nameauth — Name authority mechanism for
consistency in text and index*

Charles P. Schaum?

Released 2016/03/18

Abstract

The nameauth package automates the formatting and indexing of names.
This aids the use of a name authority and the process of textual reordering
and revision without needing to retype name references.

Contents
1 Introduction 2 2.81 NAKA
1.1 Preliminaries 2 2.8.2 \PName
1.2 What’s In A Name? 3 2.9 Indexing Macros
2.9.1 Indexing Control . . .
2 Usage 5 2.9.2 Indexing and babel . .
2.1 Package Options 5 2.9.3 \IndexName
2.2 Quick Start Guide 8 2.9.4 Index Sorting
2.2.1 Main Interface 8 2.9.5 \TagName
2.2.2 Simplefied Interface . 10 2.9.6 \UntagName
2.2.3 Older Syntax 12 2.9.7 Global Name Exclusion
2.3 Naming Macros 13 2.10 Longer Examples
2.3.1 \Name and \Namex . . 13 2.10.1 Tips for \AKA
2.3.2 TForenames: \FName . . 14 2.10.2 Unicode and NFSS . .
2.4 Affixes and Eastern Names . 15 2.10.3 KTEX Engines
2.4.1 Affixes Need Commas 15 2.10.4 \LocalNames
2.4.2 FEastern Names 16 2.10.5 Formatting Hooks
2.5 Other Naming Topics 17 2.10.6 Variant Spellings . . .
251 Particles 17 2.11 Naming Pattern Reference . .
2.5.2 Formatting Initials . . 18 2.11.1 Basic Naming
2.5.3 Hyphenation 18 2.11.2 Particles
2.5.4 Listing by Surname . 19 2.12 Errors and Warnings
2.5.5 Fault Tolerance 19 3 Implementation
2.5.6 Detecting Punctuation 19 31 Boolean Valtes
2.5.7 Accented Names . .. 20 P

3.2 Hooks

2.5.8 Custom Formatting . 20 3.3 Package Options

2.5.9 Disable Formatting . . 22

o 3.4 Internal Macros
2.6 Name Dems.lons s 23 3.5 User Interface Macros
2.6.1 Testing Decisions . . . 23
2.6.2 Changing Decisions. . 25 4 Change History
2.7 “Text Tags” 25
2.8 Name Variant Macros 26 5 Index

*This file describes version v2.42, last revised 2016/03/18.
tE-mail: charles dot schaum at comcast dot net

33

35

39

52
52
53
54
95
67

91

93

1 Introduction

1.1 Preliminaries

When publications use hundreds of names, it takes time and money to check them.
This package automates much of that work. Context determines name forms
unless otherwise modified, meaning that you usually do not have to retype
names when editing a document. You can implement a name authority that
allows for name variants in the text and consistent index entries. With nameauth
you can handle some cross-cultural naming conventions. Additionally, you
can use index sort keys and tags automatically after assigning them.

This package grew from generalized needs for translating old German and
Latin texts. Design principles include:

1. Format and vary name forms according to standard syntax in the body text,
independent of the index.

e Default to long name references first, then shorter ones.
e Use alternate names only in the body text, not the index.
e Perform name caps and reversing only in the body text.

2. Perform typographic formatting of names only in the body text. Reflect
source text typography with English conventions, but only after syntactic
formatting is complete.

3. Allow typographic formatting to be customized and permit control sequences
in names (Sections 2.5.7, 2.5.8, and 2.9.4) to allow Continental and non-
English standards.

4. Always aim to reduce keystrokes.

5. Accommodate the broadest set of names while minimizing keystrokes.

This manual performs something of a “torture test” on this package. You
might want to avoid doing that if you are a beginner. It is designed to be com-
patible with A4 and US letter. Macro references are minimized for a “clean”
index, showing how nameauth handles indexing.

Nameauth depends on etoolbox, ifxetex, ifluatex, suffix, trimspaces, and xargs.
It was tested with latex, lualatex, pdflatex, and xelatex, along with
makeindex and texindy. This manual was typeset with pdflatex using
makeindex and gind.ist.

Indexing generally conforms to the standard in Nancy C. Mulvany, Indezing
Books (Chicago: University of Chicago Press, 1994). This should be suitable for
a very wide application across a number of disciplines.

Thanks to MARC VAN DONGEN, ENRICO GREGORIO, PHILIPP STEPHANI,
Heiko OBERDIEK, UWE LUECK, and ROBERT SCHLICHT for their assistance in
the early versions of this package.

This documentation uses names of living and historical figures because users refer to
real people. At no time do I intend any disrespect or statement of bias regarding any
particular person, culture, or tradition. All names are used only for teaching purposes.

1.2 What’s In A Name?

Name forms are ambiguous apart from historical and cultural contexts. The
nameauth package helps you encode names from as many contexts as possible.

In this manual we refer to three classes of names. A “surnames” argument,
(SNN), denotes a “required name,” that is, a Western surname, an Eastern family
name, or an ancient/medieval name.! Other naming systems can be adapted to
these categories, e.g., Icelandic, Hungarian, etc.

Professional writing often calls for the full form of a person’s name to be used
in its first occurrence, with shorter forms used thereafter. This package adapts
that principle to all the forms below.

1. Western name:

Forename(s) Surname(s) Sobriquet, etc.

| \
/ Family designator:

ather’s famil Sobriquet / title:
Personal name(s): J ,f Y JAne /
) mother’s family senior, junior, III. ..
baptismal name
O ancestor notable feature
Christian name . .
. occupation notable attribute
first and middle .. .
place of origin place of origin
names))
territory territory
praenomen
nomen/cognomen agnomen
patronym

2. BEastern name:

Family name Given name

/ \

Family (Multiple names are rare, but multi-
designator character names do exist.)

3. Ancient name:

Given name Sobriquet, etc.

\

Sobriquet / title:
senior, juntor, I1I. ..

Personal notable feature

name notable attribute
place of origin
territory

1Some professional literature speaks of forenames and optional surnames. See Mulvany, In-
dexing Books, pages 152-82, which I used as a guide along with the Chicago Manual of Style.
That approach does not work in KTEX, where we use optional forenames for the same effect.

Another way to think about these over-generalized classes of names is to
pretend that you know nothing at all about names. How would you make sense
out of the following?

Longer Name Shorter Name Indexed Name

George Washington Washington Washington, George

John David Rockefeller II Rockefeller Rockefeller, John David, 11
Clive Staples Lewis C.S. Lewis Lewis, Clive Staples

Clive Staples Lewis Jack Lewis Lewis, Clive Staples
Yamamoto Isoroku Yamamoto Yammamoto Isoroku
Aristotle Aristotle Aristotle

Elizabeth I Elizabeth Elizabeth I

Attila the Hun Attila Attila the Hun

The position of a name alone does not reveal whether it is a personal or family
name. You have to know the cultures of the respective names, what the affixes
mean, what triggers the different handling of affixes, and so on.

Some of the humanities literature says that you should view the forenames as
essential and the surnames as optional. Yet problems emerge when you have to
drop the forename reference in professional or courteous writing, when you have
to consider multiple alternate names, and when you have to consider those cases
where the family name comes first.

Nevertheless, if you notice a few consistent relationships, that will help you
work out how the nameauth package encodes names:

1. The long form of a name corresponds with the reordered indexed form.

2. All Western index forms have surname(s) first, followed by a comma, then
the forename(s), then a comma if needed, then the affix if it exists.

3. All Western name forms have both forename(s) and surname(s). The fore-
name(s) can change/drop in the text, but not in the index.

4. Eastern name forms (Surname(s)) (Forename(s)), with royal and ancient
name forms (Name(s)) (Affiz), should not have commas in their index en-
tries. The forename(s) and affixes cannot change (in this package), but they
can drop in the text, but not the index.

From this we conclude that all naming macros must be given the long name
information in their arguments, then decide what to drop, change, and reorder
depending on form and context. Since Eastern, ancient, and royal names share a
set of similarities, they can allow context to disambiguate their use, over against
Western names, which have to be handled differently.

All this being said, the publisher’s way of handling things may trump the
(arguably) canonical way. This package allows some “borderline” options and
name forms to accommodate that.”? The most prominent example includes the
“non-native” Eastern names discussed in Sections 2.1 and 2.4.2.

2Some publishers not only use commas with Eastern forms in the index, but sometimes the
forms are just wrong. For example, one sees Sun Yat-sen indexed as “Yat-sen, Sun” (instead
of either “Sun, Yat-sen” or “Sun Yat-sen”) in Immanuel Geiss, Personen: Die biographische
Dimension der Weltgeschichte, Geschichte Griffbereit vol. 2 (Munich: Wissen Media Verlag,
2002), 720. The six-volume series is otherwise a helpful resource.

4

2 Usage

2.1 Package Options
\usepackage [(option;), (options),...]{nameauth}

From the user’s perspective these options proceed from the most general to more
specific details. Package options address the following:

1. Enable or disable features (formatting, indexing, index sorting)

2. Affect the syntax of names (commas, capitalization, and reversing)

3. Typographic display of names (formatted or not, and how)

Default options are in boldface.

Enable/Disable Features

Enable/Disable Formatting

mainmatter Choose “main-matter names” and format-
ting hooks (see formatting options below),
starting at the beginning of a document.

frontmatter Choose “front-matter names” and hooks; retain
syntactic formatting.

The default mainmatter option starts formatting names immediately. Use the
frontmatter option to suppress name formatting until you want it to start via
\NamesActive. These options have no additional effects on the index, but they
implement two completely separate systems of first/subsequent names. These
systems manage names in separate contexts. See Section 2.5.9.

Enable/Disable Indexing

index Create index entries in place with names.

noindex Suppress indexing of names.

The default index option enables name indexing right away. The noindex option
disables the indexing of names until \IndexActive enables it. That can affect
the use of index tags. This applies only to naming and indexing macros in the
nameauth package. See Section 2.9.1.

Enable/Disable Index Sorting

pretag Create sort keys used with makeindex.

nopretag Do not create sort keys.

The default allows \PretagName to create sort keys used in makeindex / texindy.
Seldom would one change this option. See Section 2.9.4.

Affect the Syntax of Names

Show/Hide Affix Commas

nocomma Suppress commas between surnames and
affixes, following the Chicago Manual of
Style and other conventions.

comma Retain commas between surnames and affixes.

This option is set at load time. If you use modern standards or Fastern names,
choose the default nocomma option to get, e.g., JAMES EARL CARTER JR.

If you need to adopt older standards that use commas between surnames and
affixes, you have two choices:

1. The comma option produces, e.g., JAMES EARL CARTER, JR. Yet it
limits the use of macros like \AKA and \PName and it prevents the use
of Eastern and ancient names with the new syntax.’

2. Section 2.4.1 shows how one can use \ShowComma with the nocomma
option to get similar results, but with more flexibility.

Capitalize Entire Surnames

normalcaps Do not perform any special capitalization.

allcaps Capitalize entire surnames, such as romanized
Eastern names.

This only affects names printed in the body text. One of the design principles
of this package keeps it consistent with English typography and syntax. Thus no
syntactic or typographic changes are propagated into the index by default.

Still, you can use this package with different conventions that involve both
syntax and formatting. You can type in capitalized family names directly to get
that effect. See also Section 2.5.8 on how to use macros to get caps (\uppercase)
or small caps (\textsc) in both the body text and the index. This becomes easy
with the simplified interface.

Section 2.4.2 deals with capitalization on a section-level and per-name basis.

Reverse Name Order

notreversed Print names in the order specified by \Name
and the other macros.

allreversed Print name forms in “smart” reverse order.

allrevcomma Print all names in “Surname, Forenames” order,
meant for Western names.

See Section 2.4.2 for related macros to control name reversing by section or by
name. This also affects how Eastern names will appear in the index.

So-called “last-comma-first” lists of names via allrevcomma (Section 2.5.4)
are not the same as the comma option. They are designed for Western names.

3Before version 0.9 the nameauth package assumed the comma option by default and used the
old syntax to encode names. Newer versions are backward-compatible.

Typographic Display of Names

Section 2.5.8 explains in greater detail that typographic display is different
from the syntactic formatting of names and occurs after syntactic formatting is
complete. This package is designed with type hierarchies in mind.*

As of version 2.4, “typographic formatting” has become a generalized concept
of “name post-processing” via the hook macros \NamesFormat, \MainNameHook,
and \FrontNameHook. Sections 2.5.8 and 2.10.5 offer substantially more complex
possibilities for such hooks.”

Even though English typography was the design choice for this package, one
can use this package in Continental (German, etc.) and other typographic stan-
dards, as Section 2.5.8 discusses. One must use sort tags, as Section 2.9.4 explains.

Continental standards include formatting surnames only. However, nameauth
uses some ambiguous name forms.® Continental users must add control sequences
directly in the naming macro arguments. In that case, use the noformat option
and the simplified interface to minimize keystrokes. Continental users may lose
some capitalization features; see Section 2.5.1.

Otherwise, the options below are meant generally for applications in English
typography. The default is smallcaps because this package was developed to aid
my editing and translation of older German and Latin documents into English. I
do apologize for any inconvenience in design choices.

Formatting Attributes

alwaysformat If formatting is enabled by the mainmatter op-
tion or by \NamesActive, this option causes all
names to have typographic formatting applied to
them, whether first or subsequent uses.

smallcaps Set the first use of a name in small caps.
italic Italicize the first occurrence of a name.
boldface Set the first use of a name in boldface.
noformat Do not define a default format. Can be used with

custom formatting.

“See Robert Bringhurst, The Elements of Typographic Style, version 3.2 (Point Roberts,
Washington: Hartley & Marks, 2008), 53-60.

°I drew some inspiration from the typography in Bernhard Lohse, Luthers Theologie (Gottin-
gen: Vandenhoeck & Ruprecht, 1995) and the five-volume series by Jaroslav J. Pelikan Jr., The
Christian Tradition: A History of the Development of Doctrine (Chicago: Chicago UP, 1971-89).
Each volume in the series has its own title.

5By default, nameauth uses a “serendipitous ambiguity” of ancient, Eastern, and suffixed
name forms handled by the (Surname, affiz) pattern that is resolved subtly by several factors.

2.2 Quick Start Guide
2.2.1 Main Interface

See Section 2.3 for a proper description of \Name. Here we see briefly how to
work with the classes of names in Section 1.2. We abbreviate the macro argu-
ments (forename(s)) with (FNN) and (surname(s)) with (SNN). Use the nocomma
option especially when using Eastern names and ancient names.

Western Names

Add only if text in
brackets [] follows.

N

\Name * [(FNN)] {(SNN)} [(Alternate names)] {}

Vs \

Add to force full name.

R Surname(s) (empty)
ozegangeés) Surname(s), affix Nickname(s)
used mindex “required name” Full forenames, etc.
Usual forms:
\Name [{FNN)]{(SNN)} \Name [George] {Washington}

\Name [(FNN)J{(SNN, affir)} \Name[John David]{Rockefeller, II}

You must include the (FNN) field with alternate forenames. The (Alternate
names) are swapped with the (FNN), but only in the body text:

\Name [(FNN)1{(SNN)} [{Alternate names)]
\Name [Bob] {Hope} [Leslie Townes]

\Name [Clive Staples]{Lewis}[C.S.]

\Name [(FNN)I{(SNN, affiz)} [{Alternate names)]
\Name [John David]{Rockefeller, IV}[Jay]

The older syntax is \Name{(SNN)} [(affiz)]. See Section 2.2.3 for its
usage and its shortcomings. It remains for backward compatibility.

Eastern Names in the Text, Western-style Index

Add only if text in

Add to force full name. brackets [1 follows.

/
\Name * [(FNN)I {(SNN)} {}
/ \

Given name Family name

Technically, these are Western name forms without affixes. The re-
versing macros (Section 2.4.2) cause them to display in Eastern or-
der in the body text only. The index entries are Western in fashion:
(SNN), (FNN). This “non-native” form of Eastern names excludes
both comma-delimited forms and the old syntax.

Eastern Names in the Text, Eastern-style Index

Add only if text in

Add to force full name. brackets [1 follows.

/
\Name * {(SNN, FNN)} {}

N

Family name Given name
Usual form:
\Name{(SNN, FNN)} \Name{Yamamoto, Isoroku}

These names truly are Eastern names. They take the form (SNN FNN)
in the index even if the reversing macros (Section 2.4.2) put the names in
Western order in the body text. We call this the “native” Eastern form.

The old form of Eastern names is \Name{(SNN)}[(FNN)]. Again,
this is retained only for backward compatibility. Cf. Section 2.2.3.

Ancient Names

Mononym Add only if text in
Mononym, affix brackets [] follows.

/

Add to force full name.

/
\Name™ * {(SNN)} {3}

Usual form:
\Name{(SNN)} \Name{Aristotle}
\Name{(SNN, affiz)} \Name{Elizabeth, I}

\Name{Attila, the Hun}

These forms are used for royalty, ancient figures, and other mon-
omyms with or without suffixes.” The older syntax takes the form
\Name{(Mononym)} [{(affir)]. Cf. Section 2.2.3.

Many commands in the main interface are variants of a base pattern, where
(prefix macro) consist of one or more of \CapThis, \CapName, \RevName,
\RevComma, \ShowComma, and \KeepAffix:

(prefix macro) \Name (arguments)
(prefiz macro) \Namex* (arguments)
(prefiz macro) \FName (arguments)
\IndexName (arguments)
\ForgetName (arguments)
\SubvertName (arguments)

\PretagName (arguments) (sort key)

\TagName (arguments) (tag)

\UntagName (arguments)
\ExcludeName (arguments)

"Technically, the native Eastern forms and the (Mononym, affiz) forms are identical, although
used in different contexts. You would not wish to reverse a royal name, for example.

nameauth

2.2.2 Simplefied Interface

The nameauth environment allows one to save typing and aid consistency by
using shorthands. It replaces the use of \Name, \Name*, and \FName, but not
the other naming macros. Thus one must remain aware of the main interface.

The simplified interface produces control sequences that are fully compatible
with the main interface. Although not required, nameauth is best used in the doc-
ument preamble to avoid undefined control sequences.® The italicized comments
at right are not part of the example proper, but are there for explanation. Macro
fields have uniform widths only to help compare argument types.

\begin{nameauth}
\< (cseql) & (FNN) & (SNN) & > Western®
\< (cseq2) & (FNN) & (SNN, affix) & > Western
\< (cseq3) & (FNN) & (SNN) & (Alt. names) > W. nickname'’
\< (cseq4) & (FNN) & (SNN, affix) & (Alt. names) > W. nickname
\< (cseqs) & & (SNN) & > ancient/mono
\< (cseqb) & & (SNN, affiz) & > royal/ancient
\< (cseq?) & & (SNN, FNN) & > FEastern'!
\< (cseq8) & & (SNN) & (FNN/affiz) > old syntaz'?

\end{nameauth}

Each (cseq) creates three macros. In the document text, \(cseq) itself works
like \Name. \L(cseq) (think “Long”) works like \Name*. \S(cseq) (think “Short”)
works like \FName. Please bear in mind the following guidelines:

e In this context, “\<” is an escape character and a control sequence. If you
forget it or just use < without the backslash, you will get errors.

e There must be four argument fields (three ampersands) per line. Leaving out
an ampersand will cause an error. Think “holy hand grenade of Antioch”
from Monty Python and the Holy Grail.

e Leading and trailing spaces in each &-delimited field are stripped, as is also
the case in the main interface.

e As in the main interface, medial spaces do not affect first-use control se-
quences, but they will affect name forms in the body text and index.

e In the document text, as with the main interface, include trailing braces { },
control spaces, or the like if text in brackets [] follows any of the shorthands,
e.g., \LWash{} [\emph{sic}].

e The old syntax (Section 2.2.3), triggered by an empty (FNN) field, causes
the (Alt. names) field to be interpreted as either Eastern (FNN) or an (affiz).
Due to its limitations and potential confusion, you are encouraged to avoid
it unless you are using the comma option.

8The nameauth environment uses \ignorespaces to mitigate the need for trailing %.
9This is also the form used with “non-native” Eastern names using reversing macros, but
leaving them in Western form in the index.

When the (Alt. names) is used, {FNN) never appears in the body text, but only in the index.
See Section 2.3.2 to avoid possible difficulties. You could use \AKA to create a see reference for
the Jay Rockefeller example on the next page; see Section 2.8.1.

1« Native” Eastern names can be reversed to use Western order in the body text, but they
will always have an Eastern form in the index.

12This is the old syntax for Eastern and royal names.

10

The example below illustrates a fairly complete set of names, apart from some
special cases covered elsewhere in the manual:

\begin{nameauth}

\< Wash & George & Washington & >
\< Soto & Hernando & de Soto & >
\< JRII & John David & Rockefeller,
\< JRIV & John David & Rockefeller, IV & >

\< JayR & John David & Rockefeller, IV & Jay >
\< Lewis & Clive Staples & Lewis & C.S. >

\< Jack & Clive Staples & Lewis & Jack >

\< Aris & & Aristotle & >
\< Eliz & & Elizabeth, I & >

\< Attil & & Attila, the Hun & >
\< Konoe & Fumimaro & Konoe & >
Isoroku & >

\< Yamt & & Yamamoto,
\end{nameauth}

Western
particle
affiz
affiz

nickname

IT & >

nickname

nickname

ancient

royal

ancient
Eastern/Western index
Eastern/Eastern index

Now we see how this works in the body text, which you can compare with
the index. A dagger (1) indicates an Eastern name with a Western index form.

Basic Uses:

\Wash GEORGE WASHINGTON
\LWash George Washington
\Wash Washington
\SWash George

Western Reversed with Comma:

\RevComma\LWash Washington, George

Particles:

\Soto HERNANDO DE SOTO
\Soto de Soto
\CapThis\Soto De Soto
Affixes:

\JRII JOHN DAVID ROCKEFELLER I
\LJRII John David Rockefeller 11
\JRII Rockefeller

Nicknames: (See Section 2.3.2)

\JRIV JOHN DAVID ROCKEFELLER IV
\LJRIV[Jay] Jay Rockefeller IV
\SJRIV[Jay] Jay
\SJRIV[Jay] \JRIV Jay Rockefeller
\LJayR Jay Rockefeller IV
\SJayR Jay
\SJayR\ \JayR Jay Rockefeller
\Lewis C.S. LEwis
\Lewis Lewis
\LJack Jack Lewis
\SJack Jack

Ancient:

\Aris ARISTOTLE
\Aris Aristotle
Medieval /Royal:

\Eliz ErL1ZABETH 1
\Eliz Elizabeth
\Atil ATTILA THE HUN
\Atil Attila

Western / Western Index:

\Konoe FuMiIMARO KONOE
\LKonoe Fumimaro Konoe
\Konoe Konoe

Eastern / Western Index:
\CapName\RevName\LKonoe

tKONOE Fumimaro
\CapName\Konoe tKONOE
Eastern / Eastern Index:
\CapName\Yamt YAMAMOTO ISOROKU
\CapName\LYamt = YAMAMOTO Isoroku
\CapName\Yamt YAMAMOTO

Western / Eastern Index:
\RevName\LYamt
\Yamt

Isoroku Yamamoto
Yamamoto

Sections 2.5.1, 2.5.7, and 2.9.4 deal with the pitfalls of accents and capital-
ization, as well as why you should use \PretagName for any name with control

sequences or extended Unicode under NFSS. This becomes very important when
authors and publishers use medieval names as Western names.

When index tagging or pre-tagging names (Section 2.9.4), the (Alternate
names) field has no effect on index tags. \JRIV and \JayR need only one tag:

\TagName [John David]{Rockefeller, IV}{(something)}
Likewise, \Lewis and \Jack need only one tag:

\TagName [Clive Staples]{Lewis}{(something)}

2.2.3 Older Syntax

An “obsolete” syntax remains for backward compatibility with early versions of
nameauth and with the comma option. Please avoid mixing the older and newer
forms to avoid possible confusion and error. For example, the older syntax causes
the (Alternate names) field in the index tagging functions to become as significant
as (FNN), including the need to pretag such names.

The comma option causes Western names with affixes to have a comma. Yet
that also causes Eastern and ancient names, or any names using a pattern like
(SNN, affiz) or (SNN, FNN) to display a comma where it should not occur. The
old form lacks some error checking and robustness contained in the new syntax
and limits the use of several macros, including \AKA. Section 2.12 offers some
cautions about the old syntax, as do many places in this manual. The form is:

\Name{Dagobert} [I] royal name
\Name{Yoshida} [Shigeru] Eastern name
\begin{nameauth}
\< Dagb & & Dagobert & I > royal name
\< Yosh & & Yoshida & Shigeru > Eastern name
\end{nameauth}

Here the (FNN) fields are empty. That changes the final field from
(Alternate names) to (affiz/Fastern FNN).

\Dagb gives DAGOBERT I, then Dagobert. In similar fashion, we
see \LDagb Dagobert I, \CapName\Yosh YOSHIDA SHIGERU, and
\CapName\RevName\LYosh Shigeru YOSHIDA.

In the old syntax, \Name{Henry} [VIII] prints “HENRY VIII” and “Henry.”
If you mix \Name{Henry} [VIII] with the newer \Name{Henry, VIII} they both
print HENRY VIII and Henry in the body text. Yet they generate different control
sequences for both first /subsequent uses and index tags.'?

Avoid \Name{Henry, VIII}[Tudor] unless you want “HENRY VIII TUDOR”
and “Henry” in the body text and “Henry VIII Tudor” in the index. One solution
adds “Tudor” as needed in the text after \Name{Henry, VIII} and uses a tag in
the index: \TagName{Henry, VIII}{ Tudor} (see Section 2.9.5).

13Technically you can mix the two, as I do here. You must force first and subsequent uses with
\ForgetName and \SubvertName. You must make common index tags, e.g.: \TagName{Henry,
VIII}{, king} and \TagName{Henry}[VIII]{, king}. That undermines the time-saving fea-
tures offered by this package.

