [Bob]{Hope}{I met Bob}{I have not met Bob}

Please note that this test is not affected by the use of \IndexName. Since we have
encountered Elizabeth |, we get “I met Bess” with a similar example:

\IfMainName{Elizabeth, I}{I met Bessl}Y
{I have not met Bess}

\IfFrontName If you want to produce output or perform a task based on whether a “front
matter” name exists, use \IfFrontName, whose syntax is:

\IfFrontName [(FNN)]1{(SNN)} [(Alternate names)]1{(yes)}H(no)}

This macro works the same as \IfMainName. A “front matter” name is created by
the naming macros when the frontmatter option is used or after \NamesInactive.
It is distinguished from those names that occur in the main matter and those that
have been used as cross-references.

For example, based on Section 2.4.2, we see that “Carnap is both” a formatted
and unformatted name with the following test:

\IfFrontName [Rudolph]{Carnapl}’%
{\IfMainName [Rudolph]{Carnapl}’%
{\Name [Rudolph] {Carnap} is bothl}}
{\Name [Rudolph]{Carnap} is only non-formatted}}%
{\IfMainName [Rudolph]{Carnapl}/,
{\Name [Rudolph] {Carnap} is only formatted}’
{\Name [Rudolph] {Carnap} is not mentioned}}

Please refer to Sections 2.7.2 and 2.9.2 to understand the scope and operation of
main- and front-matter names.

This space intentionally left blank.

38

\IfAKA If you want to produce output or perform a task based on whether a cross-
reference name exists, use \IfAKA, whose syntax is:

\IfAKA[(FNN)I{(SNN)} [{Alt. names)]{{y)H (n)H (ezcluded)}

This macro works similarly to \IfMainName, although it has an additional
(excluded) branch in order to detect those names excluded from indexing by
\ExcludeName (Section 2.5.3).

A cross-reference name is created by \IndexRef, \AKA, and \AKA*. The follow-
ing example illustrates how we use this macro:

1. In the text we refer to Jesse Ventura, \Name [Jesse]{Ventural.

2. We establish his lesser-known legal name as an alias: “James Janos,”
\AKA[Jesse]{Ventura}[James] {Janos}.

3. We construct the following test:

\IfAKA[James]{Janos}V
{\Name [Jesse]{Ventura} has an alias}
{\Name [Jesse]l{Ventura} has no alias}
{\Name [Jesse]l{Ventura} is excluded}

4. This gives us “Ventura has an alias.”

If you are confident that you will not be dealing with names generated by
\ExcludeName then you can just leave the (excluded) branch as {}.

A similar use of \IfAKA{Confucius} tells us that “Confucius is not an alias.”
Yet we should test that completely:

\IfAKA[(FNN)I{(SNN)}[{alt. names)1%
{(true; it is a pseudonym)}%
Tk
\IfFrontName [(FNN)I{(SNN)}[{alt. names)1%
{\IfMainName [(FNN)I1{(SNN)} [{alt. names)1%
{(both)}%
{(front)}%
Yh
{\IfMainName [(FNN)I1{(SNN)} [{alt. names)1Y
{(main)}%
{{does not exist)}V,
Yh
Yh
{({excluded)?

Here we test for a name used with \ExcludeName (Section 2.5.3) to get the result,
“Grinch is excluded”:

\ExcludeName{Grinch}
\IfAKA{Grinch}%
{\Name{Grinch} is an alias})
{\Name{Grinch} is not an alias})
{\Name{Grinch} is excluded}

39

By using the text tag macros with the conditional macros, one can display
information associated with a name based on whether or the name has occurred.
Below we disable indexing with \IndexInactive:

\NameAddInfo{Sam}

{\IfMainName{Freddyl}/
{\SkipIndex\Name{Freddy’s} sidekickl}/
{a young gardener helping his granddad}}

There is \Name{Sam}. He is \NameQueryInfo{Sam}.
Then \Name{Sam} met \Name{Freddyl}, who lives with his uncle.
Now he is \NameQueryInfo{Sam} on a quest to save the realm.

There is Sam. He is a young gardener helping his granddad.
Then Sam met Freddy, who lives with his uncle.
Now he is Freddy's sidekick on a quest to save the realm.

We use \SkipIndex to prevent the name “Freddy’s” from making an index entry
of its own. See Section 2.5.1. Take care to avoid a stack overflow by not allowing
conditional text to call tags recursively “down the rabbit hole.”

Back to Section 1.6

2.7.2 Changing Decisions

The following summary of macros that can change (not just read) different data
sets will help us put this section into better perspective:

Macro Names Xrefs Sort Index Text
Tag Tag Tag

\Name \Name* \FName No No No No
\ForgetName \SubvertName No No No No
\Piame \Pltane* No No No

\AKA \AKA* \IndexRef No No No No
\ExcludeName No No No No
\IncludeName \IncludeNamex* No | Yes | No No No
\PretagName No No No No
\TagName \UntagName No No No No

\NameAddInfo \NameClearInfo No No No No

The macros in this section force either a first or subsequent use, helpful es-
pecially with overlays in the beamer class. They do not affect \AKA and \PName.
They always are global with respect to TEX scoping rules.

“Forgetting” a name not only changes its format, but also its displayed form
and its status with decision macros. Sometimes you want all the changes (beamer
overlays) and sometimes not (use \Name*, \ForceName, etc.).

40

\ForgetName

\ForgetThis
3.1

\SubvertName

\SubvertThis
3.1

Naming system
scope

\LocalNames
\GlobalNames

Name Length Format Hooks Decision??

First Use Always long First False
Subsequent Use Long or short Subsequent True

This macro takes the same arguments as \Name. It ignores alternate names if
(FNN) are present. It “forgets” a name, forcing a “first use” The syntax is:

\ForgetName [(FNN)1{(SNN)} [{Alternate names)]

This mode switch causes the next instance of a naming macro or shorthand
to call \ForgetName internally. After knowing \Einstein “Einstein” we forget him
and again have a first reference: \ForgetThis\Einstein “Albert Einstein.”

This macro is the opposing analogue of the macros that we saw above. It
“subverts” a name, forcing a “subsequent use.” The syntax is:

\SubvertName [(FNN)]1{(SNN)} [{Alternate names)]

This mode switch causes the next instance of a naming macro or shorthand to
call \SubvertName internally. \ForgetThis takes precedence over \SubvertThis.

\SubvertThis\LAnth Susan B. Anthony force subseq. use, force long

\ForceName\SAnth Susan B. subseq. use, force first format
\ForgetThis\SAnth Susan B. Anthony force first use and format
\SAnth Susan B. subsequent use, short

We met \ForceName back in Section 2.4.2. Here we use it with a subsequent name
use to format it as a first use. We will meet \ForceName again in Section 2.8.

By default, these macros affect a name form in both front matter and main
matter naming systems. The example on page 38 above gave us the answer, “Carnap
is both.” After we use \ForgetName [Rudolph]{Carnap} we get the result: “Rudolph
Carnap is not mentioned.” Both front- and main-matter names were forgotten and
now we have a first-use situation.

This default “name scope” behavior helps synchronize formatted and unformat-
ted types of names. For example, one could use \ForgetName and \SubvertName
in the footnote examples from Section 2.4.2 to synchronize uses of names between
formatting systems. This manual uses that approach at need.

If this default behavior is not desired, \LocalNames restricts the macros above
to the current naming system. After \LocalNames, if you are in a “front matter”
section (the frontmatter option or \NamesInactive) the macros above will affect
only names in that section. The same is true if you are in a “main matter” section
via the mainmatter option or \NamesActive. \GlobalNames restores the default
behavior. Remember that this is respective to formatting systems, not document
scope! Section 2.9.2 goes into greater detail on system-level scoping.

Back to Section 1.6

22Decision outcome prior to the name being used.

41

3.0

\AKA
\AKA*

3.0

2.8 Name Variant Macros

The macros in this section are specialized and have a somewhat different syntax
than others in this manual. Macros like \IndexRef permit one to avoid the macros
here completely. Yet here they are, if needed.

\AKA (meaning also known as) handles the full-name mention of pseudonyms,
stage names, noms de plume, and so on. The syntax for \AKA is:

\AKA [(FNN)I{(SNN)}[(Alt. ENN)I{({Alt. SNN)} [(Alt. names)]
\AKA* [(FNN)1{(SNN)} [(Alt. FNN)]1{(Alt. SNN)} [(Alt. names)]

Both macros create a cross-reference in the index from the (Alt. FNN), (Alt. SNN),
and (Alt. names) fields to a target defined by (FNN) and (SNN), regardless of
whether that name exists. The order of the name and cross-reference in
\AKA is opposite that of \IndexRef.?* See also Section 2.5.5.

\AKA only prints whatever form of name in the text that you manually specify. It
is designed for the occasional mention of alternate names. See page 45 for alternate
solutions. \SeeAlso works with \AKA, \AKA* and \PName.

\AKA prints the (Alt. FNN) and (Alt. SNN) fields in the body text. If the (Alt.
names) field is present, \AKA swaps it with the (Alt. FNN) field in the text. The
caps and reversing macros work with \AKA.

\AKA* prints short name references like \FName, meaning that \ForceFN works
with it in the same manner. For the older behavior of \AKA* use the c1dAKA option
or always precede \AKA* with \ForceFN.

General Tips

[{FNN)]J{(SNN)} is the target. [(Alt. FNN)]{(Alt. SNN)}[(Alt. names)]
is the cross-reference to the target. Neither create page references.

e The older non-Western syntax cannot be used with [(FNN)J{(SNN)}. It can
be used with {(Alt. SNN)} [{Alt. names)], but we discourage that.

e Only the (SNN) and (Alt. SNN) fields use comma-delimited suffixes.

e One cannot create an index tag for a cross-reference, but one can sort that
reference with \PretagName.

o [(Alt. FNN)1{(Alt. SNN)}[(Alt. names)] in \AKA correspond to the name
fields in \PretagName.

e Jimmy Carter is not a cross-reference when it takes a form like:
\DropAffix\Name*[J.E.]{Carter, Jr.}[Jimmy].

e Jimmy Carter is a cross-reference when it takes a form like:
\AKA[J.E.]{Carter, Jr.}[Jimmy]{Carter}.

e To index stage names:
\Name [The Amazing]{Kreskin}............. The Amazing Kreskin
\AKA[The Amazing]{Kreskin} [Joseph]{Kresge} Joseph Kresge

e To keep stage names out of the index (index entries suppressed):
\Name [J.]{Kreskin} [The Amazing] The Amazing Kreskin
\AKA[J.]{Kreskin}[Joseph]{Kresge} Joseph Kresge

2"That ordering is due to the collision between (Alt;) and (FNN.) in a hypotheti-
cal \AKA[(FNN)1{{SNN1)}[(Alt;)] [(FNN2)1{(SNN2)}[(Altz)] By only allowing (FNN;) and
(SNN;) for the target name, we can let the other fields permit an unrestricted cross-reference.

42

formatAKA

4

Examples

We make cross-references to Bob Hope, where all of the forms below create the
cross-reference “Hope, Leslie Townes see Hope, Bob”:

\AKA [Bob] {Hope} [Leslie Townes]{Hope} Leslie Townes Hope

\RevComma\AKA [Bob] {Hope} [Leslie Townes]{Hope} Hope, Leslie Townes

\AKA [Bob] {Hope} [Leslie Townes]{Hopel}/ Hope
[\ignorespaces]

\AKA [Bob] {Hope} [Leslie Townes]{Hope}[Lester T.] Lester T. Hope

\AKA* [Bob] {Hope} [Leslie Townes]{Hope} Leslie Townes

\AKA* [Bob] {Hope} [Leslie Townes]{Hope}[Lester] Lester

Next we see what happens with references to Louis XIV, Lao-tzu, and Gregory I,
as well as Lafcadio Hearn and Charles du Fresne:

\AKA{Louis, XIV}{Sun King} Sun King
\AKA*{Louis, XIV}{Sun King} Sun King
\AKA{Lao-tzu}{Li, Er} Li Er
\AKA*{Lao-tzu}{Li, Er} Li

\AKA [Charles]{du Fresne}{du Cange} du Cange
\CapThis\AKA[Charles]{du Fresne}{du Cange} Du Cange
\CapName\AKA [Lafcadio] {Hearn}{Koizumi, Yakumo} KOIZUMI Yakumo
\RevName\AKA [Lafcadio] {Hearn}{Koizumi, Yakumo} Yakumo Koizumi
\AKA{Gregory, I}{Gregoryl}[the Great] Gregory the Great
\AKA*{Gregory, I}{Gregory}[the Great] Gregory
\ForceFN\AKA*{Gregory, I}{Gregory}[the Great] the Great

Formatting Alternate Names: General

\AKA and its derivatives use the subsequent-use formatting hooks \MainNamesHook
and \FrontNamesHook. This was designed originally to keep cross-references from
looking like main names by accident when they were intriduced in the body text.
In order to be freed of those constraints, use the formatAKA package option. Note
the caveats that come therewith.

We show formatAKA used with \AKA{Elizabeth, I}[Good Queen]{Bess}.
The colors indicate which formatting hooks are being used.

Front Matter: Elizabeth | was known as “Good Queen Bess.”
Again we mention Queen Elizabeth, “Good Queen Bess.”
\ForceName: Good Queen Bess.

Main Matter: Elizabeth | was known as “Good Queen Bess.”
Again we mention Queen Elizabeth, “Good Queen Bess.”
\ForceName: Good Queen Bess.

Section 2.7.2 also shows how cross-references are independent of other data sets
in nameauth. Cross-references do not respect the two namng systems. The first
time that the cross-reference appears, we see that formatAKA permits the first-use
hooks. Thereafter, it uses the subsequent-use hooks. When we switched to the
main matter, the cross-reference Good Queen Bess did not switch to a first use
until we used \ForceName. Now we compare the alwaysformat option:

43

Front Matter: Elizabeth | was known as “Good Queen Bess.”
Again we mention Queen Elizabeth, “Good Queen Bess.”
\ForceName: Good Queen Bess.

Main Matter: Elizabeth | was known as “Good Queen Bess.”
Again we mention Queen Elizabeth, “Good Queen Bess.”
\ForceName: Good Queen Bess.

With alwaysformat, all the names in the document use only the first-use
hooks, never the subsequent-use hooks. This option tends to get little use in
the newer versions of nameauth. It was more useful in early versions when
\NamesFormat was the only formatting hook.

Formatting Alternate Names: Continental

The following annotated example shows the simple Continental form that we in-
troduced in Section 2.4.3. We initiate the alternate formatting framework with
\AltFormatActive and take care not to use the names below outside of it.

1. Tag the names for proper sorting.

\PretagName [Heinz] {\textSC{Riihmann}}{Ruehmann, Heinz}}
\PretagName [Heinrich Wilhelm]{\textSC{Rithmann}}’
{Ruehmann, Heinrich Wilhelm},

2. “Heinz RUHMANN” is the main name, but we do not start with that.
We begin with \AKA* in order to use his legal name as an alias for
his more popular stage name. \AKA* prints “Heinrich Wilhelm” in the
body text and sets up the index cross-reference “RUHMANN, Heinrich
Wilhelm see RUHMANN, Heinz.”

\AKA* [Heinz] {\textSC{Riihmann}}/
[Heinrich Wilhelm]{\textSC{Rithmann}} %

3. \SubvertThis makes \FName print “Heinz.”
\SubvertThis‘ ‘\FName [Heinz] {\textSC{Riihmann}}’’ %

4. \Name prints “RUHMANN.” The small caps are syntactic, not typo-
graphic, because they are part of the argument to \Name itself.

\Name [Heinz] {\textSC{Rithmann}} (7 March 1902\,--\, 3%
October 1994) was a German actor in over 100 films.

The resulting text is:

Heinrich Wilhelm “Heinz” RUEMANN (7 March 1902-3 October 1994) was a
German actor in over 100 films.

Of course, this example is but one among a number of solutions. The point is to
find a solution that best fits one’s needs. We now resume normal formatting with
\AltFormatInactive.

44

Advanced Cross-Referencing

3.0 \AKA will not create multiple cross-references. Handle the special case where one

3.0

moniker applies to multiple people with \IndexRef, e.g., “Snellius” for both
Willebrord Snel van Royen and his son Rudolph Snel van Royen:2°

\IndexRef{Snellius}{Snel van Royen, R.; Snel van Royen, W.}

\AKA and \AKA* never create never page entries. When the alternate name
needs to be indexed with page numbers and see also references, do the following:

e Refer to the person intended, e.g.:
Maimonides (Moses ben-Maimon):
\Name{Maimonides} (\AKA{Maimonides}{Moses ben-Maimon})

e We now have a main name with a page entry, as well as a “see reference”
name. If we fail to refer to the main name, we would have a cross-reference
to an entry that does not exist.

e Before creating a see also cross-reference, one must refer to the alternate name
so that all the page entries precede the cross-reference, e.g.:
Rambam \Name{Rambam}

e For whatever name you use for the see also reference, put the cross-reference
after all of the page references. For example, you could put both of these
macros at the end of the document:?°

\SeeAlso\IndexRef{Maimonides}{Rambam}
\SeeAlso\IndexRef{Rambam}{Maimonides}

e You could let the last reference to either name be handled by \SeeAlso\AKA,
but that could be more confusing and prone to error.

Using \PretagName (Section 2.5.4) helps to avoid the need for manual index
entries, as the following example shows:

\PretagName{\textit{Doctor angelicus}}{Doctor angelicus}
Perhaps the greatest medieval theologian was %
\Name{Thomas, Aquinas}, also known as Y

\AKA{Thomas, Aquinas}{\textit{Doctor angelicus}}.

Perhaps the greatest medieval theologian was Thomas Aquinas, also known as
Doctor angelicus.

We use the medieval form: \Name{Thomas, Aquinas} because “Aquinas” is not
a surname, even though many people, including scholars, use it as such. Sec-
tion 2.3.6 talks about how one can use \ForceFN\FName{Thomas, Aquinas} to
refer to Aquinas. Using \ForceFN\Name{Thomas, Aquinas} will produce Thomas.
That helps prevent unwanted side effects with Eastern names.

25We shorten the index entries via \Name [W.]{Snel van Royen}[Willebrord], and for his son,
\Name [R.]{Snel van Royen}[Rudolph].

26Different standards exist for punctuating index entries and cross-references. Check with your
publisher, style guide, docs for xindy and makeindex, and http://tex.stackexchange.com.

45

http://tex.stackexchange.com

\PName
\PNamex*

3.1

These macros were meant for Western names and developed in the early ver-
sions of nameauth. They no longer fit well with the package. They print a main
name followed by a cross-reference in parentheses, the syntax being:

\PName [(FNN)]{(SNN)} [{other FNN)1{{other SNN)} [{other alt.)]

Apart from \SkipIndex, prefix macros only work on the name given by (FNN)
and (SNN), not on the latter cross-reference. \SkipIndex keeps both names out
of the index. Below we see the only name types that this macro can handle:

\PName [Mark] {Twain} [Samuel L.]{Clemens} Mark Twain (Samuel L. Clemens)

Twain (Samuel L. Clemens)
\PName* [Mark] {Twain} [Samuel L.]{Clemens}[Sam] Mark Twain (Sam Clemens)
)
)

\PName{Voltaire}[Frangois-Marie]{Arouet} Voltaire (Francois-Marie Arouet
Voltaire (Francois-Marie Arouet

\PretagName{\textit{Doctor mellifluus}}{Doctor mellifluus}
\PName{Bernard, of Clairvaux}{\textit{Doctor mellifluus}}
Bernard of Clairvaux (Doctor mellifluus)
Bernard (Doctor mellifluus)

Like \AKA, \PName cannot use the older syntax {(SNN)} [(F'NN)] for the main
name, but it can do so for the alternate name.

\PName{William, I}{William, the Conqueror} gives William | (William the
Conqueror) and William (William the Conqueror).?” If you use \PName*, again you
will get the long reference William | (William the Conqueror).

\PName*{William, I}[William]{the Conqueror} puts “William | (William
the Conqueror)” in the body text, but its index entry will be “the Conqueror,
William see William 1.” This is a result of mixing medieval and Western forms. We
suppressed the index entry with \SkipIndex.

