
April 14, 2012

MyCV*

Author:
Andrea Ghersi

Abstract

This LATEX class provides a set of functionality for writing curriculum
vitæ with different layouts. To achieve this goal, it adopts a different
approach with respect to the other c.v. classes or packages.
Basically, the idea is that a user can write some custom configuration
directives, by means of which is possible both to produce different c.v.
layouts and quickly switch among them.
In order to process such directives, this class uses a set of lists, pro-
vided by the package etextools. A basic support for using the TikZ dec-
orations is also provided.

* This file has version number 1.5.3 -- documentation dated April 13, 2012 -- last revised April 14, 2012

mailto:ghanhawk@gmail.com

C O N T E N T S

1 fundamentals 1

1.1 Introduction . 1

1.2 Class files . 1

1.3 Layout components . 2

1.3.1 Main components . 2

1.3.2 Sub-components . 2

2 usage 4

2.1 Requirements . 4

2.2 Class options . 4

2.3 Class commands . 5

2.3.1 Conditionals . 5

2.3.2 Default style . 5

2.3.3 Decorations . 6

2.3.4 Miscellaneous . 7

2.4 An example . 7

2.5 Split the contents . 10

ii

1 F U N DA M E N TA L S

“Computer programming is an art, because it applies ac-
cumulated knowledge to the world, because it requires
skill and ingenuity, and especially because it produces
objects of beauty”

-- Knuth [1973]

1.1 introduction
The main goal of this class (MyCV) is to give support for creating curriculum vitæ (CV) with dif-
ferent layouts, allowing easy switching among them. The class also provides a basic support
for using the TikZ decorations and defines a bunch of commands for handling the contents of
a CV, even though this is not its primary goal. On CTAN archives, there are available various
CV packages more contents-oriented, as it were, and they may be used together with this class,
providing missing contents functionality.
Probably, the choice of the class’s name was not so appropriate but, at the beginning, I did
not plan to publish it and chose the simplest and most obvious name. I realized that only
when I wrote these notes, but by then it was a bit too late.
Before starting to describe MyCV more in details, I have to say it was my first class in LATEX
and, although I tried to do my best, the lack of experience probably brought me to make some
choice not so opportune as I hoped. It goes without saying that any advice or constructive
criticism is greatly appreciated.

1.2 class files
The class MyCV is composed by five files. A short brief of each one is given here:

. mycv.cls

it is the main file and, basically, handles the class options (section 2.2) as well as the
inclusion of all other files (the remaining four);

. mycv_base.def

it contains all the commands and definitions dealing with the layout components of
a CV (section 1.3): it is the core-system file;

. mycv_style.def

it contains the default style commands (subsection 2.3.2) provided by this class: if
the default style is not used, this file will not be included by mycv.cls;

. mycv_dec.def

it contains the decoration commands (subsection 2.3.3): if decorations are not en-
abled, this file will not be included by mycv.cls;

. mycv_misc.def

it contains some miscellaneous commands and definitions.

1

1.3 layout components 2

1.3 layout components
This class considers a curriculum vitæ as logically divided into three main components: header,
body and footer. For each of these ones, a list, that basically contains some sub-components, is
being associated; files with the CV contents are also considered sub-components1. For these
reasons, we can actually say that MyCV uses a sort of list-driven approach.

1.3.1 Main components

MyCV recognizes the following three lists that, for all intends and purposes, are a concrete
representation of the main logical components:

. headerlayoutlist;

. bodylayoutlist;

. footerlayoutlist.

It is mandatory, for the correct behavior of the class, to not change the above list names. In the
case a component is not required, the relative list may be omitted: for example, if a CV does
not have a footer component, the list footerlayoutlist is not strictly necessary. What follows is
an example of a list definition:

\def\headerlayoutlist{sub-component1,sub-component2,[...]}

1.3.2 Sub-components

We previously said that MyCV is based on three main components (header, body and footer)
and that each of these ones are represented by a list. A list (therefore a main component), in
turn, may have one or more sub-component, separated by a comma, which are identified as
follows:

. Main[Header|Body|Footer]PageBegin;

. Main[Header|Body|Footer]PageEnd;

. Sub[Header|Body|Footer]PageBegin;

. Sub[Header|Body|Footer]PageEnd;

. filename with the (partial) CV contents.

Both “Main[...]PageBegin” and “Sub[...]PageBegin” are minipages; the difference is that
the former have a default width of 100% of the textwidth macro, while that value is 44-45%
for the latter (it depends on the components type).
A filename sub-component may either directly be the name of a file or a macro (variable):
depending on the case, the syntax slightly changes.