12

2.3 Naming Macros
2.3.1 \Name and \Namex*

\Name This macro generates two forms of the name: a printed form in the text and a
\Name* form of the name that occurs in the index. The general syntax is:

\Name [(FNN)]{(SNN)} [(Alternate names)]
\Name* [(FNN)]1{(SNN)} [(Alternate names)]

Here we see how the syntax works:

\Name [Albert]{Einstein}
\Name* [Albert]{Einstein}

ALBERT EINSTEIN
Albert Einstein

\Name [Albert]{Einstein} Einstein
\Name{Confucius} CONFUCIUS
\Name*{Confucius} Confucius
\Name{Confucius} Confucius

\Name [M.T.]{Cicero} [Marcus Tullius] MARrcuUs TuLrLius CICERO
\Name* [M.T.]{Cicero}[Marcus Tullius] Marcus Tullius Cicero
\Name [M.T.]{Cicero}[Marcus Tullius] Cicero

\Name{Charles, the Bald} CHARLES THE BALD
\Name*{Charles, the Bald} Charles the Bald
\Name{Charles, the Bald} Charles

\Name displays and indexes names, as illustrated in Section 2.11. It always
prints the (SNN) field. \Name prints the “full name” at the first occurrence, then
the partial form thereafter. \Name* always prints the full name.

The (Alternate names) field replaces the (FNN) field in the body text
only. It does this if the (FNN) field is not empty; see “Cicero” above.
Regarding their index entries, \Name[M.T.]{Cicero}[Marcus Tullius] and
\Name [M.T.]{Cicero} are equivalent. This lets one use a nickname while keep-
ing the indexed form constant. If the (FNN) is empty, you get the old syntax for
Eastern and royal names (Section 2.2.3).

\begin{nameauth}
\< Einstein & Albert & Einstein & >
\< Cicero & M.T. & Cicero & >
\< Confucius & & Confucius & >
\< CBald & & Charles, the Bald & >
\end{nameauth}

Here we have the equivalent with the simplified interface. \Einstein,
\LEinstein, and \Einstein produce ALBERT EINSTEIN, Albert Einstein, and
Einstein. \CBald and \CBald give CHARLES THE BALD and Charles. \Confucius
yields ConrFucius and Confucius. \Cicero prints M.T. CICERO and Cicero,
while \LCicero[Marcus Tullius] gives Marcus Tullius Cicero. The next page
explains why this form may be preferable in some cases for name variants when
using the simplified interface.

13

\FName
\FNamex*

2.3.2 Forenames: \FName

\FName and its synonym \FName* print just forenames, but only in subsequent
name uses.'* They are intended for Western-style names. The syntax is:

\FName [(FNN)1{(SNN)} [{Alternate names)]

This macro always prints full name when a name is first used. That prevents a
first-name reference before a person has been introduced. To force a short name
as a first reference, you could use a macro to incorporate:

\SubvertName [{ FNN)]{(SNN)}%
\makeatletter\@nameauth@FirstFormattrue\makeatother’,
\FName [(FNN)]1{(SNN)}

By design, \FName never prints Eastern personal names, so that ancient names
also work (cf. Section 2.11). Examples of general use include:

\FName [Albert]{Einstein} ALBERT EINSTEIN
\FName [Albert]{Einstein} Albert
\FName{Confucius} CONFUCIUS
\FName{Confucius} Confucius

\FName [M.T.]{Cicero}[Marcus Tullius] MARcUS TULLIUS CICERO
\FName [M.T.]{Cicero}[Marcus Tullius] Marcus Tullius

\FName{Charles, the Bald} CHARLES THE BALD
\FName{Charles, the Bald} Charles

With the simplified interface example from the previous page, \SEinstein,
\SConfucius, \SCicero, and \SCBald give us Albert, Confucius, M.T., and
Charles. \SCicero[Marcus Tullius] gives Marcus Tullius. However, with the
macro \FName [Chesley B.]{Sullenberger, III}[Sully] we have “SULLY SUL-
LENBERGER III1” and “Sully.” Please use caution!

This may not always be a “bug.” Remembering Section 2.2.2, you can use
C.S. LEwis or “Jack.” \FName [Clive Staples]{Lewis}[C.S.] or \Lewis gives
the first form, while \FName [Clive Staples]{Lewis}[Jack] or \Jack gives the
second. \SJayR gave JAY ROCKEFELLER IV and Jay, but the index entry re-
mains “Rockefeller, John David, IV.” Using “default nicknames” in the simplified
interface has some caveats:

\begin{nameauth}

\< Ches & Chesley B. & Sullenberger, III & >

\< Sully & Chesley B. & Sullenberger, III & Sully >
\end{nameauth}

The first use \Ches prints “CHESLEY B. SULLENBERGER II1.” Later, \SChes
and \SSully print “Chesley B.” and “Sully.” While \SChes [Sully] always gives
“Sully,” \SSully [Chesley B.] prints “Sully[Chesley B.].” The (Alternate names)
field is always occupied when using \Sully, etc. Thus, the final [Chesley B.]
is not a macro argument.

The two macros are the same in case you edit \Name* by adding an F to get a first reference,
just as you might edit \Name the same way to get the same result.

14

\KeepAffix

\ShowComma

2.4 Affixes and Eastern Names
2.4.1 Affixes Need Commas

Comma-delimited affixes handle several different name types. Always include a
comma as an affix delimiter, even when the nocomma option does not print the
comma. Extra spaces between the comma and affix are ignored. Extra commas
have no effect. Other name types include royal, medieval, and Eastern names:

\Name [Oskar] {Hammerstein, II} OSKAR HAMMERSTEIN II

\Name [Oskar]{Hammerstein, II} Hammerstein

\Name{Louis, XIV} Louis XIV
\Name{Louis, XIV} Louis
\Name{Sun, Yat-sen} SUN YAT-SEN
\Name{Sun, Yat-sen} Sun

You cannot use the old syntax with the Hammerstein example. One must use
comma-delimited suffixes when cross-referencing affixed Western names, royal
names, some medieval names, and Eastern names with \AKA; see Section 2.8.1.

Put \KeepAffix before \Name or \AKA if a line break or page break divides
a (SNN, affiz) pair. This puts a non-breaking space between (SNN) and (affiz)
in the body text, but not in the index. Other options to fix bad breaks include
using \hbox, kerning and spacing in the microtype package, etc.

The comma option is restrictive and used to reproduce older texts. \ShowComma
gets the same results on a per-name basis while using the default nocomma option.
With \ShowComma\Name [Louis] {Gossett, Jr.} one gets Louis GOSSETT, JR.
One must use \ShowComma consistently or risk errors in the body text and index.

Compare Older Syntax

Avoid using the older syntax, shown below, except with the comma option. The
older syntax causes Eastern and ancient names that use the (SNN, affiz) pattern
to have unwanted commas in them with the comma option or with \ShowComma .
\AKA and \PName cannot create cross-references to these forms:

\Name{Henry} [VIII] HeNry VIII
\Name{Henry} [VIII] Henry

\Name{Chiang} [Kai-shek] CHIANG KAI-SHEK
\Name{Chiang}[Kai-shek] Chiang

These older forms work because no (FNN) are present. Otherwise you would get
weird nicknames. Again, to avoid potential frustration, please avoid using the
older syntax unless you need it.

15

\ReverseActive
\Reverselnactive
\RevName

\global

\AllCapsActive
\AllCapsInactive
\CapName

\global

2.4.2 Eastern Names

The nameauth package offers “non-native” and “native” ways to handle romanized
Eastern names. \RevName\Name [(Fastern FNN)]{(FEastern SNN)} will produce
an Eastern name in the body text and the Western form (SNN), (FNN) in the
index, including the comma. We call this “non-native” mode.

In contrast, both \Name{(Fastern SNN, Eastern FNN)} and the older syntax
\Name{(Eastern SNN)} [(Eastern FNN)] produce an Eastern name form in the
body text: (SNN) (FNN) as well as in the index. This form has no comma in the
index. We call this “native” mode.

The “smart” reverse output mechanism converts between Western and East-
ern forms in the text, but not the index. Pick non-native mode for Western-format
index entries. Pick native mode for Eastern forms in the index. In addition to the
class options described in Section 2.1, \ReverseActive and \Reverselnactive
toggle reversing on a larger scale, while \RevName is used once per \Name.

Please note that \ReverseActive and \ReverselInactive can be used ex-
plicitly as a pair. They also can be used singly within an explicit scope, where
the effects cease after leaving that scope. Use \global to force a global effect.

This list of Japanese music artists shows \RevName in action. Names in West-
ern order, then non-native Eastern order are marked with a dagger (1). All other
names are in native Eastern, then Western order. Forms using the old syntax are
in parentheses. Name formatting is turned off in order to focus on reversing:

unchanged \RevName

t\Name* [Aiko] {Nakano} tAiko Nakano f{Nakano Aiko

\Name*{Arai, Akino} Arai Akino Akino Arai
(\Name*{Ishida}[Yoko]) (Ishida Yoko) (Yoko Ishida)
\Namex*{Yohko} Yohko Yohko

Use \AllCapsActive, \AllCapsInactive, and \CapName for fully-capitalized
family names in the body text. These macros are analogous to the reversing
macros above and may be used alone or with those and other state-toggling
macros, e.g. \CapName\RevName\Namne. ...

Both \AllCapsActive and \AllCapsInactive have the same local restric-
tions as the other state-changing macros. Use \global to force a global effect.

In the example below, names in Western order, then non-native Eastern order
are marked with a dagger (}). All other names are in native Eastern, then Western
order. Forms using the old syntax are in parentheses. Name formatting is turned
off in order to focus on capitalizing and reversing;:

unchanged \CapName\RevName

T\Name* [Yoko] {Kanno} TYoko KANNO TKANNO Yoko
\Name*{Shikata, Akiko} SHIKATA Akiko Akiko SHIKATA
(\Name*{Nogawa} [Sakura]) (NOGAWA Sakura) (Sakura NOGAWA)
\Name*{Yohko} YOHKO YOHKO

Notice how capitalization is independent of formatting. The reversing and
capitalization macros also work with \AKA. They affect only the text, not the
index. For caps in the text and index see Section 2.5.8.

16

\CapThis

\AccentCapThis

2.5 Other Naming Topics
Language-Related Issues

2.5.1 Particles

According to the Chicago Manual of Style, English names with the particles de,
de la, d’, von, van, and ten generally keep them with the last name, using varied
capitalization. Le, La, and L’ always are capitalized unless preceded by de.

In English, these particles go in the (SNN) field of \Name, e.g., WALTER DE
LA MARE. \CapThis\Name [Walter]{de la Mare} lets you capitalize de when
at the beginning of a sentence. De la Mare will think it fair. De Soto (using
\CapThis\Soto from Section 2.2.2) would agree.

It is a good idea to put ~ or \nobreakspace between particles and surnames
to avoid bad breaks. This also prevents \CapThis from eating the space between
a one-character particle and the surname (Section 2.10.2).

The Continental style of handling surnames (Section 2.5.8) does not work with
the capitalization macros. In the case of names like CATHERINE DE’ MEDICI use
\Name [Catherine] {\textsc{de’~Medici}} and, instead of the capping macros,
\textsc{De’~Medici}\IndexName [Catherine] {\textsc{de’~Medicil}}.

With pdflatex and inputenc, use \CapThis when the first character of the
particle is A-z (basic Latin). Use \AccentCapThis when the first character is
extended Latin or other Unicode (see Section 2.10.2). Otherwise, with pdflatex
\CapThis will fail if an extended Unicode character is the first letter of a particle.

For example, L’ and d’ are two separate glyphs each, while I and d are one
Unicode glyph each. Even with xelatex and lualatex, you would put a non-
breaking space between the particle and the name because the particle is only
one character. With pdflatex you also must use \AccentCapThis.

Another example deals with particles and name forms:

\PretagName{Thomas, a~Kempis}{Thomas a Kempis} medieval
\PretagName [Thomas] {a~Kempis}{Thomas a Kempis} Western
\begin{nameauth}
\< KempMed & & Thomas, &~Kempis & > medieval
\< KempW & Thomas & &~Kempis & > Western
\end{nameauth}

The medieval forms THOMAS A KEMPIS and Thomas use the particle as the first
part of an affix. Please do not confuse the medieval forms with the Western forms.
Otherwise you will get similar names with different index entries.'®

Many people use medieval affixes as Western surnames: “A Kempis.”'® To get
that form, use \AccentCapThis\KempW.

15Properly speaking, “4 Kempis” and “Aquinas” are not surnames but suffixed place names.
They create different index entries from Western names and look different in the text.

16This treatment of medieval names, along with the handling of Eastern names, seems to be
one of the most frequently “abused” issues in the academic literature that I know. In order
to achieve simplicity in work flow or conformity, authors and publishers will take some fairly
ethnocentric or heavy-handed approaches to names. The nameauth package will accommodate
those approaches, even if I personally disagree with them.

17

Alternates

Section 2.10.2 explains in detail why the following problems can occur:

e \CapThis\KempW halts execution with Argument of \UTFviii@two@ octets
has an extra }.

e \AccentCapThis\Name [Thomas] {4 Kempis} gives “THOMAS AKEMPIS” (space
removed). Instead, use \AccentCapThis\Name [Thomas] {&~Kempis}.

e Under pdflatex \AccentCapThis fails with particles like 16 — use \CapThis
in that case to avoid breaking the second character.

e \AccentCapThis\Soto gives DESoto. Only use it with accented first letters.

You could use name forms with braces, like \Name [Thomas]{{a}~Kempis},
and control sequences, like \Name [Thomas]{\‘a~Kempis}. Using those forms
consistently, with \PretagName, would require you to use \CapThis, never
\AccentCapThis. See Section 2.10.2 for more details.

Non-English contexts do not necessarily bind particles to surnames. Using
\Name and \FName with alternate forenames helps address this and may skirt the
particle capitalization issue. See also Section 2.11.2.

2.5.2 Formatting Initials

Omit spaces between initials if possible; see also Bringhurst’s Elements of Typo-
graphic Style. If your publisher wants spaces between initials, try putting thin
spaces \, between them. Use \PretagName to get the correct index sorting:

\PretagName[E.\,B.]{White}{White, E. B.}
\begin{nameauth}

\< White & E.\,B. & White & >
\end{nameauth}

\White and \LWhite E.B. WHITE and E. B. White
| 1] |l
IRl Nl

Normal text: E. B. WHITE and E. B. White.

2.5.3 Hyphenation

The simplified interface trivializes the insertion of optional hyphens in names,
but such hyphens must be used consistently in all the naming macros:

\begin{nameauth}
\< Bier & Johann & Bier\-mann & >
\end{nameauth}

We get JOHANN BIERMANN and Biermann. English hyphenation can break ie-
pairs and maybe others. One also can fix bad breaks with the babel or polyglossia
packages. This moves the solution from “quick and dirty” to elegant. JOHN STRI-
ETELMEIER can break badly in English, as you see. Using babel, we get:

\newcommand{\de} [1]{\foreignlanguage{ngerman}{#1}3}
\de{\Name* [John] {Strietelmeier}}
John Strietelmeier

18

\ReverseCommaActive
\ReverseCommalnactive
\RevComma

\global

2.5.4 Listing by Surname

The reversing macros \ReverseCommaActive, \ReverseCommalInactive, and
\RevComma allow the easy generation of name lists ordered as (SNN), (FNN)
or (SNN), (Alt. names). The first two are broad toggles, while the third works
on a per-name basis. Both \ReverseCommaActive and \ReverseCommalnactive
have the same local restrictions as the other state-changing macros unless you
use \global. Eastern, medieval, and royal names do not work with these macros.
Name formatting has been turned off to focus on reversing and commas:

John Stuart Mill Mill, John Stuart OK
Oskar Hammerstein II Hammerstein II, Oskar OK
John Eriugena Eriugena John incompatible
Mao Tse-tung Tse-tung Mao incompatible
Anaximander Anaximander OK

Technical-Related Issues

2.5.5 Fault Tolerance

Especially since version 2.0, the nameauth package minimizes possible side effects
of malformed input and macros that expand to being empty in required values. To
reduce errors, \Name, \FName, \AKA, and \IndexName ignore leading and trailing
spaces — but not medial spaces—making the following equivalent:

Macro Example Resulting Text

\Name* [Martin Luther]{King, Jr.} MARTIN LUTHER KING JR.
\Name* [Martin Luther]{King, Jr.} Martin Luther King Jr.
\Name*[Martin Luther]{King, Jr.} Martin Luther King Jr.
\Name* [Martin Luther]{ King, Jr.} Martin Luther King Jr.
\Name* [Martin Luther]{King, Jr. } Martin Luther King Jr.
\Name* [Martin Luther]{ King, Jr. } Martin Luther King Jr.

2.5.6 Detecting Punctuation

In Western names, affixes like “Jr.” (junior), “Sr.” (senior), “d.J.” (der Jingere),
and “d. A (der Altere) can colide with the full stop in a sentance. \Name, \FName,
and \AKA check for a trailing period in the name that they print in the text. If
they find it, they check if the next token is a full stop and gobble it if so:

Macro Example periods Resulting Text

\Name [Martin Luther]{King, Jr.}. 2 —1 MARTIN LUTHER KING JR.
\Name [Martin Luther]{King, Jr.}. 2 —1 King.
\Name [Martin Luther]{King, Jr.}, 1—0 King
\Name* [Martin Luther]{King, Jr.}. 2 —1 Martin Luther King Jr.
\Name* [Martin Luther]{King, Jr.}, 1— 1 Martin Luther King Jr.
{\Name* [Martin Luther]{King, Jr.}}. 2 —2 Martin Luther King Jr..'”

17Grouping tokens and other items can frustrate the full stop detection mechanism.

19

Continental
small caps

2.5.7 Accented Names

For names that contain accented characters, using xelatex or lualatex with
xindy (texindy) is recommended. Section 2.10.3 shows how you can work with
multiple engines.

If the leading character of (SNN) is accented and lowercase (usually only
in a particle), then you must use \AccentCapThis if you are using pdflatex.
Sections 2.5.1 and 2.10.2 give more details about \CapThis and \AccentCapThis.

Accented characters act like control sequences. In pdflatex use \PretagName
with all names with extended Unicode characters (Sections 2.9.4 and 2.10.2).®

Nevertheless, Unicode characters and “regular” control sequences are not in-
terchangeable. The example below shows this difference because the names are all
long (thus, different). The names are not long, then short (were they the same):

\Name [Johann] {Andre\"a} JOHANN ANDREA
\Name [Johann] {Andre&} JOHANN ANDREA instead of Andrea
\Name{\AE thelred, II} ATHELRED 11
\Name{Ethelred, II} ATHELRED II instead of Athelred

See Section 2.10.2 on how to add additional Unicode glyphs to the default set
under NFSS, inputenc, and fontenc. One may use expandable control sequences
in names (thanks Robert Schlicht). Also, you can define letters with \edef and
\noexpand to use in names, as some do to “protect” accented letters in names.
As of version 2.0 of nameauth helpful concerns expressed by PATRICK COUSOT
have been addressed.

2.5.8 Custom Formatting
There are two kinds of formatting at work:

1. Syntactic Formatting: This includes reversing names, capitalizing the first
letter in the (SNN) field in the body text, and capitalizing the root when
(SNN) is a (root, suffiz) pair.

2. Typographic Formatting: This happens after a name has been parsed
and reordered as needed into the final form it will take in the text.

Typographic formatting does not affect the index. However, literal control se-
quences in the macro arguments of \Name and friends do make it into the index.
Use this method with the noformat option to suppress default formatting, which
we simulate here. One also must use \PretagName to get proper index sorting:

\PretagName [Greta] {\textsc{Garbo}}{Garbo, Greta}
\Name [Greta] {\textsc{Garbol}}

You get Greta GARBO, then GARBO, even in the front matter because this format-
ting is persistent. Use ‘‘Garbo’’\IndexName\Name [Greta]{\textsc{Garbo}}
for a “Garbo” reference. \Name [\normalfont{Greta}]{\textsc{Garbo}} may
look like the name above, but it is a different name with a different index entry.
Keep the formatting simple to gain both flexibility and consistency.

!8This is true especially in NFSS while using makeindex. With xindy one can make custom
sorting alphabets that are more powerful than \PretagName.

20

\NameauthName
\NameauthLName
\NameauthFName

\global

\NamesFormat

A comma delimiter will split the macro argument, potentially causing unbal-
anced braces. Avoid this by formatting the name and suffix separately:

\PretagName{\uppercase{Fukuyama}, Takeshi}{Fukuyama, Takeshi}
\PretagName [Thurston] {\textsc{Howelll},\textsc{III}}},
{Howell, Thurston 3}
\begin{nameauth}
\< Fukuyama & & \uppercase{Fukuyama}, Takeshi & >
\< Howell & Thurston & \textsc{Howelll},\textsc{III} & >
\end{nameauth}

\Fukuyama produces FUKUYAMA Takeshi and FUKUYAMA. Of course, you
could type all-capital surnames without control sequences. Likewise, \Howell gen-
erates Thurston HOWELL 111 and HOWELL. We now revert to normal formatting.

These macros are set by default to \@nameauth@Name, the internal name
parser. The main and simplified interfaces call them as respective synonyms for
\Name, \Name*, and \FName. Should you desire to create your own naming
macros, you can redefine them. Here is the minimal working example:

\makeatletter
\newcommandx*\MyName [3] [1=\@empty, 3=\@empty]{(Name)}
\newcommandx*\MyLName [3] [1=\@empty, 3=\Qemptyl%

{(Long name)\@nameauth@FullNamefalsel}Y
\newcommandx*\MyFName [3] [1=\@empty, 3=\Qemptyl%

{(Short name)\@nameauth@FirstNamefalsel}’
\makeatother

The macros above do not really work together with the rest of nameauth
package, so be careful! You can hook these macros into the user interface thus:

\renewcommand*{\NameauthName}{\MyName}
\renewcommand*{\NameauthLName}{\MyLName}
\renewcommand*{\NameauthFName}{\MyFName}
\begin{nameauth}

\< Silly & No Particular & Name & >
\end{nameauth}
This is \Silly, \LSilly, and \SSilly.
This is (Name), (Long name), and (Short name).

Like \NamesFormat, the other hook macros, and many of the state-changing and
triggering macros in this package, these naming macros can be redefined or used
locally within a scope without making global changes to the document unless you
specifically use \global.

Here we show that the macros \NameauthName, \NameauthLName, and
\NameauthFName have reverted back to their original forms. Now \Silly and
\Name [No Particular]{Name} produce NO PARTICULAR NAME and Name.

When formatting is active, \NamesFormat is called at the first instance of a
name, and at every instance of a name when the alwaysformat option is used.
Originally it was the only formatting “hook,” but in version 2.4 and beyond it
joins two similar “hooks” that are described in Section 2.10.5. One can redefine
\NamesFormat to create custom effects like suppressing formatting in footnotes:

21

\NamesActive
\NamesInactive

\global

\makeatletter

\let\@oldfntext\@makefntext

\long\def\@makefntext#1{/
\renewcommand*\NamesFormat{}\@oldfntext{#1}}

\let\@makefntext\@oldfntexty just in case

\makeatother

Your footnote would produce an unformatted name.'® We change footnotes back
to normal with \makeatletter\let\@makefntext\@oldfntext\makeatother.
Yet this example also can affect names in the body text, which may not be
desirable. Section 2.5.9 has an arguably better approach.

Relying only on scoping to insulate changes to \NamesFormat might create
undesired side effects, depending on the sort of modification. We put longer ex-
amples of formatting and conditionals in Section 2.10.5.

2.5.9 Disable Formatting

Using the frontmatter option deactivates formatting until \NamesActive occurs.
Another macro, \NamesInactive, will deactivate formatting again. These two
macros toggle two independent systems of formatting and first use.

Please note that these two macros can be used explicitly as a pair. They also
can be used singly within an explicit scope, where the effects cease after leaving
that scope. Use \global to force a global effect.

Here we switch to the “front matter” mode by placing \NamesInactive at
the start of the quote environment:

\Name [Rudolph] {Carnap} Rudolph Carnap
\Name [Rudolph] {Carnap} Carnap

\Name [Nicolas]{Malebranche} Nicolas Malebranche
\Name [Nicolas]{Malebranche} Malebranche

Then we switch back to “main matter” by leaving the scope above instead of
calling \NamesActive explicitly. Avoid unwanted effects by using these toggling
macros in pairs (perhaps with \global).

\Name [Rudolph] {Carnap} RuUDOLPH CARNAP

\Name [Rudolph] {Carnap} Carnap

\Name [Nicolas]{Malebranche} NICOLAS MALEBRANCHE
\Name [Nicolas]{Malebranche} Malebranche

Notice that we have two independent cases of “first use” above. Consider
the two “species” of names to be “non-formatted” and “formatted,” intended for
front matter and main matter. Yet one could use this in footnotes to implement
a different system of names (see also Section 2.6.2):

\makeatletter

\let\@oldfntext\@makefntext

\long\def\@makefntext#1{/
\NamesInactive\@oldfntext{#1}\NamesActive},

F\makeatother

As above, your footnote would produce an unformatted name.”’ Here the “non-
formatted” names would not affect the body text. Again we change footnotes back
to normal with \makeatletter\let\@makefntext\@oldfntext\makeatother.

19This demonstrates no main-matter formatting: John Maynard Keynes.
20This demonstrates no front-matter formatting: John Maynard Keynes.

22

\IfMainName

\IfFrontName

2.6 Name Decisions
2.6.1 Testing Decisions

The macros in this section permit conditional text that depends on the presence
or absence of a name. The \If in this section’s macro names is capitalized to
be different from a regular \if expression. The branching of these macros is
altered by using \Name, \Name*, \FName, \PName, \AKA, \AKA*, \ForgetName,
\SubvertName, and \ExcludeName.