Back to Section 1.6

2.9 Longer Examples
2.9.1 Variant Names

This section demonstrates how nameauth helps one manage a name authority.
Handling name variants has become easier than before. We start with some simple
cases and move on to complex ones:

e Where Iron Mike occurs in the text, include \IndexName [Mike]{Tyson}.

e \SubvertThis\FName [Mike]{Tyson}[Iron Mike] always prints Iron Mike in-
dexed as “Tyson, Mike”. That form uses the subsequent-use formatting
hooks. \ForceName\SubvertThis\FName [Mike]{Tyson}[Iron Mike] prints
Iron Mike with the first-use hooks.

e The form \Iron Iron Mike Tyson can be set up with:
\newcommand*\Iron{\SubvertThis\Name* [Mike]{Tyson} [Iron Mike]}

In nameauth it makes little sense to “force” the subsequent use because it is
the common use. First uses are rare. That is why we set up the subsequent
use with \SubvertThis and create a first use when needed with \ForceName.
\ForceName\Iron prints lron Mike Tyson, again indexed as “Tyson, Mike”.

*"The form \PName{William, I}{William}[the Conqueror] works, but we discourage it. Also
choose forms like \PName{Lao-tzu}{Li, Er} instead of \PName{Lao-tzu}{Li}[Er]. Avoiding the
older syntax with \AKA and \PName avoids error.

46

e Use \IndexRef{Iron Mike}{Tyson, Mike} to create a see cross-reference
from “Iron Mike” to “Tyson, Mike” in the index. Be sure to have an occurrence
of \Name [Mike]{Tyson} in the text.

e Use ¢ “\AKA[Mike]{Tyson}{Iron Mike}’’ to create “lron Mike” in the text
and a cross-reference to “Tyson, Mike” in the index. Be sure to have an
occurrence of \Name [Mike]{Tyson} in the text.

When you want alternate names that can change form and format indepen-
dently, do the following;:

1. We start by deciding that the canonical name form we wish to use is “W.E.B.
Du Bois” We want to manage the alternate form “W.E.B. DuBois” as if it
were an occurrence of the canonical name. We set up the name authority:

\begin{nameauth}
\< DuBois & W.E.B. & Du Bois & >
\< AltDuBois & W.E.B. & Du\empty Bois & >
\end{nameauth}

2. This name gives us an extra level of difficulty because the two variants differ
only in terms of spaces. They share the same internal representation in the
nameauth macros: W.E.B. !DuBois. We fix this ambiguity by inserting a non-
printing control sequence in the alternate form, such as {Du\empty Bois}.
That prevents “DuBois” from breaking at the end of a line or page. A discre-
tionary hyphen would allow the name to break.?®

3. Instead of using \SkipIndex\AltDuBois every time we wanted to avoid mak-
ing an index entry, we create a cross-reference in the index from the alternate
name to the canonical name:

\IndexRef [W.E.B.]{Du\empty Bois}{Du Bois, W.E.B.}

From this point onward, no page entry for W.E.B. DuBois will occur in the
index unless manipulated by \IncludeName*. The canonical W.E.B. Du Bois
functions as a different name and is not affected.

3.0 Indexing both name forms would be trivial. One can use both forms at need
to generate page references in the index. After all of the page references are done,
one can create cross-references with \SeeAlso\IndexRef.

3.1 Indexing with the canonical name form Du Bois whenever we see DuBois is
slightly more complicated:

e We no longer wrap each name automatically with two index entries, so we
would need to keep track of page breaks and this alternate name.

e We could use \JustIndex\DuBois\AltDuBois to get DuBois.

o We could create macros based on that:
\global\newcommand*\OtherDuBois{\JustIndex\DuBois\AltDuBois}
\global\newcommand*\LOtherDuBois{\JustIndex\DuBois\LAltDuBois}
\global\newcommand*\SOtherDuBois{\JustIndex\DuBois\SAltDuBois}

With \ForgetThis\OtherDuBois we get W.E.B. DuBois and DuBois thereafter.
\LOtherDuBois gives us W.E.B. DuBois, while with \SOtherDuBois we get W.E.B.
The extra full stop at the end of the sentence was gobbled. We used \global to
ensure that, regardless of scope, our macros work.

Back to Section 1.6

Z8Ignoring spaces in names is good because it aids fault tolerance, thereby decreasing spurious
index entries. Here we have a special case where this behavior is not useful.

47

2.9.2 \LocalNames

As mentioned previously in Section 2.7.2, both \ForgetName and \SubvertName
usually affect both main-matter and front-matter names. This default behavior
can be quite helpful. Nevertheless, there are cases where it is undesirable. This
section shows \Localnames and \Globalnames in action, limiting the behavior of
the “tweaking macros” to either the main or front matter.

We begin by defining a macro that will report to us whether a name exists in
the main matter, front matter, both, or none:

\def\CheckChuck{/\IfFrontName [Charlie]{Chaplin}Y
{\IfMainName [Charlie] {Chaplin}{both}{front}}%
{\IfMainName [Charlie]{Chaplin}{main}{none}}}’

Next we create a formatted name in the “main matter”:

\Name* [Charlie]{Chaplin} Charlie Chaplin
\CheckChuck main

Now we switch to “front-matter” text and create a name. To ignore any local
scoping we use \global\NamesInactive:

\global\NamesInactive
\Name* [Charlie] {Chaplin} Charlie Chaplin
\CheckChuck both

We now have two names. They look and behave the same, but are two different
“species” with independent first and subsequent uses. We use \Localnames to
make \ForgetName and \SubvertName work with only the front-matter species.
Then we “forget” the front-matter name:

\LocalNames
\ForgetName [Charlie]{Chaplin}
\CheckChuck main

Next we “subvert” the front-matter name to “remember” it again and switch to
the main section, again using \global to ignore scoping. Now \ForgetName and
\SubvertName are working with the main-matter species.

\SubvertName [Charlie] {Chaplin}
\global\NamesActive
\CheckChuck both

We forget the main-matter name and additionally reset the default behavior so
that \ForgetName and \SubvertName work with both species:

\ForgetName [Charlie] {Chaplin}
\GlobalNames
\CheckChuck front

Finally, we forget everything. Even though we are in a main-matter section, the
front-matter control sequence goes away:

\ForgetName [Charlie]{Chaplin}
\CheckChuck none

48

4

2.9.3 Unicode + inputenc

The following subset of active Unicode characters are available “out of the box”
using NF'SS, inputenc, and fontenc:

AAAAAAE CEEEE IfIIPN
000000 UUUUY b B
adaaadaee ceééeed iiiion
06060660 taaay b
A3AqC¢Ce DAdDPdEeEe Ggia
LT E 1 NN @Eoee RfR¥
§SSsSsTtTt UaUd 7227%77%

Some of these characters expand differently, which can affect index sorting.
For example, & becomes \IeC_{\"a} and E becomes \IeC_{\AE_}. Additional
accents and glyphs can be used with Unicode input, NFSS, inputenc, and fontenc
when using fonts with TS1 glyphs, e.g., \usepackage{lmodern} (per the table on
pages 455—63 in The Latex Companion). The following example lets you type, “In
Congrefs, July 4, 1776.”

\usepackage{newunicodechar}
\DeclareTextSymbolDefault{\textlongs}{TS1}
\DeclareTextSymbol{\textlongs}{TS1}{115}
\newunicodechar{f}{\textlongs}

Using \newunicodechar{a}{\=a} allows \Name{Ghazali} to show Ghazali,
but control sequences like \=a fail when using makeindex and gind.ist. For
example, the ltxdoc class, with gind.ist, turns the default “actual” character
@ into =. Using \index{Gh{\=al}zali} halts execution. Understandably, using
\index{Gh\=azali} gives an “azali” entry sorted under “Gh” (thanks Dan Lueck-
ing). This issue is not specific to nameauth.

Such issues with gind.ist are not the only concerns one must have about
NFSS, inputenc, and fontenc when using Unicode. Although the manner in which
glyphs are handled is quite powerful, it also is fragile. Any TEX macro that par-
titions its argument without using delimiters can break Unicode under NFSS.
Consider the following examples with \def\foo#1#2#3\relax{<#1#2><#3>}:

Argument Macro Result

abc \foo abc\relax <ab><c>
{=}bc \foo {z=}bc\relax <x:b><c>
\ae bc \foo \ae bc\relax <asb><c>

The arguments in the last example always put ¢ in #3, with the first two glyphs
in #1#2. Now here is where things get tricky:

Argument Macro Engine Result

zbc \foo @bc\relax xelatex <;eb><c>
zbc \foo @bc\relax lualatex <ab><c>
&bc \foo zbc\relax pdflatex <a&><bc>

49

4
4

In both xelatex and lualatex you get the same results as the previous table,
where ¢ is in #3 and the first two glyphs are in #1#2. However, using latex or
pdflatex with inputenc and fontenc causes & by itself to use #1#2.

Without digging into the details of font encoding and NFSS, we can say in
simple terms that & is “two arguments wide.” Any macro where this #1#2 pair gets
split into #1 and #2 will produce either Unicode char ...not set up for LaTeX
or Argument of \UTFviii@two@octets has an extra }. Again, this is not just
specific to nameauth.

\CapThis avoids these pitfalls by checking if the leading token of the argument
to be capitalized is equivalent to the leading token of an active Unicode character.
We chose 8 as the test character somewhat at random. Page 69 shows the test.
Essentially, the following two expressions are equal under NFSS:

\Q@car(test;)\@nil, where (test;) expands to \IeC {(test;)}
\Q@car(testy)\@nil, where (tests) expands to \IeC {(tests)}

If (testy) expands to the letter (tests), then it will fail the test for equality.
“Active” characters expand to “two-argument wide” values under NFSS, as the ta-
ble below shows via defining a macro to be a character, then printing its \meaning
in the cell:

\def\a{(L)} \protected@edef\a{(L)} \protected\edef\a{(L)}

A macro:->A A macro:->A A \protected macro:->A
A macro-->AA A macro=->\IeC {\‘A} A \protected macro:->A
8 macro-->A§ 8 macro:->\IeC {\ss } B \protected macro:->\T1\ss

The number of spaces inserted in the index file depends on the number of expan-
sions that occur for a given active character.

This method of testing for active characters and resolving the related issues
can interfere with some situations of expansion, generating errors. Be mindful of
names within an \edef, for example, unless you control expansion explicitly.

ETEX also removes spaces between undelimited macro arguments, but not from
the trailing undelimited argument. This is no longer an issue for name arguments
in nameauth, but we include the information anyway:

Argument Macro Result

abec \foo a b c\relax <ab>< c¢>
ab ¢ \foo ab c\relax <ab>< ¢>
a bc \foo a bc\relax <ab><c>
abc \foo abc\relax <ab><c>

Using explicit spacing macros prevents gobbled spaces:

Argument Macro Result

a~bc \foo a~bc\relax <a ><bc>
a\nobreakspace bc \foo a\nobreakspace bc\relax <a ><bc>
a\space bc \foo al\space bc\relax <a ><bc>

See also Sections 2.3.6 and 2.3.7, as well as Section 2.5.4.

50

2.9.4 HKTgX Engines

The nameauth package tries to work with multiple languages and typesetting en-
gines. The following preamble snippet illustrates how that can be done:?" This
example reflects changes to several packages since 2014 and may not address older
documents and systems or all possible cases. Of course, the user must specify the
main and alternate languages and any package options as the respective package
documentation files indicate.

\ifdefined\Umathchar
\usepackage{fontspec}
\usepackage{polyglossia}
\else
\usepackage [utf8]{inputenc}
\usepackage [TS1,T1]{fontenc}
\usepackage{babel}
\fi
% Below is optional; use only if your dvi viewer
% crashes or becomes unresponsive with tikz.
\usepackage{ifxetex}
\usepackage{ifluatex}
\usepackage{ifpdf}
\ifxetex
\usepackage{tikz}
\else
\ifpdf
\usepackage{tikz}
\fi
\fi

This general arrangement works for this manual, which is tested with all of the
TEX engines above. This example is not meant to be the only possible way to
check which engine you are using and how to set things up.

The following can be used in the text itself to allow for conditional processing
that helps one to document work under multiple engines. One must include the
ifxetex, ifluatex, and ifpdf packages for it to work.

\ifxetex (zelater text)Y,
\else
\ifluatex
\ifpdf (lualatex in pdf mode text)y,
\else (lualatez in dvi mode text)%
\fi
\else
\ifpdf (pdfiatex text)%
\else (latex text)’,
\fi
\fi
\fi

29 A similar version of this example is in examples.tex, collocated with this manual.

51

Margin
Paragraphs

4

Vlad III Dracula
Vlad II Dracul

2.4

2.9.5 Hooks: Intro

Starting with this section we reset all formatting hooks to do nothing. This helps
us focus on the modifications made hereafter.

Before we get to the use of text tags and name conditionals in name formatting,
we begin with an intermediate example to illustrate that something more complex
can occur in \NamesFormat. Here we put the first mention of a name in boldface,
along with a marginal notation if possible:*"

\let\OldFormat\NamesFormat}

\renewcommand*\NamesFormat [1]
{\textbf{#1}\unless\ifinner
\marginpar{\raggedleft\scriptsize #1}\fi}

\let\NamesFormat\OldFormatY

Changes to \NamesFormat are not relying just on scoping rules to keep them
“local.” We use \1let to make explicit changes in order to avoid some possible side
effects. We now use the example above in a sample text:

\PretagName{Vlad, Tepes}{Vlad Tepesl}’ for accented names

\Name{Vlad III, Draculal}, known as \AKA{Vlad III, Dracula}{Vlad,
Tepes} (the Impaler) after his death, was the son of \Name{Vlad II,
Dracull}, a member of the Order of the Dragon. Later references to
¢ “\Name{Vlad III, Draculal}’’ appear thus.

Vlad IIT Dracula, known as Vlad Tepes (the Impaler) after his death, was
the son of Vlad II Dracul, a member of the Order of the Dragon. Later
references to “Vlad III” appear thus.

Now again we have reverted to the default \NamesFormat and we get Vlad III
Dracula and Vlad III. For references to “Vlad” consider using \Name{Vlad, III}
and use \NameAddInfo and \NameQueryInfo to handle “Dracula.” The simplified
interface greatly helps one to avoid confusion and settle on specific name forms.

You cannot re-enter \Name or \AKA by calling them within any of the formatting
hooks, as the next example shows:

\renewcommand*\MainNameHook [1]
{%
{#1}7
\IndexInactive},
\Name{foo}\AKA{bar}{baz}}
\IndexActive},
3

Calling, e.g., \Wash produces Washington, without foo, bar, or baz. \Name and
\AKA expand to nothing. This prevents stack overflows both in this case and if you
called the naming macros as their own arguments. \Name{foo\Name{bar}} would
produce “foo” in the text and “foobar” in the index. As you see, these cases are
to be avoided.

30 A similar version of this example is in examples.tex, collocated with this manual.

52

\if@nameauth@InName
\if@nameauth@InAKA

\@nameauth@toksa
\@nameauth@toksb
\@nameauth@toksc

4

2.9.6 Hooks: Life Dates

We can use name conditionals (Section 2.7.1) and text tags (Section 2.6) to add
life information to names when desired.

The example \NamesFormat below adds a text tag to the first occurrences
of main-matter names. It uses internal macros of \@nameauth@Name. To prevent
errors, the Boolean values \if@nameauth@InName and \if@nameauth@InAKA are
true only within the scope of \@nameauth@Name and \AKA respectively.

This package makes three token registers available to facilitate using the name
conditional macros as we do below. Using these registers allows accented names
to be recognized properly. In \AKA the token registers are copies of the last three
arguments, corresponding to the pseudonym. Nevertheless, they have the same
names as the registers in \@nameauth@Name because they work the same way and
may be easier to use this way.

We assume that we will not be using the alwaysformat option, meaning that
we only call this hook once for a first use of \AKA. We also use a different formatting
for the naming macros on the one hand and \AKA on the other:*!

\newif\ifNoTag/ allows us to work around \ForgetName
\let\OldFormat\NamesFormat} save the format
\let\OldFrontFormat\FrontNamesFormat

\makeatlettery, access internals

\renewcommand*\NamesFormat [1] {\begingroup’,
\protected@edef\temp{\endgroup\textbf{#1}%
\unless\ifNoTag

\if@nameauth@InName
{\bfseries\noexpand\NameQueryInfo
[\unexpanded\expandafter{\the\@nameauth@toksal]
{\unexpanded\expandafter{\the\@nameauth@toksb}}
[\unexpanded\expandafter{\the\@nameauth@toksc}] }\fi

\if@nameauth@InAKA\noexpand\NameQueryInfo
[\unexpanded\expandafter{\the\@nameauth@toksa}]
{\unexpanded\expandafter{\the\@nameauth@toksb}}
[\unexpanded\expandafter{\the\@nameauth@toksc}]\fi

\fi}\temp\global\NoTagfalse}

}

\makeatother

\let\FrontNamesFormat\NamesFormat

This change prints tags in the first use hooks unless \NoTag is set true. Please note
that the conditional path here is placed within the \edef. Putting it outside the
\edef, such as \unless\ifNoTag\temp\fi, will cause errors.

This method uses the e-TEX primitives \noexpand and \unexpanded to avoid
the extensive repetition of \expandafter. Since the nameauth package depends
on etoolbox, we assume that we are using e-TEX.

Before we can refer to any text tags, we must create them. Using the approach
above, we must include a leading space in the text tags:

\NameAddInfo [George]{Washington}{ (1732--99)1}%
\NameAddInfo [Mustafa] {Kemal}{ (1881--1938)1}%
\NameAddInfo{Atatirk}{ (in 1934, a special surname)}’

31 A similar version of this example is in examples.tex, collocated with this manual.

53

The leading space is needed only when a text tag appears. Another way to add
that space is to put it in the conditional path of the formatting hook and leave it
out of the text tags entirely:

... \unless\ifNoTag...{ }\noexpand\NameQueryInfo...\fi}\temp

Now we begin with the first example, where both the name and the dates are
in boldface because we use a naming macro:

\ForgetThis\Wash held office 1789--97. No tags: \Wash.
First use, dates suppressed: \NoTagtrue\ForgetThis\Wash.

George Washington (1732-99) held office 1789-97. No tags: Washington.
First use, dates suppressed: George Washington.

Since \AKA usually calls the “subsequent use” formatting hooks, we can create
a scope to “fool” it into calling the first-use hook via \let:

\Name [Mustafa] {Kemal} was granted the name,
\begingroup\let\MainNameHook\NamesFormat?

\AKA [Mustafa] {Kemal}{Atatirk}\endgroup. We mention}
\AKA [Mustafa] {Kemal}{Atatirk} again.

Mustafa Kemal (1881-1938) was granted the name Atatiirk (in 1934, a
special surname). We mention Atatiirk again.

@ Another solution uses the formatAKA package option. In the example below,
we simulate a first occurrence of Kemal. Then we simulate formatAKA. Finally, we
use \ForceName with \AKA:

\ForgetName [Mustafa] {Kemall}y, first use
\makeatletter\@nameauth@AKAFormattrue\makeatothery, formatAKA
\Name [Mustafa] {Kemal} was granted the name},

\AKA [Mustafal {Kemal}{Atatirk}. We mentiony

\AKA [Mustafa] {Kemal}{Atatirk} again.

Mustafa Kemal (1881-1938) was granted the name Atatiirk (in 1934, a
special surname). We mention Atatiirk again.

There are other solutions for getting this result, such as using \IncludeName*
or non-printing control sequences. One must decide the best approach for oneself.
Please remember to reset the formatting, if needed:

\let\NamesFormat\OldFormat
\let\FrontNamesFormat\OldFrontFormat

See Section 3.4 and page 82 for the decision paths and the logic used by the
package. Presently, writing hook macros should be much simpler than in earlier
versions of this package.

Back to Section 1.6

54

3.1

\CapThis
protection

changes
in text

2.9.7 Hooks: Advanced

Alternate Formatting

The alternate formatting framework now makes designing hooks much easier
by providing some built-in features that add not only error protection but also
ease of use. We enabled that framework at the beginning of this section with
\AltFormatActive and take care not to use the names in this section elsewhere.

Both \AltFormatActive and \AltFormatActive* set the internal Boolean
flag \@nameauth@AltFormattrue, which enables alternate formatting. Addition-
ally, \AltFormatActive sets \@nameauth@DoAlttrue, which “switches on” alter-
nate formatting. \AltFormatInactive sets both flags false.

The main feature of this framework is protecting against errors created when
\@nameauth@Cap gets a misleading result from \@nameauthUTFtest and splits a
token list in a way that causes an error. The alternate capping macro \AltCaps
and \CapThis work mutually in \@nameauth@Parse to ensure that they do not
interfere with each other, as we saw demonstrated in Section 2.4.3.

Continental Format

Here we look in greater detail at the more complex version of Continental format-
ting from Section 2.4.3.

Font changes in the text occur with the short macros \textSC, \textIT,
\textBF, and \textUC. They all look similar to \textSC. We therefore show just
this one macro as an example from the package source.

\newcommand*\textSC[1]{%
\if@nameauth@DoAlt\textsc{#1}\else#1\fi
}

Using this method, formatting occurs in both the text and in the index if the
altformat option or \AltFormatActive was used. If you use a name that uses
these macros both within and outside of the alternate formatting regime, you will
get spurious index entries.?”

We plan to have small caps on by default, then off in subsequent uses. We
thus use \AltFormatActive for the “always on” general condition, then redefine
\MainNameHook because it is the subsequent use. We use \A1tOff to suppress
formatting. It works only in the formatting hooks. \A1tOff toggles an internal
flag that deactivates any changes. From the source, it looks like:

\newcommand*\A1tOff{%
\if@nameauth@InHook\@nameauth@DoAltfalse\fi
}

Since the normal effects of \CapThis are disabled, \AltCaps does the job by
capitalizing its argument in braces { } when it is used in a macro hook and triggered
by \CapThis. The source looks like:

32Using \AltFormatActivex is interesting because it looks like the normal nameauth
regime but prevents \CapThis from having its normal effect unless you use \AltCaps. With
\AltFormatActivex* if you use a name that has alternate formatting both within and outside
of the alternate formatting regime, you may not get spurious index entries as long as control
sequences are consistent.

55

\newcommand*\AltCaps [1]{%
\if@nameauth@InHook
\if@nameauth@DoCaps\MakeUppercase{#1}\else#1\fi
\else#1\fi
}

It is important that these macros not expand too soon. We therefore must put
\noexpand once before \textSC, etc., and once before \AltCaps. This is because
the name arguments in nameauth have to use \protected@edef to work right. We
will get to that when we set up the names and any applicable tags.

Before we alter the formatting hooks, we can save the hook macros if we want
to recall them (below) or we can use \begingroup and \endgroup to create a new
scope and let that handle any changes. We use scoping in this section.

The final step does not come from the nameauth source. We must redefine the
formatting hooks ourselves. One of the simplest ways to do this when using the
altformat option or \AltFormatActive is:

\renewcommand*\MainNameHook{\A1tOff}

Simple, oder? If needed, we can \let\FrontNameHook\MainNameHook. If you want
to suppress formatting altogether in the front matter, make the following change:
\let\FrontNamesFormat\MainNameHook.

Continental formatting usually alters at least one element in the required name
field, as we see below:

\begin{nameauth}
\< Adams & John & \noexpand\textSC{Adams} & >
\< SDJR & Sammy & \noexpand\textSC{Davis},
\noexpand\textSC{Jr}. & >
\< HAR & & Harun, \noexpand\textSC/
{\noexpand\AltCaps{a}1l-Rashid} & >
\< Mencius & & \noexpand\textSC{Mencius} & >
\end{nameauth}

Now we must ensure that these names are sorted properly in the index. See
again how the formatting must be present:

\PretagName [John] {\noexpand\textSC{Adams}}{Adams, John}
\PretagName [Sammy]?
{\noexpand\textSC{Davis}, \noexpand\textSC{Jr}.}%
{Davis, Sammy, Jr.}
\PretagName{Harun, \noexpand\textSC}
{\noexpand\AltCaps{a}l-Rashid}}{Harun al-Rashid}
\PretagName{\noexpand\textSC{Mencius}}{Mencius}

The use in the body text is not much different than normal, but only if we use
the simplified interface.

First Next Long Short
John AbpAMS Adams John Adams John
Sammy DAvis Jr. Davis Sammy Davis Jr. Sammy
Harun AL-RASHID Harun Harun al-Rashid Harun
MENCIUS Mencius Mencius Mencius

56

e Punctuation detection works: Sammy DAvVIS JR. Also Sammy Davis Jr. Then
Davis. Now Davis. (We used \ForceName for formatting.)

e \ForceName\DropAffix\LSDJR gives Sammy DAvVIS. Otherwise, using just
\DropAffix\LSDJR gives Sammy Davis.

e \RevComma\LAdams yields Adams, John. All the reversing macros work.

e \ForceName\ForceFN\SHAR produces AL-RASHID. \ForceFN\SHAR produces
al-Rashid. If we add \CapThis we get AL-RASHID and Al-Rashid. The way
that Continental resources treat certain affixes relates to similar issues in
[Mulvany, 168-73].%3

e One must include the extra control sequences in all the macro arguments that
use these names.

If we use the formatAKA option we can refer to Mencius as MENG Ke, and
again Meng Ke. We get that with:

\PretagName{\noexpand\textSC{Meng}, Ke}{Meng Ke}
\AKA{\noexpand\textSC{Mencius}}{\noexpand\textSC{Meng}, Ke}

Rolling Your Own: New Style

“New style” means that we are sticking closely with various package features that
have been implemented already and look similar to the solutions in Section 2.4.3.
Here we set out on the path to custom formatting.

When redesigning formatting hooks, you should use \AltFormatActive or
the altformat option to enable alternate formatting and prevent \CapThis from
breaking your formatting macros.

We recommend using the internal package flag \@nameauth@DoAlt, which ac-
tivates alternate formatting, \@nameauth@DoCaps, which handles capitalization,
and \@nameauth@InHook, which is true when the formatting hooks are called. See
page 80 and following. If you create your own macros, they will look similar:**

\makeatletter?,

\newcommand*\Fbox [1]{%
\if@nameauth@oAlt\fbox{#1}\else#1\fi

}

\makeatother

Since \AltCaps is part of nameauth, you need not reinvent that particular
wheel. As was the case previously, the final step is redefining the formatting hooks.
One of the simplest ways to do this is:

\renewcommand*\MainNameHook{\A1tOff}
\let\FrontNameHook\MainNameHook

When defining names, be sure to use \noexpand before the control sequences
in the macro arguments so they expand at the proper time:

33Handling non-Western names in Western sources can be a gray area. One ought take care to
be culturally sensitive in these matters.
31 A similar version of this example is in examples.tex, collocated with this manual.

57

\NameParser

3.1

\PretagName [Pierre-Jean]
{\noexpand\Fbox{\noexpand\AltCaps{d}e Smet}1}%
{de Smet, Pierre-Jean}

\begin{nameauth}
\< deSmet & Pierre-Jean &
\noexpand\Fbox{\noexpand\AltCaps{d}e Smet}} & >
\end{nameauth}

Now we show how the formatting hooks work in the body text. One can check
the index to see that it is formatted properly and consistently.

First Next Long Short

\deSmet \deSmet \LdeSmet \SdeSmet
Pierre-Jean de Smet Pierre-Jean de Smet Pierre-Jean

The capitalized version \CapThis\deSmet is De Smet. This also works for a
formatted use via \ForceName: . The index entries will be consistent for
all the variations in the text.

Also, remember to restore the macro hooks if they should not persist for the
entire document, or else you will get unwanted results.

Rolling Your Own: Old Style

“Old style” refers to the way hooks were designed before recent package changes.
Sometimes one might want to achieve more customized results. We begin that
journey by looking at \NameParser.

This user-accessible parser (page 82) builds a name from the internal macros
\FNN, \SNN, \rootb and \suffb. Reversing and commas are still usable; capital-
ization depends on the context. The general form is:

\renewcommand*(Hook) [11{...\NameParser. ..}

In order to use this hook-level parser, we want the option of ignoring the text that
is sent to the formatting hooks from \@nameauth@Parse. We do that by redefining
the hooks to take an argument.

If we use the altformat option or \AltFormatActive, then alternate format-
ting is both enabled and “switched on”; whatever formatting macros that we are
using should be in the “on” state. If we want subsequent uses of names to be in
the “off” state, we can design a hook like:

\renewcommand*(Hook) [1]1{...\AltOff\NameParser. ..}

If we used \AltFormatActive*, where the formatting macros are “switched
off” but enabled nonetheless, then we might want a hook that turns the macros
“on” instead:

\renewcommand*(Hook) [1]{...\AltOn\NameParser. ..}

We have shown already that you do not really need \NameParser to use these
switching macros in the hooks. Yet the user-level parser does have some handy
uses, especially as we go further toward designing custom macros. For example,

58

we demonstrate an extreme case based on Section 2.9.5 where we modify some
internal flags to have \NameParser to produce different syntactic forms than the
normal output:*°

\makeatletter

\renewcommand*\NamesFormat [1]{#1\unless\ifinner
\marginpar{\small\raggedleft,
\@nameauth@FullNametrue\@nameauth@FirstNamefalse},
\@nameauth@EastFNfalse\NameParser}\fi}

\renewcommand*\MainNameHook [1]{\A1tOff#1\unless\ifinner
\marginpar{\small\raggedleft
\@nameauth@FullNamefalse\@nameauth@FirstNamefalse}
\@nameauth@EastFNfalse\NameParser}\fi}

\makeatother
Wm. SHAKESPEARE Wm. SHAKESPEARE \Name [Wm.] {\noexpand\textSC{Shakespeare}}
Shakespeare Shakespeare \Name [Wm.]{\noexpand\textSC{Shakespeare}}
Shakespeare Wm. Shakespeare \Name* [Wm.]{\noexpand\textSC{Shakespearel}}
Shakespeare William \FName [Wm.] {\noexpand\textSC{Shakespeare}} [William]

Wm. SHAKESPEARE SHAKESPEARE

\ForceName\Name [Wm.] {\noexpand\textSC{Shakespeare}}

In a first-use hook, the person’s full name always is displayed in the margin.
In a subsequent-use formatting hook, only a surname, ancient personal name, or
mononym can be displayed in the margin.

We use the \NameParser macro to re-create the name, but using different rules
via the internal Boolean flags. The macros that toggle these flags are discussed
elsewhere. These include:

\if@nameauth@FullName Print a full name if true.
\if@nameauth@FirstName Print a first name if true.
Only one or the other of these can be true to avoid undocumented behavior.

\if@nameauth@RevThis Reverse name order if true.
\if@nameauth@EastFN toggled by \ForceFN.
\if@nameauth@RevThisComma Reverse Western name, add comma.

Reversing without commas overrides reversing with commas.

@ Please be aware that if you designed your own hooks for versions of nameauth
before 3.0, it remains likely that they still work, but without the newer features.
Updating your custom hooks is advised.
The older version of “rolling your own” is reminiscent of the newer way, but it
has significant differences:

e We do not use the internal package macros.

e We best use \NameParser to generate the name in the hooks. It may be
possible not to do so, but as we get more customized the user-level parser is
a handy way to get reasonably predictable results.

e We still recommend using \AltFormatActive if you want to disable the nor-
mal effects of \CapThis. Otherwise redefine \CapThis (which is what we do
below).

35 A similar version of this example is in examples.tex, collocated with this manual.

59

We define three Boolean flags and set one of them true by default. The \ifFbox
flag takes over the internal function of \@nameauth@DoAlt, which is enabled by
\AltFormatActive. The \ifFirstCap flag takes over the internal function of
\@nameauth@DoCaps, which is enabled by \CapThis. The \if InHook flag replaces
the internal function of \@nameauth®@InHook, which is enabled by the internal
format hook dispatcher.?°

\newif\ifFbox
\newif\ifFirstCap
\newif\ifInHook
\Fboxtrue

The formatting macro is like the new style, except it refers to \ifFbox:

\renewcommand*\Fbox [1]{%
\ifFbox\fbox{#1}\else#1\fi
}

Our new \AltCaps works like the built-in version, except it does not use the
internal macros and flags:

\renewcommand*\AltCaps [1]{%
\if InHook
\ifFirstCap\MakeUppercase{#1}\else#1\fi
\else
#19
\fi
}

Here we redefine \CapThis to use our flag instead of the internal flag:
\renewcommand*\CapThis{\FirstCaptrue}

We have to do in our own hooks what the naming macros do internally in
order to get the same exit conditions. In the new style, we do not have to define
\NamesFormat. Here we have to define everything:

\renewcommand*\NamesFormat [1]

{%
\InHooktrue\NameParser\InHookfalse},
\global\FirstCapfalse,

}

Instead of using just \A1tOff before \NameParser below, we have to add a few
extras in order to mimic the functions of the internal flags:

\renewcommand*\MainNameHook [1]

{%
\Fboxfalse\InHooktrue\NameParser\InHookfalse},
\global\FirstCapfalse\Fboxtrue/

}

36 A similar version of this example is in examples.tex, collocated with this manual.

60

We avoid spurious index entries in the front matter by using the same hooks.

\let\FrontNamesFormat\Namesformat
\let\FrontNameHook\MainNameHook

Because we use \noexpand, our “old-style” macros will index the name below
under the same entry as the “new-style” macros.

First Next Long Short

\deSmet \deSmet \LdeSmet \SdeSmet

Pierre-Jean de Smet Pierre-Jean de Smet Pierre-Jean

The capitalized version \CapThis\deSmet is De Smet. This also works for a
formatted use via \ForceName: .

We can reuse new-style names with old-style macros when needed. We show
this here in abbreviated fashion. We keep the Boolean flags \ifFirstCap and

\ifInHook from earlier. We also keep the redefined \AltCaps, \CapThis, and
\NamesFormat. One might have to make modifications as needed.*”

\newif\ifCaps

\Capstrue

\renewcommand*\textSC[1]{%
\ifCaps\textsc{#1}\else#1\fi

}

\renewcommand*\MainNameHook [1]

{h
\Capsfalse\InHooktrue\NameParser\InHookfalse,
\global\FirstCapfalse\Capstrue/,

}

\let\FrontNameHook\MainNameHook

The names below have the same declarations and index entries as they did
above. They look and work the same but use different macros.

First Next Long Short
John ADpAMS Adams John Adams John
Sammy DAvis Jr. Davis Sammy Davis Jr. Sammy
Harun AL-RASHID Harun Harun al-Rashid Harun
MENCIUS Mencius Mencius Mencius

As earlier, punctuation detection works: Sammy DAVIS JR. Also Sammy Davis
Jr. Then DAvis. Now Davis. \ForceName\DropAffix\LSDJR gives Sammy DAVIS.
\DropAffix\LSDJR gives Sammy Davis. \RevComma\LAdams yields Adams, John.
\ForceName\ForceFN\SHAR produces AL-RASHID. \ForceFN\SHAR produces al-
Rashid. If we add \CapThis we get AL-RASHID and Al-Rashid.

Use names with alternate formatting only when it is active to avoid spurious
index entries. We resume normal formatting with \AltFormatInactive.

Back to Section 1.6

3T A fuller version of this example is in examples.tex, collocated with this manual.

61

L

\NameauthName
\NameauthLName
\NameauthFName

2.9.8 Full Redesign

Assuming that redefining hooks and adding control sequences is insufficient to your
task, you could modify the core naming macros and hook those modifications back
into the nameauth package without needing to continuously track and patch the
style file itself.

These macros are set by default to \@nameauth@Name, the internal name parser.
The main and simplified interfaces call them as respective synonyms for \Name,
\Name*, and \FName. Should you desire to create your own naming macros, you
can redefine them. Here is the minimal working example:

\makeatletter
\newcommandx*\MyName [3] [1=\Qempty, 3=\@empty]{(Name)}
\newcommandx*\MyLName [3] [1=\@empty, 3=\Q@empty]

{(Long name)\@nameauth@FullNamefalse}
\newcommandx*\MyFName [3] [1=\@empty, 3=\Qempty]

{(Short name)\@nameauthO@F irstNamefalse}
\makeatother

The macros above do not really work together with the rest of nameauth pack-
age, so be careful! You can hook these macros into the user interface thus:

\renewcommand*\NameauthName{\MyName}
\renewcommand*\NameauthLName{\MyLName}
\renewcommand*\NameauthFName{\MyFName}
\begin{nameauth}

\< S8illy & No Particular & Name & >
\end{nameauth}
This is \Silly, \LSilly, and \SSilly.
This is (Name), (Long name), and (Short name).

\global Like \NamesFormat, the other hook macros, and many of the state-changing and

triggering macros in this package, these naming macros can be redefined or used
locally within a scope without making global changes to the document unless you
specifically use \global.

Here we show that \NameauthName, \NameauthLName, and \NameauthFName
have reverted back to their original forms. Now \Name [No Particular]{Name}
and \Silly produce No Particular Name and Name.

This space intentionally left blank.

62

3.0

3.0

3.0

2.6

2.5

2.10 Technical Notes

About the package itself:

We put great weight on being backward-compatible with older versions.
Recent changes aim for simpler work flow, not more features.

The package works with both xindy and makeindex. We recommend xindy
for languages whose collating sequences do not map to English.?®

We support alternate names in both Western and “native” Eastern forms.
Mononyms and the older syntax for non-Western names do not support al-
ternate names.

Name output, index entries, and index cross-references are independent mod-
ules.

Warnings for the indexing macros are suppressed unless one uses the verbose
option. The nameauth environment will continue to emit warnings as needed.

The comma option and the older syntax are no longer restrictive, save with
\AKA and its derivatives. See Sections 1.5, 2.3.1, and 2.8.

No formatting is selected by default. Cf. Sections 2.4.2, 2.9.5, 2.9.6, and 2.9.7.

About the manual:

This manual is compatible with both A4 and US letter formats.
For an index that focuses on using the names, we minimize macro references.
We mention when this manual changes package internals for an example.

The name pattern reference was removed for redundancy and obsolescence.

About package building:

The nameauth package requires etoolbox, suffix, trimspaces, and xargs. The dtx
file encoding is UTF-8; we cannot guarantee building and using this package
on systems that are not Unicode-compliant.

With each release, we test nameauth with dvi-mode latex and with pdf-
mode engines pdflatex, lualatex, and xelatex using makeindex. We run
the GNU Makefile with the ENGINE=(engine) option.*’

This package was built with pdflatex. This item changes per KTEX engine.

This package is tested on Ubuntu Linux and Windows 7 (both vanilla TEX
Live). Cygwin provides make on Windows. The pdflatex version of this pack-
age is released from the Ubuntu platform to CTAN.

38\PretagName may not be useful in that case. German does map to English: &, 6, i, and 8 are
ae, oe, ue, and ss. Norwegian does not map to English: @, ¢, and & come after z.
39The manual is used as the test suite. In dvi mode the manual omits all references to TikZ
because some dvi display programs (e.g. dviout, but not xdvi) will emit errors about bad specials
even if one just includes the tikz package. The TikZ diagrams herein will appear as blank space
in that case. This does not affect nameauth proper.

63

2.11 Errors and Warnings

Here are some ways to avoid common errors:

Keep it simple! Avoid unneeded macros and use the simplified interface.

Check braces and brackets with naming macros to avoid errors like “Paragraph
ended. ..” and “Missing (grouping token) inserted.”

Do not apply a formatting macro to an entire comma-delimited (SNN, affiz)
pair. Format each part separately.

Consider using \PretagName with all names containing control sequences or
active Unicode; see Section 2.5.4.

One way to spot errors is to compare index entries with names in the body
text. All macros that produce output also emit meaningful warnings.

The older syntax presents its own group of potential errors:

Erroneously typing \Name [Henry] {VIII} prints “Henry VIII” and “VIIL,” as
well as producing a malformed index entry.

Avoid forms like \Name [Henry]{VIII} [Tudor] which gives “Tudor VIII” and
“VIII” That is a Western alternate name form, which is incorrect.

The older syntax will not work with some macros. The comma-suffixed form
does work with those macros. See Section 2.8.

Warnings result from the following:

Using the nameauth environment to redefine shorthands or define shorthands
that collide with extant macros generates warning because that could result
in unwanted behavior like unexpected name forms and index entries. The
following will create a warning for such reasons:

\PretagName [E.\,B.]{White}{White, E. B.}...

\begin{nameauth}
\< White & E.\,B. & White & >
\< White & E. B. & White & >
\end{nameauth}

Sometimes dedefinition is harmless because it produces no unwanted results.
It is up to the user to consider these warnings.

Use the verbose option for warnings from the indexing macros.
Using an index cross-reference name as a page entry. Nothing will happen.
Creating the same cross-reference multiple times. Nothing will happen.

Creating a page reference after a cross-reference has been created or after
you have used \ExcludeName. Nothing happens until you use a variant of
\Includename.

Using \TagName and \UntagName on cross-references. Nothing will happen.

Using \PretagName with cross-references will create sorting tags for them,
but also will generate “informational warnings” only if the verbose option is
selected.

Using \ExcludeName with cross-references. Nothing will happen.

Using \ExcludeName to exclude a name that has already been excluded. Like-
wise, it will do nothing.

64

3 Implementation

3.1 Flags and Registers

The flags below are grouped according to general function. We begin with flow control

Who Called Me?

These values are used by the format hook dispatcher \@nameauth@Hook and the hook
macros to determine if they have been called by either \@nameauth@Name, \AKA, or
\IndexRef, respectively. Those macros set these flags. On their use, see also Sections 2.9.6
and 2.9.7.