Some examples of conditional text include a “mini-biography,” a footnote,
or a callout. These macros could be integrated with the “text tag” features in
Section 2.7. Authors and editors could use these macros with the comment, pdf-
comment, and similar packages to make comments based on whether a name has
occurred or not. That aids name management and thought development.

If you want to produce output or perform a task based on whether a “main
body” name exists, use \IfMainName, whose syntax is:

\IfMainName [(FNN)I{(SNN)} [(Alternate names)]1{(yes)}{(no)}

This is a long macro via \newcommandx, so you can have paragraph breaks in the
(yes) and (no) paths. A “main body” name is capable of being formatted by this
package, i.e., one created by the naming macros when the mainmatter option is
used or after \NamesActive. It is distinguished from those names that occur in
the front matter and those that have been used as cross-references.

For example, we get “I have not met Bob Hope” from the following example
because we have yet to invoke \Name [Bob] {Hope}:

\IfMainName [Bob]{Hopel}%
{I met Bob Hopel}%
{I have not met Bob Hope}

If you want to produce output or perform a task based on whether a “front
matter” name exists, use \IfFrontName, whose syntax is:

\IfFrontName [(FNN)]{(SNN)} [(Alternate names)]1{(yes)}{(no)}

This macro works the same as \IfMainName. A “front matter” name is not
capable of being formatted by this package, i.e., one created by the naming
macros when the frontmatter option is used or after \NamesInactive. It is
distinguished from those names that occur in the main matter and those that
have been used as cross-references.

For example, based on Section 2.5.9, we see that “Carnap is both” a formatted
and unformatted name with the following test:

\IfFrontName [Rudolph]{Carnapl}¥%
{\IfMainName [Rudolph]{Carnapl}’
{\Name [Rudolph] {Carnap} is bothl}%
{\Name [Rudolph]{Carnap} is only non-formatted}}’
{\IfMainName [Rudolph]{Carnap}’,
{\Name [Rudolph]{Carnap} is only formattedl}’
{\Name [Rudolph] {Carnap} is not mentioned}}

23

We will return to this topic of main matter and front matter names later in Sec-
tions 2.6.2 and 2.10.4. There we see how \ForgetName and \SubvertName usually
affect both main- and front-matter names simultaneously unless set otherwise.

¢

\IfAKA If you want to produce output or perform a task based on whether a “see-

reference” name exists, use \IfAKA, whose syntax is:
\IfAKA[(FNN)I1{(SNN)} [(Alt. names)]{(y)}{(n){(excluded)}

This macro works similarly to \IfMainName, although it has an additional
(excluded) branch in order to detect those names excluded from indexing by
\ExcludeName (Section 2.9.7).

A “see-reference” name is printed in the body text but only exists as a cross-
reference created by \AKA and \AKA*. First, in the text we see “Jay Rockefeller,”
\AKA[John David]{Rockefeller, IV}[Jay]l{Rockefeller}. Next, we have the
following example:

\IfAKA[Jay]l{Rockefellerl}y
{\LJRIV\ has an aliasl}%
{\LJRIV\ has no aliasl}
{\LJRIV\ is excluded}

This gives us “John David Rockefeller IV has an alias.” If you are confident that
you will not be dealing with names generated by \ExcludeName then you can
just leave the (excluded) branch as {}.

A similar use of \IfAKA{Confucius} tells us that “Confucius is not an alias.”
Yet we should test that completely:

\IfAKA[(FNN)I{(SNN)}[{alt. names)]%
{(true; it is a pseudonym)}’%
Tk
\IfFrontName [(FNN)]I{(SNN)} [{alt. names)1’
{\IfMainName [(FNN)I{(SNN)} [(alt. names)1%
{(both)}7,
{{front)}
Yh
{\IfMainName [(FNN)I{(SNN)}[{(alt. names)1’
{{(main)}V
{(does not exist)}
Yh
Yh
{(excluded)}

Here we test for a name used with \ExcludeName (Section 2.9.7) to get the
result, “GRINCH is excluded”:

\ExcludeName{Grinch},
\IfAKA{Grinch}/,
{\Name{Grinch} is an alias})
{\Name{Grinch} is not an alias}}
{\Name{Grinch} is excluded}

24

\ForgetName

\SubvertName

Scope

\LocalNames
\GlobalNames

2.6.2 Changing Decisions

This section describes macros that change the status of whether a name has
occurred. That also helps to avoid clashes between formatted and non-formatted
names. They are meant for editing at or near the final draft stage. “See-reference”
names created by \AKA are not affected by these macros.

This macro is a “dirty trick” of sorts that takes the same optional and manda-
tory arguments used by \Name. It handles its arguments in the same way, except
that it ignores the final argument if (FNN) are present. The syntax is:

\ForgetName [(FNN)I{(SNN)} [{Alternate names)]

This macro causes \Name and friends globally to “forget” prior uses of a name.
The next use of that name will print as if it were a “first use,” even if it is not.
Index entries and cross-references are never forgotten.

This macro is the opposite of the one above. It takes the same arguments. It
handles its arguments in the same manner. The syntax is:

\SubvertName [(FNN)1{(SNN)} [(Alternate names)]

This macro causes \Name and friends globally to think that a prior use of a
name already has occurred. The next use of that name will print as if it were a
“subsequent use,” even if it is not.

The default behavior of these two macros changes whether a name is “for-
gotten” or “subverted” simultaneously for front matter and main matter names,
Remember the example on page 23 above that gave us the answer, “Carnap is
both?” Now watch closely: After we use \ForgetName [Rudolph] {Carnap} we get
the result, “RunpoLpPH CARNAP is not mentioned.” Both the main matter name
and the front matter name were forgotten!

This default behavior helps synchronize formatted and unformatted types of
names. For example, if you wanted to use unformatted names in the footnotes and
formatted names in the text (Section 2.5.9), you could use, e.g. \SubvertName
right after the first use of a name in the body text, ensuring that all references
in the text and notes would be short unless otherwise modified.?!

If, however, this “global” behavior of \ForgetName and \SubvertName is not
desired, you can use \LocalNames to change that behavior and \GlobalNames to
restore the default behavior. Both of these macros work globally.

After \LocalNames, if you are in a “front matter” section via the frontmatter
option or \NamesInactive, \ForgetName and \SubvertName will only affect un-
formatted names. If you are in a “main matter” section via the mainmatter
option or \NamesActive, then \ForgetName and \SubvertName will only affect
formatted names. Section 2.10.4 offers a long example.

2.7 “Text Tags”

Sections 2.9.5 and 2.9.6 deal with similar tagging features in the index. “Text
tags” differ from index tags because they are not printed automatically with

21This manual takes advantage of that behavior at times in order to synchronize first and
subsequent uses of names between formatted and unformatted sections of the body text.

25

\NameAddInfo

\NameQueryInfo

\NameClearInfo

\AKA
\AKA*

every name managed by nameauth. Section 2.10.5 offers additional solutions that
use the macros in this section.

Instead of “text tags,” perhaps one should think about “name information
database entries.” The macros in this section are named accordingly. We retain
the “text tag” language for simplicity.

Text tags are independent of any other name conditionals, similar to index
tags. This \long macro’s syntax is:

\NameAddInfo [{FNN)I{(SNN)} [{Alternate names)1{(tag)}

For example, \NameAddInfo[Georgel{Washington}{ (1732--99)} will as-
sociate the text ,(1732-99) with the name \LWash George Washington. Note,
however, that the tag did not print automatically with the name.

To retrieve the information in a text tag, one uses the name as a key to the
corresponding information:

\NameQueryInfo [(FNN)I{(SNN)} [(Alternate names)]

Thus, ‘‘\NameQueryInfo[George]{Washington}.’’ expands to ¢ (1732-99).
Notice the space at the beginning of the tag. This is intentional, as with index
tags. Sections 2.9.5, 2.9.6, and 2.10.5 illustrate how this can permit tags like
asterisks, daggers, and footnotes in addition to tags that do need a space or some
separation between them and the name.

By using these text tag macros with the conditional macros, one can display
information associated with a name based on whether or the name has occurred.
As of version 2.4, this can be done either outside of \NamesFormat and the other
general hooks or inside those macros.

\NameAddInfo will replace one text tag with another text tag, but it does not
delete a text tag. That is the role of \NameClearInfo. The syntax is:

\NameClearInfo [(FNN)I1{(SNN)}[(Alternate names)]

For example, \NameClearInfo[George] {Washington} will cause the macro
“ “\NameQueryInfo[George]{Washington}’’ to produce nothing: “”

2.8 Name Variant Macros
2.8.1 \AKA

\AKA (meaning also known as) handles pseudonyms, stage names, noms de plume,
and so on in order to replace typing manual cross-references in the index. The
syntax for \AKA is:

\AKAL(FNNYI{(SNN)} [(Alt. FNN)1(Alt. SNN)}L(Alt. names)]
\AKA*[{FNN)1{(SNN)}[{Alt. ENN)1{(Alt. SNN)}[{Alt. names)]

Only the (FNN) and (SNN) arguments from \Name and friends may be cross-
referenced. The new syntax allows \AKA to cross-reference all name types. Both
macros create a cross-reference in the index from the (Alt. FNN), (Alt. SNN),
and (Alt. names) fields to a name defined by (FNN) and (SNN), regardless of
whether that name has been used. Please consult also Section 2.10.1, which covers
a number of in-depth examples of \AKA.

26

Both macros print only the (Alt. FNN) and (Alt. SNN) fields in the body
text. If the (Alt. names) field is present, \AKA swaps (Alt. names) with (Alt.
FNN) in the body text, similar to the naming macros.

\AKA* has two functions. For Western names, where (Alt. FNN) is present,
\AKA* prints either just the (Alt. FNN) or just the (Alt. names) when they also
are present. However, if (Alt. FNN) is absent, \AKA* prints just (Alt. names) if
present, otherwise (Alt. SNN). See also Section 2.9.5.

Here is a simple example with the default system of formatting:

\Name{Jean, sans Peur} (\AKA{Jean, sans Peur}{Jean the Fearless})
was Duke of Burgundy 1404--1419.

JEAN sANS PEUR (Jean the Fearless) was Duke of Burgundy 1404-1419.

“Jean the Fearless” receives no formatting; this package usually formats only
names with main index entries. Section 2.10.5 discusses how one might address
that beyond the alwaysformat option. The syntactic aspects of name formatting
(caps and reversing) always work with \AKA.

The following complex example has lines of source literals interleaved with
a point-by-point enumerated list, showing the Continental style. The small caps
are a syntactic element of the name parameters themselves:

1. I tag the names for proper sorting.

\PretagName [Heinz] {\textsc{Riihmann}}{Ruehmann, Heinz}
\PretagName [Heinrich Wilhelm]{\textsc{Rithmann}}/,
{Ruehmann, Heinrich Wilhelm}Y,

2. T want “Heinz RUHMANN” to be the main name of reference, so \AKA*
uses his legal name as the cross-reference. \AKA* prints only “Heinrich
Wilhelm” in the body text. Nevertheless, the index cross-reference will
be complete with the surname.

\AKA*[Heinz] {\textsc{Riithmann}}V
[Heinrich Wilhelm]{\textsc{Riihmann}} Y%

3. \SubvertName causes \FName to print the short version. It also by-
passes the default name formatting.

\SubvertName [Heinz] {\textsc{Riihmann}}’
4. \FName prints “Heinz.”
¢ “\FName [Heinz] {\textsc{Rithmann}}’’ Y

5. \Name prints “RUHMANN.” The small caps are syntactic, not typo-
graphic, because they are part of the argument to \Name itself.

\Name [Heinz] {\textsc{Rithmann}} %
The resulting text is:

Heinrich Wilhelm “Heinz” RUHMANN (7 March 1902-3 October 1994)
was a German film actor who appeared in over 100 films between 1926
and 1993.

27

Using BoB Hopg, Louis XIV, LAo-TzU, and GREGORY [as examples, we
see how \AKA and \AKA* work:

\AKA[Bob] {Hope} [Leslie Townes]{Hope} Leslie Townes Hope
\AKA* [Bob]{Hopel} [Leslie Townes]{Hope} Leslie Townes

\AKA [Bob] {Hopel}%

[Leslie Townes]{Hope}[Lester T.] Lester T. Hope
\AKA* [Bob] {Hopel}/,

[Leslie Townes]{Hope}[Lester T.] Lester T.
\AKA{Louis, XIV}{Sun King} Sun King
\AKA*{Louis, XIV}{Sun King} Sun King
\AKA{Lao-tzu}{Li, Er} Li Er
\AKA*{Lao-tzu}{Li, Er} Li Er

\AKA{Gregory, I}{Gregoryl}[the Great] Gregory the Great
\AKA*{Gregory, I} Gregory}[the Great] the Great

The alternate form “Lester T. Hope” in the previous table does not appear in
the index, but only in the body text. A possible use here could involve “spurious”
information or opinions that one might want to mention in the text but not
the index. One produces Gregory I “the Great,” along with a see reference from
“Gregory the Great” to “Gregory 1,” via:

\Name*{Gregory, I} ¢ ‘\AKA*{Gregory, I}{Gregory}[the Great] ’’

\AKA will not create multiple cross-references. Handle the special case where
one moniker applies to multiple people with a manual solution, e.g., “Snellius” for
both WILLEBRORD SNEL VAN ROYEN and his son RUDOLPH SNEL VAN ROYEN:

\index{Snellius|see{Snel vanRoyen, Rudolph;?
Snel vanRoyen, Willebrord}}

Cross-references generated by \AKA and \AKA* are meant only to be see ref-
erences, never page entries. See also Section 2.12. In certain cases, the alternate
name might need to be indexed with page numbers and see also references. Do
not use \AKA in those cases, rather, consider the following:

e Refer to the person intended, e.g., MAIMONIDES (Moses ben-Maimon):
\Name{Maimonides} (\AKA{Maimonides}{Moses ben-Maimon})

e We now have a name and a see reference. Now one must refer to the alternate
name, e.g., RAMBAM: \Name{Rambam}.

e The alternate name must occur before making a cross-reference to the main
name, in this case, Maimonides.

e Add \index{Rambam|seealso{Maimonides}} at the end of the document
to ensure that it is the last entry among the cross-references. Generally, see
also references follow see references in an index entry.?>

Using \PretagName helps avoid the need for manual index entries. Instead of
doing a lot of extra work for some names, consider the following example:

22Different standards exist for punctuating index entries and cross-references. Check with your
publisher, style guide, docs for xindy and makeindex, and http://tex.stackexchange.com.

28

\PName

\PretagName{\textit{Doctor Angelicus}}{Doctor Angelicus}
Perhaps the greatest medieval theologian was %
\Name{Thomas, Aquinas} %

(\AKA{Thomas, Aquinas}{Thomas of Aquino}), also known as %
\AKA{Thomas, Aquinas}{\textit{Doctor Angelicus}}.

Perhaps the greatest medieval theologian was THOMAS AQUINAS (Thomas
of Aquino), also known as Doctor Angelicus.

We use the medieval form: \Name{Thomas, Aquinas} because “Aquinas” is not
a surname, even though many people, including scholars, falsely use it as such.
Section 2.5.1 talks about those unfortunate situations where one must use the
Western form \Name [Thomas]{Aquinas}.

2.8.2 \PName

\PName is a “convenience macro” meant for Western names. It generates a main
name followed by a cross-reference in parentheses with the following syntax:

\PName [(FNN)I1{(SNN)} [{other FNN)1{({other SNN)} [{other alt.)]

Although \PName creates an easy shortcut, its drawbacks are many. It only
can use the (FNN)(SNN) form of \AKA. Neither \AKA*, nor \CapName, \CapThis,
\RevComma, \RevName, and the related package options work with \PName.

The main name comes first, followed by the name that is only a see reference.
\PName can generate the following examples:

\PName [Mark] {Twain} [Samuel L.]{Clemens}
\PName* [Mark] {Twain} [Samuel L.]{Clemens}
\PName [Mark] {Twain} [Samuel L.]{Clemens}

MARK TWAIN (Samuel L. Clemens)
Mark Twain (Samuel L. Clemens)
Twain (Samuel L. Clemens)

\PName{Voltaire} [Frangois-Marie] {Arouet}
\PName*{Voltaire} [Frangois-Marie] {Arouet}
\PName{Voltaire} [Frangois-Marie] {Arouet}

VOLTAIRE (Frangois-Marie Arouet)
Voltaire (Francois-Marie Arouet)
Voltaire (Frangois-Marie Arouet)

\PName can be a bit sketchy with medieval names. You get WiLLiaAM I
(William the Conqueror) with \PName{William, I}{William, the Conqueror}.
Stay away from \PName{William, I}{William}[the Conqueror] because that
is the old syntax that can break both \AKA and \PName if used in the leading
arguments instead of in the trailing arguments. The old syntax can get you con-
fused and lead you to type \PName{William, I}[William]{the Conqueror}.
You would get a name that looked right in the body text but wrong in the index.

Something like \PName{Lao-tzu}{Li, Er} “Lao-tzu (Li Er)” works well
enough, but \PName{Gregory, I}{Gregory}[the Great] “GREGORY I (Gregory
the Great)” starts moving close to the old syntax.

29

\IndexActive
\IndexInactive

\global

texindy

\IndexName

2.9 Indexing Macros
2.9.1 Indexing Control

Using the noindex option deactivates the indexing function of this package un-
til \IndexActive occurs. Another macro, \IndexInactive, will deactivate in-
dexing again. These can be used throughout the document, independently of
\ExcludeName. They are global in scope, as are the other toggle macros in this
package, so one must be explicit in turning indexing on and off.

Please note that these two macros can be used explicitly as a pair. They also
can be used singly within an explicit scope, where the effects cease after leaving
that scope. Use \global to force a global effect.

You cannot use index tags if the nameauth indexing feature is inactive.

2.9.2 Indexing and babel

Using babel with Roman page numbers will put \textlatin in the index entries
if one includes a language that does not use the Latin alphabet — even if the main
language does. The texindy program will ignore such references. This issue can
affect nameauth.

One fairly effective workaround for texindy redefines \textlatin to produce
the page number itself within a certain scope like:

\newcommand{\fixindex} [1]{\def\textlatin##1{##1}#1}

\fixindex{%
(paragraphs of running text)¥,
}

Of course, one can opt to check if \textlatin is defined, save its value, redefine
it, then restore it, perhaps even in an environment.

2.9.3 \IndexName

This macro creates an index entry like those created by \Name and friends. It
prints nothing in the body text. The syntax is:

\IndexName [(FNN)]{(SNN)} [(Alternate names)]

\IndexName complies with the new syntax, where a suffixed pair in (SNN) is
a name/affix pair that can be ancient or Eastern. If (FNN) are present, it ignores
(Alternate names). Otherwise, if (FNN) are absent, \IndexName sees (Alternate
names) as an affix using the old syntax.

After \IndexInactive this macro does nothing until \IndexActive appears.
It will not create index entries for names used with \AKA as cross-references.

The indexing mechanism in the nameauth package follows Chicago Manual of
Style standards regarding Western names and affixes. Thus the name Chesley B.
Sullenberger III becomes “Sullenberger, Chesley B., III” in the index. Otherwise,
if (FNN) is absent, the comma would trigger ancient, medieval, and Eastern name
forms in the index.

30

\PretagName

\IndexActual

\TagName

2.9.4 Index Sorting

The general practice for sorting with makeindex -s involves creating your own
.ist file (pages 659-65 in The Latex Companion). Otherwise use the following
form that works with both makeindex and texindy: \index{(sortkey)@(actual)}

Before version 2.0 of nameauth, one had to sort and index names like JAN
LukasiEwicz and Athelred II by putting them between \IndexInactive and
\IndexActive while creating manual index entries.

Fortunately, the current versions of nameauth have adopted an easier solution.
The syntax of \PretagName is like that of \TagName:

\PretagName [(FNN)I1{(SNN)} [(Alternate names)]1{(tag)}

The \PretagName macro differs from the other tagging macros:

e You can “pretag” any name and any cross-reference.
e You can “tag” and “untag” only names, not cross-references.

e There is no command to undo a “pretag.”

\PretagName creates a sort key terminated with the “actual” character, which
is @ by default. Do not include the “actual” character in the pretag. Here is an
example of its use:

\PretagName [Jan] {kukasiewicz}{Lukasiewicz, Jan}
\PretagName{Ethelred, II}{Aethelred 2}

One need only pretag names once in the preamble. Every time that one refers
to Lukasiewicz or Athelred, the proper index entry will be created. If you create
a cross-reference with \AKA and you want to pretag it, see Section 2.8.1.

If you need to change the “actual” character, such as with gind.ist, put
\IndexActual{=} in the preamble.

2.9.5 \TagName

This macro creates an index tag that will be appended to all index entries for
a corresponding \Name from when it is invoked until the end of the document
or a corresponding \UntagName. Both \TagName and \UntagName handle their
arguments like \IndexName. If global tags are desired, tag names in the preamble.

\TagName [(FNN)I{(SNN)} [(Alternate names)]1{(tag)}

Tags are not “pretags.” To help sort that out, we look at what gets affected
by these commands:

\PretagName
\index{|Aethelred 2@|Ethelred II|, king}
\TagName and \UntagName

All the tagging commands use the name arguments as a reference point.
\PretagName generates the leading sort key while \TagName and \UntagName
affect the trailing content of the index entry.

Tags created by \TagName can be helpful in the indexes of history texts, as
can other package features. Here \TagName causes the nameauth indexing macros
to append “, pope” to the index entries for Gregory I and LEO I:

31

\UntagName

\TagName{Leo, I}{, pope} (in the preamble)
\TagName{Gregory, I}{, pope}

\Name*{Leo, I} \Name*{Gregory, I} (first references to LEO 1
and GREGORY I)

\Name*{Leo, I} was known as Leo I was known as Leo
\AKA{Leo, I}{Leo}[the Great]. the Great.

\Name{Gregory, I} ¢ ‘\AKA*{Gregory, I}), Gregory “the Great,” an-
{Gregory} [the Great],’’ another major other major pope.

pope.

Tags are literal text that can be daggers, asterisks, and even specials. For ex-
ample, all fictional names in the index of this manual are tagged with an asterisk.
One must add any desired spacing to the start of the tag. Tagging aids scholarly
indexing and can include life/regnal dates and other information.

\TagName works with all name types, not just medieval names. Back in Sec-
tion 2.2 we had the example of Jimmy Carter (cross-reference in the index).
\TagName adds “, jpresident” to his index entry.

You can use the {(tag)} field of \TagName to add specials to index entries for
names. Every name in this document is tagged with at least {|hyperpage} to
allow hyperlinks in the index using the ltxdoc class and hypdoc package.

2.9.6 \UntagName

\TagName will replace one tag with another tag, but it does not remove a tag
from a name. That is the role of \UntagName. The syntax is:

\UntagName [(FNN)1{(SNN)} [(Alternate names)]

By using \TagName and \UntagName, one can disambiguate different people
with the same name. For example:

This refers to \Name*[John]{Smith}.

Now another \ForgetName[John]{Smith},

\TagName [John]{Smith}{ (other)}\Name[John]{Smith}.

Then a third \ForgetName [John]{Smith}/
\TagName [John] {Smith}{ (third)2}\Name[John]{Smith}.

Then the first \UntagName [John]{Smith}\Name* [John]{Smith}.

This refers to JOHN SMITH. index: Smith, John
Now another JOHN SMITH. index: Smith, John (second)
Then a third JOHN SMITH. index: Smith, John (third)
Then the first John Smith. index: Smith, John

The tweaking macros \ForgetName and \SubvertName make it seem like you
are dealing with three people who have the same name. The index tags will group
together those entries with the same tag.?

32

2.9.7 Global Name Exclusion

\ExcludeName This macro globally prevents the indexing of a particular name or cross-reference.

If you do not use it at the beginning of the document, you may not exclude any
name or cross-reference that has been used already. The syntax is:

\ExcludeName [(FNN)]{(SNN)} [{Alternate names)]

Consider the following example, where you will see excluded names printed
in the body text with all the formatting and other features:

\ExcludeName [Kris] {Kringle}

\Name [Kris]{Kringle} and \Name [Kris]{Kringle}:
KRris KRINGLE and Kringle.

Nevertheless, no matter how many times you use Kringle in the body text, the
name will never appear in the index. Remember the Grinch from Section 2.6.17
He will not appear in the index either.

\ExcludeName also prevents cross-references. You may see output in the body
text, but no see-reference will appear in the index:

\ExcludeName [Santa] {Claus}

\AKA[Kris]{Kringle}[Santa] {Claus}
Santa Claus

Instead of using \ExcludeName, which basically prevents the indexing mech-
anism of the naming macros from doing anything with a particular name, it is
far likelier that you would use the index control macros (Section 2.9.1).

23Gince this document, unlike the example above, puts an asterisk by all fictional names in

the index, it puts an asterisk at the beginning of the tags above and does not \UntagName John
Smith, but retags him with an asterisk again.

33

2.10 Longer Examples

2.10.1 Tips for \AKA

e [(FNN)I{(SNN)} is the main name. [{Alt. FNN)]J{(Alt. SNN)}[(Alt.
names)] is the cross-reference. Forgetting this may cause errors.

e The old syntax causes \AKA and \AKA* to fail: \AKA{Louis} [XIV]{Sun King}
and \AKA{Gregory} [I]{Gregory}[the Great].

e The (Alt. SNN) field uses comma-delimited suffixes.
e The (Alt. names) field does not use comma-delimited suffixes.

e FEastern names work as pseudonyms, with all that entails. One can refer to
LAFCcADIO HEARN as KOIZUMI Yakumo:
\CapName\AKA [Lafcadio] {Hearn}{Koizumi, Yakumol.

e Particles work: Du Cange is the alternate name for CHARLES DU FRESNE,
which is capitalized via \CapThis\AKA. See also Section 2.11.2.

e Reversing works, e.g.,
\RevComma: Hope, Leslie Townes
\RevName: Yakumo KOIZUMI

e The name fields of \PretagName correspond with the [{Alt. FNN)]{(Alt.
SNN)} [(Alt. names)] fields of \AKA:

\AKA{Vlad III, Dracula}{Vlad, Tepes} matches
\PretagName{Vlad, Tepes}{Vlad Tepes}

This form does not match: \PretagName{Vlad} [Tepeg]{Vlad Tepes}.

e With stage names like THE AMAZING KRESKIN, if you want them in the
index, use \Name [The Amazing] {Kreskin} to get “Kreskin, The Amazing.”
Otherwise use something like \Name [J.]{Kreskin}[The Amazing] to get
THE AMAZING KRESKIN in the text and “Kreskin, J.” in the index.