1 \newif\if@nameauth@InAKA
2 \newif\if@nameauth@InName
3 \newif\if@nameauth@Xref

As an aside, \AKA will invoke \NamesFormat or \FrontNamesFormat if the alwaysformat
option is set. Otherwise it will invoke \MainNameHook or \FrontNameHook.

Core Macro Lock

The macros \@nameauth@Name and \AKA, with some auxiliary macros, process names in a
“locked” state. These flags prevent a stack overflow. See also Sections 2.9.6 and 2.9.7.

4 \newif\if@nameauth@Lock
5 \newif\if@nameauth@InHook
Indexing

As the naming macros have locks, so do the indexing macros. These locks permit or
prevent both indexing and tags. \IndexActive and \IndexInctive or the index and
noindex options toggle the first flag; \SkipIndex toggles the second. \JustIndex toggles
the third, which makes the core naming engine act like a call to \IndexName:

6 \newif\if@nameauth@DoIndex
7 \newif\if@nameauth@SkipIndex
8 \newif\if@nameauth@JustIndex

The pretag and nopretag options toggle the value below, which allows or prevents the
insertion of sort keys.

9 \newif\if@nameauth@Pretag
Theis flag determines whether \IndexRef creates a see reference or a see also reference.
10 \newif\if@nameauth@SeeAlso

Formatting

\NamesActive and \NamesInactive, with the mainmatter and frontmatter, options tog-
gle formatting hooks via \if@nameauth@MainFormat. \if@nameauth@AKAFormat permits
\AKA to call the first-use hooks once.

11 \newif\if@nameauth@MainFormat
12 \newif\if@nameauth@AKAFormat

The next flag works with \LocalNames and \GlobalNames.

13 \newif\if@nameauth@LocalNames

These two flags trigger \ForgetName and \SubvertName within \@nameauth@Name.
14 \newif\if@nameauth@Forget
15 \newif\if@nameauth@Subvert

\if@nameauth@FirstFormat triggers the first-use hooks to be called; otherwise the second-
use hooks are called. Additionally, \if@nameauth@AlwaysFormat forces this true, except
when \if@nameauth@AKAFormat is false.

16 \newif\if@nameauth@FirstFormat
17 \newif\ifO@nameauth@AlwaysFormat

65

Next we move from general flow control to specific modification of name forms.

Affix Commas

The comma and nocomma options toggle the flag value below. \ShowComma and \NoComma
respectively toggle the second and third.

18 \newif\if@nameauth@AlwaysComma
19 \newif\if@nameauth@ShowComma
20 \newif\if@nameauth@NoComma

Name Breaking
\KeepAffix toggles the first flag below, while \KeepName toggles the second. Both affect
the use of non-breaking spaces in the text.

21 \newif\if@nameauth@NBSP
22 \newif\if@nameauth@NBSPX

Detect Punctuation
This Boolean value is used to prevent double full stops at the end of a name in the text.

23 \newif\if@nameauth@Punct

Long and Short Names

\if@nameauth@FullName is true for a long name reference. \if@nameauth@FirstName

disables full-name references and causes only Western forenames to be displayed.
\if@nameauth@A1tAKA is toggled respectively by \AKA and \AKA* to print a longer or

shorter name. \if@nameauth@01dAKA forces the pre-3.0 behavior of \AKA*.
\if@nameauth@ShortSNN is used with \DropAffix to suppress the affix of a Western

name. \if@nameauth@EastFN toggles the forced printing of Eastern forenames.

24 \newif\if@nameauth@FullName
25 \newif\if@nameauth@FirstName
26 \newif\if@nameauth@A1tAKA

27 \newif\if@nameauth@01dAKA

28 \newif\if@nameauth@ShortSNN
29 \newif\if@nameauth@EastFN

Eastern Names
The next flags values govern name reversing and full surname capitalization. The first of
each pair is a global state. The second of each pair is an individual state.

30 \newif\if@nameauth@RevAll

31 \newif\if@nameauth@RevThis

32 \newif\if@nameauth@AllCaps

33 \newif\if@nameauth@Al1lThis

Last-Comma-First
This pair of flags deals with Western names reordered in a list according to surname.

34 \newif\if@nameauth@RevAllComma
35 \newif\if@nameauth@RevThisComma

Capitalize First Letter

The next flags deal with first-letter capitalization. The first Boolean value is triggered by
\CapThis and reset by \Name and \AKA. The second is triggered by \@nameauth@UTFtest
when it encounters a Unicode character under NFSS. The third is an “override switch”
triggered by \AccentCapThis as a fall-back. The fourth prevents the first-letter capping
mechanism from interacting with Continental formatting and the fifth toggles it.

36 \newif\if@nameauth@oCaps
37 \newif\if@nameauthQUTF

66

\NamesFormat

\MainNameHook

\FrontNamesFormat

\FrontNameHook

\NameauthName

\NameauthLName

\NameauthFName

38 \newif\if@nameauth@Accent
39 \newif\if@nameauth@AltFormat
40 \newif\if@nameauth@DoAlt

Warning Levels

This flag controls how many warnings you get. Defaults to few warnings. Verbose gives
you plenty of warnings about cross-references in the index.

41 \newif\if@nameauth@Verbose

Name Argument Token Registers

These three token registers contain the current values of the name arguments passed to
\Name, its variants, and the cross-reference fields of \AKA.

42 \newtoks\@nameauth@toksaJ,
43 \newtoks\@nameauth@toksbJ,
44 \newtoks\@nameauth@toksc/,

These three token registers contain the current values of the name arguments in each line
of the nameauth environment.

45 \newtoks\@nameauth@etoksb},
46 \newtoks\@nameauth@etoksc)
47 \newtoks\@nameauth@etoksdy,

3.2 Hooks

Post-process “first” instance of final complete name form in text. See Sections 2.4.2
and 2.9.5f. Called when both \@nameauth@MainFormat and \@nameauth@FirstFormat
are true.

48 \newcommand*\NamesFormat{}

Post-process subsequent instance of final complete name form in main-matter text. See
Sections 2.4.2 and 2.9.5f. Called when \@nameauth@MainFormat is true and the Boolean
flag \@nameauth@FirstFormat is false.

49 \newcommand*\MainNameHook{}

Post-process “first” instance of final complete name form in front-matter text. Called when
\@nameauth@MainFormat is false and \@nameauth@FirstFormat is true.

50 \newcommand*\FrontNamesFormat{}

Post-process subsequent instance of final complete name form in front-matter text. Called
when \@nameauth@MainFormat is false and \@nameauth@FirstFormat is false.

51 \newcommand*\FrontNameHook{}

Hook to create custom naming macros. Usually the three macros below have the same
control sequence, but they need not do so if you want something different. See Section 2.9.8.
Use at your own risk! Changing these macros basically rewrites this package.

52 \newcommand*\NameauthName{\@nameauth@Name}

Customization hook called after \@nameauth@FullName is set true. See Section 2.9.8.

53 \newcommand*\NameauthLName{\@nameauth@Name}

Customization hook called after \@nameauth@FirstName is set true. See Section 2.9.8.

54 \newcommand*\NameauthFName{\@nameauth@Name}

67

\@nameauth@Clean

3.3 Package Options

The following package options interact with many of the prior Boolean values.

55 \DeclareOption{comma}{\@nameauth@AlwaysCommatrue}

56 \DeclareOption{nocomma}{\@nameauth@AlwaysCommafalse}

57 \DeclareOption{mainmatter}{\@nameauth@ainFormattrue}

58 \DeclareOption{frontmatter}{\@nameauth@MainFormatfalse}

59 \DeclareOption{formatAKA}{\@nameauth@AKAFormattrue}

60 \DeclareOption{oldAKA}{\@nameauth@01dAKAtrue}

61 \DeclareOption{index}{\@nameauth@DoIndextrue}

62 \DeclareOption{noindex}{\@nameauth@oIndexfalse}

63 \DeclareOption{pretag}{\@nameauth@Pretagtrue}

64 \DeclareOption{nopretag}{\@nameauth@Pretagfalse}

65 \DeclareOption{allcaps}{\@nameauth@AllCapstrue}

66 \DeclareOption{normalcaps}{\@nameauth@AllCapsfalse}

67 \DeclareOption{allreversed}’

68 {\@nameauth@RevAlltrue\@nameauth@RevAllCommafalse}

69 \DeclareOption{allrevcommaly

70 {\@nameauth@RevAllfalse\@nameauth@RevAllCommatrue}

71 \DeclareOption{notreversed}

72 {\@nameauth@RevAllfalse\@nameauth@RevAllCommafalse}

73 \DeclareOption{alwaysformat}{\@nameauth@AlwaysFormattrue}

74 \DeclareOption{smallcaps}{\renewcommand*\NamesFormat{\scshapel}}
75 \DeclareOption{italic}{\renewcommand*\NamesFormat{\itshape}}
76 \DeclareOption{boldface}{\renewcommand*\NamesFormat{\bfseriesl}}
77 \DeclareOption{noformat}{\renewcommand*\NamesFormat{}}

78 \DeclareOption{verbose}{\@nameauth@Verbosetrue}

79 \DeclareOption{altformat}{%

80 \@nameauth@AltFormattrue\@nameauth@DoAlttrue}

81 \ExecuteOptions,

82 {nocomma,mainmatter,index,pretag,’%

83 normalcaps,notreversed,noformat}

84 \ProcessOptions\relax

Now we load the required packages. They facilitate the first/subsequent name uses,
the parsing of arguments, and the implementation of starred forms.

85 \RequirePackage{etoolbox}
86 \RequirePackage{suffix}

87 \RequirePackage{trimspaces}
88 \RequirePackage{xargs}

The etoolbox package is essential for processing name control sequences. Using xargs
allows the optional arguments to work. Using suffix facilitated the starred form of macros.
Finally, trimspaces helps the fault tolerance of name arguments.

3.4 Internal Macros

Name Control Sequence: Who Am 1?7

Thanks to Heiko Oberdiek, this macro produces a “sanitized” string used to make a (hope-
fully) unique control sequence for a name. We can test the existence of that control string
to determine first occurrences of a name or cross-reference.

89 \newcommand+*\@nameauth@Clean[1]
90 {\expandafter\zap@space\detokenize{#1} \@empty}

68

\@nameauth@Root

\@nameauth@@Root

\@nameauth@TrimTag

\@nameauth@@TrimTag

\@nameauth@Suffix

\@nameauth@@Suffix

\@nameauth@GetSuff

\@nameauth@QGetSuff

\@nameauth@TestToks

\@nameauth@UTFtest

Parsing: Root and Suffix

The following two macros return everything before a comma in (SNN).

91 \newcommand*\@nameauth@Root [1]{\@nameauth@@Root#1,\\}

Throw out the comma and suffix, return the radix.

92 \def\@nameauth@ORoot#1,#2\\{\trim@spaces{#1}}

The following two macros return everything before a vertical bar (|) in an index tag.

93 \newcommand*\@nameauth@TrimTag[1] {\Cnameauth@@TrimTag#1 | \\}

Throw out the bar and suffix, return the radix.

94 \def\@nameauth@OTrimTag#1 | #2\\{#1}

The following two macros parse {(SNN) into a radix and a comma-delimited suffix, return-
ing only the suffix after a comma in the argument, or nothing.

95 \newcommand*\@nameauth@Suffix[1]{\@nameauth@eSuffix#1,,\\}

Throw out the radix; return the suffix with no leading spaces. We use this when printing
the suffix.

96 \def\@nameauth@@Suffix#1,#2,#3\\%
97 {\ifx\\#2\\\@empty\else\trim@spaces{#2}\fi}

The following two macros just grab the suffix for testing if the first non-space character is
an active character from inputenc.

98 \newcommand*\@nameauth@GetSuff [1]{\@nameauth@@GetSuff#1,,\\}

Throw out the radix; return the suffix.

99 \def\@nameauth@QGetSuff#1,#2,#3\\{#2}
Parsing: Capitalization

Test if the leading token is the same as the leading token of an active Unicode character,
using an Esszett (8) as the control. We only run this macro if we are in the inputenc regime.

100 \newcommand*\@nameauth@TestToks [1]

101 {%

102 \toks@\expandafter{\Qcar#1\@nill}y,

103 \edef\one{\the\toks@}

104 \toks@\expandafter{\@carB\@nil}y,

105 \edef\two{\the\toks@}Y

106 \ifx\one\two\@nameauth@UTFtrue\else\@nameauth@UTFfalse\fi
107 }

Before we attempt at capitalizing anything, we need to determine if we are running under
xelatex or lualatex by testing for \Umathchar. Then we see if inputenc is loaded. We
set up the comparison and pass off to \nameauth@TestToks.

108 \newcommand*\@nameauth@UTFtest [1]
109 {%

110 \def\testarg{#1}%

111 \ifdefined\Umathchar

112 \@nameauth@UTFfalse’,

113 \else

114 \ifdefined\UTFviii@two@octets
115 \if@nameauth@Accent

69

116
117
118
119
120
121
122
123

124 }

\@nameauth@UTFtrue\@nameauth@Accentfalse,
\else
\expandafter\@nameauth@TestToks\expandafter{\testargl}y
\fi
\else
\@nameauth@UTFfalseY
\fi

\fi

\@nameauth@UTFtestS This test is like the one above, but a special case when we have a suffix. We have to do
a bit more in the way of expansion to get the comparison to work properly. Moreover, we
only use this when the regular suffix macro is not \@empty.

\@nameauth@Cap

\@nameauth@C@p

\@nameauth@CapUTF

\@nameauth@C@pUTF

125 \newcommand*\@nameauth@UTFtestS[1]

126 {%

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144 }

\let\ex\expandafter?,
\ex\def\ex\testarg\ex{\@nameauthQ@GetSuff{#1}}J,
\ex\toks@\ex\ex\ex{\testarg}l,
\ex\def\ex\testOrg\ex{\the\toks@}/,
\ifdefined\Umathchar

\@nameauth@UTFfalse’,

\else

\ifdefined\UTFviii@twoQ@octets
\if@nameauth@Accent
\@nameauth@UTFtrue\@nameauth@Accentfalse,
\else
\expandafter\Onameauth@TestToks\expandafter{\test@rgl}y
\fi
\else
\@nameauth@UTFfalse,
\fi

\fi

The following two macros cap the first letter of the argument.

145 \newcommand*\@nameauth@Cap [1] {\@nameauth@COp#1\\}

Helper macro for the one above.

146 \def \@nameauth@CQ@p#1#2\\Y,

147

{\expandafter\trim@spaces\expandafter{\MakeUppercase{#1}#2}}

The following two macros cap the first active Unicode letter under inputenc.

148 \newcommand*\@nameauth@CapUTF [1] {\@nameauth@COpUTF#1\\}

Helper macro for the one above.

149 \def \@nameauth@COpUTF#1#2#3\\Y

150

{\expandafter\trim@spaces\expandafter{\MakeUppercase{#1#2}#3}}

70

\@nameauth@TestDot

\@nameauth@CheckDot

\@nameauth@EvalDot

\@nameauth@Error

\@nameauth@Name

Parsing: Punctuation Detection

This macro, based on a snippet by Uwe Lueck, checks for a period at the end of its
argument. It determines whether we need to call \@nameauth@CheckDot below.

151 \newcommand*\@nameauth@TestDot [1]

152 {%

153 \def\TestDot##1.\TestEnd##2\\{\TestPunct{##2}}%
154 \def\TestPunct##1{%

155 \ifx\TestPunct##1\TestPunct
156 \else

157 \@nameauth@Puncttrue’,

158 \fi

159 1}

160 \@nameauth@Punctfalse’,
161 \TestDot#1\TestEnd.\TestEnd\\Y%
162 }

We assume that \expandafter precedes the invocation of \@nameauth@CheckDot, which
only is called if the terminal character of the input is a period. We evaluate the lookahead
\@token while keeping it on the list of input tokens.

163 \newcommand*\@nameauth@CheckDotY
164 {\futurelet\@token\@nameauth@EvalDot}

If \@token is a full stop, we gobble the token.

165 \newcommand*\@nameauth@EvalDot

166 {%

167 \let\@period=.Y%

168 \ifx\@token\@period\expandafter\@gobble \fi
169 }

Error Detection

One can cause nameauth to halt with an error by leaving a required name argument
empty, providing an argument that expands to empty, or creating an empty root within a
root /suffix pair.

170 \newcommand*\@nameauth@Error [2]

171 {%

172 \edef\msga{#2 SNN field emptyl}’%

173 \edef\msgb{#2 SNN field malformed}’

174 \protected@edef\testname{\trim@spaces{#1}1}/
175 \protected@edef\testroot{\@nameauth@Root{#1}1}%
176 \ifx\testname\Qempty

177 \PackageError{nameauth}{\msga}/,
178 \fi

179 \ifx\testroot\Q@empty

180 \PackageError{nameauth}{\msgbl}/
181 \fi

182 }

Core Name Engine

Here is the heart of the package. Marc van Dongen provided the original basic structure.
Parsing, indexing, and formatting are more discrete than in earlier versions.

183 \newcommandx*\@nameauth@Name [3] [1=\Q@empty, 3=\Qempty]
184 {%

71

Both \@nameauth@Name and \AKA engage the lock below, preventing a stack overflow.

185 \unless\if@nameauth@Lock
186 \@nameauth@Locktrue},

Tell the formatting mechanism that it is being called from \@nameauth@Name. Then test
for malformed input.

187 \@nameauth@InNametrue}
188 \@nameauth@Error{#2}{macro \string\@nameauth@namely

If we use \JustIndex then skip everything else..

189 \if@nameauth@JustIndex

190 \IndexName [#1]{#2} [#3]%

191 \@nameauth@InNamefalse},

192 \@nameauth@Lockfalse,

193 \@nameauth@JustIndexfalse,
194 \else

Delete/create name cseq if directed. If the delete flag is set, the create flag is ignored.
Ensure that names are printed in horizontal mode. Print the name between two index
entries, if allowed.

195 \if@nameauth@Forget

196 \ForgetName [#1]{#2} [#3]%

197 \else

198 \if@nameauth@Subvert

199 \SubvertName [#1] {#2} [#3]

200 \fi

201 \fi

202 \leavevmode\hbox{}%

203 \unless\if@nameauth@SkipIndex\IndexName [#1]{#2} [#3]\fi
204 \if@nameauth@MainFormat

205 \@nameauth@Parse [#1]{#2} [#3] {!MN}
206 \else

207 \@nameauth@Parse [#1]{#2} [#3]{!NF}/,
208 \fi

209 \unless\if@nameauth@SkipIndex\IndexName [#1]{#2} [#3]\fi
Reset all the “per name” Boolean values.

210 \@nameauth@SkipIndexfalse},

211 \@nameauth@Forgetfalse’

212 \@nameauth@Subvertfalse,

213 \@nameauth@Lockfalse,

214 \@nameauth@InNamefalse?,

215 \@nameauth@NBSPfalse,

216 \@nameauth@NBSPXfalse’

217 \@nameauth@oCapsfalse}

218 \@nameauth@Accentfalse’,

219 \@nameauth@AllThisfalse},

220 \@nameauth@ShowCommafalse},

221 \@nameauth@NoCommafalse,

222 \@nameauth@RevThisfalse},

223 \@nameauth@RevThisCommafalse?,

224 \@nameauth@ShortSNNfalse},

225 \@nameauth@EastFNfalse},

226 \fi

Close the “locked” branch.

227 \fi

72

\@nameauth@Parse

Call the full stop detection.

228 \if@nameauth@Punct\expandafter\@nameauth@CheckDot\fi
229 }

Parse and print a name in the text. The final required argument is a “mode designator” that
can be “IMN” (main name); “INF” (was “non-formatted,” now “name in front matter”);
and “IPN” (pseudonym/cross-reference). Both \@nameauth@Name and \AKA call this parser.

230 \newcommandx*\@nameauth@Parse [4] [1=\Qempty, 3=\Cempty]

231 {%
232 \if@nameauth@Lock

233 \let\ex\expandafter,

We want these arguments to expand to \@empty (or not) when we test them.
234 \protected@edef\arga{\trim@spaces{#1}}%
235 \protected@edef\rootb{\@nameauth@Root{#2}}%

236 \protected@edef\suffb{\O@nameauth@Suffix{#2}3}/
237 \protected@edef\argc{\trim@spaces{#3}}/,

If global caps. reversing, and commas are true, set the local flags true.

238 \if@nameauth@AllCaps\@nameauth@A1l1Thistrue\fi
239 \if@nameauth@RevAll\@nameauth@RevThistrue\fi
240 \if@nameauth@RevAllComma\@nameauth@RevThisCommatrue\fi

Make (usually) unique control sequence values from the name arguments.