Using \AKA with such names looks like: \AKA[The Amazing]{Kreskin}
[Joseph] {Kresge} and \AKA[J.]{Kreskin} [Joseph] {Kresgel}.You get The
Amazing Kreskin, a.k.a. Joseph Kresge.

e Special cases like “Iron Mike” Tyson as the nickname for MIKE TYSON may
be handled in a number of ways.

1. Follow ¢‘Iron Mike’’ with \IndexName [Mike] {Tyson} and do
whatever you want in the text. This may be the easiest solution.

2. Use ¢ “\AKA[Mike]{Tyson}{Iron Mike}’’ to create “Iron Mike”
in the text and a see-type cross-reference to “Tyson, Mike” in the
index. Be sure to have an occurrence of \Name [Mike] {Tyson} in
the text. See also Section 2.8.1. This is the best solution in terms
of how nameauth is designed.

3. Always get “Iron Mike Tyson” with something like:

\newcommand*{\Iron}{\SubvertName [Mike] {Tyson}/
\FName [Mike] {Tyson} [Iron Mike] \Name[Mike]{Tyson}}

““\Iron’’ gives you “Iron Mike Tyson.”?* You are responsible for
typesetting the first use and creating a cross-reference. This solu-
tion runs somewhat contrary to the design principles of nameauth,
but it may be helpful if you want the invariant name “Iron Mike
Tyson” to recur and you want to save typing.

241n typesetting this manual I defined the macro \Iron and others like it on one continuous
line because defining a macro over multiple lines with comment characters ending them in ltxdoc
and a .dtx file caused extra spaces to be inserted.

34

2.10.2 Unicode and NFSS

The following subset of extended Latin Unicode characters are available “out of
the box” using NFSS, inputenc, and fontenc:

AAAAAAE CEEEE ITITDP N SMALL CAPS
AAAAAARE CEEEER [IIIDN normal
0O0000V vououUyY b ss SMALL CAPS
000000 vUUuouUyY PS normal
AAARAAAAR CEEEERE ifiipN SMALL CAPS
adaadae ceééé 1i1710n normal
0606000 U000y pY SMALL CAPS
060606060 uaduy by normal

AXAACECe DDDPEEEER Gaéil SMALL CAPS
AiAaCeéCe DdbdEc¢E¢ Ggi normal
DuLrokbe NKNNE® RERRR SMALL CAPS
UjLIEt NANQE e RfR¥ normal
SSssSsTTTt UoUG 7 %7 % 7% SMALL CAPS
SSsSsTtTt UaUq Z%7%7% normal

Additional accents and glyphs can be used with Unicode input, NFSS, inpu-
tenc, and fontenc when using fonts with TS1 glyphs, e.g., \usepackage{lmodern}
(per the table on pages 455-63 in The Latex Companion). The following example
lets you type, “In Congrefs, July 4, 1776.”

\usepackage{newunicodechar}
\DeclareTextSymbolDefault{\textlongs}{TS1}
\DeclareTextSymbol{\textlongs}{TS1}{115}
\newunicodechar{f}{\textlongs}

Although \newunicodechar{a}{\=a} allows \Name{Ghazdlil} to generate
GHAZALI, one must be careful with control sequences like \=a fail when using
makeindex and gind.ist. For example, the ltxdoc class, with gind.ist, turns
the default “actual” character @ into =. Using \index{Gh{\=a}zali} halts execu-
tion. Using \index{Gh\=azali} gives an “azali” entry sorted under “Gh” (thanks
DAN LUECKING). This issue is not specific to nameauth.

Such issues with gind.ist are not the only concerns one must have about
NFSS, inputenc, and fontenc when using Unicode. Although the manner in which
glyphs are handled is quite powerful, it also is fragile. Any TEX macro that
partitions its argument without using delimiters can break Unicode under NFSS.

Consider the following examples with \def\foo#1#2#3\relax{<#1#2><#3>}:

Argument Macro Result

abc \foo abc\relax <ab><c>
{z}bc \foo {z}bc\relax <&eb><c>
\aebc \foo \ae bc\relax <zb><c>

35

The arguments in the last example always put c in #3, with the first two
glyphs in #1#2. Now here is where things get tricky:

Argument Macro Engine Result

zbc \foo xbc\relax =xelatex <a;eb><c>
zbc \foo xbc\relax lualatex <a&b><c>
&bc \foo @bc\relax pdflatex <&><bc>

In both xelatex and lualatex you get the same results as the previous table,
where ¢ is in #3 and the first two glyphs are in #1#2. However, using pdflatex
with inputenc and fontenc causes = by itself to use #1#2.

Without digging into the details of font encoding and NFSS, we can say in
simple terms that ® is “two arguments wide.” Any macro where this #1#2 pair
gets split into #1 and #2 will produce either the error Unicode char ...not
set up for LaTeX or the error Argument of \UTFviii@two@ octets has an
extra }. This is not just specific to nameauth.

Using \CapThis can trigger this kind of error when the first character of
the (SNN) field is an extended-Latin or similarly accented or extended Unicode
character. Using \AccentCapThis can trigger this kind of error when the second
character of the (SNN) field is a similarly accented or extended character.

IXTEX also removes spaces in a manner that one should remember:

Argument Macro Result

abc \foo a b c\relax <ab>< c>
ab ¢ \foo ab c\relax <ab>< c¢>
a bc \foo a bc\relax <ab><c>
abc \foo abc\relax <ab><c>

Notice that if a space exists between the first two arguments,the space gets gob-
bled between the first two arguments, but retained in the third. This pertains to
the way that IXTEX allows for spaces after control sequences and tries to fetch
the undelimited #1#2. Since #3 terminates the argument list, it gets “everything
else.” Nor would using \obeyspaces and \ignorespaces always get the desired
result without a certain degree of complexity.

Here is why using explicit spacing macros with one-character particles when
using \CapThis and \AccentCapThis helps fix the issue of gobbled spaces, and
why non-breaking spaces are preferred:*’

Argument Macro Result

a~bc \foo a~bc\relax <a ><bc>
a\nobreakspace bc \foo a\nobreakspace bc\relax <a ><bc>
a\space bc \foo a\space bc\relax <a ><bc>

Sections 2.5.1 and 2.5.7 have information related to these topics and the
nameauth package.

Z5Given that you would not want a bad break between a particle and a name.

36

2.10.3 KTgX Engines

The nameauth package tries to work with multiple languages and typesetting
engines. The following preamble snippet from this manual illustrates how that

can be done:

\usepackage{ifxetex}

\usepackage{ifluatex}

\ifxetex % uses fontspec
\usepackage{fontspec}
\defaultfontfeatures{Mapping=tex-text}
\usepackage{xunicode}

\usepackage{xltxtra}

\else

\ifluatex % also uses fontspec
\usepackage{fontspec}
\defaultfontfeatures{Ligatures=TeX}

\else % traditional NFSS
\usepackage [utf8] {inputenc}

\usepackage [TS1,T1]{fontenc}

\fi

\fi

This arrangement worked best for this manual, which has been tested with
all three engines. This example is not meant to be the only possible way to check
which engine you are using and how to set things up.

The following can be used in the text itself to allow for conditional processing
that helps one to document work under multiple engines:

\ifxetex (zelatex text)%
\else
\ifluatex
\ifpdf (lualatex in pdf mode text),
\else (lualater in dvi mode text)%
\fi
\else
\ifpdf (pdflatex text),
\else (latex text)%
\fi
\fi
\fi

37

2.10.4 \LocalNames

As mentioned previously in Section 2.6.2, both \ForgetName and \SubvertName
usually affect both main-matter and front-matter names. This default behavior
can be quite helpful. Nevertheless, there are cases where it is undesirable. This
section shows \Localnames and \Globalnames in action, limiting the behavior
of the “tweaking macros” to either the main or front matter.

We begin by defining a macro that will report to us whether a name exists in
the main matter, front matter, both, or none:

\def\CheckChuck{%\IfFrontName [Charlie]{Chaplin}},
{\IfMainName [Charlie] {Chaplin}{both}{front}}/
{\IfMainName [Charlie]{Chaplin}{main}{none}}}%

Next we create a formatted name in the main matter:

\Name* [Charlie] {Chaplin} CHARLIE CHAPLIN
\CheckChuck main

Now we switch to an unformatted section and create a name there. Observe
that \global precedes \NamesInactive because we want those effects to persist
beyond the immediate scope of the quote environment:

\global\NamesInactive
\Name* [Charlie] {Chaplin} Charlie Chaplin
\CheckChuck both

Now we are in a “front matter section.” We now have two names. They look
and behave the same, but are two different “species” with independent first and
subsequent uses. We use \Localnames to make \ForgetName and \SubvertName
local in scope. We then forget the name in the unformatted section:

\LocalNames
\ForgetName [Charlie] {Chaplin}
\CheckChuck main

Since the “front-matter name” was removed, only a “main-matter name” exists.
We now “subvert” the front-matter name to bring its “existence” back again and
switch to the main section. See that \global precedes \NamesActive because we
used \global previously and want a similar effect:

\SubvertName [Charlie]{Chaplin}
\global\NamesActive
\CheckChuck both

Now both names exist again, but \ForgetName and \SubvertName are still local
in scope. We forget the main-matter name and additionally reset the default
behavior so that \ForgetName and \SubvertName will be global:

\ForgetName [Charlie] {Chaplin}
\GlobalNames
\CheckChuck front

Finally, we forget everything. Even though we are in a main-matter section, the
front-matter control sequence goes away:

\ForgetName [Charlie] {Chaplin}
\CheckChuck none

38

Margin Paragraphs

Vlad III Dracula
Vlad II Dracul

Conditionals / Text Tags

\if@nameauth@InName
\if@nameauth@InAKA

\@nameauth@toksa
\@nameauth@toksb
\@nameauth@toksc

2.10.5 Formatting Hooks

Before we get to the use of text tags and name conditionals in name formatting,
we begin with an intermediate example to illustrate that something more complex
can occur in \NamesFormat. Here we put the first mention of a name in boldface,
along with a marginal notation if possible:

\let\OldFormat\NamesFormat?}

\renewcommand*\NamesFormat [1]7%
{\textbf{#1}\ifinner\else
\marginpar{\raggedleft\scriptsize #1}\fi}

\let\NamesFormat\0OldFormatY

Changes to \NamesFormat should not rely merely on scoping rules to keep them
“local” but should be changed and reset explicitly, or else odd side effects can
result, especially with more exotic changes to \NamesFormat. We now use the
example above in a sample text:

\PretagName{Vlad, Tepeg}{Vlad Tepes}), for accented names

\Name{Vlad III, Dracula}, known as \AKA{Vlad III, Draculal}{Vlad,
Tepes}, ¢ ‘\AKA*{Vlad III, Dracula}{Vlad}[the Impaler]’’ after his
death, was the son of \Name{Vlad II, Dracul}, a member of the Order of
the Dragon. Later references to ¢ ‘\Name{Vlad III, Dracula}’’ appear
thus.%

Vlad III Dracula, known as Vlad Tepes, “the Impaler” after his
death, was the son of Vlad II Dracul, a member of the Order of the
Dragon. Later references to “Vlad III” appear thus.

Now again we have reverted to the original form of \NamesFormat and we get
VLAD IIT DrRACULA and Vlad III. For references to “Vlad” instead of “Vlad II1”
one could use \Name{Vlad, III Dracula}. Do not mix these forms with each
other or with the old syntax, lest errors bite! You would get multiple index en-
tries, unwanted cross-references, and unexpected forms in the text. The simplified
interface greatly helps one to avoid this.

We continue onward to using not only name conditionals (Section 2.6.1) but
also text tags (Section 2.7) to put tags after first references to main-matter names.

The example \NamesFormat below adds a text tag to the first occurrences
of main-matter names. It uses internal macros of \@nameauth@Name. To prevent
errors, the Boolean values \@nameauth@InName and \@nameauth@InAKA are true
only within the scope of \@nameauth@Name and \AKA respectively.

This package makes three token registers available to facilitate using the name
conditional macros as we do below. Using these registers allows accented names
to be recognized properly. In \AKA the token registers are copies of the last three
arguments, corresponding to the pseudonym. Nevertheless, they have the same
names as the registers in \@nameauth@Name because they work the same way and
may be easier to use this way.

39

\newif\ifNoTextTagl allows us
\let\OldFormat\NamesFormat},
\makeatlettery,
\renewcommand*\NamesFormat [1]%
{%
\let\ex\expandafter?,
\textbf{#1}/,
\if@nameauth@InName?Y,
\ifNoTextTagh
\else’,

to work around \ForgetName
save the format
access internals

reduce typing
do only in \@nameauth@Name

true branch disables tags
take false branch

\ex\ex\ex\ex\ex\ex\ex\IfMainName\ex\ex\ex\ex\ex\ex\ex[%
\ex\ex\ex\the\ex\ex\ex\@nameauth@toksa\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@toksb\exl}/

\ex[\the\@nameauth@toksc]l¥

3% skip true branch to get first use

v

\ex\ex\ex\ex\ex\ex\ex\NameQueryInfoy

\ex\ex\ex\ex\ex\ex\ex[%

\ex\ex\ex\the\ex\ex\ex\@nameauth@toksa\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@toksb\ex}%

\ex [\the\@nameauth@toksc]l¥

jA this form allows accents/control sequences
\fi
\fi
\if@nameauth@InAKAY do only in \AKA

\ifNoTextTag\else
\ex\ex\ex\ex\ex\ex\ex\IfAKAY
\ex\ex\ex\ex\ex\ex\ex[%

\ex\ex\ex\the\ex\ex\ex\@nameauth@toksa\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@toksb\exl}/

\ex[\the\@nameauth@toksc]l¥

{3% skip true branch to get first use

{h

\ex\ex\ex\ex\ex\ex\ex\NameQueryInfoy

\ex\ex\ex\ex\ex\ex\ex[%

\ex\ex\ex\the\ex\ex\ex\@nameauth@toksa\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@toksb\ex}’

\ex [\the\@nameauth@toksc]l¥

jyA this form allows accents/control sequences
{3 skip excluded branch
\fi
\fi
\global\NoTextTagfalse% reset tag suppression
}
\makeatothery

The example above uses \NoTextTagtrue to suppress tags and prints then by
default in the false path. A different approach would print the tags only on the
true path and still set \NoTextTagfalse at the end, so that the tags would only

print when explicitly triggered.

Before we can refer to any text tags, we must create them. Please pardon the
fact that I am going to “lie” about the tag used for “Atatiirk” below in order
to illustrate certain points regarding \AKA. I will tell the truth later when this

group of examples is complete:

40

\NameAddInfo [George]l {Washington}{ (1732--99)1}%
\NameAddInfo [Mustafa] {Kemal}{ (1881--1938)}%
\NameAddInfo{Atatirk}{ (a special surname granted 1934)}%

We begin using the modified \NamesFormat under normal conditions:

\Wash held office 1789--97. No tags appear in later uses of \Wash.
We now suppress the dates and trigger a new first use:
\NoTextTagtrue\ForgetName [George] {Washington}\Wash.

\Name [Mustafa] {Kemall} was later given the name,
\AKA [Mustafa]{Kemal}{Atatirk}.

George Washington (1732-99) held office 1789-97. No tags appear in later
uses of Washington. We now suppress the dates and trigger a new first use:
George Washington.

Mustafa Kemal (1881-1938) was later given the name Atatiirk.

Notice that the tag for Atatiirk did not print. That is because \AKA only
prints a formatted name when \NamesActive is in force and the alwaysformat
option is set. We now forget Washington and Kemal, using the same text but
now simulating the effects of alwaysformat:

George Washington (1732-99) held office 1789-97. No tags appear in later
uses of Washington. We now suppress the dates and trigger a new first use:
George Washington.

Mustafa Kemal (1881-1938) was later given the name Atatiirk (a special
surname granted 1934).

Here we see that the tag is printed because \NamesFormat is called for every use.
Still, the tags will not print with \NamesInactive. Before we get to the solution
of that issue, perhaps it would help to think about what is happening:

1. In \@nameauth@name and \AKA:

(a) Parse name arguments. Save an unexpanded copy of each
relevant name argument in a token register.

(b) Check for a control sequence based on them.

(c) Enter a decision route based on the result. Yes means the
name exists. No means it does not. The decision route en-
gages the Boolean values governing formatting.

(d) Generate the index and print forms of the name. Create the
index entry from the former and pass the latter onward to
the format switching function, which decides if it is format-
ted main matter, regular main matter, or front matter as
the Boolean values dictate.

2. In the hooks and \NamesFormat:

(a) Normally you do nothing and exit, or make a local font
change and exit. You could do more complex tasks.?%

260ne could discard the text output of the naming macros, retaining only the indexing func-
tionality, then re-parse the name parameters and create a custom form of text output. One pos-
sibility could allow a more flexible Continental approach with macros that expand to \textsc
except in the hook macros, where they output format only surnames, but perhaps not always.

41

(b) You also can make more than one independent check for a
control sequence based on the name arguments saved in the
token registers. This permits some fairly complex actions
based on both the Boolean values and the control sequences
themselves.

(¢) Thus your decision route could turn into a tree or a set of
relationships among a number of names.

(d) Print the form of the name as it was passed, or possibly do
something else altogether.

(e) If you invoke \@nameauth@name and \AKA from within
the hooks, they will do nothing.

3. In \@nameauth@name and \AKA:

(a) Generate the control sequence that says the name exists.
(b) clean up and exit.

\MainNameHook \AKA can print a tag only once because its control sequences cannot be undefined
\FrontNameHook by the nameauth macros. No tags are printed when \NamesInactive turns off
formatting — even with alwaysformat. Two additional hooks address these lim-
itations. \MainNameHook is triggered when \NamesActive is and \NamesFormat
is not invoked. \FrontNameHook always is invoked when \NamesInactive is in-
voked. These hooks compliment \NamesFormat. With the examples below we use

tags in the front matter and with the normal first-use case of \AKA.

\let\OldFrontHook\FrontNameHookY save the hook
\let\0ldMainHook\MainNameHook} save the hook
\makeatletter}, access internals
\renewcommand*\MainNameHook [1]%
4
\let\ex\expandafter?, reduce typing
{#1}%
\if@nameauth@InAKAY do only in \AKA
\ifNoTextTag\else

\ex\ex\ex\ex\ex\ex\ex\IfAKAY,
\ex\ex\ex\ex\ex\ex\ex[%
\ex\ex\ex\the\ex\ex\ex\@nameauth@toksa\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@toksb\ex}/
\ex [\the\@nameauth@toksc]
{3% skip true branch to get first use
¥
\ex\ex\ex\ex\ex\ex\ex\NameQueryInfoy
\ex\ex\ex\ex\ex\ex\ex [’
\ex\ex\ex\the\ex\ex\ex\Onameauth@toksa\ex\ex\ex]¥%
\ex\ex\ex{\ex\the\ex\@nameauth@toksb\ex}’
\ex[\the\@nameauth@tokscl

hyA this form allows accents/control sequences
3% skip excluded branch
\fi
\fi
\global\NoTextTagfalse’, reset tag suppression

}

42

\renewcommand*\FrontNameHook [1]

Y
\let\ex\expandafter?, reduce typing
{#1}%
\if@nameauth@InName}, do only in \@nameauth@Name
\ifNoTextTag\else
\ex\ex\ex\ex\ex\ex\ex\IfFrontName},
\ex\ex\ex\ex\ex\ex\ex[%
\ex\ex\ex\the\ex\ex\ex\@nameauth@toksa\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@toksb\ex}%
\ex [\the\@nameauth@toksc]
{3% skip true branch to get first use
¥
\ex\ex\ex\ex\ex\ex\ex\NameQueryInfoy
\ex\ex\ex\ex\ex\ex\ex [’
\ex\ex\ex\the\ex\ex\ex\@nameauthO@toksa\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@toksb\ex}
\ex[\the\@nameauth@tokscl
hyA this form allows accents/control sequences
{3% skip excluded branch
\fi
\fi
\if@nameauth@InAKAY do only in \AKA
\ifNoTextTag\else
\ex\ex\ex\ex\ex\ex\ex\IfAKAY,
\ex\ex\ex\ex\ex\ex\ex [
\ex\ex\ex\the\ex\ex\ex\@nameauth@toksa\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@toksb\ex}/,
\ex [\the\@Gnameauth@toksc]
% skip true branch to get first use
%
\ex\ex\ex\ex\ex\ex\ex\NameQueryInfo,
\ex\ex\ex\ex\ex\ex\ex[%
\ex\ex\ex\the\ex\ex\ex\@nameauth@toksa\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@toksb\ex}’
\ex [\the\@nameauth@tokscl
Y this form allows accents/control sequences
{3% skip excluded branch
\fi
\fi
\global\NoTextTagfalse’, reset tag suppression

} \makeatother,

43

We forget Washington and Kemal, then see the text as front matter:

George Washington (1732-99) held office 1789-97. No tags appear in later
uses of Washington. We now suppress the dates and trigger a new first use:
George Washington.

Mustafa Kemal (1881-1938) was later given the name Atatiirk (a special
surname granted 1934).

Finally we have the same text as main matter:

George Washington (1732-99) held office 1789-97. No tags appear in later
uses of Washington. We now suppress the dates and trigger a new first use:
George Washington.

Mustafa Kemal (1881-1938) was later given the name Atatiirk (a special
surname granted 1934).

Please be aware that each instance of Atatiirk in the four example paragraphs
above actually was a different name, even though they look the same:

\NameAddInfo{Atatirk}{ (a special surname granted 1934)}
\NameAddInfo{\kernOpt Atatiirk}{ (a special surname granted 1934)}
\NameAddInfo{Atatiirk\kernOpt}{ (a special surname granted 1934)}
\NameAddInfo{\kernOpt Atatirk\kernOpt}{ (a special surname granted
1934)}

Because the names were different, I suppressed all but one of the variants from
appearing in the index by putting the undesired extras between \IndexInactive
and \IndexActive.

Please do remember that \IfAKA will only expand to the false route before
the first appearance of a pseudonym. Otherwise it will remain true for the rest
of the document. Please do not let these examples mislead you in that regard.
They are merely illustrative of hypothetical first uses.

The next example shows how you cannot re-enter \Name or \AKA from within
\Namesformat, \FrontNameHook, or \MainNameHook.

\renewcommand*\MainNameHook [1]%
{%
{#13}%
\IndexInactive}
\Name{foo}\AKA{bar}{baz}}
\IndexActive},
}

Calling \Wash produces Washington. \Name and \AKA both exit and do nothing.
Version 2.4 of nameauth prevents stack-overflows for the above example and the
odd case of calling the naming macros as their own arguments. Nevertheless,
\Name{foo\Name{bar}} would produce “FOO” in the text and “fooBAR” in the
index. One might want to avoid such cases.

44

2.10.6 Variant Spellings

This section illustrates why this package is called “nameauth.” Here we get to an
example where the macros work together to implement a name authority.

Handling variant name spellings can be complicated. For example, let us as-
sume that you are editing a collection of essays. You might settle on the form
W.E.B. Du Bois in your name authority. An essay in that collection might use
the alternate spelling W.E.B. DuBois. The author or publisher who owns that
work might not grant you permission to alter the spelling. In that case, you could
add an alternate spelling. Using the simplified interface, it would be:

\begin{nameauth}
\< DuBois & W.E.B. & Du Bois & >
\< AltDuBois & W.E.B. & DuBois & >
\end{nameauth}

If you wanted to index the alternate spelling with its own entry, the trivial
use of \A1tDuBois allows that easily. All you need do is make cross-references to
each variant in the index so that the reader is aware of them.

Nevertheless, Du Bois and DuBois differ only by spaces. For several good rea-
sons, such as fault tolerance in typing, the first /subsequent use mechanism ignores
spaces and sees them as the same name. Use \ForgetName [W.E.B.]{Du Bois}
to trigger the first use of \AltDuBois in that section.

If you wanted to index the variants under only one name entry, it gets more
complicated. You could do the following;:

1. Use \ForgetName [W.E.B.]J{Du Bois} at the start of the section.
2. Wrap \AltDuBois between \IndexInactive and \IndexActive.
3. Call \IndexName with the authoritative form right after \IndexActive.

4. Create a cross-reference in the index.

This can be automated at the start of the section with something like:

\ForgetName [W.E.B.]{DuBois}

\gdef\OtherDuBois{\IndexInactive\AltDuBois\IndexActive,
\IndexName [W.E.B.]{Du Bois}}

\index{DuBois, W.E.B.|see{Du Bois, W.E.B.}}

The alternate section mentions \OtherDuBois starting with a first use:
W.E.B. DuBoIs. Subsequent uses of \OtherDuBois print DuBois. Of course,
one could get more complex than the example above. The index will only hold
the standard entry for W.E.B. Du Bois: “Du Bois, W.E.B.” and a cross-reference
from the variant “DuBois, W.E.B.” to the standard entry.

45

2.11 Naming Pattern Reference
2.11.1 Basic Naming

Western Names

First reference in the text: \Name* [John] {Smith}
JOHN SMITH \Name [John] {Smith}
\FName [John] {Smith}
Subsequent full: John Smith \Name* [John] {Smith}
Subsequent surname: Smith \Name [John] {Smith}
Subsequent forename: John \FName [John] {Smith}
Long first reference: \Name* [J.Q.]{Public}[Jane Q.]
JANE Q. PUBLIC \Name [J.Q.]{Public}[Jane Q.]
\FName[J.Q.]{Public}[Jane Q.]
Subsequent full: J.Q. Public \Name* [J.Q.]{Public}

Alternate: Jane Qetsiyah Public \Name* [J.Q.]{Public}[Jane Qetsiyah]
Alternate: Janie \FName[J.Q.]{Public}[Janiel

Western Plus Affixes

Always use a comma to delimit name/affix pairs.