241 \def\csb{\@nameauth@Clean{#2}}%
242 \def\csbc{\@nameauth@Clean{#2,#3}}%
243 \def\csab{\@nameauth@Clean{#1!#2}1}

Make token register copies of the current name args to be available for the hook macros.

244 \@nameauth@toksa\expandafter{#1}J,
245 \@nameauth@toksb\expandafter{#21}/,
246 \@nameauth@toksc\expandafter{#31}/,

Implement capitalization on demand in the body text if not in Continental mode.

247 \if@nameauth@DoCaps

248 \let\carga\argal,

249 \let\crootb\rootb,

250 \let\csuffb\suffby,

251 \let\cargc\argc

252 \unless\if@nameauth@AltFormat

We test the first optarg for active Unicode characters. Then we capitalize the first letter.

253 \unless\ifx\arga\@empty

254 \def\test{#1}%

255 \ex\@nameauth@UTFtest\ex{\test}%

256 \if@nameauth@UTF

257 \ex\def\ex\carga\ex{\ex\@nameauth@CapUTF\ex{\test}}/
258 \else

259 \ex\def\ex\carga\ex{\ex\@nameauth@Cap\ex{\test}}/
260 \fi

261 \fi

We test the root surname for active Unicode characters. Then we capitalize the first letter.

262 \def\test{#2}%

263 \ex\@nameauth@UTFtest\ex{\test}%

264 \if@nameauth@UTF

265 \ex\def\ex\crootb\ex{\ex\@nameauth@CapUTF\ex{\rootb}}%
266 \else

73

267
268

\ex\def\ex\crootb\ex{\ex\@nameauth@Cap\ex{\rootb}}%
\fi

We test the suffix for active Unicode characters. Then we capitalize the first letter.

269
270
271
272
273
274
275
276
277
278
279
280

We test the final optarg for active Unicode characters. Then we capitalize the first letter.

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

\unless\ifx\suffb\@empty
\def\test{#2}/,
\ex\@nameauth@UTFtestS\ex{\testl}}
\protected@edef\test{\@nameauth@GetSuff{#2}}/
\if@nameauth@UTF
\protected@edef\test{\@nameauth@Suffix{#2}}/
\ex\def\ex\csuffb\ex{\ex\@nameauth@CapUTF\ex{\test}}/
\else
\edef\test{\@nameauth@Suffix{#2}}/
\ex\def\ex\csuffb\ex{\ex\@nameauth@Cap\ex{\test}}/
\fi
\fi

\unless\ifx\argc\@empty
\def\test{#3}/
\ex\@nameauth@UTFtest\ex{\test}/
\if@nameauth@UTF
\ex\def\ex\cargc\ex{\ex\@nameauth@CapUTF\ex{\test}}/
\else
\ex\def\ex\cargc\ex{\ex\@nameauth@Cap\ex{\test}}/
\fi
\fi
\fi
\let\arga\carga%
\let\rootb\crootb
\let\suffb\csuffby,
\let\argc\cargc¥
\fi

We capitalize the entire surname when desired; different from above.

296
297
298

Use

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

\if@nameauth@AllThis
\protected@edef\rootb{\MakeUppercase{\@nameauth@Root{#2}1}}/
\fi

non-breaking spaces and commas as desired.

\edef\Space{\space}¥%
\edef\SpaceX{\space}’
\if@nameauth@NBSP\edef\Space{\nobreakspace}\fi
\if@nameauth@NBSPX\edef\SpaceX{\nobreakspace}\fi
\unless\ifx\arga\@empty
\if@nameauth@AlwaysComma
\edef\Space{, \spacel}/,
\if@nameauth@NBSP\edef\Space{, \nobreakspace}\fi
\fi
\if@nameauth@ShowComma
\edef\Space{, \spacel}/,
\if@nameauth@NBSP\edef\Space{, \nobreakspace}\fi
\fi
\if@nameauth@NoComma
\edef\Space{\space}’
\if@nameauth@NBSP\edef\Space{\nobreakspace}\fi
\fi
\fi

74

We parses names by attaching “meaning” to patterns of macro arguments primarily via
\FNN and \SNN. Then we call the name printing macros, based on the optional arguments.

317 \let\SNN\rootb%
318 \ifx\arga\@empty
319 \ifx\argc\Qempty

When \arga, \argc, and \suffb are empty, we have a mononym. When \suffb is not
empty, we have a native Eastern name or non-Western name.

320 \let\FNN\suffby,

321 \1let\SNN\rootb%

322 \@nameauth@NonWest{\csb#41}
323 \else

When \arga and \suffb are empty, but \argc is not, we have the older syntax. When
\arga is empty, but \argc and \suffb are not, we have alternate names for non-Western

names.
324 \ifx\suffb\Qempty
325 \let\FNN\argc%
326 \1let\SNN\rootb¥
327 \@nameauth@NonWest{\csbc#4}},
328 \else
329 \let\FNN\argc%
330 \1let\SNN\rootb¥
331 \@nameauth@NonWest{\csb#4}),
332 \fi
333 \fi
334 \else

When \arga is not empty, we have either a Western name or a non-native Eastern name.
When \argc is not empty, we use alternate names. When \suffb is not empty we use
suffixed forms.

335 \ifx\argc\Qempty

336 \let\FNN\arga¥

337 \else

338 \let\FNN\argc¥

339 \fi

340 \unless\ifx\suffb\@empty

341 \def\SNN{\rootb\Space\suffb}y
342 \if@nameauth@ShortSNN\let\SNN\rootb\fi
343 \fi

344 \@nameauth@West{\csab#4}/

345 \fi

346 \fi

347 }

\@nameauth@NonWest Print non-Western names from \@nameauth@name and \AKA. We inherit internal control
sequences from the naming macros and do nothing if called outside them.

348 \newcommand*\@nameauth@NonWest [1]

349 {%

350 \if@nameauth@Lock

351 \unless\ifcsname#1\endcsname

352 \@nameauth@FirstFormattrue},

353 \fi

354 \if@nameauth@InAKA

355 \if@nameauth@AIltAKA

356 \if@nameauth@01dAKA\@nameauth@EastFNtrue\fi

75

357 \@nameauth@FullNamefalseY

358 \@nameauth@FirstNametrue},
359 \else

360 \@nameauth@FullNametrue,
361 \@nameauth@FirstNamefalseY
362 \fi

363 \else

364 \unless\ifcsname#1\endcsname
365 \@nameauth@FullNametrue,
366 \@nameauth@FirstNamefalseY
367 \fi

368 \fi

369 \if@nameauth@FirstName

370 \@nameauth@FullNamefalse},
371 \fi

372 \ifx\FNN\@empty

373 \@nameauth@Hook{\SNN}%,

374 \else

375 \if@nameauth@FullName

376 \if@nameauth@RevThis

377 \@nameauth@Hook{\FNN\Space\SNN}/
378 \else

379 \@nameauth@Hook{\SNN\Space\FNN}/
380 \fi

381 \else

382 \if@nameauth@FirstName

383 \if@nameauth@EastFN

384 \@nameauth@Hook{\FNN}/
385 \else

386 \@nameauth@Hook{\SNN}/
387 \fi

388 \else

389 \@nameauth@Hook{\SNN}7
390 \fi

391 \fi

392 \fi

393 \unless\ifcsname#1\endcsname
394 \unless\if@nameauth@InAKA\csgdef{#1}{}\fi
395 \fi

396 \@nameauth@FullNamefalse},

397 \@nameauth@FirstNamefalse},

398 \fi

399 }

\@nameauth@West Print Western names and “non-native” Eastern names from \@nameauth@name and \AKA.

We inherit internal control sequences from the naming macros and do nothing if called

outside them.

400 \newcommand*\@nameauth@West [1]
401 {%
402 \if@nameauth@Lock

403 \unless\ifcsname#1\endcsname
404 \@nameauth@FirstFormattrue},
405 \fi

406 \if@nameauth@InAKA

407 \if@nameauth@A1tAKA

408 \@nameauth@FullNamefalse},

76

\@nameauth@Hook

409 \@nameauth@FirstNametrueY

410 \else

411 \@nameauth@FullNametrue,

412 \@nameauth@FirstNamefalse},

413 \fi

414 \else

415 \unless\ifcsname#1\endcsname

416 \@nameauth@FullNametrue,

417 \@nameauth@FirstNamefalse},

418 \fi

419 \fi

420 \if@nameauth@FirstName

421 \@nameauth@FullNamefalse},

422 \fi

423 \if@nameauth@FullName

424 \if@nameauth@RevThis

425 \@nameauth@Hook{\SNN\SpaceX\FNN1}/
426 \else

427 \if@nameauth@RevThisComma

428 \edef\RevSpace{, \SpaceX}/

429 \@nameauth@Hook{\SNN\RevSpace\FNN1}/
430 \else

431 \@nameauth@Hook{\FNN\SpaceX\SNN}%
432 \fi

433 \fi

434 \else

435 \if@nameauth@FirstName

436 \@nameauth@Hook{\FNN}%

437 \else

438 \@nameauth@Hook{\rootbl}}

439 \fi

440 \fi

441 \unless\ifcsname#1\endcsname

442 \unless\if@nameauth@InAKA\csgdef{#1}{}\fi
443 \fi

444 \@nameauth@FullNamefalse},

445 \@nameauth@FirstNamefalseY

446 \fi

447 }

Format Hook Dispatcher

Flags help the dispatcher invoke the correct formatting hooks. The flags control which
hook is called (first/subsequent use, name type). The first set of tests handles formatting
within \AKA. The second set of tests handles regular name formatting.

448 \newcommand*\@nameauth@Hook [1]

449 {7,

450 \if@nameauth@Lock

451 \@nameauth@InHooktrue,

452 \protected@edef\test{#1}%

453 \expandafter\@nameauth@TestDot\expandafter{\test}’
454 \if@nameauth@InAKA

455 \if@nameauth@AlwaysFormat

456 \@nameauth@FirstFormattrue,

457 \else

458 \unless\if@nameauth@AKAFormat

7

459 \@nameauth@FirstFormatfalse\fi

460 \fi

461 \if@nameauth@MainFormat

462 \if@nameauth@FirstFormat

463 \bgroup\NamesFormat{#1}\egroup’
464 \else

465 \bgroup\MainNameHook{#1}\egroup/
466 \fi

467 \else

468 \if@nameauth@FirstFormat

469 \bgroup\FrontNamesFormat{#1}\egroup’
470 \else

471 \bgroup\FrontNameHook{#1}\egroup
472 \fi

473 \fi

474 \else

475 \if@nameauth@AlwaysFormat

476 \@nameauth@FirstFormattrue

477 \fi

478 \if@nameauth@MainFormat

479 \if@nameauth@FirstFormat

480 \bgroup\NamesFormat{#1}\egroup’
481 \else

482 \bgroup\MainNameHook{#1}\egroup’
483 \fi

484 \else

485 \if@nameauth@FirstFormat

486 \bgroup\FrontNamesFormat{#1}\egroup’
487 \else

488 \bgroup\FrontNameHook{#1}\egroup
489 \fi

490 \fi

491 \fi

492 \@nameauth@FirstFormatfalse},

493 \@nameauth@InHookfalse},

494 \fi

495 }

Indexing Internals

\@nameauth@Index If the indexing flag is true, create an index entry, otherwise do nothing. Add tags auto-
matically if they exist.

496 \newcommand*\@nameauth@Index [2]
497 {%

498 \def\cseq{#1}/

499 \let\ex\expandafter/,

500 \ifcsname\cseq!TAG\endcsname

501 \protected@edef\Tag{\csname#1!TAG\endcsname}

502 \ex\def\ex\ShortTag\ex{\ex\@nameauth@TrimTag\ex{\Tagl}}%
503 \fi

504 \if@nameauth@DoIndex

505 \ifcsname\cseq!TAG\endcsname

506 \ifcsname\cseq!PRE\endcsname

507 \if@nameauth@Xref?

508 \index%

509 {\csname\cseq!PRE\endcsname#2\ShortTagl}/,

510 \else

78

\@nameauth@Actual

\CapThis

\AccentCapThis

\CapName

\AllCapsInactive

\AllCapsActive

\RevName

\ReverseInactive

\ReverseActive

511 \index¥%

512 {\csname\cseq!PRE\endcsname#2\csname\cseq! TAG\endcsname},
513 \fi

514 \else

515 \if@nameauth@Xref

516 \index{#2\ShortTag}’

517 \else

518 \index{#2\csname\cseq!TAG\endcsname},
519 \fi

520 \fi

521 \else

522 \ifcsname\cseq!PRE\endcsname

523 \index{\csname\cseq!PRE\endcsname#2}J,
524 \else

525 \index{#2}/,

526 \fi

527 \fi

528 \fi

529 }

This sets the “actual” character used by nameauth for index sorting.

530 \newcommand*\@nameauth@Actual{@}

3.5 User Interface Macros
Syntactic Formatting — Capitalization
Tells the root capping macro to cap the first character. This excludes \CapName.

531 \newcommand*\CapThis{\@nameauth@DoCapstrue}

Overrides the automatic test for active Unicode characters. This is a fall-back in case the
automatic test for active Unicode characters fails.

532 \newcommand*\AccentCapThis}
533 {\@nameauth@Accenttrue\@nameauth@DoCapstrue}

Capitalize entire required name. \CapThis overrides this.

534 \newcommand*\CapName{\@nameauth@Al1lThistrue}

Turn off global surname capitalization. \CapThis overrides this.

535 \newcommand*\AllCapsInactive{\@nameauth@AllCapsfalse}

Turn on global surname capitalization. \CapThis overrides this.

536 \newcommand*\AllCapsActive{\@nameauth@AllCapstrue}

Syntactic Formatting — Reversing

Reverse name order.

537 \newcommand*\RevName{\@nameauth@RevThistrue}

Turn off global name reversing.

538 \newcommand*\ReverseInactive{\@nameauth@RevAllfalse}

Turn on global name reversing.

539 \newcommand*\ReverseActive{\@nameauth@RevAlltrue}

79

\ForceFN Force the printing of an Eastern forename in the text, but only when using the “short
name” macro \FName and the S-modifier.

540 \newcommand*\ForceFN{\@nameauth@EastFNtrue}

Syntactic Formatting — Reversing with Commas

\RevComma Last name, comma, first name.

541 \newcommand*\RevCommay,
542 {\@nameauth@RevThisCommatrue}

\ReverseCommaInactive Turn off global “last-name-comma-first.”

543 \newcommand*\ReverseCommaInactive
544 {\@nameauth@RevAllCommafalse}

\ReverseCommaActive Turn on global “last-name-comma-first.”

545 \newcommand*\ReverseCommaActive’,
546 {\@nameauth@RevAllCommatrue}

Alternate Syntactic Formatting

\AltFormatActive Turn on alternate formatting.

547 \newcommand*\AltFormatActive{}

548 \global\@nameauth@AltFormattrue,
549 \global\@nameauth@DoAlttrue’
550 }

\AltFormatActive* Turn on alternate formatting.

551 \WithSuffix{\newcommand*}\AltFormatActivex*{},
552 \global\@nameauth@AltFormattruey

553 \global\@nameauth@DoAltfalse,

554 F

\AltFormatInactive Turn off alternate formatting.

555 \newcommand*\AltFormatInactive{’
556 \global\@nameauth@AltFormatfalse,
557 \global\@nameauth@DoAltfalse,
558 }

\A1tOn Locally turn on alternate formatting.

559 \newcommand*\Al1tOn{%
560 \if@nameauth@InHook

561 \if@nameauth@AltFormat\@nameauth@DoAlttrue\fi
562 \fi
563 }

\A1t0ff Locally turn off alternate formatting.

564 \newcommand*\A1tOff{%
565 \if@nameauth@InHook

566 \if@nameauth@AltFormat\@nameauth@DoAltfalse\fi
567 \fi
568

80

\AltCaps Alternate discretionary capping macro triggered by \CapThis.

569 \newcommand*\AltCaps[1]{%
570 \if@nameauth@InHook

571 \if@nameauth@DoCaps\MakeUppercase{#1}\else#1\fi
572 \else#1Y,

573 \fi

574 }

\textSC Alternate formatting macro: small caps when active.

575 \newcommand*\textSC[1]{%
576 \if@nameauth@DoAlt\textsc{#1}\else#1\fi}

\textUC Alternate formatting macro: uppercase when active.

577 \newcommand*\textUC[1]{%
578 \if@nameauth@DoAlt\MakeUppercase{#1}\else#1\fi}

\textIT Alternate formatting macro: italic when active.

579 \newcommand*\textIT[1]{%
580 \if@nameauth@DoAlt\textit{#1}\else#1\fi}

\textBF Alternate formatting macro: boldface when active.

581 \newcommand*\textBF [1]{%
582 \if@nameauth@DoAlt\textbf{#1}\else#1\fi}

Syntactic Formatting — Affixes

\ShowComma Put comma between name and suffix one time.

583 \newcommand*\ShowComma{\@nameauth@ShowCommatrue}

\NoComma Remove comma between name and suffix one time (with comma option).

584 \newcommand*\NoComma{\@nameauth@NoCommatrue}

\DropAffix Suppress the affix in a long Western name.
585 \newcommand*\DropAffix{\@nameauth@ShortSNNtrue}

\KeepAffix Trigger a name-suffix pair to be separated by a non-breaking space.

586 \newcommand*\KeepAffix{\@nameauth@NBSPtrue}

\KeepName Use non-breaking spaces between name syntactic forms.

587 \newcommand*\KeepName{\@nameauth@NBSPtrue\@nameauth@NBSPXtrue}

Typographic Formatting — Main Versus Front Matter

\NamesInactive Switch to the “non-formatted” species of names.

588 \newcommand*\NamesInactive{\@nameauth@MainFormatfalse}

\NamesActive Switch to the “formatted” species of names.

589 \newcommand*\NamesActive{\@nameauth@MainFormattrue}

Typographic Formatting — First / Subsequent Reference

\ForgetThis Have the naming engine \@nameauth@Name call \ForgetName internally.

590 \newcommand*\ForgetThis{\@nameauth@Forgettrue}

81

\SubvertThis

\ForceName

\LocalNames

\GlobalNames

\IndexInactive

\SkipIndex

\JustIndex

\IndexActive

\IndexActual

\SeeAlso

\NameParser

Have the naming engine \@nameauth@Name call \SubvertName internally.

591 \newcommand*\SubvertThis{\@nameauth@Subverttrue}

Set \@nameauth@FirstFormat to be true even for subsequent name uses. Works for one
name only.

592 \newcommand*\ForceName{\@nameauth@FirstFormattrue}

Name Occurrence Tweaks
\LocalNames sets @nameauth@LocalNames true so \ForgetName and \SubvertName do
not affect both formatted and unformatted naming systems.

593 \newcommand*\LocalNames{\global\@nameauth@LocalNamestrue}

\GlobalNames sets @nameauth@LocalNames false. This restores the default behavior of
\ForgetName and \SubvertName.

594 \newcommand*\GlobalNames{\global\@nameauth@LocalNamesfalse}

Index Operations

Turn off global indexing of names.

595 \newcommand*\IndexInactive{\@nameauth@DoIndexfalse}

Turn off the next instance of indexing in \Name, \FName, and starred forms.

596 \newcommand*\SkipIndex{\@nameauth@SkipIndextrue}

Makes the next call to \Name, \FName, and starred forms act like \IndexName. Overrides
\SkipIndex.

597 \newcommand*\JustIndex{\@nameauth@JustIndextrue}

Turn on global indexing of names.

598 \newcommand*\IndexActive{\@nameauth@DoIndextrue}

Change the “actual” character from the default.

599 \newcommand*\IndexActual[1]
600 {\global\renewcommand*\@nameauth@Actual{#1}}

Change the type of cross-reference from a see reference to a see also reference. Works once
per xref, unless one uses \Include*, in which case, take care!

601 \newcommand*\SeeAlso{\@nameauth@SeeAlsotrue}

Hook Macro Name Parser

Generate a name form based on the current state of the nameauth macros in the locked
path. Available for use only in the hook macros.

602 \newcommand*\NameParser

603 {%

604 \if@nameauth@InHook
605 \1let\SNN\rootb%
606 \ifx\arga\@empty

If the first optarg is empty, it is a non-Western name. The forename will be either the
suffix or the final optarg.

607 \ifx\argc\Qempty
608 \let\FNN\suffb%
609 \else

610 \let\FNN\argc¥
611 \fi

612 \ifx\suffb\Qempty

82

Mononym case

613 \1fx\FNN\Qempty
614 \SNN%
615 \else

Eastern or ancient name, using the older syntax, with name reversing and forcing

616 \if@nameauth@FullName?Y,
617 \if@nameauth@RevThis
618 \FNN\Space\SNNY

619 \else

620 \SNN\Space\FNN%

621 \fi

622 \else

623 \if@nameauth@FirstName
624 \if@nameauth@EastFN
625 \FNNY%

626 \else

627 \SNN%

628 \fi

629 \else

630 \SNNY%

631 \fi

632 \fi

633 \fi

634 \else

Eastern or ancient name, using the new syntax, with name reversing and forcing

635 \if@nameauth@FullName
636 \if@nameauth@RevThis
637 \FNN\Space\SNN%

638 \else

639 \SNN\Space\FNN%

640 \fi

641 \else

642 \if@nameauth@FirstName
643 \if@nameauth@EastFN
644 \FNN%

645 \else

646 \SNNY

647 \fi

648 \else

649 \SNNY

650 \fi

651 \fi

652 \fi

653 \else

Western name with name reversing and suffixes

654 \ifx\argc\Q@empty

655 \let\FNN\arga¥%

656 \else

657 \let\FNN\argc¥

658 \fi

659 \unless\ifx\suffb\Qempty

660 \def\SNN{\rootb\Space\suffb}y

661 \if@nameauth@ShortSNN\1let\SNN\rootb\fi%
662 \fi

83

663 \if@nameauth@FullName

664 \if@nameauth@RevThis
665 \SNN\SpaceX\FNNY,

666 \else

667 \if@nameauth@RevThisComma
668 \SNN\RevSpace\FNNY%
669 \else

670 \FNN\SpaceX\SNNY,
671 \fi

672 \fi

673 \else

674 \if@nameauth@FirstName
675 \FNN%

676 \else

677 \let\SNN\rootb

678 \SNNY%

679 \fi

680 \fi

681 \fi

682 \fi

683 }

Traditional Naming Interface

\Name \Name calls \NameauthName, the interface hook.

684 \newcommand\Name{\NameauthName}

\Name* \Name* sets up a long name reference and calls \NameauthLName, the interface hook.

685 \WithSuffix{\newcommand*}\Namex*?,
686 {\@nameauth@FullNametrue\NameauthLName}

\FName \FName sets up a short name reference and calls \NameauthFName, the interface hook.

687 \newcommand\FName{\@nameauth@FirstNametrue\NameauthFName}

\FName* \FName and \FName* are identical in function.

688 \WithSuffix{\newcommand*}\FName*Y
689 {\@nameauth@FirstNametrue\NameauthFName}

Index Operations

\IndexName This creates an index entry with page references. It issues warnings if the verbose option
is selected. It prints nothing. First we make copies of the arguments.

690 \newcommandx*\IndexName [3] [1=\Q@empty, 3=\Qempty]
691 {%

692 \protected@edef\arga{\trim@spaces{#1}}%

693 \protected@edef\rootb{\@nameauth@Root{#2}}%
694 \protected@edef\suffb{\@nameauth@Suffix{#2}}/
695 \protected@edef\argc{\trim@spaces{#3}}/

696 \def\csb{\@nameauth@Clean{#2}}/

697 \def\csbc{\@nameauth@Clean{#2,#3}}%

698 \def\csab{\@nameauth@Clean{#1'#2}}/,

Test for malformed input.

699 \@nameauth@Error{#2}{macro \string\IndexName}}

84

We create the appropriate index entries, calling \@nameauth@Index to handle sorting and
tagging. We do not create an index entry for a cross-reference (code PN for pseudonym),
used by \IndexRef, \Excludename, \Includename, \AKA, and \PName. If the first optarg
is empty, it is a non-Western name.

700 \ifx\arga\@empty

701 \ifx\argc\@empty

702 \ifcsname\csb!PN\endcsname

703 \if@nameauth@Verbose

704 \PackageWarning{nameauthl}

705 {macro \IndexName: XRef: #2 existsl}%
706 \fi

707 \else

708 \ifx\suffb\Qempty

mononym or Eastern / ancient name, new syntax

709 \@nameauth@Index{\csb}{\rootbl}%

710 \else

711 \@nameauth@Index{\csb}{\rootb\space\suffbl}y,
712 \fi

713 \fi

714 \else

715 \ifx\suffb\Qempty

716 \ifcsname\csbc!PN\endcsname

717 \if@nameauth@Verbose

718 \PackageWarning{nameauth}/,

719 {macro \IndexName: XRef: #2 #3 exists})
720 \fi

721 \else

Eastern or ancient name, older syntax

722 \@nameauth@Index{\csbc}{\rootb\space\argcl}y,
723 \fi

724 \else

725 \ifcsname\csb!PN\endcsname

726 \if@nameauth@Verbose

727 \PackageWarning{nameauth},

728 {macro \IndexName: XRef: #2 exists}

729 \fi

730 \else

Eastern or ancient name, new syntax, alternate name ignored

731 \@nameauth@Index{\csb}{\rootb\space\suffb}y,
732 \fi

733 \fi

734 \fi

735 \else

736 \ifcsname\csab!PN\endcsname

737 \if@nameauth@Verbose

738 \PackageWarning{nameauth}/

739 {macro \IndexName: XRef: #1 #2 exists})
740 \fi

741 \else

Western name, without and with affix

742 \ifx\suffb\Qempty
743 \@nameauth@Index{\csabl}/
744 {\rootb, \space\argaly,

85

745 \else

746 \@nameauth@Index{\csabl}’

TAT {\rootb, \space\arga, \space\suffb}’
748 \fi

749 \fi

750 \fi

751 }

\IndexRef This creates an index cross-reference that is not already a pseudonym. It prints nothing.
First we make copies of the arguments to test them and make parsing decisions.

752 \newcommandx*\IndexRef [4] [1=\Qempty, 3=\Qempty]
753 {%

754 \protected@edef\arga{\trim@spaces{#1}}/

755 \protected@edef\rootb{\@nameauth@Root{#2}}%
756 \protected@edef\suffb{\@nameauth@Suffix{#2}}%
757 \protected@edef\argc{\trim@spaces{#3}}%

758 \protected@edef\target{#41}%

759 \def\csb{\@nameauth@Clean{#2}}/

760 \def\csbc{\@nameauth@Clean{#2,#3}}%

761 \def\csab{\@nameauth@Clean{#1'#2}}/,

762 \let\ex\expandafter,

Test for malformed input.

763 \@nameauth@Error{#2}{macro \string\IndexRefl}’
764 \@nameauth@Xreftrue,

We create either see also entries or see entries. The former are unrestricted. The latter are
only created if they do not already exist as main entries.

765 \ifx\arga\@empty

766 \ifx\argc\Qempty

767 \ifcsname\csb!PN\endcsname

768 \if@nameauth@Verbose

769 \PackageWarning{nameauthl}/

770 {macro \IndexRef: XRef: #2 existsl}

771 \fi

772 \else

773 \ifx\suffb\Qempty

mononym or Eastern / ancient name, new syntax

774 \if@nameauth@SeelAlso

775 \@nameauth@Index{\csb}{\rootb|seealso{\target}}%
776 \else

777 \@nameauth@Index{\csb}{\rootb|see{\target}}%

778 \fi

779 \else

780 \if@nameauth@SeeAlso

781 \@nameauth@Index{\csb}{\rootb\space\suffb|seealso{\target}}’
782 \else

783 \@nameauth@Index{\csb}{\rootb\space\suffb|see{\target}}%
784 \fi

785 \fi

786 \csgdef{\csb!PN}{}/,

787 \fi

788 \else

789 \ifx\suffb\Qempty

790 \ifcsname\csbc!PN\endcsname

791 \if@nameauth@Verbose

86

792 \PackageWarning{nameauth}/,

793 {macro \IndexRef: XRef: #2 #3 exists}
794 \fi
795 \else

Eastern or ancient name, older syntax

796 \if@nameauth@SeeAlso

797 \@nameauth@Index{\csbcl}),

798 {\rootb\space\argc|seealso{\target}}%
799 \else

800 \@nameauth@Index{\csbcl})

801 {\rootb\space\argc|see{\target}}%
802 \fi

803 \csgdef{\csbc!PN}{}%

804 \fi

805 \else

806 \ifcsname\csb!PN\endcsname

807 \if@nameauth@Verbose

808 \PackageWarning{nameauth}/,

809 {macro \IndexRef: XRef: #2 exists}
810 \fi

811 \else

Eastern or ancient name, new syntax, alternate name ignored

812 \if@nameauth@SeeAlso

813 \@nameauth@Index{\csb}/

814 {\rootb\space\suffb|seealso{\target}1}/
815 \else

816 \@nameauth@Index{\csbl}’

817 {\rootb\space\suffb|see{\target}}/
818 \fi

819 \csgdef{\csb!PN}{}V

820 \fi

821 \fi

822 \fi

823 \else

824 \ifcsname\csab!PN\endcsname

825 \if@nameauth@Verbose

826 \PackageWarning{nameauthl}/

827 {macro \IndexRef: XRef: #1 #2 existsl})
828 \fi

829 \else

Western name, without and with affix

830 \ifx\suffb\Qempty

831 \if@nameauth@SeeAlso

832 \@nameauth@Index{\csabl}’

833 {\rootb, \space\arga|seealso{\target}}/
834 \else

835 \@nameauth@Index{\csab}/,

836 {\rootb,\space\arga|see{\target}}’

837 \fi

838 \else

839 \if@nameauth@SeeAlso

840 \@nameauth@Index{\csab}/,

841 {\rootb, \space\arga, \space\suffb|seealso{\target}}%
842 \else

87

843 \@nameauth@Index{\csab}

844 {\rootb, \space\arga, \space\suffb|see{\target}}/
845 \fi

846 \fi

847 \csgdef{\csab!PN}{}%

848 \fi

849 \fi

850 \@nameauth@SeeAlsofalseY,
851 \@nameauth@Xreffalse},
852 }

\ExcludeName This macro prevents a name from being indexed.

853 \newcommandx*\ExcludeName [3] [1=\@empty, 3=\Qempty]
854 {%

855 \protected@edef\arga{\trim@spaces{#1}}%

856 \protected@edef\argc{\trim@spaces{#3}}/

857 \protected@edef\suffb{\@nameauth@Suffix{#2}}%
858 \def\csb{\@nameauth@Clean{#2}}J

859 \def\csbc{\@nameauth@Clean{#2,#3}}%

860 \def\csab{\@nameauth@Clean{#1'#2}}/,

Below we parse the name arguments and create a non-empty pseudonym macro.

861 \@nameauth@Error{#2}{macro \string\ExcludeNamel}/,
862 \ifx\arga\@empty

863 \ifx\argc\Qempty

864 \if@nameauth@Verbose

865 \ifcsname\csb!MN\endcsname

866 \PackageWarning{nameauthl}y

867 {macro \ExcludeName: Reference: #2 existsl}’
868 \fi

869 \ifcsname\csb!NF\endcsname

870 \PackageWarning{nameauth}¥

871 {macro \ExcludeName: Reference: #2 existsl}’
872 \fi

873 \fi

874 \ifcsname\csb!PN\endcsname

875 \if@nameauth@Verbose

876 \PackageWarning{nameauthl}/

877 {macro \ExcludeName: Xref: #2 exists}%

878 \fi

879 \else

880 \csgdef{\csb!PN}{!}%

881 \fi

882 \else

883 \ifx\suffb\Qempty

884 \if@nameauth@Verbose

885 \ifcsname\csbc!MN\endcsname

886 \PackageWarning{nameauth}/,

887 {macro \ExcludeName: Reference: #2 #3 exists})
888 \fi

889 \ifcsname\csbc!NF\endcsname

890 \PackageWarning{nameauth},

891 {macro \ExcludeName: Reference: #2 #3 exists})
892 \fi

893 \fi

894 \csgdef{\csbc!PN}{!}%

88

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

944 }

\ifcsname\csbc!PN\endcsname
\if@nameauth@Verbose
\PackageWarning{nameauthl}y,
{macro \ExcludeName: Xref: #2 existsl}/
\fi
\else
\csgdef{\csbc!PN}{!}%
\fi
\else
\if@nameauth@Verbose
\ifcsname\csb!MN\endcsname
\PackageWarning{nameauthl}y,
{macro \ExcludeName: Reference: #2 exists})
\fi
\ifcsname\csb!NF\endcsname
\PackageWarning{nameauth}/,
{macro \ExcludeName: Reference: #2 exists})
\fi
\fi
\ifcsname\csb!PN\endcsname
\if@nameauth@Verbose
\PackageWarning{nameauthl}y,
{macro \ExcludeName: Xref: #2 exists})
\fi
\else
\csgdef{\csb!PN}{!}%
\fi
\fi
\fi
\else
\if@nameauth@Verbose
\ifcsname\csab!MN\endcsname
\PackageWarning{nameauthl}y
{macro \ExcludeName: Reference: #1 #2 exists}’
\fi
\ifcsname\csab!NF\endcsname
\PackageWarning{nameauth}/
{macro \ExcludeName: Reference: #1 #2 exists}’
\fi
\fi
\ifcsname\csab!PN\endcsname
\if@nameauth@Verbose
\PackageWarning{nameauth}y
{macro \ExcludeName: Xref: #2 exists}/
\fi
\else
\csgdef{\csab!PN}{!}}
\fi
\fi

\IncludeName This macro allows a name to be indexed if it is not a cross-reference.

945 \newcommandx*\IncludeName [3] [1=\@empty, 3=\Qempty]

946 {%

947
948

\protected@edef\arga{\trim@spaces{#1}}%
\protected@edef\argc{\trim@spaces{#3}}%

89

949 \protected@edef\suffb{\@nameauth@Suffix{#2}}%
950 \def\csb{\@nameauth@Clean{#23}1}%

951 \def\csbc{\@nameauth@Clean{#2,#3}}%

952 \def\csab{\@nameauth@Clean{#1!#2}}/

Below we parse the name arguments and undefine an “excluded” name.

953 \@nameauth@Error{#2}{macro \string\IncludeNamel}%
954 \ifx\arga\Qempty
955 \ifx\argc\Q@empty

956 \ifcsname\csb!PN\endcsname

957 \edef\testex{\csname\csb!PN\endcsname},

958 \unless\ifx\testex\@empty\global\csundef{\csb!PN}\fi
959 \fi

960 \else

961 \ifx\suffb\Qempty

962 \ifcsname\csbc!PN\endcsname

963 \edef\testex{\csname\csbc!PN\endcsname}y,

964 \unless\ifx\testex\@empty\global\csundef{\csbc!PN}\fi
965 \fi

966 \else

967 \ifcsname\csb!PN\endcsname

968 \edef\testex{\csname\csb!PN\endcsnamel,

969 \unless\ifx\testex\@empty\global\csundef{\csb!PN}\fi
970 \fi

971 \fi

972 \fi

973 \else

974 \ifcsname\csab!PN\endcsname

975 \edef\testex{\csname\csab!PN\endcsname}/,

976 \unless\ifx\testex\Q@empty\global\csundef{\csab!PN}\fi
977 \fi

978 \fi

979 }

\IncludeName* This macro allows any name to be indexed, undefining cross-references.

980 \WithSuffix{\newcommandx*}\IncludeName* [3] [1=\@empty, 3=\Qempty]
981 {%

982 \protected@edef\arga{\trim@spaces{#1}}%

983 \protected@edef\argc{\trim@spaces{#3}}/

984 \protected@edef\suffb{\@nameauth@Suffix{#2}}%

985 \def\csb{\@nameauth@Clean{#2}}/

986 \def\csbc{\@nameauth@Clean{#2,#3}}/

987 \def\csab{\@nameauth@Clean{#1'#2}}/,

Below we parse the name arguments and undefine an xref control sequence.

988 \@nameauth@Error{#2}{macro \string\IncludeNamex1}}
989 \ifx\arga\@empty

990 \ifx\argc\Qempty

991 \global\csundef{\csb!PN}},
992 \else

993 \ifx\suffb\Qempty

994 \global\csundef{\csbc!PN}/
995 \else

996 \global\csundef{\csb!PN}/
997 \fi

998 \fi

90

\PretagName

999
1000
1001

1002 }

\else
\global\csundef{\csab!PN}}
\fi

This creates an index entry tag that is applied before a name.

1003 \newcommandx*\PretagName [4] [1=\Q@empty, 3=\Qempty]

1004 {%

1005 \protected@edef\arga{\trim@spaces{#1}}%

1006 \protected@edef\argc{\trim@spaces{#3}}/

1007 \protected@edef\suffb{\@nameauth@Suffix{#2}}/

1008 \def\csb{\@nameauth@Clean{#2}1}%

1009 \def\csbc{\@nameauth@Clean{#2,#3}1}%

1010 \def\csab{\@nameauth@Clean{#1'#2}}/,

We parse the arguments, defining the sort tag control sequences used by
\@nameauth@Index.

1011 \@nameauth@Error{#2}{macro \string\PretagNamel/,

1012 \ifx\arga\@empty

1013 \ifx\argc\@empty

1014 \ifcsname\csb!PN\endcsname

1015 \if@nameauth@Verbose

1016 \PackageWarning{nameauthl}y

1017 {macro \PretagName: tagging xref: #2}}

1018 \fi

1019 \fi

1020 \if@nameauth@Pretag\csgdef{\csb!PRE}{#4\@nameauth@Actual}\fi
1021 \else

1022 \ifx\suffb\Qempty

1023 \ifcsname\csbc!PN\endcsname

1024 \if@nameauth@Verbose

1025 \PackageWarning{nameauth}/,

1026 {macro \PretagName: tagging xref: #2 #3}J
1027 \fi

1028 \fi

1029 \if@nameauth@Pretag\csgdef{\csbc!PRE}{#4\@nameauth@Actual}\fi
1030 \else

1031 \ifcsname\csb!PN\endcsname

1032 \if@nameauth@Verbose

1033 \PackageWarning{nameauthl}y

1034 {macro \PretagName: tagging xref: #2}J

1035 \fi

1036 \fi

1037 \if@nameauth@Pretag\csgdef{\csb!PRE}{#4\Onameauth@Actual}\fi
1038 \fi

1039 \fi

1040 \else

1041 \ifcsname\csab!PN\endcsname

1042 \if@nameauth@Verbose

1043 \PackageWarning{nameauthl}/

1044 {macro \PretagName: tagging xref: #1 #21}}

1045 \fi

1046 \fi

1047 \if@nameauth@Pretag\csgdef{\csab!PRE}{#4\O@nameauth@Actual}\fi
1048 \fi

1049 }

91

\TagName This creates an index entry tag for a name that is not used as a cross-reference.

1050 \newcommandx*\TagName [4] [1=\@empty, 3=\Qempty]
1051 {%

1052 \protected@edef\arga{\trim@spaces{#1}}/

1053 \protected@edef\argc{\trim@spaces{#3}}%

1054 \protected@edef\suffb{\@nameauth@Suffix{#2}}/
1055 \def\csb{\@nameauth@Clean{#2}1}7

1056 \def\csbc{\@nameauth@Clean{#2,#3}1}%

1057 \def\csab{\@nameauth@Clean{#1!#2}1}/

We parse the arguments, defining the index tag control sequences used by
\@nameauth@Index.

1058 \@nameauth@Error{#2}{macro \string\TagName}%
1059 \ifx\arga\Qempty
1060 \ifx\argc\Q@empty

1061 \ifcsname\csb!PN\endcsname

1062 \if@nameauth@Verbose

1063 \PackageWarning{nameauth},

1064 {macro \TagName: not tagging xref: #2}J
1065 \fi

1066 \else

1067 \csgdef{\csb! TAGH{#41}/

1068 \fi

1069 \else

1070 \ifx\suffb\@empty

1071 \ifcsname\csbc!PN\endcsname

1072 \if@nameauth@Verbose

1073 \PackageWarning{nameauthl}y

1074 {macro \TagName: not tagging xref: #2 #3}J
1075 \fi

1076 \else

1077 \csgdef{\csbc!TAG}{#4}),

1078 \fi

1079 \else

1080 \ifcsname\csb!PN\endcsname

1081 \if@nameauth@Verbose

1082 \PackageWarning{nameauthl}y,

1083 {macro \TagName: not tagging xref: #2}J,
1084 \fi

1085 \else

1086 \csgdef{\csb! TAG}{#41}/

1087 \fi

1088 \fi

1089 \fi

1090 \else

1091 \ifcsname\csab!PN\endcsname

1092 \if@nameauth@Verbose

1093 \PackageWarning{nameauthl}/,

1094 {macro \TagName: not tagging xref: #1 #2},
1095 \fi

1096 \else

1097 \csgdef{\csab!TAG}{#4}/,

1098 \fi

1099 \fi

1100 }

92

\UntagName This deletes an index tag.