First reference: \Name* [George S.]{Patton, Jr.}
GEORGE S. PATTON JR. \Name [George S.]{Patton, Jr.}
\FName [George S.]{Patton, Jr.}

Subsequent: George S. Patton Jr. \Name* [George S.]{Patton, Jr.}

Subsequent surname: Patton \Name [George S.]{Patton, Jr.}
Subsequent forename: George \FName [George S.]{Patton, Jr.}[George]
\begin{nameauth}

\< Smith & John & Smith & >

\< JQP & J.Q. & Public & >

\< Patton & George S. & Patton, Jr. & >
\end{nameauth}

\Smith, \LSmith, \Smith, and \SSmith:
JOHN SMITH, John Smith, Smith, and John
\JQP[Jane Q.], \LJQP[Jane Q.], and \JQP[Jane Q.]:
JANE Q. PUBLIC, Jane Q. Public, and Public
\LJQP [Jane Qetsiyah]\ and \SJQP[Janie]:
Jane Qetsiyah Public and Janie
\Patton, \LPatton, \Patton, and \SPatton:
GEORGE S. PATTON JR., George S. Patton Jr., Patton, and George S.
\SPatton[George] prints George.

46

New Syntax: Royal, Eastern, and Ancient

Using \Name{Demetrius, I Soter} keeps the number with the affix. To keep the
number with the name, use \Name{Demetrius I, Soter}. See also Section 2.4.1.

First reference: FRANCIS 1 \Name*{Francis, I}
\Name{Francis, I}
\FName{Francis, I}

Subsequent full: Francis | \Name*{Francis, I}

Subsequent name: Francis \Name{Francis, I}
\FName{Francis, I}

First reference: \Name*{Demetrius, I Soter}
DEMETRIUS I SOTER \Name{Demetrius, I Soter}
\FName{Demetrius, I Soter}

Subsequent full: Demetrius I Soter \Name*{Demetrius, I Soter}

Subsequent name: Demetrius \Name{Demetrius, I Soter}
\FName{Demetrius, I Soter}

First reference: SUN YAT-SEN \Name*{Sun, Yat-sen}
\Name{Sun, Yat-sen}
\FName{Sun, Yat-sen}

Subsequent full: Sun Yat-sen \Name*{Sun, Yat-sen}

Subsequent name: Sun \Name{Sun, Yat-sen}
\FName{Sun, Yat-sen}

First mononym reference: \Name*{Plato}
PrATO \Name{Plato}
\FName{Plato}
Subsequent: Plato \Name*{Plato}
\Name{Plato}
\FName{Plato}

\begin{nameauth}

\< Francis & & Francis, I & >

\< Dem & & Demetrius, I Soter & >

\< Sun & & Sun, Yat-sen & >

\< Plato & & Plato & >
\end{nameauth}

\Francis, \LFrancis, \Francis, and \SFrancis
Francis I, Francis I, Francis, and Francis
\Dem, \LDem, \Dem, and \SDem:
DEMETRIUS I SOTER, Demetrius I Soter, Demetrius, and Demetrius
\Sun, \LSun, \Sun, and \SSun:
SUN YAT-SEN, Sun Yat-sen, Sun, and Sun
\Plato, \LPlato, \Plato, and \SPlato:
PrATO, Plato, Plato, and Plato.

You also can “stack” \CapThis, \CapName, \RevName, \KeepAffix, and so on
in front of these control sequences. \CapName\LSun generates SUN Yat-sen.

47

Old Syntax: Royal and Eastern

Avoid these forms except with the comma option. \Name{Ptolemy}[I Soter]
keeps the number with the affix. Use \Name{Ptolemy I}[Soter] to keep the
number with the name. See also Section 2.4.1.

First reference: HENRY VIII \Name*{Henry} [VIII]
\Name{Henry} [VIII]
\FName{Henry} [VIII]

Subsequent full: Henry VIII \Name*{Henry} [VIII]

Subsequent name: Henry \Name{Henry} [VIII]
\FName{Henry} [VIII]

First reference: PTOLEMY I SOTER \Name*{Ptolemy}[I Soter]

\Name{Ptolemy}[I Soter]
\FName{Ptolemy}[I Soter]

Subsequent full: Ptolemy I Soter \Name*{Ptolemy}[I Soter]
Subsequent name: Ptolemy \Name{Ptolemy}[I Soter]
\FName{Ptolemy}[I Soter]
First reference: \Name*{Mao} [Tse-tung]
MAO TSE-TUNG \Name{Mao} [Tse-tung]
Subsequent full: Mao Tse-tung \Name*{Mao} [Tse-tung]
Subsequent name: Mao \Name{Mao} [Tse-tung]

\FName{Mao} [Tse-tung]

\begin{nameauth}
\< Henry & & Henry & VIII >
\< Ptol & & Ptolemy & I Soter >
\< Mao & & Mao & Tse-tung >
\end{nameauth}

\Henry, \LHenry, \Henry, and \SHenry:

HeNry VIII, Henry VIII, Henry, and Henry
\Ptol, \LPtol, \Ptol, and \SPtol:

PTOLEMY I SOTER, Ptolemy I Soter, Ptolemy, and Ptolemy
\Mao, \LMao, \Mao, and \SMao:

MAO TSE-TUNG, Mao Tse-tung, Mao, and Mao

Avoid mixing old and new syntax. In the body text, \Name{Antiochus, IV}
and \Name{Antiochus, IV} [Epiphanes] look alike, but their index entries differ.

e Use \Name{Antiochus, IV Epiphanes} to get ANTIOCHUS IV EPIPHANES
and Antiochus in the text and “Antiochus IV Epiphanes” in the index.

e Use \Name{Antiochus~IV, Epiphanes} to get ANTIOCHUS IV EPIPHANES
and Antiochus IV in the text and “Antiochus IV Epiphanes” in the index.

e Use \Name{Antiochus, IV} to get ANTIOCHUS IV and Antiochus in the
text. Use something like \TagName{Antiochus, IV}{ Epiphanes} to get
“Antiochus IV Epiphanes” in the index and add “Epiphanes” in the text.

48

2.11.2 Particles

The following illustrate the American style of particulate names.

First: WALTER DE LA MARE \Namex* [Walter]{de la Mare}
\Name [Walter]{de la Mare}
\FName [Walter]{de la Mare}

Subsequent: de la Mare \Name [Walter]{de la Mare}
Start of sentence: De la Mare \CapThis\Name [Walter]{de la Mare}
Forename: Walter \FName [Walter]{de la Mare}

The Continental style differs slightly. These first three forms below put the par-
ticles in the index. Long macros are split for readability.

The (admittedly long) first use: \Name* [Johann Wolfgang von]{Goethe}
JOHANN WOLFGANG VON GOETHE \Name[Johann Wolfgang von]{Goethe}
\FName [Johann Wolfgang von]{Goethe}

Subsequent: Goethe \Name [Johann Wolfgang von]{Goethe}

Forenames: Johann Wolfgang \FName [Johann Wolfgang von]{Goethel},
[Johann Wolfgang]

These latter examples of the Continental style use the nickname feature to omit
the particles from the index.

First: ADOLF VON HARNACK \Name* [Adolf]{Harnack} [Adolf vonl]
\Name [Adolf] {Harnack} [Adolf von]
\FName [Adolf] {Harnack} [Adolf vonl]

Subsequent full: Adolf von Harnack \Name* [Adolf]{Harnack} [Adolf von]

Subsequent surname: Harnack \Name [Adolf] {Harnack} [Adolf von]
\Name [Adolf] {Harnack}
Subsequent forename: Adolf \FName [Adolf]{Harnack}
\begin{nameauth}

\< DLM & Walter & de la Mare & >

\< JWG & Johann Wolfgang von & Goethe & >

\< Harnack & Adolf & Harnack & >
\end{nameauth}

\DLM\ and \CapThis\DLM:
WALTER DE LA MARE and De la Mare.

\JWG\ and \JWG:
JOHANN WOLFGANG VON GOETHE and Goethe.

\Harnack [Adolf von]\ and \Harnack:
ADOLF VON HARNACK and Harnack

You will not see Harnack’s “von” in the index because it was used only in the
alternate forenames field.

49

2.12 Errors and Warnings

Here are some ways to avoid common errors:

e Keep it simple! Avoid unneeded macros and use the simplified interface.

e Check braces and brackets with naming macros to avoid errors like “Para-
graph ended. ..” and “Missing (grouping token) inserted.”

e Do not apply a formatting macro to an entire comma-delimited (SNN,
affiz) pair. \Name [Oskar]{\textsc{Hammerstein, II}} fails due to un-
balanced braces because it gets split up. Format each part instead e.g.,
\Name [Oskar] {\textsc{Hammerstein}, \textsc{II}}.

e With pdflatex use \CapThis when the first letter of a surname particle is
a-z, otherwise use \AccentCapThis if it is extended Unicode. Doing other-
wise may cause unbalanced braces and related errors.

e Consider using \PretagName with all names containing control sequences or
extended Unicode; see Section 2.9.4.

e One way to spot errors is to compare index entries with names in the body
text. All macros that produce output also emit meaningful warnings. \PName
produces warnings via \Name and \AKA.

e Please pay greater attention to the warnings produced by \IndexName,
\TagName, \UntagName, and \ExcludeName. Many other warnings are FYI.

The older syntax presents its own group of potential errors:

e FErroneously typing \Name [Henry] {VIII} prints “HENRY VIII” and “VIII,”
as well as producing a malformed index entry.

e Avoid forms like \Name [Henry]{VIII}[Tudor] which gives “Tudor VIII”
and “VIII” This is a Western name form, not an ancient form. It may act
as malformed input if you mix it with proper medieval name forms, but it
will not affect them adversely.

e The older syntax will not work with some macros. From the film Men in
Black III, \AKA{Boris}[the Animal]{Just Boris} fails. \PName fails for
the same reasons. See also Section 2.8.1

e This form does work:
\Name{Boris, the Animal} \AKA{Boris, the Animal}{Just Boris}.
You get BORIS THE ANIMAL being “Just Boris.”

Warnings result from the following:

o Using a cross-reference [(Alternate names)]1{(Alternate SNN)} [(Alt. names)]
created by \AKA as a name reference in \Name, \FName, and \PName. They
merely will print a name in the body text.

e Using a name reference [(FNN)I{(SNN)} [(Alternate names)] created by
\Name, \FName, and \PName as a cross-reference in \AKA. It merely will print
a name in the body text.

e Using \AKA to create the same cross-reference multiple times or with a cross-
reference created by \ExcludeName. It merely will print a name in the body
text, but not the index.

e Using \IndexName to index a cross-reference made via \AKA or via the mech-
anism in \ExcludeName as a main entry. It will do nothing.

50

Using \TagName, \UntagName, and \PretagName with cross-references. The
first two will do nothing. However, \PretagName will “pretag” a cross-
reference. This is the desired behavior.

Using \ExcludeName with cross-references. It will do nothing.

Using \ExcludeName to exclude a name that has already been used. Likewise,
it will do nothing.

Using \Name, \FName, \PName, and \AKA to refer to names and cross-
references excluded by \ExcludeName. They merely will print a name in
the body text.

Using the nameauth environment to redefine shorthands, such as:

\PretagName[E.\,B.]{White}{White, E. B.}...

\begin{nameauth}
\< White & E.\,B. & White & >
\< White & E. B. & White & >
\end{nameauth}

Such redefinitions could generate unwanted index entries.

o1

3 Implementation

3.1 Boolean Values

Affix Commas

The comma and nocomma options toggle the first value below, while \ShowComma toggles
the second. Each instance of \Name and \AKA reset \@nameauth@ShowComma.

1 \newif\if@nameauth@AlwaysComma
2 \newif\if@nameauth@ShowComma

Toggle Formatting

\NamesActive and \NamesInactive or the mainmatter and frontmatter options set
or clear the value below. \@nameauth@DoFormatfalse ensures that \FrontNameHook is
called for all front-matter names.

3 \newif\if@nameauth@DoFormat
The next value works with \LocalNames and \GlobalNames.

4 \newif\if@nameauth@LocalNames

Indexing
\IndexActive and \IndexInctive or the index and noindex options set this below:

5 \newif\if@nameauth@oIndex
The pretag and nopretag options toggle the value below.

6 \newif\if@nameauth@Pretag

Syntactic Formatting

\@nameauth@FullName toggles long or short forms in subsequent name uses. As a corol-
lary, \@nameauth@FirstName is used when printing only first names. \@nameauth@A1tAKA
is toggled respectively by \AKA and \AKA* to print a longer or shorter name.

7 \newif\if@nameauth@FullName
8 \newif\if@nameauth@FirstName
9 \newif\if@nameauth@AltAKA

The next Boolean values govern full name capitalization, name reversing, and name
reversing with commas.

10 \newif\if@nameauth@AllCaps
11 \newif\if@nameauth@Al1This
12 \newif\if@nameauth@RevAll
13 \newif\if@nameauth@RevThis
14 \newif\if@nameauth@RevAllComma
15 \newif\if@nameauth@RevThisComma

This Boolean value is triggered by \CapThis and reset by \Name and \AKA.
16 \newif\if@nameauth@oCaps

This Boolean value is triggered by \AccentCapThis to handle special cases of extended
Unicode particle caps. Each instance of \Name and \AKA reset it.

17 \newif\if@nameauth@Accent

\KeepAffix toggles the value below, which causes \Name and \AKA to use non-breaking
spaces between a name and an affix, then reset the value.

18 \newif\if@nameauth@NBSP
This Boolean value is used for detection of double full stops at the end of a name.

19 \newif\if@nameauth@Punct

52

\NamesFormat

\MainNameHook

\FrontNameHook

\NameauthName

\NameauthLName

\NameauthFName

Typographic Formatting

\@nameauth@FirstFormat toggles the formatting of main-matter names by triggering
whether \NamesFormat is called or whether \MainNameHook is called. Additionally,
\@nameauth@AlwaysFormat forces name formatting whenever \@nameauth@oFormat is
true by setting \@nameauth@FirstFormattrue.

20 \newif\if@nameauth@FirstFormat
21 \newif\if@nameauth@AlwaysFormat

Who Called Me?

These values are true within \Name and \AKA, respectively. Otherwise they are false.
Normally they have no effect, but they are available for special customizations of
\NamesFormat, \MainNameHook, and \FrontNameHook. See Section 2.10.5.

22 \newif\if@nameauth@InAKA
23 \newif\if@nameauth@InName

As a side note, \AKA will invoke \NamesFormat if the alwaysformat option is set
and \NamesActive. Otherwise it will invoke \MainNameHook in the main matter and
\FrontNameHook in the front matter (\NamesInactive). Thus you need to check both
Boolean values above to get the desired outcomes for these hooks.

Stack Overflow Prevention

Here is the locking mechanism that prevents a stack overflow via recursive calls to \Name
and \AKA. See Section 2.10.5.

24 \newif\if@nameauth@Lock

3.2 Hooks

Change typographic formatting of final complete name form in text. See Sections 2.5.8
and 2.10.5. Called when \@nameauth@DoFormattrue and \@nameauth@FirstFormattrue.

25 \newcommand*{\NamesFormat}{}

Hook for when a non-formatted main-matter name is printed (Section 2.10.5).

26 \newcommand*{\MainNameHook}{}

Hook for when a non-formatted front-matter name is printed (Section 2.10.5).

27 \newcommand*{\FrontNameHook}{}

Hook to create custom naming macros. Usually the three macros below have the same
control sequence, but they need not do so if you want something different. See Sec-
tion 2.5.8. Use at your own risk! Changing these macros basically rewrites this package.

28 \newcommand*{\NameauthName}{\@nameauth@Name}

Customization hook called after \@nameauth@FullName is set true. See Section 2.5.8.

29 \newcommand*{\NameauthLName}{\@nameauth@Name}

Customization hook called after \@nameauth@FirstName is set true. See Section 2.5.8.

30 \newcommand*{\NameauthFName}{\@nameauth@Name}

53

Name Argument Token Registers

These three token registers contain the current values of the name arguments passed to
\Name, its variants, and the cross-reference fields of \AKA.

31 \newtoks\@nameauth@toksaJ,
32 \newtoks\@nameauth@toksb},
33 \newtoks\@nameauth@toksc},

These three token registers contain the current values of the name arguments in each line
od the nameauth environment.

34 \newtoks\@nameauth@etoksb},
35 \newtoks\@nameauth@etoksc},
36 \newtoks\@nameauth@etoksdy,

3.3 Package Options

The following package options interact with many of the prior Boolean values.

37 \DeclareOption{comma}{\@nameauth@AlwaysCommatrue}

38 \DeclareOption{nocomma}{\@nameauth@AlwaysCommafalse}

39 \DeclareOption{mainmatter}{\@nameauth@DoFormattrue}

40 \DeclareQOption{frontmatter}{\@nameauth@oFormatfalse}

41 \DeclareOption{index}{\@nameauth@DoIndextrue}

42 \DeclareOption{noindex}{\@nameauth@oIndexfalse}

43 \DeclareOption{pretag}{\@nameauth@Pretagtrue}

44 \DeclareOption{nopretag}{\@nameauth@Pretagfalse}

45 \DeclareOption{allcaps}{\@nameauth@AllCapstrue}

46 \DeclareQOption{normalcaps}{\@nameauth@AllCapsfalse}

47 \DeclareQOption{allreversed}

48 {\@nameauth@RevAlltrue\@nameauthORevAllCommafalse}

49 \DeclareOption{allrevcommal}’

50 {\@nameauth@RevAlltrue\@nameauth@RevAllCommatrue}

51 \DeclareOption{notreversed}/,

52 {\@nameauth@RevAllfalse\@nameauthO@RevAllCommafalse}

53 \DeclareOption{alwaysformat}{\@nameauth@AlwaysFormattrue}

54 \DeclareOption{smallcaps}{\renewcommand*{\NamesFormat}{\scshapel}}
55 \DeclareOption{italic}{\renewcommand*{\NamesFormat}{\itshape}}
56 \DeclareOption{boldface}{\renewcommand*{\NamesFormat}{\bfseries}}
57 \DeclareOption{noformat}{\renewcommand*{\NamesFormat}{}}

58 \ExecuteOptions},

59 {nocomma,?

60 mainmatter,’

61 index, %

62 pretag,%

63 normalcaps,%

64 notreversed,’

65 smallcaps}

66 \ProcessOptions\relax

Now we load the required packages. They facilitate the first/subsequent name uses, the
parsing of arguments, and the implementation of starred forms.

67 \RequirePackage{etoolbox}
68 \RequirePackage{ifluatex}
69 \RequirePackage{ifxetex}

70 \RequirePackage{trimspaces}
71 \RequirePackage{suffix}

72 \RequirePackage{xargs}

54

\@nameauth@Clean

\@nameauth@Root

\@nameauth@TrimRoot

\@nameauth@CapRoot

The etoolbox package is essential for bringing the modern functionality of e-TEX in
parsing and passing the name parameters, etc. Using xargs allows for the optional argu-
ments to work in a fairly wide set of environments.?” Using suffix facilitated macros like
\Name*, although one might argue whether or not a “starred form” is the best approach,
especially when suffix and xargs have some compatibility issues. Finally, trimspaces helps
the fault tolerance of name arguments and ifluatex/ifxetex allow accented names to work
on different BTEX engines.

3.4 Internal Macros
Name Control Sequence: Who Am I?

Thanks to Heiko Oberdiek, this macro produces a “sanitized” string, even using accented
characters, based on the arguments of \Name and friends. With this we can construct a
control sequence name and test for it to determine the existence of pseudonyms and the
first or subsequent occurrences of a name.

73 \newcommand*{\@nameauth@Cleanl} [1]%
74 {\expandafter\zap@space\detokenize{#1} \Q@empty}

Core Name Parsing Operations

The following two macros parse (SNN) into a radix and a comma-delimited suffix, re-
turning only the radix. They (and their arguments) are expandable in order to facilitate
proper indexing functionality. They form the kernel of the suffix removal and comma
suppression features.

75 \newcommand*{\@nameauth@Root} [1]%
76 {\@nameauth@TrimRoot#1,\Q@empty\relax}

Throw out the comma and suffix, return the radix.

77 \def\@nameauth@TrimRoot#1,#2\relax{\trim@spaces{#1}}

The next two macros implement the particulate name capitalization mechanism by re-
turning a radix where the first letter is capitalized. In xelatex and lualatex this is
trivial and causes no problems. In pdflatex we have to account for “double-wide” ac-
cented Unicode characters.

78 \newcommand*{\@nameauth@CapRoot}[1]%
79 {%

80 \ifxetex

81 \@nameauth@CRii#1\relaxy

82 \else

83 \ifluatex

84 \@nameauth@CRii#1\relax},
85 \else

86 \if@nameauth@Accent

87 \@nameauth@CRiii#1\relaxy
88 \else

89 \@nameauth@CRii#1\relax’,
90 \fi

91 \fi

92 \fi

93 }

2"Early versions of this package used ITEX3 functionality that was powerful. Yet the naming
macros broke in some cases, like in \marginpar and some other environments.

55

\@nameauth@CRii

\@nameauth@CRiii

\@nameauth@AllCapRoot

\@nameauth@Suffix

\@nameauth@TrimSuffix

\@nameauth@TestDot

\@nameauth@CheckDot

\@nameauth@EvalDot

Grab the first letter as one argument, and everything before \relax as the second.
Capitalize the first and return it with the second.

94 \def\@nameauth@CRii#1#2\relax{\uppercase{#1}\@nameauth@Root{#2}}

This is called in pdflatex under inputenc where an accented Unicode character takes the
first two arguments. Grab the first “letter” as two arguments and cap it, then everything
before \relax as the third. Capitalize the first and return it with the second.

95 \def\@nameauth@CRiii#1#2#3\relax{\uppercase{#1#2}\O@nameauth@Root{#3}}

This macro returns a fully-capitalized radix. It is used for generating capitalized Eastern
family names in the body text.

96 \newcommand*{\@nameauth@AllCapRoot}[1]1%
97 {\uppercase{\@nameauth@Root{#1}}}

The following two macros parse (SNN) into a radix and a comma-delimited suffix, re-
turning only the suffix. Anything before a comma is stripped off by \@nameauth@Suffix,
but a comma must be present in the argument. Leading spaces are removed to allow
consistent formatting.

98 \newcommand*{\@nameauth@Suffix}[1]%
99 {\@nameauth@TrimSuffix#l\relax}

Throw out the radix, comma, and \relax; return the suffix with no leading spaces.

100 \def\@nameauth@TrimSuffix#1,#2\relax{\trim@spaces{#2}}

Punctuation Detection

This macro, based on a snippet by Uwe Lueck, checks for a period at the end of its
argument. It determines whether we need to call \@nameauth@CheckDot below.

101 \newcommand*{\@nameauth@TestDot}[1]%

102 {%

103 \def\TestDot##1.\TestEnd##2\TestStop{\TestPunct{##2}}/

104 \def\TestPunct##1,

105 {\ifx\TestPunct##1\TestPunct\else\@nameauth@Puncttrue\fil}},
106 \@nameauth@Punctfalse},

107 \TestDot#1\TestEnd.\TestEnd\TestStop/

108 }

We assume that \expandafter precedes the invocation of \@nameauth@CheckDot, which
only is called if the terminal character of the input is a period. We evaluate the lookahead
\@token while keeping it on the list of input tokens.

109 \newcommand*{\@nameauth@CheckDot 1}
110 {\futurelet\@token\@nameauth@EvalDot}

If \@token is a full stop, we gobble the token.

111 \newcommand*{\@nameauth@EvalDot}/,
112 {\let\@period=.\ifx\@token\@period\expandafter\@gobble \fi}

56

\@nameauth@FmtName

Name Hook Dispatcher

The following macros format the output of \Name, etc. \@nameauth@FmtName prints
names in the body text, either formatted or not. Notice how \NamesFormat (Sec-
tion 2.5.8) sits between a \bgroup and an \egroup to localize the font change.
@nameauth@AlwaysFormat will force formatting when possible. \@nameauth@InHook pre-
vents one from calling either \Name or \AKA from within the hook macros.

113 \newcommand*{\@nameauth@FmtName} [1]%

114 {%

115 \if@nameauth@AlwaysFormat\@nameauth@FirstFormattrue\fi
116 \@nameauth@TestDot{#11}%

117 \if@nameauth@DoFormat

118 \if@nameauth@FirstFormat

119 \bgroup\NamesFormat{#1}\egroup/
120 \else

121 \bgroup\MainNameHook{#1}\egroup’
122 \fi

123 \else

124 \bgroup\FrontNameHook{#1}\egroup/
125 \fi

126 }

This mechanism relies solely on Boolean values that determine which hook macro to
call. Those values are set within \@nameauth@name and \AKA, where they also affect
branching. However, the name conditional macros act directly, based on the presence or
absence of control sequences determined by the interplay of name arguments, the Boolean
values checked above, and the control sequences generated by that interaction.

Perhaps a metaphor for this sort of “double interaction” could be “double-clutching”
or, alternately, the difference between a manual and an automatic transmission. From
the back-end side, you use the Boolean values and the name conditionals to perform a
sort of “torque matching” between what goes in to the hook macros and what you want
to happen when they complete. From the user side, this happens almost automatically,
in a seemingly intuitive way with few additional keystrokes.

o7

\@nameauth@Actual

Core Indexing Operations

This sets the “actual” character used by nameauth for index sorting.

127 \newcommand*\@nameauth@Actual{@}

\@nameauth@Index If the indexing flag is true, create an index entry, otherwise do nothing.