1101 \newcommandx*\UntagName [3] [1=\Q@empty, 3=\Qempty]
1102 {%

1103 \protected@edef\arga{\trim@spaces{#1}}/

1104 \protected@edef\argc{\trim@spaces{#3}}%

1105 \protected@edef\suffb{\@nameauth@Suffix{#2}}/,
1106 \def\csb{\@nameauth@Clean{#2}1}7

1107 \def\csbc{\@nameauth@Clean{#2,#3}1}%

1108 \def\csab{\@nameauth@Clean{#1!#2}1}/

We parse the arguments, undefining the index tag control sequences.

1109 \@nameauth@Error{#2}{macro \string\UntagNamel}’
1110 \ifx\arga\@empty

1111 \ifx\argc\@empty

1112 \global\csundef{\csb!TAG}%
1113 \else

1114 \ifx\suffb\Qempty

1115 \global\csundef{\csbc!TAG}%
1116 \else

1117 \global\csundef{\csb!TAG}%
1118 \fi

1119 \fi

1120 \else

1121 \global\csundef{\csab!TAG}%
1122 \fi

1123 }

Name Info Data Set: “Text Tags”

\NameAddInfo This creates a control sequence and information associated with a given name, similar to
an index tag, but usable in the body text.

1124 \newcommandx\NameAddInfo [4] [1=\@empty, 3=\C@empty]
1125 {%

1126 \protected@edef\arga{\trim@spaces{#1}}/

1127 \protected@edef\argc{\trim@spaces{#3}}/

1128 \protected@edef\Suff{\@nameauth@Suffix{#2}1}/
1129 \def\csb{\@nameauth@Clean{#2}1}7

1130 \def\csbc{\@nameauth@Clean{#2,#3}1}%

1131 \def\csab{\@nameauth@Clean{#1!#2}1}/

We parse the arguments, defining the text tag control sequences.

1132 \@nameauth@Error{#2}{macro \string\NameAddInfoly,
1133 \ifx\arga\@empty
1134 \ifx\argc\Q@empty

1135 \csgdef{\csb!DB}{#4}%
1136 \else

1137 \ifx\Suff\Cempty

1138 \csgdef{\csbc!DB}{#41}%
1139 \else

1140 \csgdef{\csb!DB}{#4}}
1141 \fi

1142 \fi

1143 \else

1144 \csgdef{\csab!DB}{#4}/
1145 \fi

1146 }

93

\NameQueryInfo

\NameClearInfo

This prints the information created by \NameAddInfo if it exists.

1147 \newcommandx*\NameQueryInfo [3] [1=\Qempty, 3=\Qempty]
1148 {7

1149 \protected@edef\arga{\trim@spaces{#1}}/

1150 \protected@edef\argc{\trim@spaces{#3}}%

1151 \protected@edef\Suff{\@nameauth@Suffix{#2}1}/

1152 \def\csb{\@nameauth@Clean{#2}1}7

1153 \def\csbc{\@nameauth@Clean{#2,#3}}/

1154 \def\csab{\@nameauth@Clean{#1!#2}1}}

We parse the arguments, invoking the tag control sequences to expand to their contents.

1155 \@nameauth@Error{#2}{macro \string\NameQueryInfol}Y
1156 \ifx\arga\@empty
1157 \ifx\argc\@empty

1158 \ifcsname\csb!DB\endcsname\csname\csb!DB\endcsname\fi
1159 \else

1160 \ifx\Suff\Cempty

1161 \ifcsname\csbc!DB\endcsname\csname\csbc!DB\endcsname\fi
1162 \else

1163 \ifcsname\csb!DB\endcsname\csname\csb!DB\endcsname\fi
1164 \fi

1165 \fi

1166 \else

1167 \ifcsname\csab!DB\endcsname\csname\csab!DB\endcsname\fi
1168 \fi

1169 }

This deletes a text tag. It has the same structure as \UntagName.

1170 \newcommandx*\NameClearInfo[3] [1=\Q@empty, 3=\Qempty]
1171 {%

1172 \protected@edef\arga{\trim@spaces{#1}}%

1173 \protected@edef\argc{\trim@spaces{#3}}%

1174 \protected@edef\Suff{\@nameauth@Suffix{#2}1}/

1175 \def\csb{\@nameauth@Clean{#2}1}/,

1176 \def\csbc{\@nameauth@Clean{#2,#3}}%

1177 \def\csab{\@nameauth@Clean{#1!#2}}J

We parse the arguments, undefining the text tag control sequences.

1178 \@nameauth@Error{#2}{macro \string\NameClearInfol}/
1179 \ifx\arga\@empty
1180 \ifx\argc\Q@empty

1181 \global\csundef{\csb!DB}/
1182 \else

1183 \ifx\Suff\Q@empty

1184 \global\csundef{\csbc!DB}
1185 \else

1186 \global\csundef{\csb!DB}/
1187 \fi

1188 \fi

1189 \else

1190 \global\csundef{\csab!DB}/
1191 \fi

1192 }

94

Name Decisions

\IfMainName This macro expands one path if a main matter name exists, or else the other.

1193 \newcommandx\IfMainName [6] [1=\Q@empty, 3=\Qempty]
1194 {%

1195 \protected@edef\arga{\trim@spaces{#1}}%

1196 \protected@edef\argc{\trim@spaces{#3}}%

1197 \protected@edef\suffb{\@nameauth@Suffix{#2}}/
1198 \def\csb{\@nameauth@Clean{#2}1}/,

1199 \def\csbc{\@nameauth@Clean{#2,#3}}/

1200 \def\csab{\@nameauth@Clean{#1!#2}1}/,

Below we parse the name arguments and choose the path.

1201 \@nameauth@Error{#2}{macro \string\IfMainName}J,
1202 \ifx\arga\@empty
1203 \ifx\argc\Q@empty

1204 \ifcsname\csb!MN\endcsname{#4}\else{#5F\fi
1205 \else

1206 \ifx\suffb\@empty

1207 \ifcsname\csbc!MN\endcsname{#4}\else{#5}\fi
1208 \else

1209 \ifcsname\csb!MN\endcsname{#4}\else{#5}\fi
1210 \fi

1211 \fi

1212 \else

1213 \ifcsname\csab!MN\endcsname{#4}\else{#5}\fi
1214 \fi

1215 }

\IfFrontName This macro expands one path if a front matter name exists, or else the other.

1216 \newcommandx\IfFrontName [5] [1=\@empty, 3=\Cempty]
1217 {%

1218 \protected@edef\arga{\trim@spaces{#1}}%

1219 \protected@edef\argc{\trim@spaces{#3}}/

1220 \protected@edef\suffb{\@nameauth@Suffix{#2}}/
1221 \def\csb{\@nameauth@Clean{#2}1}/,

1222 \def\csbc{\@nameauth@Clean{#2,#3}}/

1223 \def\csab{\@nameauth@Clean{#1'#2}}/,

Below we parse the name arguments and choose the path.

1224 \@nameauth@Error{#2}{macro \string\IfFrontNamel}J,
1225 \ifx\arga\@empty

1226 \ifx\argc\Qempty

1227 \ifcsname\csb!NF\endcsname{#4}\else{#5}\fi
1228 \else

1229 \ifx\suffb\Qempty

1230 \ifcsname\csbc!NF\endcsname{#4}\else{#5}\fi
1231 \else

1232 \ifcsname\csb!NF\endcsname{#4}\else{#5}\fi
1233 \fi

1234 \fi

1235 \else

1236 \ifcsname\csab!NF\endcsname{#4}\else{#5}\fi
1237 \fi

1238 }

95

\IfAKA

\ForgetName

This macro expands one path if a cross-reference exists, another if it does not exist, and
a third if it is excluded.

1239 \newcommandx\IfAKA[6] [1=\@empty, 3=\Qempty]

1240 {%

1241 \protected@edef\arga{\trim@spaces{#1}}%

1242 \protected@edef\argc{\trim@spaces{#3}}%

1243 \protected@edef\suffb{\@nameauth@Suffix{#2}}/
1244 \def\csb{\@nameauth@Clean{#2}1}/,

1245 \def\csbc{\@nameauth@Clean{#2,#3}}%

1246 \def\csab{\@nameauth@Clean{#1!#2}}J,

For each class of name we test first if a cross-reference exists, then if it is excluded.

1247 \@nameauth@Error{#2}{macro \string\IfAKA}Y
1248 \ifx\arga\@empty
1249 \ifx\argc\@empty

1250 \ifcsname\csb!PN\endcsname

1251 \edef\testex{\csname\csb!PN\endcsname},
1252 \ifx\testex\Q@empty{#4}\else{#6}\fi

1253 \else{#5}\fi

1254 \else

1255 \ifx\suffb\Qempty

1256 \ifcsname\csbc!PN\endcsname

1257 \edef\testex{\csname\csbc!PN\endcsname},
1258 \ifx\testex\Q@empty{#4}\else{#6}\fi
1259 \else{#5}\fi

1260 \else

1261 \ifcsname\csb!PN\endcsname

1262 \edef\testex{\csname\csb!PN\endcsnamel,
1263 \ifx\testex\Qempty{#4}\else{#6}\fi
1264 \else{#5}\fi

1265 \fi

1266 \fi

1267 \else

1268 \ifcsname\csab!PN\endcsname

1269 \edef\testex{\csname\csab!PN\endcsname}},
1270 \ifx\testex\Qempty{#4}\else{#6}\fi

1271 \else{#5}\fi

1272 \fi

1273 }

Changing Name Decisions

This undefines a control sequence to force a “first use.”

1274 \newcommandx*\ForgetName [3] [1=\C@empty, 3=\Qempty]
1275 {7

1276 \protected@edef\arga{\trim@spaces{#1}}/

1277 \protected@edef\argc{\trim@spaces{#3}}%

1278 \protected@edef\suffb{\@nameauth@Suffix{#2}}/,
1279 \def\csb{\@nameauth@Clean{#2}1}7

1280 \def\csbc{\@nameauth@Clean{#2,#3}}%

1281 \def\csab{\@nameauth@Clean{#1!#2}}/,

1282 \@nameauth@Error{#2}{macro \string\ForgetName}J,

96

Now we parse the arguments, undefining the control sequences either by current name
type (via @nameauth@MainFormat) or completely (toggled by @nameauth@LocalNames).

1283 \ifx\arga\@empty
1284 \ifx\argc\Q@empty

1285 \if@nameauth@LocalNames

1286 \if@nameauth@MainFormat

1287 \global\csundef{\csb!MN}/
1288 \else

1289 \global\csundef{\csb!NF}/
1290 \fi

1291 \else

1292 \global\csundef{\csb!MN}},
1293 \global\csundef{\csb!NF}/
1294 \fi

1295 \else

1296 \ifx\suffb\Qempty

1297 \if@nameauth@LocalNames

1298 \if@nameauth@MainFormat
1299 \global\csundef{\csbc!MN}}
1300 \else

1301 \global\csundef{\csbc!NF}},
1302 \fi

1303 \else

1304 \global\csundef{\csbc!MN}}
1305 \global\csundef{\csbc!NF}%
1306 \fi

1307 \else

1308 \if@nameauth@LocalNames

1309 \if@nameauth@MainFormat
1310 \global\csundef{\csb!MN}/
1311 \else

1312 \global\csundef{\csb!NF}/
1313 \fi

1314 \else

1315 \global\csundef{\csb!MN}/
1316 \global\csundef{\csb!NF}/
1317 \fi

1318 \fi

1319 \fi

1320 \else

1321 \if@nameauth@LocalNames

1322 \if@nameauth@MainFormat

1323 \global\csundef{\csab!MN}/
1324 \else

1325 \global\csundef{\csab!NF}}
1326 \fi

1327 \else

1328 \global\csundef{\csab!MN}/,
1329 \global\csundef{\csab!NF}},
1330 \fi

1331 \fi

1332 }

97

\SubvertName

This defines a control sequence to force a “subsequent use.”

1333 \newcommandx*\SubvertName [3] [1=\Qempty, 3=\Qempty]

1334 {%

1335
1336
1337
1338
1339
1340

\protected@edef\arga{\trim@spaces{#1}}/,
\protected@edef\argc{\trim@spaces{#3}}%
\protected@edef\suffb{\O@nameauth@Suffix{#2}}%
\def\csb{\@nameauth@Clean{#2}}%
\def\csbc{\@nameauth@Clean{#2,#3}}/
\def\csab{\@nameauth@Clean{#1!#2}1}}

We make copies of the arguments to test them.

1341

\@nameauth@Error{#2}{macro \string\SubvertNamel}

Now we parse the arguments, defining the control sequences either locally by section type
or globally. @nameauth@LocalNames toggles the local or global behavior, while we select
the type of name with @nameauth@MainFormat.

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

\ifx\arga\Q@empty
\ifx\argc\Q@empty
\if@nameauth@LocalNames
\if@nameauth@MainFormat
\csgdef{\csb!MN}{}%
\else
\csgdef{\csb!NF}{}/
\fi
\else
\csgdef{\csb!MN}{}/
\csgdef{\csb!NF}{}/
\fi
\else
\ifx\suffb\C@empty
\if@nameauth@LocalNames
\if@nameauth@MainFormat
\csgdef{\csbc!MN}{}%
\else
\csgdef{\csbc!NF}{}%
\fi
\else
\csgdef{\csbc ! MN}{}%
\csgdef{\csbc!NF}{}%
\fi
\else
\if@nameauth@LocalNames
\if@nameauth@MainFormat
\csgdef{\csb!MN}{}/
\else
\csgdef{\csb!NF}{}/
\fi
\else
\csgdef{\csb!MN}{}/
\csgdef{\csb!NF}{}/
\fi
\fi
\fi
\else
\if@nameauth@LocalNames
\if@nameauth@MainFormat

98

\AKA

1382 \csgdef{\csab!MN}{}%

1383 \else

1384 \csgdef{\csab!NF}{}%
1385 \fi

1386 \else

1387 \csgdef{\csab!MN}{}%
1388 \csgdef{\csab!NF}{}%
1389 \fi

1390 \fi

1391 }

Alternate Names

\AKA prints an alternate name and creates index cross-references. It prevents multiple
generation of cross-references and suppresses double periods.

1392 \newcommandx*\AKA [5] [1=\Q@empty, 3=\@empty, 5=\Qempty]
1393 {%

Prevent entering \AKA via itself or \@nameauth@Name. Prevent the index-only flag.

1394 \unless\if@nameauth@Lock
1395 \@nameauth@Locktrue},
1396 \@nameauth@JustIndexfalse}

Tell the formatting system that \AKA is running. Test for malformed input.

1397 \@nameauth@InAKAtruey,
1398 \@nameauth@Error{#2}{macro \string\AKAl}J
1399 \@nameauth@Error{#4}{macro \string\AKA}%

Names occur in horizontal mode; we ensure that. Next we make copies of the target name
arguments and we parse and print the cross-reference name.

1400 \leavevmode\hbox{}/,

1401 \protected@edef\argi{\trim@spaces{#1}}/

1402 \protected@edef\rooti{\@nameauth@Root{#2}}/
1403 \protected@edef\suffi{\@nameauth@Suffix{#2}}/,
1404 \G@nameauth®@Parse [#3]{#4} [#5]{!PN}%

Create an index cross-reference based on the arguments.

1405 \unless\if@nameauth@SkipIndex
1406 \ifx\argi\@empty

1407 \ifx\suffi\@empty

1408 \IndexRef [#3]{#4} [#5]{\rootil}},

1409 \else

1410 \IndexRef [#3]{#4} [#5]{\rooti\space\suffil}y,
1411 \fi

1412 \else

1413 \ifx\suffi\@empty

1414 \IndexRef [#3]{#4} [#5]{\rooti, \space\argil}’
1415 \else

1416 \IndexRef [#3]{#4} [#5]{\rooti, \space\argi, \space\suffi}’
1417 \fi

1418 \fi

1419 \fi

Reset all the “per name” Boolean values.

1420 \@nameauth@SkipIndexfalse,
1421 \C@nameauth@Lockfalse’,

1422 \@nameauth@InAKAfalse’,

1423 \@nameauth@AltAKAfalse,

99

\AKA*

\PName

\PNamex*

nameauth

1424 \C@nameauth@NBSPfalse’,

1425 \@nameauth@NBSPXfalseY

1426 \@nameauth@DoCapsfalse,
1427 \C@nameauth@Accentfalse},
1428 \@nameauth@AllThisfalse},
1429 \@nameauth@ShowCommafalse},
1430 \@nameauth@NoCommafalse},
1431 \C@nameauth@RevThisfalse},
1432 \@nameauth@RevThisCommafalse},
1433 \@nameauth@ShortSNNfalse},
1434 \@nameauth@EastFNfalse},

Close the “locked” branch.
1435 \fi
Call the full stop detection.

1436 \if@nameauth@Punct\expandafter\@nameauth@CheckDot\fi
1437 }

This starred form sets a Boolean to print only the alternate name argument, if that exists,
and calls \AKA.

1438 \WithSuffix{\newcommand*}\AKA*{\@nameauth@AltAKAtrue\AKA}

\PName is a convenience macro that calls \NameauthName, then \AKA. It prevents the
index-only feature from triggering.

1439 \newcommandx*\PName [5] [1=\@empty, 3=\Qempty,5=\Cempty]

1440 {%

1441 \@nameauth@JustIndexfalse},

1442 \if@nameauth@SkipIndex

1443 \NameauthName [#1] {#2}\space (\SkipIndex\AKA [#1]{#2} [#3]{#4} [#5])7%
1444 \else

1445 \NameauthName [#1] {#2}\space (\AKA [#1] {#2} [#3]{#4} [#51)%

1446 \fi

1447 }

This sets up a long name reference and calls \PName.

1448 \WithSuffix{\newcommand*}\PName*{\@nameauth@FullNametrue\PName}

Simplified Interface

The nameauth environment creares macro shorthands. First we define a control sequence
\< that takes four parameters, delimited by three ampersands and >.

1449 \newenvironment{nameauth}{%

1450 \begingroup’

1451 \let\ex\expandafter,

1452 \csdef{<}##1&##28##38##4>{),

1453 \protected@edef\Qarga{\trimO@spaces{##1}}%
1454 \protected@edef\Qtestb{\trim@spaces{##2}}/,
1455 \protected@edef\Qtestd{\trim@spaces{##4}}/

1456 \@nameauth@etoksb\expandafter{##21}/
1457 \@nameauth@etoksc\expandafter{##31}/
1458 \@nameauth@etoksd\expandafter{##41}/

The first argument must have some text to create a set of control sequences with it. The
third argument is the required name field. Redefining a shorthand creates a warning.

1459 \ifx\@arga\@empty

100

1460 \PackageError{nameauth}y

1461 {environment nameauth: Control sequence missingl}’

1462 \fi

1463 \@nameauth@Error{##3}{environment nameauthl}’

1464 \ifcsname\@arga\endcsname

1465 \PackageWarning{nameauth}/

1466 {environment nameauth: Shorthand macro already existsl}¥
1467 \fi

Set up shorthands according to name form. We have to use \expandafter, not the e-TEX
way, due to \protected@edef in the naming macros.

We begin with mononyms and non-Western names that use the new syntax. We use
one \expandafter per token because we only have one argument to expand first.

1468 \ifx\@testd\@empty

1469 \ifx\@testb\Cempty

1470 \ex\csgdef\ex{\ex\Qarga\ex}\ex{\ex\NameauthName\ex{%
1471 \the\@nameauth@etokscl}}’

1472 \ex\csgdef\ex{\ex L\ex\Q@arga\ex}\ex{/

1473 \ex\@nameauth@FullNametruey,

1474 \ex\NameauthLName\ex{\the\@nameauth@etoksc}}/,

1475 \ex\csgdef\ex{\ex S\ex\Q@arga\ex}\ex{/

1476 \ex\@nameauth@FirstNametrue},

1477 \ex\NameauthFName\ex{\the\@nameauth@etoksc}}/,

1478 \else

Next we have Western names with no alternate names. Here we have two arguments to
expand in reverse order, so we need three, then one uses of \expandafter per token.

1479 \ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex\Q@arga\ex\ex\ex}/,

1480 \ex\ex\ex{\ex\ex\ex\NameauthName\ex\ex\ex [%

1481 \ex\the\ex\@nameauth@etoksb\ex] \ex{\the\@nameauth@etoksc}}’
1482 \ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex L\ex\ex\ex\Qarga

1483 \ex\ex\ex}\ex\ex\ex{\ex\ex\ex\@nameauth@FullNametrueY

1484 \ex\ex\ex\NameauthLName\ex\ex\ex [%

1485 \ex\the\ex\@nameauth@etoksb\ex] \ex{\the\@nameauth@etoksc}}%
1486 \ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex S\ex\ex\ex\Qargal

1487 \ex\ex\ex}\ex\ex\ex{\ex\ex\ex\@nameauth@FirstNametrue},

1488 \ex\ex\ex\NameauthFName\ex\ex\ex [%

1489 \ex\the\ex\@nameauth@etoksb\ex] \ex{\the\@nameauth@etoksc}}’
1490 \fi

1491 \else

Below are native Eastern names with alternates and the older syntax. Again, we have
three or one use of \expandafter per step before the respective arguments.

1492 \ifx\@testb\Cempty

1493 \ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex\Qarga\ex\ex\ex}/,

1494 \ex\ex\ex{\ex\ex\ex\NameauthName\ex\ex\ex{

1495 \ex\the\ex\@nameauth@etoksc\ex}\ex[\the\@nameauth@etoksd] }%
1496 \ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex L\ex\ex\ex\Qargal

1497 \ex\ex\ex}\ex\ex\ex{\ex\ex\ex\@nameauth@FullNametrueY,

1498 \ex\ex\ex\NameauthLName\ex\ex\ex{%

1499 \ex\the\ex\@nameauth@etoksc\ex}\ex [\the\@nameauth@etoksd] }/
1500 \ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex S\ex\ex\ex\Qarga¥

1501 \ex\ex\ex}\ex\ex\ex{\ex\ex\ex\@nameauth@FirstNametrue},

1502 \ex\ex\ex\NameauthFName\ex\ex\ex{%

1503 \ex\the\ex\@nameauth@etoksc\ex}\ex [\the\@nameauth@etoksd] }/
1504 \else

101

Here are Western names with alternates. We have three arguments to expand, so we have
seven, three, and one respective use of \expandafter.

1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530

\ex\ex\ex\ex\ex\ex\ex\csgdef\ex\ex\ex\ex\ex\ex\ex{%

\ex\ex\ex\ex\ex\ex\ex\Qarga\ex\ex\ex\ex\ex\ex\ex}/
\ex\ex\ex\ex\ex\ex\ex{\ex\ex\ex\ex\ex\ex\ex\NameauthName?,
\ex\ex\ex\ex\ex\ex\ex[\ex\ex\ex\the\ex\ex\ex\@nameauth@etoksb},
\ex\ex\ex]\ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}\ex [}
\the\@nameauth@etoksd] }%

\ex\ex\ex\ex\ex\ex\ex\csgdef\ex\ex\ex\ex\ex\ex\ex{%

\ex\ex\ex\ex\ex\ex\ex L\ex\ex\ex\ex\ex\ex\ex\Q@arga
\ex\ex\ex\ex\ex\ex\ex}\ex\ex\ex\ex\ex\ex\ex{}
\ex\ex\ex\ex\ex\ex\ex\@nameauth@FullNametrue,
\ex\ex\ex\ex\ex\ex\ex\NameauthLName\ex\ex\ex\ex\ex\ex\ex[%
\ex\ex\ex\the\ex\ex\ex\@nameauth@etoksby,
\ex\ex\ex]\ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}\ex [}
\the\@nameauth@etoksd] }%

\ex\ex\ex\ex\ex\ex\ex\csgdef\ex\ex\ex\ex\ex\ex\ex{

\fi

\fi
\ignorespaces¥
F\ignorespaces

\ex\ex\ex\ex\ex\ex\ex S\ex\ex\ex\ex\ex\ex\ex\Q@arga
\ex\ex\ex\ex\ex\ex\ex}\ex\ex\ex\ex\ex\ex\ex{/
\ex\ex\ex\ex\ex\ex\ex\@nameauth@FirstNametrue,
\ex\ex\ex\ex\ex\ex\ex\NameauthFName\ex\ex\ex\ex\ex\ex\ex [%
\ex\ex\ex\the\ex\ex\ex\@nameauth@etoksb\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}\ex[%
\the\@nameauth@etoksd] }%

1531 }{\endgroup\ignorespaces}

102

4 Change History

0.7
General: Initial release
0.75
\ForgetName: Add new argument . ..
\IndexName: Has current args
0.85
\@nameauth@Name: Hide commas
\AKA: Hide commas
\IndexName: Hide commas
0.9
\@nameauth@@Root: Expands
\@nameauth@@Suffix: Added
\@nameauth@Suffix: Added
\AKA*: Added
\FName: Added
\SubvertName: Added
0.94
\@nameauth@Index: Added
\CapThis: Added
\ExcludeName: Added
\IndexActive: Added
\IndexInactive: Added
1.2
\TagName: Added
\UntagName: Added
1.26
\AKA: Fix name suffixes
\IndexName: Affixes now correct
1.4
\@nameauth@Root: More robust
\ShowComma: Added
1.5
\@nameauth@@Suffix: Trim spaces
\@nameauth@Name: Reversing/caps
\AKA: Reversing and caps
\AllCapsActive: Added
\AllCapsInactive: Added
\CapName: Added
\RevComma: Added
\RevName: Added
\ReverseActive: Added
\ReverseCommaActive: Added
\ReverseCommaInactive: Added
\ReverseInactive: Added
1.6
nameauth: Environment added
1.9
\ForgetName: Ensure global undef
\KeepAffix: Added
\TagName: Fix cs collisions
\UntagName: Ensure global undef, fix cs
collisions
nameauth: Bugfix

\@nameauth@@Root: Trim spaces
\@nameauth@Actual: Added
\@nameauth@Index: New tagging
\@nameauth@Name: Trim spaces;
redesign tagging
\AKA: Trim spaces; fix tagging
\IndexActual: Added
\IndexName: Fix spaces, tagging
\PretagName: Added
\TagName: Redesign tagging
\UntagName: Redesign tagging
General: Use dtxgen template; prevent
malformed input
nameauth: Better arg handling
2.1
\@nameauth@Name: Fix Unicode
\AKA: Fix Unicode
\AccentCapThis: Added
2.11
nameauth: Bugfix
2.2
\NameauthFName: Added
\NameauthName: Added
2.3
\@nameauth@Name: Now internal
\AKA: Expand starred mode
\ExcludeName: New xref test
\FName: Interface macro
\FName*: Interface macro
\ForgetName: Global or local
\GlobalNames: Added
\IfAKA: Added
\IfFrontName: Added
\IfMainName: Added
\LocalNames: Added
\Name: Interface macro
\Name*: Interface macro
\NameauthLName: Added
\PName: Work directly with hooks . .
\SubvertName: Global or local
2.4
\@nameauth@Hook: Current form
\@nameauth®@Name: Set token regs
\FrontNameHook: Added
\GlobalNames: Ensure global
\IfAKA: Test for excluded
\LocalNames: Ensure global
\MainNameHook: Added
\NameAddInfo: Added
\NameClearInfo: Added
\NameQueryInfo: Added

2.41 \@nameauth@Name: Enhanced workflow

\@nameauth@Name: Fix token regs ... 71 control 71
\AKA: Fix tokenregs 99 \@nameauth@Parse: Enhanced,
nameauth: No local \newtoks 100 integrated caps 73
2.5 \@nameauth@UTFtest: Override
\@nameauth@Hook: Improve hooks ... 77 bypasses test 69
\@nameauth@Name: Current parsing \AKA: Can skip index 99
approach 71 \AltCaps: Added 81
\FrontNamesFormat: Added 67 \AltFormatActive: Added 80
General: No default formatting 1 \AltFormatActive*: Added 80
2.6 \AltFormatInactive: Added 80
\C@nameauth@Name: Better indexing .. 71 \A1tOff: Added 80
\AKA: Fix index commas 99 \A1tOn: Added S0
\IndexName: Fix commas 84 \ForceName: Added]9
\NoComma: .Added 81 \ForgetThis: Added s1
General: Fix older syntax 1 \IncludeName*: Fixed 90
3.0) \IndexName: Better tests 84
\@nameauth@@Root:‘ Redesigned 6() \IndexRef: Better tests 86
\@nameauth@@Suffix: New test 69 \JustIndex: Added 39
\@nameauth@@TrimTag: Added 69 \KeepName: Added 31
\@nameauth@Error: Added 71 T S
) ; \NameParser: Older syntax fixed;
\@nameauth@Hook: Fix punct. detection 77 NBSP added 32
\@nameauth@Name: Redesigned 71 e o ,
\NameQueryInfo: Short macro 94
\@nameauth@NonWest: Added 75 ..
\PName: Can skip index 100
\@nameauth@Parse: Added 73 \SkipIndex: Added 89
\@nameauth@TrimTag: Added 69 P) L
i \SubvertName: Fix old syntax 98
\@nameauth@UTFtest: Added 69 \SubvertThis: Added 89
\@nameauth@West: Added 76 ubvertiuLs: O
)) \textBF: Added 81
\AKA: Redesigned 99
L \textIT: Added 81
\DropAffix: Added 81 " Added 4
\ExcludeName: Redesigned 88 \textSC: A 8
\ForceFN: Added 80 \textUC: A-dded. """""""" 81
\I£AKA: Redesigned 95 General: Fix logic, arg tests 1
\IncludeName: Added g9 32
\IncludeName*: Added 90 \@nameauth@@GetSuff: Added 69
\IndexName: Redesigned 84 \@nameauth@®@Root: Renamed 69
\IndexRef: Added 36 \@nameauth@@Suffix: Renamed 69
\NameParser: Added 82 \Cnameauth@C@p: Renamed 70
\SeeAlso: Added 82 \@nameauth@Cap: Non-UTF 70
3.01 \@nameauth@CapUTF: Added 70
\@nameauth@Error: Fixed 71 \@nameauth@GetSuff‘ Added 69
3.02 \@nameauth@Parse: Fix alt. format and
\@nameauth@NonWest: Restrict Western affixes 73
\ForceFN0 75 \@nameauth@TestToks: Added 69
3.03 \@nameauth@TrimTag: Renamed 69
\NameParser: First name only with \@nameauth@UTFtest: Non-suffix only 69
“short” macros 82 \@nameauthQUTFtestS: Added 70
3.1 \NameParser: Fix alt. format and
\@nameauth@C@p: Added 70 Western affixes 82
\@nameauth@CEpUTF: Added 70 General: Use \MakeUppercase instead
\@nameauth@Cap: Added; old caps gone 70 of \uppercase 1

104

5 Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers

underlined refer to the code line of the definition; numbers in roman refer to the code lines where

the entry is used.

Symbols
\@nameauth@@GetSuff . 99
\@nameauth@@Root 92
\@nameauth@@Suffix .. 96
\@nameauth@@TrimTag . 94
\@nameauth@Actual 530
\@nameauth@Cep 146
\@nameauth@CQpUTF 149
\@nameauth@Cap 145
\@nameauth@CapUTF ... 148
\@nameauth@CheckDot . 163
\@nameauth@Clean &89
\@nameauth@Error 170
\@nameauth@EvalDot .. 165
\@nameauth@GetSuff .. 98
\@nameauth@Hook 448
\@nameauth@Index 496
\@nameauth@Name 183
\@nameauth@NonWest .. 348
\@nameauth@Parse 230
\@nameauth@Root 91
\@nameauth@Suffix ... 95
\@nameauth@TestDot .. 151
\@nameauth@TestToks 100
\@nameauth@TrimTag .. 93
\@nameauth@UTFtest .. 108
\@nameauth@UTFtestS . 125
\@nameauth@West 400
\@nameauth@toksa 43
\@nameauth@toksb 43
\@nameauth@toksc 53

A
\AccentCapThis ... 22, 532

ADAMS, John, pres. 56, 57, 61
Hithelred 11, king 8, 21, 24, 33

\AKA 42, 1392
\AKA* 42, 1438
\AllCapsActive ... 20, 536
\AllCapsInactive . 20, 535
\AltCaps 29, 569
\AltFormatActive 27, 547
\AltFormatActive* 27, 551
\AltFormatInactive 27, 555
\ALtOff 29, 564
\AltOn 29, 559
Anthony, Susan B. 41
Arai Akino 20
Aristotle 6, 7

Arouet, Francois-Marie
see Voltaire

Atatiirk see Kemal, Mustafa
Attila the Hun 7,33
B
Babbage, Charles 28
Bernard of Clairvaux ... 46

Bess, Good Queen
see Elizabeth I

Boéthius 24
C

\CapName 20, 534

\CapThis 21, 531

Carnap, Rudolph 25, 38, 41

Carter, J.E., Jr., pres. 14, 42

Carter, Jimmy
. see Carter, J.E., Jr.
Chaplin, Charlie 48
Chiang Kai-sheki, pres. 9, 21
Cicero, M.T. 16,17, 26
Clemens, Samuel L.
see Twain, Mark
Colfax, Schuyler, v.p. .. 37
Confucius . 16, 17, 21, 26, 39
cummings, e.e. 22

D
Dagobert I, king 9
Davis, Sammy, JrR. 56, 57, 61

, Pierre-Jean 58, 61

de Soto, Hernando ... 7, 21
Demetrius I Soter, king . 31
Doctor angelicus
see Thomas Aquinas

Doctor mellifluus see
Bernard of Clairvaux

Dongen, Marc van 2,71
\DropAffix 18, 585
Du Bois, W.E.B. 47
du Cange

see du Fresne, Charles
du Fresne, Charles 43
DuBois, W.E.B.

see Du Bois, W.E.B.

E
Einstein, Albert 16, 17, 26, 41

105

Elizabeth I, queen . 3, 6,
7, 16, 17, 26, 38, 43, 44

environments:

nameauth 6, 1449
\ExcludeName 32, 853

F
\FName 17, 687
\FName* 17, 688
\ForceFN 17, 540
\ForceName 25, 592
\ForgetName 41,1274
\ForgetThis 41, 590
Friedrich I Barbarossa, em-
peror

\FrontNameHook 25, 51
\FrontNamesFormat 25, 50

FUKUYAMA Takeshi .. 28

G
GARBO, Greta 28
\GlobalNames ... 41,594
Goethe, J.W. von 8, 18, 21, 31
Gossett, Louis, Jr. 18

Grant, Ulysses S., pres. . 37
Gregorio, Enrico
Gregory I, pope 35,43
Gregory the Great

see Gregory I

H
Hammerstein, Oskar, 1T .
............ 18, 21
Harnack, Adolf 31

Harun AL-RASHID 56, 57, 61

Hearn, Lafcadio 43
Henry VIIIi, king 9
Hope, Bob 38, 43

Hope, Leslie Townes

...... see Hope, Bob
I

\if@nameauth@InAKA 53
\if@nameauth@InName . 53
\IfAKA 39, 1239
\IfFrontName 38, 1216
\IfMainName 38, 1193
\IncludeName 33, 945
\IncludeName* 33, 980
\IndexActive 30, 598

\IndexActual 34, 599

\IndexInactive ... 30, 595

\IndexName 31, 690

\IndexRef 32, 752

Iron Mike . see Tyson, Mike

Ishida Yokof 20
J

Janos, James
see Ventura, Jesse

\JustIndex 30, 597
K

Kanno, Yokot 20

\KeepAffix 18, 586

\KeepName 18, 587

Kemal, Mustafa 54

Keynes, John Maynard . 26
King, Martin Luther, Jr. 24
Koizumi Yakumo
. see Hearn, Lafcadio
Konoe, Fumimarot, PM
........ 5,7,19, 21
Kresge, Joseph . see
Kreskin, The Amazing
Kreskin, The Amazing . 42

L
Lao-tzu 43
LeoI,pope 35
Leo the Great see Leol

Lewis, Clive Staples 4, 7, 8, 17

LiEr see Lao-tzu
\LocalNames 41, 593
Louis X1V, king 18, 32, 43
Lovelace, Ada 28
Lueck, Uwe 2,71
Luecking, Dan 49
Lukasiewicz, Jan 33
LUTHER, Martin 29
M

Maimonides

. 45, see also Rambam
\MainNameHook 25, 49
Malebranche, Nicolas .. 25
MEebici, Catherine de’ 21, 29
MENCIUS 56, 57, 61
MENG Ke ... see MENCIUS

Miyazaki Hayao 8, 16, 17, 31
Molnér, Frenect 5,19
Moses ben-Maimon

see Maimonides

N
\Name 16, 684
\Name* 16, 685
\NameAddInfo 36, 1124
nameauth (environment)
........... 6, 1449
\NameauthFName 54, 62
\NameauthLName 53, 62
\NameauthName 52, 62
\NameClearInfo .. 37, 1170
\NameParser 58, 602
\NameQueryInfo .. &7, 1147
\NamesActive 25, 589
\NamesFormat 25, 48
\NamesInactive ... 25, 588
\NoComma 18, 584
(0]
Oberdiek, Heiko 2, 68
P
Patton, George S., Jr. 4,7
\PName 46, 1439
\PName* 46, 1448
\PretagName 33, 1003
R
Rambam 45,
see also Maimonides
\RevComma 21, 541
\ReverseActive ... 19, 539
\ReverseCommaActive
........... 21, 545
\ReverseCommaInactive
........... 21, 543
\ReverseInactive 19, 538
\RevName 19, 537

Rockefeller, Jay see Rock-
efeller, John David, IV

ROCKEFELLER, John
David, IIT 28

Rockefeller, John David,
IV ... 4,7, 8

RUHMANN, Heinrich Wil-
helm

. see RUHMANN, Heinz
RUHMANN, Heinz 44
S
Schlicht, Robert 2
\SeeAlso 32, 601
SHAKESPEARE, Wm. ... 59
\ShowComma 18, 583
\SkipIndex 30, 596

106

Smith, John*
Smith, John* (second) .. 36

Smith, John* (third) ... 36
Snel van Royen, R. 45
Snel van Royen, W. 45
Snellius

see Snel van Royen,
R.; Snel van Royen, W.

Stephani, Philipp 2
Strietelmeier, John 20
\SubvertName 41,1333
\SubvertThis ... 41,591
Sullenberger, Chesley B.,
1 17, 31
Sun King . see Louis XIV
Sun Yat-sen, pres. 3, 18
T
\TagName 35, 1050
\textBF 27, 581
\textIT 27, 579
\textSC 27, 575
\textUC 27, 577
Thomas a Kempis 23
Thomas Aquinas 45
TOKUGAWA Ieyasu ... 28
Twain, Mark 46
Tyson, Mike 46
U
\UntagName 36, 1101
A%
Van Buren, Martin, pres.
............. 8, 21
Ventura, Jesse 39
Vlad II Dracul 52
Vlad III Dracula 52
Vlad Tepes
see Vlad III Dracula
Voltaire 46

Washington, George, pres.

3, 4,6, 7,30, 36, 52, 54
White, E. B. 20, 64
William I
William the Conqueror
see William I

Y
Yamamoto Isoroku . 5,7, 19
Yohko 20
Yoshida Shigeruf, PM ... 9

	Contents
	1 Quick Start
	1.1 Introduction
	1.2 Basic Concepts
	1.3 Traditional Interface
	1.4 Simplified Interface
	1.5 Older Syntax
	1.6 Reference Tables

	2 Detailed Usage
	2.1 Package Options
	2.2 Naming Macros
	2.2.1 \Name and \Name*
	2.2.2 Forenames: \FName

	2.3 Language Issues
	2.3.1 Affixes Need Commas
	2.3.2 Eastern Names
	2.3.3 Initials
	2.3.4 Hyphenation
	2.3.5 Listing by Surname
	2.3.6 Particles
	2.3.7 Accented Names

	2.4 Formatting
	2.4.1 Spaces & Full Stops
	2.4.2 Formatting in the Text
	2.4.3 Alternate Format

	2.5 Indexing Macros
	2.5.1 Indexing Control
	2.5.2 Index Entries
	2.5.3 Index Cross-References
	2.5.4 Index Sorting
	2.5.5 Index Tags

	2.6 ``Text Tags''
	2.7 Name Decisions
	2.7.1 Testing Decisions
	2.7.2 Changing Decisions

	2.8 Name Variant Macros
	2.9 Longer Examples
	2.9.1 Variant Names
	2.9.2 \LocalNames
	2.9.3 Unicode + inputenc
	2.9.4 LaTeX Engines
	2.9.5 Hooks: Intro
	2.9.6 Hooks: Life Dates
	2.9.7 Hooks: Advanced
	2.9.8 Full Redesign

	2.10 Technical Notes
	2.11 Errors and Warnings

	3 Implementation
	3.1 Flags and Registers
	3.2 Hooks
	3.3 Package Options
	3.4 Internal Macros
	3.5 User Interface Macros

	4 Change History
	5 Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