\@nameauth@Name

128 \newcommand*{\@nameauth@Index} [2]%
129 {%

130 \def\cseq{#1}/

131 \ifcsname\cseq!TAG\endcsname

132 \ifcsname\cseq!PRE\endcsname

133 \if@nameauth@DoIndex

134 \index{\csname\cseq!PRE\endcsname#2\csname\cseq! TAG\endcsname},
135 \fi

136 \else

137 \if@nameauth@oIndex\index{#2\csname\cseq!TAG\endcsname}\fi
138 \fi

139 \else

140 \ifcsname\cseq!PRE\endcsname

141 \if@nameauth@oIndex\index{\csname\cseq!PRE\endcsname#2}\fi
142 \else

143 \if@nameauth@DoIndex\index{#2}\fi

144 \fi

145 \fi

146 }

Core Name Management Engine

Here is the heart of the package. Marc van Dongen provided the basic structure. Parsing,
indexing, and formatting are in discrete elements.

147 \newcommandx*\@nameauth@Name [3] [1=\Qempty, 3=\Qemptyl%
148 {%

Prevent entering \@nameauth®@Name via itself or \AKA. Both \@nameauth@Name and \AKA
engage the lock. Calling these macros in their own parameters will create malformed
output but should not halt program execution or overflow the stack. Calling these macros
within the hook macros will simply cause them to exit.

149 \if@nameauth@Lock\else
150 \@nameauth@Locktruey
151 \@nameauth@InNametrue?,
152 \let\ex\expandaftery,

58

Names occur in horizontal mode; we ensure that. Next we make copies of the arguments
to test them and make parsing decisions. We also make token register copies of the current
name args to be available for the hook macros.

153
154
155
156
157
158
159
160
161
162
163
164
165

\leavevmode\hbox{}¥
\protected@edef\testa{#1}/
\protected@edef\arga{\trim@spaces{#1}}%
\protected@edef\testb{\trim@spaces{#2}}/
\protected@edef\testbr{\@nameauth@Root{#2}}%
\protected@edef\testc{#3}/
\protected@edef\argc{\trim@spaces{#3}}%
\def\csb{\@nameauth@Clean{#2}1}%
\def\csbc{\@nameauth@Clean{#2#3}}%
\def\csab{\@nameauth@Clean{#1!#2}1}7
\@nameauth@toksa\expandafter{#1}J,
\@nameauth@toksb\expandafter{#21}/,
\@nameauth@toksc\expandafter{#31}/,

Test for malformed input.

166
167
168
169
170
171
172
173
174

\ifx\testb\Cempty
\PackageError{nameauth},
{macro \Name: Essential name missing}y,
\else
\ifx\csb\@empty
\PackageError{nameauth},
{macro \Name: Essential name malformed},
\fi
\fi

If global caps. reversing, and commas are true, set the local flags true.

175
176
177

\if@nameauth@AllCaps\@nameauth@Al1lThistrue\fi
\if@nameauth@RevAll\@nameauth@RevThistrue\fi
\if@nameauth@RevAllComma\@nameauth@RevThisCommatrue\fi

The code below handles non-breaking and regular spaces, as well as commas, in the
text and the index by setting up which kind we want to use. These will be inserted as
appropriate as the output is formatted.

178
179
180
181
182
183
184
185
186
187
188
189
190

\protected@edef\ISpace{\spacel},
\protected@edef\Space{\spacel}/
\if@nameauth@NBSP\protected@edef\Space{\nobreakspace}\fi
\if@nameauth@AlwaysComma
\protected@edef\ISpace{, \spacel}
\protected@edef\Space{, \space}’
\if@nameauth@NBSP\protected@edef\Space{, \nobreakspace}\fi
\fi
\if@nameauth@ShowComma
\protected@edef\ISpace{, \spacel}/,
\protected@edef\Space{, \spacel/
\if@nameauth@NBSP\protected@edef\Space{, \nobreakspace}\fi
\fi

59

The section below parses any “surnames” into name/suffix pairs and figures out how to
capitalize and reverse them as needed, storing the results for the main parser.

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

\protected@edef\RawShort{\@nameauth@Root{#23}}%
\if@nameauth@DoCaps
\protected@edef\CapShort{\@nameauth@CapRoot{#2}1}/
\else
\let\CapShort\RawShort¥
\fi
\protected@edef\AllCapShort{\@nameauth@AllCapRoot{#2}1}/
\let\IndexShort\RawShort
\ifx\testb\testbr
\protected@edef\Suff{\@empty}%
\let\IndexSNN\RawShort
\let\Reversed\RawShort
\1let\SNN\RawShort
\let\PrintShort\RawShort,
\if@nameauth@DoCaps
\let\Reversed\CapShort?,
\let\SNN\CapShort%
\let\PrintShort\CapShort
\fi
\if@nameauth@AllThis
\let\Reversed\AllCapShort’
\let\SNN\AllCapShort%
\let\PrintShort\AllCapShort
\fi
\else
\protected@edef\Suff{\@nameauth@Suffix{#2}}/
\protected@edef\IndexSNN{\RawShort\ISpace\Suff}
\protected@edef\Reversed{\Suff\Space\RawShort}’
\protected@edef \SNN{\RawShort\Space\Suff}
\if@nameauth@RevThis
\let\PrintShort\Suff,
\else
\let\PrintShort\RawShort
\fi
\if@nameauth@DoCaps
\protected@edef\Reversed{\Suff\Space\CapShort}/
\protected@edef\SNN{\CapShort\Space\Suff}y,
\if@nameauth@RevThis
\let\PrintShort\Suffy,
\else
\let\PrintShort\CapShort,
\fi
\fi
\if@nameauth@AllThis
\protected@edef\Reversed{\Suff\Space\AllCapShort}/
\protected@edef \SNN{\AllCapShort\Space\Suff}/
\if@nameauth@RevThis
\let\PrintShort\Suff’,
\else
\let\PrintShort\AllCapShort
\fi
\fi
\fi

60

Here we parse names.

244 \ifx\testa\@empty
245 \ifx\testc\Qempty

This is the section for momonyms, royal name/suffix pairs, and native Eastern names
where comma-delimited suffixes are used. The first conditional below checks if we are
trying to use an alternate name cross-reference as a main name (code PN for pseudonym).
If we are using a legitimate name, we generate an index entry.

246 \ifcsname\csb!PN\endcsname

247 \PackageWarning{nameauthl},

248 {macro \Name: Xref: #2 cannot be a page referencel}
249 \else

250 \@nameauth@Index{\csb}{\IndexSNN}/,

251 \fi

If formatting is active, we handle first and subsequent formatting of names in the main
matter (code IMN for main matter name). First we handle subsequent uses. We need
\expandafter to enable the punctuation detection.

252 \if@nameauth@DoFormat

253 \ifcsname\csb!MN\endcsname

254 \if@nameauth@FirstName

255 \@nameauth@FullNamefalse},

256 \@nameauth@FirstNamefalse},

257 \fi

258 \if@nameauth@FullName

259 \@nameauth@FullNamefalse}

260 \if@nameauth@RevThis

261 \ex\@nameauth@FmtName\ex{\Reversedl}Y,
262 \else

263 \ex\@nameauth@FmtName\ex{\SNN1}%

264 \fi

265 \else

266 \ex\@nameauth@FmtName\ex{\PrintShort}Y
267 \fi

268 \else

Handle first uses.

269 \@nameauth@FirstFormattrue},

270 \@nameauth@FullNamefalse},

271 \@nameauth@FirstNamefalse},

272 \if@nameauth@RevThis

273 \ex\@nameauth@FmtName\ex{\Reversed}
274 \else

275 \ex\@nameauth@FmtName\ex{\SNN1}%
276 \fi

277 \csgdef{\csb!MN}{}/

278 \fi

279 \else

61

Take care of names in the front matter (code INF for non-formatted). First handle sub-
sequent uses.

280 \ifcsname\csb!NF\endcsname

281 \if@nameauth@FirstName

282 \@nameauth@FullNamefalse},

283 \@nameauth@FirstNamefalse},

284 \fi

285 \if@nameauth@FullName

286 \@nameauth@FullNamefalse},

287 \if@nameauth@RevThis

288 \ex\@nameauth@FmtName\ex{\Reversed}Y,
289 \else

290 \ex\@nameauth@FmtName\ex{\SNN1}%

291 \fi

292 \else

293 \ex\@nameauth@FmtName\ex{\PrintShort}/,
294 \fi

295 \else

Handle first uses.

296 \@nameauth@FullNamefalse},

297 \@nameauth@FirstNamefalse},

298 \if@nameauth@RevThis

299 \ex\@nameauth@FmtName\ex{\Reversedl},
300 \else

301 \ex\@nameauth@FmtName\ex{\SNN1}%
302 \fi

303 \csgdef{\csb!NF}{}/

304 \fi

305 \fi

306 \else

This is the section that handles the old syntax for royal names and native Eastern names.
The first conditional below checks if we are trying to use an alternate name cross-reference
as a main name (code PN for pseudonym). If we are using a legitimate name, we generate
an index entry.

307 \ifcsname\csbc!PN\endcsname

308 \PackageWarning{nameauth}¥

309 {macro \Name: Xref: #2 #3 cannot be a page referencel)
310 \else

311 \@nameauth@Index{\csbc}{\IndexSNN\ISpace\argc}’

312 \fi

62

If formatting is active, we handle first and subsequent formatting of names in the main
matter (code !MN for main matter name). First we handle subsequent uses.

313 \if@nameauth@DoFormat

314 \ifcsname\csbc!MN\endcsname

315 \if@nameauth@FirstName

316 \@nameauth@FullNamefalse},

317 \@nameauth@FirstNamefalse},

318 \fi

319 \if@nameauth@FullName

320 \@nameauth@FullNamefalse},

321 \if@nameauth@RevThis

322 \ex\@nameauth@FmtName\ex{\ex\argc\ex\space\SNN}%
323 \else

324 \ex\@nameauth@FmtName\ex{\ex\SNN\ex\space\argc}’
325 \fi

326 \else

327 \if@nameauth@RevThis

328 \ex\@nameauth@FmtName\ex{\argcl}/

329 \else

330 \ex\@nameauth@FmtName\ex{\PrintShortl}%
331 \fi

332 \fi

333 \else

Handle first uses.

334 \@nameauth@FirstFormattrue

335 \@nameauth@FullNamefalse},

336 \@nameauth@FirstNamefalse},

337 \if@nameauth@RevThis

338 \ex\@nameauth@FmtName\ex{\ex\argc\ex\space\SNN}%
339 \else

340 \ex\@nameauth@FmtName\ex{\ex\SNN\ex\space\argcl}/
341 \fi

342 \csgdef{\csbc!MN}{}%

343 \fi

344 \else

63

Take care of names in the front matter (code INF for non-formatted). First handle sub-
sequent uses.

345 \ifcsname\csbc!NF\endcsname

346 \if@nameauth@FirstName

347 \@nameauth@FullNamefalse},

348 \@nameauth@FirstNamefalse},

349 \fi

350 \if@nameauth@FullName

351 \@nameauth@FullNamefalse},

352 \if@nameauth@RevThis

353 \ex\@nameauth@FmtName\ex{\ex\argc\ex\space\SNN}7
354 \else

355 \ex\@nameauth@FmtName\ex{\ex\SNN\ex\space\argc}’
356 \fi

357 \else

358 \if@nameauth@RevThis

359 \ex\@nameauth@FmtName\ex{\argc}/

360 \else

361 \ex\@nameauth@FmtName\ex{\PrintShort}/

362 \fi

363 \fi

364 \else

Handle first uses.

365 \@nameauth@FullNamefalse},

366 \@nameauth@FirstNamefalse},

367 \if@nameauth@RevThis

368 \ex\@nameauth@FmtName\ex{\ex\argc\ex\space\SNN}/
369 \else

370 \ex\@nameauth@FmtName\ex{\ex\SNN\ex\space\argc}’%
371 \fi

372 \csgdef{\csbc!NF}{}%

373 \fi

374 \fi

375 \fi

376 \else

64

This is the section that handles Western names and non-native Eastern names. The first
pair of conditionals handle the comma option, \RevThisComma, and alternate forenames.
The next conditional below checks if we are trying to use an alternate name cross-
reference as a main name (code !PN for pseudonym). If we are using a legitimate name,
we generate an index entry.

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

\if@nameauth@RevThisComma
\protected@edef\ISpace{, \spacel}’
\protected@edef\Space{, \spacel}’,
\if@nameauth@NBSP\protected@edef\Space{, \nobreakspace}\fi
\fi
\ifx\testc\Qempty
\let\FNN\arga%
\else
\let\FNN\argc%
\fi
\ifcsname\csab!PN\endcsname
\PackageWarning{nameauth}/,
{macro \Name: Xref: #1 #2 cannot be a page referencely,
\else
\ifx\Suff\Qempty
\@nameauth@Index{\csab}{\IndexShort, \space\argaly
\else
\@nameauth@Index{\csab}{\IndexShort, \space\arga, \space\Suffl}y
\fi
\fi

If formatting is active, we handle first and subsequent formatting of names in the main
matter (code !MN for main matter name). First we handle subsequent uses.

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

\if@nameauth@DoFormat
\ifcsname\csab!MN\endcsname
\if@nameauth@FirstName
\@nameauth@FullNamefalse},
\@nameauth@FirstNamefalse},
\let\PrintShort\FNNY
\fi
\if@nameauth@FullName
\@nameauth@FullNamefalse},
\if@nameauth@RevThis
\ex\@nameauth@FmtName\ex{\ex\SNN\ex\Space\FNN}/
\else
\ex\@nameauth@FmtName\ex{\ex\FNN\ex\space\SNN}%
\fi
\else
\ex\@nameauth@FmtName\ex{\PrintShort}/
\fi
\else

65

Handle first uses.

415 \@nameauth@FirstFormattrue,

416 \@nameauth@FullNamefalse},

417 \@nameauth@FirstNamefalse},

418 \if@nameauth@RevThis

419 \ex\@nameauth@FmtName\ex{\ex\SNN\ex\Space\FNN}/
420 \else

421 \ex\@nameauth@FmtName\ex{\ex\FNN\ex\space\SNN}%
422 \fi

423 \csgdef{\csab!MN}{}’

424 \fi

425 \else

Take care of names in the front matter (code INF for non-formatted). First handle sub-
sequent uses.

426 \ifcsname\csab!NF\endcsname

427 \if@nameauth@FirstName

428 \@nameauth@FullNamefalse},

429 \@nameauth@FirstNamefalse},

430 \let\PrintShort\FNNY

431 \fi

432 \if@nameauth@FullName

433 \@nameauth@FullNamefalse},

434 \if@nameauth@RevThis

435 \ex\@nameauth@FmtName\ex{\ex\SNN\ex\Space\FNN}%
436 \else

437 \ex\@nameauth@FmtName\ex{\ex\FNN\ex\space\SNN}/
438 \fi

439 \else

440 \ex\@nameauth@FmtName\ex{\PrintShort}/

441 \fi

442 \else

Handle first uses.

443 \@nameauth@FullNamefalse},

444 \@nameauth@FirstNamefalse},

445 \if@nameauth@RevThis

446 \ex\@nameauth@FmtName\ex{\ex\SNN\ex\Space\FNN}/,
447 \else

448 \ex\@nameauth@FmtName\ex{\ex\FNN\ex\space\SNN}%
449 \fi

450 \csgdef{\csab!NF}{}/

451 \fi

452 \fi

453 \fi

66

\CapThis

\AccentCapThis

\CapName

\AllCapsInactive

\AllCapsActive

\RevName

\ReverseInactive

\ReverseActive

\RevComma

Reset all the “per name” Boolean values.

454 \@nameauth@Lockfalse},

455 \@nameauth@InNamefalse},

456 \@nameauth@FirstFormatfalse}
457 \@nameauth@NBSPfalse},

458 \@nameauth@DoCapsfalse},

459 \@nameauth@Accentfalsel,

460 \@nameauth@AllThisfalse},

461 \@nameauth@ShowCommafalse},
462 \@nameauth@RevThisfalse},

463 \@nameauth@RevThisCommafalseY

Close the “locked” branch.

464 \fi

Call the full stop detection.

465 \if@nameauth@Punct\expandafter\@nameauth@CheckDot\fi

466 ¥
3.5 User Interface Macros
Syntactic Formatting — Capitalization

Tells the root capping macro to cap an unaccented first character.

467 \newcommand*{\CapThis}{\@nameauth@oCapstrue}

Tells the root capping macro to cap an accented first Unicode character.

468 \newcommand*{\AccentCapThis}{\@nameauth@Accenttrue\@nameauth@oCapstrue}

Capitalize entire name.

469 \newcommand*{\CapName}{\@nameauth@Al1lThistrue}

Turn off global surname capitalization.

470 \newcommand*{\AllCapsInactive}{\@nameauth@AllCapsfalse}

Turn on global surname capitalization.

471 \newcommand*{\AllCapsActive}{\@nameauth@AllCapstrue}

Syntactic Formatting — Reversing

Reverse name order.

472 \newcommand*{\RevName}{\@nameauth@RevThistrue}

Turn off global name reversing.

473 \newcommand*{\ReverseInactive}{\@nameauth@RevAllfalse}

Turn on global name reversing.

474 \newcommand*{\ReverseActive}{\@nameauth@RevAlltrue}

Syntactic Formatting — Reversing with Commas

Last name, comma, first name.

475 \newcommand*{\RevComma}Y
476 {\@nameauth@RevThistrue\@nameauth@RevThisCommatrue}

67

\ReverseCommaInactive Turn off global “last-name-comma-first.”

477 \newcommand*{\ReverseCommalInactivel}
478 {\@nameauth@RevAllfalse\@nameauth@RevAllCommafalse}

\ReverseCommaActive Turn on global “last-name-comma-first.”

479 \newcommand*{\ReverseCommaActivelY,
480 {\@nameauth@RevAlltrue\@nameauth@RevAllCommatrue}

Syntactic Formatting — Affixes

\ShowComma Put comma between name and suffix one time.

481 \newcommand*{\ShowComma}{\@nameauth@ShowCommatrue}
Typographic Formatting — Affixes

\KeepAffix Trigger a name-suffix pair to be separated by a non-breaking space.

482 \newcommand*{\KeepAffix}{\@nameauth@NBSPtrue}
Typographic Formatting— Main Versus Front Matter
\NamesInactive Switch to the “non-formatted” species of names.

483 \newcommand*{\NamesInactive}{\@nameauth@DoFormatfalse}

\NamesActive Switch to the “formatted” species of names.

484 \newcommand*{\NamesActive}{\@nameauth@DoFormattrue}

Name Occurrence Tweaks

\LocalNames \LocalNames sets @nameauth@LocalNames true so \ForgetName and \SubvertName do
not affect both formatted and unformatted names.

485 \newcommand*\LocalNames{\global\@nameauth@LocalNamestrue}

\GlobalNames \GlobalNames sets @Onameauth@LocalNames false, restoring the default behavior of
\ForgetName and \SubvertName.

486 \newcommand*\GlobalNames{\global\@nameauth@LocalNamesfalse}

Index Operations

\IndexInactive turn off global indexing of names.

487 \newcommand*{\IndexInactive}{\@nameauth@DoIndexfalse}

\IndexActive turn on global indexing of names.

488 \newcommand*{\IndexActive}{\@nameauth@DoIndextrue}

\IndexActual Change the “actual” character from the default.

489 \newcommand*{\IndexActuall} [1]%
490 {\global\renewcommand*\@nameauth@Actual{#1}}

68

\Name

\Namex*

\FName

\FNamex*

\AKA

Main Naming Interface

\Name calls \NameauthName, the interface hook.

491 \def\Name{\NameauthName}

\Name* sets up a long name reference and calls \NameauthLName, the interface hook.

492 \WithSuffix\def\Name*{\@nameauth@FullNametrue\NameauthLName}

\FName sets up a short name reference and calls \NameauthFName, the interface hook.

493 \def\FName{\@nameauth@FirstNametrue\NameauthFName}

\FName and \FName* are identical.

494 \WithSuffix\def\FName*{\@nameauth@FirstNametrue\NameauthFName}

Alternate Names

\AKA prints an alternate name and creates index cross-references. It prevents multiple
generation of cross-references and suppresses double periods.

495 \newcommandx*\AKA [5] [1=\@empty, 3=\Qempty, 5=\Q@emptyl’
496 {%

Prevent entering \AKA via itself or \@nameauth®@Name.

497 \if@nameauth®@Lock\else
498 \@nameauth@Locktrue’,
499 \@nameauth@InAKAtrue’,
500 \let\ex\expandafter,

Names occur in horizontal mode; we ensure that. Next we make copies of the arguments
to test them and make parsing decisions. We also make token register copies of the current
name args to be available for use within the hook macros.

501 \leavevmode\hbox{}%

502 \protected@edef\testa{#1}J

503 \protected@edef\arga{\trim@spaces{#1}}/

504 \protected@edef\testb{\trim@spaces{#2}1}/

505 \protected@edef\testbr{\@nameauth@Root{#2}},
506 \protected@edef\testc{#3}/

507 \protected@edef\argc{\trim@spaces{#3}}%

508 \defl\argd{\trim@spaces{#3}1}/

509 \protected@edef\testd{\trim@spaces{#4}1}/

510 \protected@edef\testdr{\@nameauth@Root{#41}}/,
511 \protected@edef\teste{#5}/

512 \protected@edef\arge{\trim@spaces{#5}}%

513 \def\csd{\@nameauth@Clean{#4}}/

514 \def\csde{\@nameauth@Clean{#4#5}}%

515 \def\cscd{\@nameauth@Clean{#3!#4}}J

516 \@nameauth@toksa\expandafter{#3}J

517 \@nameauth@toksb\expandafter{#4}J

518 \@nameauth@toksc\expandafter{#5}/

69

Test for malformed input.

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

\ifx\testb\Cempty
\PackageError{nameauth},
{macro \AKA: Essential name missingl}
\else
\ifx\csb\@empty
\PackageError{nameauth},
{macro \AKA: Essential name malformedl}
\fi
\fi
\ifx\testd\@empty
\PackageError{nameauth},
{macro \AKA: Essential name missing}),
\else
\ifx\csd\@empty
\PackageError{nameauth}y,
{macro \AKA: Essential name malformed},
\fi
\fi

If global caps. reversing, and commas are true, set the local flags true.

537
538
539

The code below handles non-breaking and regular spaces, as well as commas, in the
text and the index by setting up which kind we want to use. These will be inserted as

\if@nameauth@AllCaps\@nameauth@Al1Thistrue\fi
\if@nameauth@RevAll\@nameauth@RevThistrue\fi
\if@nameauth@RevAllComma\@nameauth@RevThisCommatrue\fi

appropriate as the output is formatted.

540
541
542
543
544
545
546
547
548
549
550
551
552

\protected@edef\ISpace{\spacel}’
\protected@edef\Space{\space}
\if@nameauth@NBSP\protected@edef\Space{\nobreakspace}\fi
\if@nameauth@AlwaysComma
\protected@edef\ISpace{, \spacel}/,
\protected@edef\Space{, \spacel}}
\if@nameauth@NBSP\protected@edef\Space{, \nobreakspace}\fi
\fi
\if@nameauth@ShowComma
\protected@edef\ISpaceq{, \space}’
\protected@edef\Space{, \spacel}}
\if@nameauth@NBSP\protected@edef\Space{, \nobreakspace}\fi
\fi

70

The section below parses any “surnames” into name/suffix pairs and figures out how to
capitalize and reverse them as needed, storing the results for the main parser. We have
to handle several more combinations here than with \Name above.

553 \protected@edef\Shortb{\@nameauth@Root{#2}1}/,

554 \protected@edef\Shortd{\@nameauth@Root{#4}1}/,

555 \if@nameauth@DoCaps

556 \protected@edef\CapShort{\@nameauth@CapRoot{#4}1}/
557 \else

558 \let\CapShort\Shortd

559 \fi

560 \protected@edef\AllCapShort{\@nameauth@AllCapRoot{#4}1}/
561 \ifx\testb\testbr

562 \1let\SNNb\Shortb%

563 \protected@edef\Suffb{\Qempty}’

564 \else

565 \protected@edef\Suffb{\O@nameauth@Suffix{#2}}%

566 \protected@edef\SNNb{\Shortb\ISpace\Suffb}y

567 \fi

568 \ifx\testd\testdr

569 \protected@edef\Suffd{\@emptyl}/

570 \1et\ISNNd\Shortd’

571 \let\Reversed\Shortd,

572 \1let\SNNd\Shortd}

573 \if@nameauth@DoCaps

574 \1let\SNNd\CapShort¥

575 \let\Reversed\CapShort,
576 \fi

577 \if@nameauth@AllThis

578 \1et\SNNd\AllCapShortY
579 \let\Reversed\AllCapShort’
580 \fi

581 \else

582 \protected@edef\Suffd{\@nameauth@Suffix{#4}}%
583 \protected@edef\ISNNd{\Shortd\ISpace\Suffd}’
584 \protected@edef\Reversed{\Suffd\Space\Shortd}y,
585 \protected@edef\SNNd{\Shortd\Space\Suffdl}}

586 \if@nameauth@DoCaps

587 \protected@edef\Reversed{\Suffd\Space\CapShort}%
588 \protected@edef\SNNd{\CapShort\Space\Suffd}’%

589 \fi

590 \if@nameauth@A1l1lThis

591 \protected@edef\Reversed{\Suffd\Space\AllCapShortl}’
592 \protected@edef\SNNd{\AllCapShort\Space\Suffd}}

593 \fi

594 \fi

71

Here we parse names.

595 \ifx\testc\Qempty
596 \ifx\teste\Qempty

For mononyms and name/suffix pairs: If a pseudonym has not been generated by \AKA or
\ExcludeName, and if the proposed pseudonym is not already a mainmatter or frontmat-
ter name, then generate a see reference from the pseudonym to a name that will appear
in the index.

597 \ifcsname\csd!PN\endcsname

598 \PackageWarning{nameauthl}/,

599 {macro \AKA: XRef: #4 exists})

600 \else

601 \ifcsname\csd!MN\endcsname

602 \PackageWarning{nameauthl}y

603 {macro \AKA: Name reference: #4 exists; no xrefl}
604 \else

605 \ifcsname\csd!NF\endcsname

606 \PackageWarning{nameauth}

607 {macro \AKA: Name reference: #4 exists; no xrefl}V
608 \else

609 \ifx\testa\@empty

610 \@nameauth@Index{\csd}’

611 {\ISNNd|see{\SNNb}}%

612 \else

613 \ifx\Suffb\Qempty

614 \@nameauth@Index{\csd}/

615 {\ISNNd|see{\SNNb, \space\arga}l}’

616 \else

617 \@nameauth@Index{\csd}’

618 {\ISNNd|see{\Shortb,\space\arga,\space\Suffb}}/
619 \fi

620 \fi

621 \fi

622 \fi

623 \fi

Print an appropriate version of the pseudonym (capped, reversed, etc.) in the text with
no special formatting even if no cross-reference was generated in the index. Again,
\expandafter is used for the punctuation detection.

624 \if@nameauth@RevThisComma

625 \protected@edef\ISpace{, \spacel}

626 \protected@edef\Space{, \spacel}/,

627 \if@nameauth@NBSP

628 \protected@edef\Space{, \nobreakspace},
629 \fi

630 \fi

631 \if@nameauth@RevThis

632 \ex\@nameauth@FmtName\ex{\Reversed},

633 \else

634 \ex\O@nameauth@FmtName\ex{\SNNd1}

635 \fi

636 \ifcsname\csd!PN\endcsname\else\csgdef{\csd!PN}I{}\fi
637 \else

72

For name/affix using the old syntax: If a pseudonym has not been generated by \AKA or
\ExcludeName, and if the proposed pseudonym is not already a mainmatter or frontmat-
ter name, then generate a see reference from the pseudonym to a name that will appear
in the index.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664

Print an appropriate version of the pseudonym (capped, reversed, etc.) in the text with

\ifcsname\csde!PN\endcsname
\PackageWarning{nameauthl}/
{macro \AKA: XRef: #4 #5 exists}
\else
\ifcsname\csde!MN\endcsname
\PackageWarning{nameauth}/

{macro \AKA: Name reference: #4 #5 exists; no xrefl})

\else
\ifcsname\csde!NF\endcsname
\PackageWarning{nameauthl}y,

{macro \AKA: Name reference: #4 #5 exists; no xrefl}

\else
\ifx\testa\@empty
\@nameauth@Index{\csde}%
{\ISNNd\ISpace\arge|see{\SNNb}}V
\else
\ifx\Suffb\Qempty
\@nameauth@Index{\csdel}/,

{\ISNNd\ISpace\arge|see{\SNNb, \space\argal}}’

\else
\@nameauth@Index{\csdel}’

\fi
\fi
\fi
\fi
\fi

no special formatting even if no cross-reference was generated in the index.

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

\if@nameauth@RevThisComma
\protected@edef\ISpaceq{,\space}’
\protected@edef\Space{, \spacel}/,

\if@nameauth@NBSP
\protected@edef\Space{, \nobreakspacel
\fi

\fi

\if@nameauth@AltAKA
\ex\@nameauth@FmtName\ex{\arge}’

\else
\if@nameauth@RevThis

\ex\@nameauth@FmtName\ex{\ex\arge\ex\Space\SNNd}%
\else
\ex\@nameauth@FmtName\ex{\ex\SNNd\ex\space\arge}’
\fi
\fi
\ifcsname\csde!PN\endcsname\else\csgdef{\csde!PN}{}\fi
\fi
\else

73

{\ISNNd\ISpace\arge|see{\Shortb, \space\arga, \space\Suffb}}/

For Western names and affixes: If a pseudonym has not been generated by \AKA or
\ExcludeName, and if the proposed pseudonym is not already a mainmatter or frontmat-
ter name, then generate a see reference from the pseudonym to a name that will appear
in the index.

684 \ifcsname\cscd!PN\endcsname

685 \PackageWarning{nameauth}y

686 {macro \AKA: XRef: #3 #4 exists}¥

687 \else

688 \ifcsname\cscd!MN\endcsname

689 \PackageWarning{nameauth}y

690 {macro \AKA: Name reference: #3 #4 exists; no xrefl}y
691 \else

692 \ifcsname\cscd!NF\endcsname

693 \PackageWarning{nameauthl}y

694 {macro \AKA: Name reference: #3 #4 exists; no xref})
695 \else

696 \ifx\testa\Qempty

697 \ifx\Suffd\Qempty

698 \@nameauth@Index{\cscd}’

699 {\ISNNd, \space\argc|see{\SNNb}}%

700 \else

701 \@nameauth@Index{\cscd}/

702 {\Shortd, \space\argc, \space\Suffd|see{\SNNb}}%
703 \fi

704 \else

705 \ifx\Suffb\Q@empty

706 \ifx\Suffd\@empty

707 \@nameauth@Index{\cscd})

708 {\ISNNd, \space\argc|see{\SNNb, \space\argal}}’
709 \else

710 \@nameauth@Index{\cscd}/,

711 {\Shortd, \space\argc, \space\Suffd|see{\SNNb, \space\argal}l}/,
712 \fi

713 \else

714 \ifx\Suffd\Qempty

715 \@nameauth@Index{\cscdl}’

716 {\ISNNd, \space\argc|see{\Shortb, \space\arga, \space\Suffb}}/
717 \else

718 \@nameauth@Index{\cscd})

719 {\Shortd, \space\argc, \space\Suffd|see{\Shortb, \space\arga, \space\Suffb}}},
720 \fi

721 \fi
722 \fi
723 \fi

724 \fi

725 \fi

74

Print an appropriate version of the pseudonym (capped, reversed, etc.) in the text with
no special formatting even if no cross-reference was generated in the index.

726 \if@nameauth@RevThisComma

727 \protected@edef\ISpace{, \spacel}’

728 \protected@edef\Space{, \spacel},

729 \if@nameauth@NBSP\protected@edef\Spaceq{, \nobreakspace}\fi
730 \fi

731 \ifx\teste\Qempty

732 \let\FNN\argc%

733 \else

734 \let\FNN\arge%

735 \fi

736 \if@nameauth@AltAKA

737 \ex\@nameauth@FmtName\ex{\FNN}%

738 \else

739 \if@nameauth@RevThis

740 \ex\@nameauth@FmtName\ex{\ex\SNNd\ex\Space\FNN}/
741 \else

742 \ex\@nameauth@FmtName\ex{\ex\FNN\ex\space\SNNd}%
743 \fi

744 \fi

745 \ifcsname\cscd!PN\endcsname\else\csgdef{\cscd!PN}{}\fi
746 \fi

Reset all the “per name” Boolean values.

747 \@nameauth@Lockfalse},

748 \@nameauth@InAKAfalseY

749 \@nameauth@FirstFormatfalse}
750 \@nameauth@NBSPfalse},

751 \@nameauth@AltAKAfalseY

752 \@nameauth@DoCapsfalse,

753 \@nameauth@Accentfalse},

754 \@nameauth@AllThisfalseY

755 \@nameauth@ShowCommafalse},
756 \@nameauth@RevThisfalse},

757 \@nameauth@RevThisCommafalseY,

Close the “locked” branch.
758 \fi
Call the full stop detection.

759 \if@nameauth@Punct\expandafter\@nameauth@CheckDot\fi
760 }

\AKAx This starred form sets a Boolean to print only the alternate name argument, if that
exists, and calls \AKA.

761 \WithSuffix\def\AKA*{\@nameauth@AltAKAtrue\AKA}

\PName \PName is a convenience macro that calls \NameauthName, then \AKA.

762 \newcommandx*\PName [5] [1=\Q@empty,3=\Q@empty,5=\Cemptyl%
763 {%

764 \NameauthName [#1]{#2}\space (\AKA [#1]{#2} [#3]{#4} [#51)7%
765

\PName* This sets up a long name reference and calls \PName.

766 \WithSuffix\def\PName*{\@nameauth@FullNametrue\PName}

75

Name Info Database: “Text Tags”

\NameAddInfo This creates a control sequence and information associated with a given name, similar
to an index tag, but usable in the body text.

767 \newcommandx\NameAddInfo [4] [1=\Qempty, 3=\Qemptyl%
768 {%

769 \protected@edef\testa{#1}%

770 \protected@edef\testb{\trim@spaces{#2}}/

771 \protected@edef\testc{#3}/

772 \def\csb{\@nameauth@Clean{#2}}/

773 \def\csbc{\@nameauth@Clean{#2#3}1}}

774 \def\csab{\@nameauth@Clean{#1!#2}}}

We make copies of the arguments to test them and then we parse the arguments, defining
the tag control sequences.

775 \ifx\testb\Qempty

776 \PackageError{nameauth},

77 {macro \NameInfo: Essential name missingl}
778 \else

779 \ifx\csb\@empty

780 \PackageError{nameauthl}y,

781 {macro \NameInfo: Essential name malformedl}
782 \fi

783 \fi

784 \ifx\testa\@empty

785 \ifx\testc\Qempty

786 \csgdef{\csb!DB}{#4}%

787 \else

788 \csgdef{\csbc!DB}{#4}/

789 \fi

790 \else

791 \csgdef{\csab!DB}{#4}},

792 \fi

793 }

\NameQueryInfo This prints the information created by \NameAddInfo if it exists.

794 \newcommandx\NameQueryInfo [3] [1=\Qempty, 3=\Q@emptyl%
795 {%

796 \protected@edef\testa{#1}%

797 \protected@edef\testb{\trim@spaces{#2}1}/

798 \protected@edef\testc{#3}/

799 \def\csb{\@nameauth@Clean{#2}1}/

800 \def\csbc{\@nameauth@Clean{#2#3}1}7

801 \def\csab{\@nameauth@Clean{#1!#2}1}/

76

We make copies of the arguments to test them and then we parse the arguments, defining
the tag control sequences.

802 \ifx\testb\@empty

803 \PackageError{nameauth}/,

804 {macro \NameInfo: Essential name missing}}

805 \else

806 \ifx\csb\Qempty

807 \PackageError{nameauth},

808 {macro \NameInfo: Essential name malformed},

809 \fi

810 \fi

811 \ifx\testa\Qempty

812 \ifx\testc\Qempty

813 \ifcsname\csb!DB\endcsname\csname\csb!DB\endcsname\fi
814 \else

815 \ifcsname\csbc!DB\endcsname\csname\csbc!DB\endcsname\fi
816 \fi

817 \else

818 \ifcsname\csab!DB\endcsname\csname\csab!DB\endcsname\fi
819 \fi

820 }

\NameClearInfo This deletes a text tag. It has the same structure as \UntagName.

821 \newcommandx*\NameClearInfo[3] [1=\Q@empty, 3=\Qempty]l’
822 {

823 \protected@edef\testa{#1}/

824 \protected@edef\testb{\trim@spaces{#2}}/

825 \protected@edef\testc{#31}/

826 \def\csb{\@nameauth@Clean{#2}}J

827 \def\csbc{\@nameauth@Clean{#2#3}}/

828 \def\csab{\@nameauth@Clean{#1!#2}1}/

We make copies of the arguments to test them and then we parse the arguments, un-
defining the tag control sequences.

829 \ifx\testb\@empty

830 \PackageError{nameauth},

831 {macro \UntagName: Essential name missing}},
832 \else

833 \ifx\csb\Qempty

834 \PackageError{nameauth},

835 {macro \UntagName: Essential name malformedl}},
836 \fi

837 \fi

838 \ifx\testa\Qempty

839 \ifx\testc\Qempty

840 \global\csundef{\csb!DB}/

841 \else

842 \global\csundef{\csbc!DB}/

843 \fi

844 \else

845 \global\csundef{\csab!DB}%

846 \fi

847 }

7

Index Operations

\IndexName This creates an index entry that is not already a pseudonym. It prints nothing. It does
ensure consistent formatting.

848 \newcommandx*\IndexName [3] [1=\Qempty, 3=\Qemptyl%
849 {%

850 \protected@edef\testa{#1}/

851 \protected@edef\arga{\trim@spaces{#1}}%

852 \protected@edef\testb{\trim@spaces{#2}}/

853 \protected@edef\testbr{\@nameauth@Root{#2}1}%
854 \protected@edef\testc{#3}/

855 \protected@edef\argc{\trim@spaces{#3}}/

856 \def\csb{\@nameauth@Clean{#2}}}

857 \def\csbc{\@nameauth@Clean{#2#3}}/

858 \def\csab{\@nameauth@Clean{#1!#2}1}/

We make copies of the arguments to test them and make parsing decisions. Below we
handle the types of spaces or commas that will be inserted into the index entries.

859 \ifx\testb\@empty

860 \PackageError{nameauth}y

861 {macro \IndexName: Essential name missing}/

862 \else

863 \ifx\csb\@empty

864 \PackageError{nameauth},

865 {macro \IndexName: Essential name malformed}y,
866 \fi

867 \fi

868 \protected@edef\Space{\spacel}’
869 \if@nameauth@AlwaysComma

870 \protected@edef\Space{, \spacel/,
871 \fi

872 \if@nameauth@ShowComma

873 \protected@edef\Space{, \spacel}’
874 \fi

Now we deal with suffixes, and whether to handle them for Western or Eastern names.

875 \let\Short\testbr

876 \ifx\testb\testbr

877 \let\SNN\Short%

878 \protected@edef\Suff{\Q@emptyl}’

879 \else

880 \protected@edef\Suff{\@nameauth@Suffix{#2}}%
881 \protected@edef\SNN{\Short\Space\Suff}y

882 \fi

78

We create the appropriate index entries with tags, letting the internal indexing macro
sort that out. We do not create an index entry in the case that a name has been used as
a pseudonym by \AKA or \ExcludeName

883 \ifx\testa\@empty

884 \ifx\testc\Qempty

885 \ifcsname\csb!PN\endcsname

886 \PackageWarning{nameauthl}/

887 {macro \IndexName: XRef: #2 existsl}%

888 \else

889 \@nameauth@Index{\csb}{\SNN}%

890 \fi

891 \else

892 \ifcsname\csbc!PN\endcsname

893 \PackageWarning{nameauthl}

894 {macro \IndexName: XRef: #2 #3 exists})
895 \else

896 \@nameauth@Index{\csbc}{\SNN\Space\argc}i
897 \fi

898 \fi

899 \else

900 \ifcsname\csab!PN\endcsname

901 \PackageWarning{nameauth}y

902 {macro \IndexName: XRef: #1 #2 exists})

903 \else

904 \ifx\Suff\Qempty

905 \@nameauth@Index{\csab}{\Short, \space\arga}l’
906 \else

907 \@nameauth@Index{\csab}{\Short, \space\arga, \space\Suff}y,
908 \fi

909 \fi

910 \fi

911 \@nameauth@ShowCommafalse},

912 }

79

\TagName This creates an index entry tag that is applied to a name that is not already used as a
cross reference via \AKA.

913 \newcommandx*\TagName [4] [1=\Q@empty, 3=\Qemptyl’
914 {%

915 \protected@edef\testa{#11}/

916 \protected@edef\testb{\trim@spaces{#2}}/

917 \protected@edef\testc{#3}/

918 \def\csb{\@nameauth@Clean{#2}}/

919 \def\csbc{\@nameauth@Clean{#2#3}}/,

920 \def\csab{\@nameauth@Clean{#1!#2}1}/

We make copies of the arguments to test them and then we parse the arguments, defining
the tag control sequences.

921 \ifx\testb\@empty

922 \PackageError{nameauth}/

923 {macro \TagName: Essential name missing}’
924 \else

925 \ifx\csb\@empty

926 \PackageError{nameauth},

927 {macro \TagName: Essential name malformed}’
928 \fi

929 \fi

930 \ifx\testa\Qempty

931 \ifx\testc\Q@empty

932 \ifcsname\csb!PN\endcsname

933 \PackageWarning{nameauth}/,

934 {macro \TagName: not tagging xref: #2}J
935 \else

936 \csgdef{\csb!TAGIH{#4}}

937 \fi

938 \else

939 \ifcsname\csbc!PN\endcsname

940 \PackageWarning{nameauth}¥

941 {macro \TagName: not tagging xref: #2 #31}J
942 \else

943 \csgdef{\csbc! TAGH{#41}%

944 \fi

945 \fi

946 \else

947 \ifcsname\csab!PN\endcsname

948 \PackageWarning{nameauthl}/

949 {macro \TagName: not tagging xref: #1 #2}J
950 \else

951 \csgdef{\csab!TAG}{#4}/,

952 \fi

953 \fi

954 }

80

\UntagName This deletes an index tag.

955 \newcommandx*\UntagName [3] [1=\Q@empty, 3=\@emptyl’
956 {’%

957 \protected@edef\testa{#1}/

958 \protected@edef\testb{\trim@spaces{#2}}/

959 \protected@edef\testc{#3}/

960 \def\csb{\@nameauth@Clean{#2}1}/

961 \def\csbc{\@nameauth@Clean{#2#3}1}7

962 \def\csab{\@nameauth@Clean{#1!#2}1}/

We make copies of the arguments to test them and then we parse the arguments, un-
defining the tag control sequences.

963 \ifx\testb\@empty

964 \PackageError{nameauth},

965 {macro \UntagName: Essential name missing}y,
966 \else

967 \ifx\csb\Qempty

968 \PackageError{nameauth},

969 {macro \UntagName: Essential name malformedl}V,
970 \fi

971 \fi

972 \ifx\testa\Qempty

973 \ifx\testc\Qempty

974 \global\csundef{\csb!TAG}/

975 \else

976 \global\csundef{\csbc!TAG}%

977 \fi

978 \else

979 \global\csundef{\csab!TAG}/

980 \fi

981 }

81

\PretagName

\ExcludeName

This creates an index entry tag that is applied before a name.

982 \newcommandx*\PretagName [4] [1=\@empty, 3=\@emptyl’
983 {7

984 \protected@edef\testa{#11}/

985 \protected@edef\testb{\trim@spaces{#2}}/

986 \protected@edef\testc{#31}/

987 \def\csb{\@nameauth@Clean{#2}1}/

988 \def\csbc{\@nameauth@Clean{#2#3}1}7

989 \def\csab{\@nameauth@Clean{#1!#2}1}/

We make copies of the arguments to test them and then we parse the arguments, defining
the tag control sequences.

990 \ifx\testb\@empty

991 \PackageError{nameauth},

992 {macro \TagName: Essential name missing}/

993 \else

994 \ifx\csb\Qempty

995 \PackageError{nameauth},

996 {macro \TagName: Essential name malformed}’
997 \fi

998 \fi

999 \ifx\testa\Qempty

1000 \ifx\testc\Qempty

1001 \ifcsname\csb!PN\endcsname

1002 \PackageWarning{nameauthl}

1003 {macro \PretagName: tagging xref: #2}J
1004 \fi

1005 \if@nameauth@Pretag\csgdef{\csb!PRE}{#4\O@nameauth@Actual}\fi
1006 \else

1007 \ifcsname\csbc!PN\endcsname

1008 \PackageWarning{nameauth}/,

1009 {macro \PretagName: tagging xref: #2 #3}J
1010 \fi

1011 \if@nameauth@Pretag\csgdef{\csbc!PRE}{#4\O@nameauth@Actual}\fi
1012 \fi

1013 \else

1014 \ifcsname\csab!PN\endcsname

1015 \PackageWarning{nameauth}y

1016 {macro \PretagName: tagging xref: #1 #2}}
1017 \fi

1018 \if@nameauth@Pretag\csgdef{\csab!PRE}{#4\O@nameauth@Actual}\fi
1019 \fi
1020 }

This macro prevents a name from being formatted or indexed, making \Name and friends
print their arguments, emit a warning, and continue.

1021 \newcommandx*\ExcludeName [3] [1=\Q@empty, 3=\Qemptyl%
1022 {%

1023 \protected@edef\testa{#11}/

1024 \protected@edef\testb{\trim@spaces{#2}1}/

1025 \protected@edef\testc{#3}/

1026 \def\csb{\@nameauth@Clean{#2}}}

1027 \def\csbc{\@nameauth@Clean{#2#3}}%

1028 \def\csab{\@nameauth@Clean{#1!#2}1}/

82

We make copies of the arguments to test them and make parsing decisions. Below we
parse the name arguments and create a pseudonym control sequence if it does not exist.

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

\ifx\testb\C@empty
\PackageError{nameauth}/
{macro \ExcludeName: Essential name missing}),
\else
\ifx\csb\@empty
\PackageError{nameauth},
{macro \ExcludeName: Essential name malformedl}
\fi
\fi
\ifx\testa\@empty
\ifx\testc\Qempty
\ifcsname\csb!PN\endcsname
\PackageWarning{nameauth}/,
{macro \ExcludeName: Xref: #2 already existsl}¥%
\else
\ifcsname\csb!MN\endcsname
\PackageWarning{nameauthl}y,
{macro \ExcludeName: Reference: #2 exists; no exclusion}’
\else
\ifcsname\csb!NF\endcsname
\PackageWarning{nameauth}
{macro \ExcludeName: Reference: #2 exists; no exclusionl}’,
\else
\csgdef{\csb!PN}{!}V,
\fi
\fi
\fi
\else
\ifcsname\csbc!PN\endcsname
\PackageWarning{nameauthl}/
{macro \ExcludeName: Xref: #2 #3 already exists}/
\else
\ifcsname\csbc!MN\endcsname
\PackageWarning{nameauthl}y,
{macro \ExcludeName: Reference: #2 #3 exists; no exclusion},
\else
\ifcsname\csbc!NF\endcsname
\PackageWarning{nameauthl}
{macro \ExcludeName: Reference: #2 #3 exists; no exclusion}/
\else
\csgdef{\csbc!PN}!}%
\fi
\fi
\fi
\fi

83

\IfFrontName

1074 \else

1075 \ifcsname\csab!PN\endcsname

1076 \PackageWarning{nameauthl}/,

1077 {macro \ExcludeName: XRef: #1 #2 already existsl}),

1078 \else

1079 \ifcsname\csab!MN\endcsname

1080 \PackageWarning{nameauthl}/

1081 {macro \ExcludeName: Reference: #1 #2 exists; no exclusion}’
1082 \else

1083 \ifcsname\csab!NF\endcsname

1084 \PackageWarning{nameauth}/,

1085 {macro \ExcludeName: Reference: #1 #2 exists; no exclusion},
1086 \else

1087 \csgdef{\csab!PN}{!}%

1088 \fi

1089 \fi

1090 \fi

1091 \fi

1092 }

Name Decisions

This macro expands one path if a front matter name exists, or else the other if it does
not exist.

1093 \newcommandx\IfFrontName [5] [1=\Q@empty, 3=\@emptyl%
1094 {%

1095 \protected@edef\testa{#1}/

1096 \protected@edef\testb{\trim@spaces{#2}}%

1097 \protected@edef\testc{#3}/

1098 \def\csb{\@Gnameauth@Clean{#2}}/

1099 \def\csbc{\@nameauth@Clean{#2#3}}/

1100 \def\csab{\@nameauth@Clean{#1!#2}1}/

We make copies of the arguments to test them and make parsing decisions. Below we
parse the name arguments and create a pseudonym control sequence if it does not exist.

1101 \ifx\testb\@empty

1102 \PackageError{nameauth}y

1103 {macro \IfFrontName: Essential name missing})
1104 \else

1105 \ifx\csb\@empty

1106 \PackageError{nameauth},

1107 {macro \IfFrontName: Essential name malformed}
1108 \fi

1109 \fi

1110 \ifx\testa\@empty

1111 \ifx\testc\Q@empty

1112 \ifcsname\csb!NF\endcsname{#4}\else{#5}\fi
1113 \else

1114 \ifcsname\csbc!NF\endcsname{#4}\else{#5}\fi
1115 \fi

1116 \else

1117 \ifcsname\csab!NF\endcsname{#4}\else{#5}\fi
1118 \fi

1119 }

84

\IfMainName

This macro expands one path if a main matter name exists, or else the other if it does
not exist.

1120 \newcommandx\IfMainName [5] [1=\Q@empty, 3=\Qemptyl’

1121 {%

1122
1123
1124
1125
1126
1127

\protected@edef\testa{#1}/
\protected@edef\testb{\trim@spaces{#2}}/
\protected@edef\testc{#3}/
\def\csb{\@nameauth@Clean{#2}}/,
\def\csbc{\@nameauth@Clean{#2#3}}%
\def\csab{\@nameauth@Clean{#1!#2}1}/

We make copies of the arguments to test them and make parsing decisions. Below we
parse the name arguments and create a pseudonym control sequence if it does not exist.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146 }

\ifx\testb\C@empty
\PackageError{nameauth}/,
{macro \IfMainName: Essential name missing}%
\else
\ifx\csb\@empty
\PackageError{nameauth},
{macro \IfMainName: Essential name malformedl},
\fi
\fi
\ifx\testa\@empty
\ifx\testc\Q@empty
\ifcsname\csb!MN\endcsname{#4}\else{#5}\fi
\else
\ifcsname\csbc!MN\endcsname{#4}\else{#5}\fi
\fi
\else
\ifcsname\csab!MN\endcsname{#4}\else{#5}\fi
\fi

85

\IfAKA

This macro expands one path if a see-reference name exists, another if it does not exist,
and a third if it is excluded.

1147 \newcommandx\IfAKA [6] [1=\@empty, 3=\Qemptyl’
1148 {%

1149 \protected@edef\testa{#1}/

1150 \protected@edef\testb{\trim@spaces{#2}1}/
1151 \protected@edef\testc{#33}/

1152 \def\csb{\@nameauth@Clean{#2}}/

1153 \def\csbc{\@nameauth@Clean{#2#3}}/,

1154 \def\csab{\@nameauth@Clean{#1!#23}}/

1155 \def\test{!}%

We make copies of the arguments to test them and make parsing decisions. Below we
parse the name arguments and create a pseudonym control sequence if it does not exist.

1156 \ifx\testb\@empty

1157 \PackageError{nameauth}y

1158 {macro \IfAKA: Essential name missing}%
1159 \else

1160 \ifx\csb\@empty

1161 \PackageError{nameauth},

1162 {macro \IfAKA: Essential name malformed}’
1163 \fi

1164 \fi

1165 \ifx\testa\@empty

1166 \ifx\testc\Qempty

1167 \ifcsname\csb!PN\endcsname

1168 \edef\testa{\csname\csb!PN\endcsnamel}y,
1169 \ifx\testa\test{#6}\else{#4}\fi

1170 \else{#5}\fi

1171 \else

1172 \ifcsname\csbc!PN\endcsname

1173 \edef\testa{\csname\csbc!PN\endcsname},
1174 \ifx\testa\test{#6}\else{#4}\fi

1175 \else{#5}\fi

1176 \fi

1177 \else

1178 \ifcsname\csab!PN\endcsname

1179 \edef\testa{\csname\csab!PN\endcsname}/,
1180 \ifx\testa\test{#6}\else{#4}\fi

1181 \else{#5}\fi

1182 \fi

1183 }

86

\ForgetName

Changing Name Decisions

This undefines a control sequence to force the “first use” option of \Name.

1184 \newcommandx*\ForgetName [3] [1=\Q@empty, 3=\Qemptyl’
1185 {%

1186 \protected@edef\testa{#11}/

1187 \protected@edef\testb{\trim@spaces{#2}1}/

1188 \protected@edef\testc{#3}/

1189 \def\csb{\@nameauth@Clean{#2}}}

1190 \def\csbc{\@nameauth@Clean{#2#3}}%

1191 \def\csab{\@nameauth@Clean{#1!#2}1}/

We make copies of the arguments to test them.

1192 \ifx\testb\@empty

1193 \PackageError{nameauth}y

1194 {macro \ForgetName: Essential name missingl}¥%
1195 \else

1196 \ifx\csb\@empty

1197 \PackageError{nameauth},

1198 {macro \ForgetName: Essential name malformed}y
1199 \fi

1200 \fi

Now we parse the arguments, undefining the control sequences either locally by sec-
tion type or globally. @nameauth@LocalNames toggles the local or global behavior, while
@nameauth@DoFormat selects the type of name.

1201 \ifx\testa\Qempty

1202 \ifx\testc\Qempty

1203 \if@nameauth@LocalNames

1204 \if@nameauth@DoFormat

1205 \global\csundef{\csb!MN}/
1206 \else

1207 \global\csundef{\csb!NF}/
1208 \fi

1209 \else

1210 \global\csundef{\csb!MN}/
1211 \global\csundef{\csb!NF}/
1212 \fi

1213 \else

1214 \if@nameauth@LocalNames

1215 \if@nameauth@DoFormat

1216 \global\csundef{\csbc!MN}}
1217 \else

1218 \global\csundef{\csbc!NF}},
1219 \fi

1220 \else

1221 \global\csundef{\csbc!MN}%
1222 \global\csundef{\csbc!NF}%
1223 \fi

1224 \fi

1225 \else

1226 \if@nameauth@LocalNames

1227 \if@nameauth@DoFormat

1228 \global\csundef{\csab!MN}%
1229 \else

1230 \global\csundef{\csab!NF}/
1231 \fi

87

\SubvertName

1232
1233
1234
1235
1236

1237 }

\else
\global\csundef{\csab!MN}/
\global\csundef{\csab!NF}/

\fi

\fi

This defines a control sequence to suppress the “first use” of \Name.

1238 \newcommandx*\SubvertName [3] [1=\Q@empty, 3=\Qemptyl’

1239 {%

1240
1241
1242
1243
1244
1245

\protected@edef\testa{#1}/,
\protected@edef\testb{\trim@spaces{#2}}/
\protected@edef\testc{#3}/
\def\csb{\@nameauth@Clean{#2}}/
\def\csbc{\@nameauth@Clean{#2#3}}/
\def\csab{\@nameauth@Clean{#1!#2}1}/

We make copies of the arguments to test them.

1246
1247
1248
1249
1250
1251
1252
1253
1254

\ifx\testb\Cempty
\PackageError{nameauth},
{macro \SubvertName: Essential name missing}y
\else
\ifx\csb\@empty
\PackageError{nameauth},
{macro \SubvertName: Essential name malformed}}
\fi
\fi

Now we parse the arguments, defining the control sequences either locally by section
type or globally. @nameauth@LocalNames toggles the local or global behavior, while
@nameauth@DoFormat selects the type of name.

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

\ifx\testa\Qempty
\ifx\testc\Qempty
\if@nameauth@LocalNames
\if@nameauth@DoFormat
\csgdef{\csb!MN}{}/
\else
\csgdef{\csb!NF}{1}/
\fi
\else
\csgdef{\csb!MN}{}
\csgdef{\csb!NF}{}
\fi
\else
\if@nameauth@LocalNames
\if@nameauth@DoFormat
\csgdef{\csbc ! MN}{}%
\else
\csgdef{\csbc!NF}{}%
\fi
\else
\csgdef{\csbc ! MN}{}%
\csgdef{\csbc!NF}{}%
\fi
\fi

88

1279 \else

1280 \if@nameauth@LocalNames
1281 \if@nameauth@DoFormat
1282 \csgdef{\csab!MN}{}%
1283 \else

1284 \csgdef{\csab!NF}{}%
1285 \fi

1286 \else

1287 \csgdef{\csab!MN}{}%
1288 \csgdef{\csab!NF}{}%
1289 \fi

1290 \fi}

Simplified Interface

nameauth The nameauth environment provides a means to implement shorthand references to names
in a document.

1291 \newenvironment{nameauth}{%

1292 \begingroup’

1203 \let\ex\expandafter,

1294 \csdef{<}##t1&##2&##3&##4>{),

1295 \protected@edef\Qarga{\trim@spaces{##1}}/
1296 \protected@edef\Qtestb{\trim@spaces{##2}1}7

1297 \protected@edef\Otestc{\trim@spaces{##3}1}
1298 \protected@edef\@testd{\trim@spaces{##4}1}%
1299 \@nameauth@etoksb\expandafter{##21}/,
1300 \@nameauth@etoksc\expandafter{##31}/

1301 \@nameauth@etoksd\expandafter{##41}7
1302 \ifx\@arga\@empty

1303 \PackageError{nameauth},

1304 {environment nameauth: Control sequence missing}y
1305 \else

1306 \ifx\@testc\Qempty

1307 \PackageError{nameauth},

1308 {environment nameauth: Essential name missingl}y
1309 \else

1310 \ifcsname\@arga\endcsname

1311 \PackageWarning{nameauthly,

1312 {environment nameauth: Redefinition of shorthands}y
1313 \fi

1314 \ifx\@testd\Qempty

1315 \ifx\@testb\Q@empty

1316 \ex\csgdef\ex{\ex\@arga\ex}\ex{\ex\NameauthName\ex{%
1317 \the\O@nameauth@etoksc}1}

1318 \ex\csgdef\ex{\ex L\ex\Q@arga\ex}\ex{’

1319 \ex\@nameauth@FullNametrue,

1320 \ex\NameauthLName\ex{\the\@nameauth@etokscl}}’
1321 \ex\csgdef\ex{\ex S\ex\@arga\ex}\ex{%

1322 \ex\@nameauth@FirstNametrue}

1323 \ex\NameauthFName\ex{\the\@nameauth@etokscl}}’

89

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378

\else
\ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex\Qarga\ex\ex\ex1},
\ex\ex\ex{\ex\ex\ex\NameauthName\ex\ex\ex [’
\ex\the\ex\@nameauth@etoksb\ex] \ex{\the\@nameauth@etoksc}}’
\ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex L\ex\ex\ex\Qarga
\ex\ex\ex}\ex\ex\ex{\ex\ex\ex\@nameauth@FullNametrue},
\ex\ex\ex\NameauthLName\ex\ex\ex [%
\ex\the\ex\@nameauth@etoksb\ex] \ex{\the\@nameauth@etoksc}}’
\ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex S\ex\ex\ex\Qargal,
\ex\ex\ex}\ex\ex\ex{\ex\ex\ex\@nameauth@FirstNametruey,
\ex\ex\ex\NameauthFName\ex\ex\ex[%
\ex\the\ex\@nameauth@etoksb\ex] \ex{\the\@nameauth@etoksc}}/
\fi
\else
\ifx\@testb\Q@empty
\ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex\Q@arga\ex\ex\ex}/
\ex\ex\ex{\ex\ex\ex\NameauthName\ex\ex\ex{%
\ex\the\ex\@nameauth@etoksc\ex}\ex [\the\@nameauth@etoksd] }%
\ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex L\ex\ex\ex\Qarga,
\ex\ex\ex}\ex\ex\ex{\ex\ex\ex\@nameauth@FullNametrue},
\ex\ex\ex\NameauthLName\ex\ex\ex{/
\ex\the\ex\@nameauth@etoksc\ex}\ex [\the\@nameauth@etoksd] }%
\ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex S\ex\ex\ex\@arga,
\ex\ex\ex}\ex\ex\ex{\ex\ex\ex\@nameauth@FirstNametrue},
\ex\ex\ex\NameauthFName\ex\ex\ex{}
\ex\the\ex\@nameauth@etoksc\ex}\ex[\the\@nameauth@etoksd] }%
\else
\ex\ex\ex\ex\ex\ex\ex\csgdef\ex\ex\ex\ex\ex\ex\ex{%
\ex\ex\ex\ex\ex\ex\ex\Qarga\ex\ex\ex\ex\ex\ex\ex}/
\ex\ex\ex\ex\ex\ex\ex{\ex\ex\ex\ex\ex\ex\ex\NameauthName},
\ex\ex\ex\ex\ex\ex\ex [\ex\ex\ex\the\ex\ex\ex\@nameauth@etoksb,
\ex\ex\ex]\ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}\ex[%
\the\@nameauth@etoksd] }%
\ex\ex\ex\ex\ex\ex\ex\csgdef\ex\ex\ex\ex\ex\ex\ex{%
\ex\ex\ex\ex\ex\ex\ex L\ex\ex\ex\ex\ex\ex\ex\Qarga
\ex\ex\ex\ex\ex\ex\ex}\ex\ex\ex\ex\ex\ex\ex{}
\ex\ex\ex\ex\ex\ex\ex\@nameauth@FullNametrue,
\ex\ex\ex\ex\ex\ex\ex\NameauthLName\ex\ex\ex\ex\ex\ex\ex [’
\ex\ex\ex\the\ex\ex\ex\@nameauth@etoksby,
\ex\ex\ex]\ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}\ex [}
\the\@nameauth@etoksd] }%
\ex\ex\ex\ex\ex\ex\ex\csgdef\ex\ex\ex\ex\ex\ex\ex{/
\ex\ex\ex\ex\ex\ex\ex S\ex\ex\ex\ex\ex\ex\ex\Qargaj,
\ex\ex\ex\ex\ex\ex\ex}\ex\ex\ex\ex\ex\ex\ex{}
\ex\ex\ex\ex\ex\ex\ex\@nameauth@FirstNametrue},
\ex\ex\ex\ex\ex\ex\ex\NameauthFName\ex\ex\ex\ex\ex\ex\ex[%
\ex\ex\ex\the\ex\ex\ex\@nameauth@etoksb\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}\ex[%
\the\@nameauth@etoksd] }%
\fi
\fi

\fi

\fi

\ignorespaces/

F\ignorespaces%

1379 }{\endgroup\ignorespaces}

90

4 Change History

v0.7

General: Initial release
v0.75

\ForgetName: New argument added

\IndexName: Use current arguments
v0.8

General: Add features, bugfixes . . .
v0.85

\@nameauth@FmtName: Add comma

suppression

\@nameauth@Name: Add comma sup-
pression
General: Add package options
\AKA: Add comma suppression
\IndexName: Add comma suppres-
sion

\PName: Add comma suppression
\PName*: Add comma suppression
v(0.86
General: Fix regressions
v0.9
\@nameauth@Suffix: Added
\@nameauth@TrimRoot: Suffix han-
dling expandable
\@nameauth@TrimSuffix: Added
General: Add first name formatting;
affix handling expandable
\AKA: Add starred mode; redesigned
\AKA*: Added
\FName: Added
\SubvertName: Added
v0.94
\@nameauth@FmtName: Add particle
caps
\@nameauth@Index: Added
General: Add index suppression, er-
ror checking, name particle caps
\CapThis: Added
\ExcludeName: Added
\IndexActive: Added
\IndexInactive: Added
v0.95
\@nameauth@CRii: Added
\@nameauth@CapRoot: Added
\@nameauth@FmtName: Works with
microtype
General: Bugfixes
v(0.96
\@nameauth@Name: Works w/ mi-
crotype, memoir
General: Bugfixes

87
78

75
69
88

v1.0

General: Works fully with microtype

and memoir
vl.l
General: Bugfixes
v1.2

\TagName: Added
\UntagName: Added
v1.26
\@nameauth@CRii: Fixed
\AKA: Fix sorting of name suffixes

\IndexName: Fix name suffix sort-

INg ...

vl4
\@nameauth@Root: Made more ro-
bust

General: Add features, bugfixes . . .
\FName: Refactored
\FNamex*: Refactored
\Name*: Refactored

\ShowComma: Added
v1.5

\@nameauth@AllCapRoot: Added

\@nameauth@Name: Add reversing
andcaps

\@nameauth@TrimSuffix: Trim
SPACES .+ e

General: Add features, bugfixes, op-
tions ...

\AKA: Add reversing and caps . . .
\AllCapsActive: Added
\AllCapsInactive: Added
\CapName: Added
\RevComma: Added
\ReverseActive: Added
\ReverseCommaActive: Added
\ReverseCommalInactive: Added
\ReverseInactive: Added
\RevName: Added
v1.6
nameauth: Added
v1.7
General: Fix options processing
v1.8
General: Update docs
v1.9
\ForgetName: Ensure global undef
\KeepAffix: Added
\TagName: Fix cs collisions
\UntagName: Ensure global undef,
fix cs collisions

56

87
68

v2.0
\@nameauth@FmtName: Omne macro
instead of two
\@nameauth@Index: Redesigned
tagging
\@nameauth@Name: Isolate mal-

formed input; trim spaces; re-
design tagging
\@nameauth@TrimRoot: trim spaces
General: Use dtxgen template in-
stead of dtxtut; update docs
\AKA: Isolate malformed input; trim
spaces; redesign tagging

nameauth: Redesigned argument
handling
\ExcludeName: Isolate malformed
input ...
\ForgetName: Isolate malformed in-
put ...

\IndexActual: Added
\IndexName: Isolate malformed in-
put; trim spaces; redesign tag-

ging
\PretagName: Added
\SubvertName: Isolate malformed
input 0 ..

\TagName: Isolate malformed input;
redesign tagging
\UntagName: Isolate malformed in-
put; redesign tagging

v2.1
\@nameauth@CRiii: added
\@nameauth@CapRoot: Handle Uni-
code better
\@nameauth@Name: Isolate Unicode
issues
General: Isolate Unicode issues . . .
\AccentCapThis: Added
\AKA: Isolate Unicode issues
v2.11
nameauth: Bugfix
v2.2
General: Add interface hooks and
docs; fix bugs
\NameauthFName: Added
\NameauthName: Added
v2.3
\@nameauth@Name: Rename as inter-
nal macro

57

69

89

82

87

68

78

82

88

92

General: Improve docs and hooks;
add features
\AKA: Expand starred mode
\ExcludeName: Distinguish ex-
cluded names from regular
aliases
\ForgetName: Changed to allow
global or local behavior
\GlobalNames: Added
\IfAKA: Added
\IfFrontName: Added
\IfMainName: Added
\LocalNames: Added
\Name: Change to interface macro
\NameauthLName: Added
\PName: Work directly with hooks
\SubvertName: Changed to allow
global or local behavior

v2.4
\@nameauth@FmtName: Add hooks
for non-formatted names
\@nameauth@Name: Define name CS
after formatting; add token regs
for hooks
General: Add text tagging features,
add generic hooks, and prevent
recursion
\AKA: Define name CS after format-
ting; add token regs for hooks
\FrontNameHook: Added
\GlobalNames: Ensured
global
\IfAKA: Redesign exclusion test
\LocalNames: Ensured to be global
\MainNameHook: Added
\NameAddInfo: Added
\NameClearInfo: Added
\NameQueryInfo: Added
v2.41
\@nameauth@Name:
\newtoks
General: instantiate token registers
only once
\AKA: no local \newtoks
nameauth: no local \newtoks
v2.42
General: do not use \cmd in section
headings

to

69

69
53

68
36
68
53
76
7

76

58

69
89

5 Index

Numbers written in italic refer to the page where the corresponding entry is described;
numbers underlined refer to the code line of the definition; numbers in roman refer to
the code lines where the entry is used.

Symbols
\@nameauth@Actual . 127
\@nameauth@AllCapRoot

............. 96
\@nameauth@CRii 94
\@nameauth@CRiii ... 95
\@nameauth@CapRoot . 78
\@nameauth@CheckDot 109
\@nameauth@Clean ... 73

\@nameauth@EvalDot 111
\@nameauth@FmtName 113
\@nameauth@Index .. 128
\@nameauth@Name ... 147
\@nameauth@Root 75
\@nameauth@Suffix .. 98
\@nameauth@TestDot 101

\@nameauth@TrimRoot 7

\@nameauth@TrimSuffix
............ 100
\@nameauth@toksa .. 39
\@nameauth@toksb .. 39
\@nameauth@toksc .. 39
A
\AccentCapThis . 17, 468
Athelred 11, king . 20, 31
\AKA 26, 495
\AKA* 26, 761
\AllCapsActive . 16,471

\AllCapsInactive 16,470

Anaximander 19
Andreéd, Johann 20
Antiochus v
Epiphanes, king 48
Arai Akino 16
Aristotle 4,9, 11

Arouet, Frangois-Marie
see Voltaire

Atatirk
see Kemal, Mustafa
Attila the Hun .. 4,9, 11
B
Biermann, Johann* ... 18
C
\CapName 16, 469
\CapThis 17, 467
Carnap, Rudolph
....... 22, 23, 25

Carter, James Earl, Jr.,
president . 6,32
Carter, Jimmy
. see Carter,
James Earl, Jr.
Chaplin, Charlie 38
Charles the Bald, em-

peror 13, 14
Chiang Kai-shek, presi-

dent 15
Cicero, M.T. 13, 14

Clemens, Samuel L. . .
see Twain, Mark

Confucius 13,14, 24
Cousot, Patrick 20
D
Dagobert I, king 12
de la Mare, Walter 17, 49

DE’ MEDICI, Catherine 17
de Soto, Hernando 11, 17
Demetrius I Soter, king 47
Doctor Angelicus

see Thomas Aquinas

Dongen, Marc van .. 2, 58
Du Bois, W.E.B. 45
du Cange see

du Fresne, Charles
du Fresne, Charles ... 34
DuBois, W.E.B.

see Du Bois, W.E.B.

E
Einstein, Albert 13, 14
Elizabeth I, queen 4,9, 11
environments:

nameauth 10, 1291
\ExcludeName 33,1021
F
\FName 14, 493
\FName* 14,494
\ForgetName 25, 1184
Francis I, king 47
\FrontNameHook .. 27, /2
FUKUYAMA Takeshi . 21
G
GARBO, Greta 20
\GlobalNames 25, 486

93

Goethe, Johann Wolf-
gang von 49

Gossett, Louis, Jr. 15

Gregorio, Enrico 2

Gregory I, pope .
28, 29, 31, 32
Gregory the Great

see Gregory I

H
Hammerstein, Oskar, 11
....... 15, 19, 50
Harnack, Adolf 49
Hearn, Lafcadio 34

Henry VIII, king 12, 15, 48

Hope, Bob 8, 28

Hope, Leslie Townes

. see Hope, Bob
Thurston,

HowELL,
I11*

\if@nameauth@InAKA 39
\if@nameauth@InName 39

\IfAKA 24, 1147
\IfFrontName 23, 1093
\IfMainName 25, 1120
\IndexActive 30, 488
\IndexActual 31, 489
\IndexInactive . 30, 487
\IndexName 30, 848

Iron Mike see Tyson, Mike
Ishida Yoko 16

Jean sans Peur, duke .. 27
Jean the Fearless
see Jean sans Peur

John Eriugena 19
K

Kanno, Yokof 16

\KeepAffix 15,482

Kemal, Mustafa .. 41, 44
Keynes, John Maynard 22
King, Martin Luther,
Jr. ..o 19
Koizumi Yakumo
see Hearn, Lafcadio
Konoe, Fumimaro, PMt 11

Kresge, Joseph see Kre-
skin, The Amazing
Kreskin, The Amazing 34

L
Lao-tzu 28, 29
Leo I, pope 31, 32
Leo the Great .. see Leo I
Lewis, Clive Staples

...... 4,8, 11, 14
LiEr see Lao-tzu
\LocalNames 25, 485
Louis XIV, king 15, 28
Lueck, Uwe 2, 56
Luecking, Dan 35
Lukasiewicz, Jan 31

M
Maimonides

28, see also Rambam
\MainNameHook ... 26, 42
Malebranche, Nicolas . 22
Mao Tse-tung, chair-

man 19, 48
Mill, J.S. 19

Moses ben-Maimon . .
. see Maimonides

N
Nakano, Aiko} 16
\Name 13, 491
\Name* 13, 492
\NameAddInfo 26, 767
nameauth (environ-
ment) ... 10,1291
\NameauthFName .. 271, 30
\NameauthLName .. 21, 29
\NameauthName ... 21, 28
\NameClearInfo . 26, 821
\NameQueryInfo . 206, 794
\NamesActive 22, 484
\NamesFormat . 21,25
\NamesInactive . 22, 483
Nogawa Sakura 16
o
Oberdiek, Heiko . 2,55

P
Patton, George S., Jr. . 46

Plato 47
\PName 29, 762
\PName* 766
\PretagName 51, 982
Ptolemy I Soter, king . 48
Public, J.Q.* 46
R
Rambam 28,
see also Maimonides
\RevComma 19, 475
\ReverseActive . 106,474
\ReverseCommaActive
......... 19, 479
\ReverseCommalnactive
......... 19, 477

\ReverseInactive 16,473
\RevName 16, 472
Rockefeller, Jay

. see Rockefeller,

John David,
Rockefeller, John David,

Im....... 4,8, 11
Rockefeller, John David,

A% 8, 11, 14, 24
RUHMANN, Heinrich

Wilhelm . .. see

RUHMANN, Heinz
RUHMANN, Heinz 27

I\Y

S

Schlicht, Robert
Shikata Akiko
\ShowComma 15, 481
Smith, John* 32, 33, 46
Smith, John* (other) .. 32
Smith, John* (third) .. 32
Snel van Royen,

Rudolph 28
Snel van Royen, Wille-

brord 28
Snellius . see Snel van

Royen, Rudolph;

94

Snel van

Royen, Willebrord
Stephani, Philipp 2
Strietelmeier, John ... 18
\SubvertName 25, 1238
Sullenberger, Chesley

B., IIT 14, 30
Sun King see Louis XIV
Sun Yat-sen, president
4,15, 47

\TagName 913
Thomas a Kempis 17
Thomas Aquinas
Thomas of Aquino

see Thomas Aquinas

Twain, Mark 29
Tyson, Mike 34
U
\UntagName 32, 955
\%

Vlad IT Dracul 39
Vlad III Dracula 39

Vlad Tepes see
Vlad III Dracula
Vlad the Impaler . see
Vlad III Dracula
Voltaire 29
w
Washington, George,
president .. 4,
8, 11, 26, 41, 44
White, E.B. 18, 51
William I 29

William the Conqueror
see William I

Y
Yamamoto Isoroku 4, 9, 11
Yohko 16
Yoshida Shigeru, PM . 12

	Contents
	1 Introduction
	1.1 Preliminaries
	1.2 What's In A Name?

	2 Usage
	2.1 Package Options
	2.2 Quick Start Guide
	2.2.1 Main Interface
	2.2.2 Simplefied Interface
	2.2.3 Older Syntax

	2.3 Naming Macros
	2.3.1 \Name and \Name*
	2.3.2 Forenames: \FName

	2.4 Affixes and Eastern Names
	2.4.1 Affixes Need Commas
	2.4.2 Eastern Names

	2.5 Other Naming Topics
	2.5.1 Particles
	2.5.2 Formatting Initials
	2.5.3 Hyphenation
	2.5.4 Listing by Surname
	2.5.5 Fault Tolerance
	2.5.6 Detecting Punctuation
	2.5.7 Accented Names
	2.5.8 Custom Formatting
	2.5.9 Disable Formatting

	2.6 Name Decisions
	2.6.1 Testing Decisions
	2.6.2 Changing Decisions

	2.7 ``Text Tags''
	2.8 Name Variant Macros
	2.8.1 \AKA
	2.8.2 \PName

	2.9 Indexing Macros
	2.9.1 Indexing Control
	2.9.2 Indexing and babel
	2.9.3 \IndexName
	2.9.4 Index Sorting
	2.9.5 \TagName
	2.9.6 \UntagName
	2.9.7 Global Name Exclusion

	2.10 Longer Examples
	2.10.1 Tips for \AKA
	2.10.2 Unicode and NFSS
	2.10.3 LaTeX Engines
	2.10.4 \LocalNames
	2.10.5 Formatting Hooks
	2.10.6 Variant Spellings

	2.11 Naming Pattern Reference
	2.11.1 Basic Naming
	2.11.2 Particles

	2.12 Errors and Warnings

	3 Implementation
	3.1 Boolean Values
	3.2 Hooks
	3.3 Package Options
	3.4 Internal Macros
	3.5 User Interface Macros

	4 Change History
	5 Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