Sub-components options

Each sub-component, filename included, may have associated options, with colons as separa-
tors, so that the syntax is something like:

sub-component:option1:option2:[...].

If truth be told, each option has its own separator, so colons are not strictly necessary and,
as a separator, any other symbol may be used. If wanted, it is also possible to not have any,

1 it may be a good practice, to make the best use of this class, to subdivide the contents of each cv section in different
files, although this is not mandatory and any other choice may be made

1.3 layout components 3

but this is not recommended (just for a matter of clarity). Options for a sub-component are
of different types, as listed below:

. <[pre|post]cmd:command1:command2:[...]>

a sequence of commands is executed before/after the begin or end of a sub-component
(filename included). A command may have a sequence of arguments, separated by “=”;
each of them can either be optional or mandatory. In total, MyCV recognizes four types
of arguments:

. arg (mandatory argument equivalent to {arg});

. @arg (optional argument equivalent to [arg]);

. !arg (optional argument equivalent to <arg>);

. * (optional argument equivalent to *).

. /m[l|r]<value>/ (1)

/endm[l|r]/ (2)

changes the left/right margin of a text portion of a document, between option (1) and op-
tion (2); in a typical usage, these options are associated with different sub-components,
such as *PageBegin and *PageEnd.
Each time the option (1) is used, the option (2) is also required for ending the mar-
gin modification, except for the filename sub-component that automatically does that.
Example (it moves the left margin to the right of 0.2in):

SubBodyPageBegin:</ml0.2in/>
[...]
SubBodyPageEnd:</endml>.

. <width-value>

sets the width of a sub-component in terms of textwidth percentage. This option only
exists for “*PageBegin“ sub-components. Example: SubBodyPageBegin:<0.48>.

. /pagesize<value>/

sets the width of a sub-component, as the option above, but in terms of absolute ref-
erence (instead of textwidth percentage). Also this option only exists for “*PageBegin“
sub-components. Example: SubBodyPageBegin:/pagesize5.5in/.

. /pagebreak/

permits to break two contiguous sub-components, aligning them one above the other,
instead side by side (that is the default behavior). This option only exists for “*PageEnd”
sub-components. Example: SubBodyPageEnd:/pagebreak/.

. *varname

filename@

〈varname〉 is a macro that expands to the name of a file (with the CV contents), while
〈filename〉 is directly the name itself. Example: *headerfile, where the macro headerfile
is somewhere defined.

2 U S A G E

“There are two ways to write error-free programs; only
the third one works”

-- Alan J. Perlis

2.1 requirements
When decorations are not enabled and the default style is not used, MyCV has (apart from
LATEX2ε) the following requirements:

\RequirePackage{kvoptions} % for options
\RequirePackage{etextools} % for lists and other useful tools
\RequirePackage{ifthen} % for \ifthenelse command
\RequirePackage{pifont} % for ding style (itemize environment)
\RequirePackage{xstring} % for string utilities
\RequirePackage{svn-prov} % for file info extracted from SVN
\RequirePackage{xparse} % for commands with multiple default arguments

In addiction, if the default style is used, by means of the class option “style” (section 2.2), this
class requires:

\RequirePackage{titlesec} % for title format and spacing
\RequirePackage{fancyhdr} % for custom footer
\RequirePackage{xcolor} % for color
\RequirePackage{calligra} % for calligra font
\RequirePackage{times} % times font
\RequirePackage{marvosym} % symbols - phone
\RequirePackage{amssymb} % symbols - email

Finally, if decorations are enabled, by using the class option “withDec“ (section 2.2), this class
also requires:

RequirePackage{tikz} % for graphics

2.2 class options
MyCV can use any option supported by the article class, on which is based. In addiction, it
provides the following options:

. language=<〈string〉>
string language to pass to the babel package for the document (CV) language;

. cntdir=<〈dirname〉>
sets the directory name where MyCV will search for files with the CV contents.
The default one is “Contents”;

4

2.3 class commands 5

. style=<〈filemane〉>
specifies the file name (without the extension “.tex” if any) with the style commands.
By default, the file mycv_style.def, provided by the class itself, is that used. It is also
possible to not use any file by specifying the value “none” as file name;

. mdlname=<〈name〉>
registers a name for the layout (model) intended to be used: in this way is possible,
for example, to select the appropriate layout configuration file or a layout-specific
portion of code;

. withDec

enables support for decorations (provided by the TikZ package);

2.3 class commands
Here follows the complete list of the commands provided by MyCV. The style commands
are only available if the class option “style” was used (section 2.2). The same goes for the
decoration commands, which need the class option “withDec” to be used. In the following
text of this section, when present, the form [. . .] (or <...>) indicates the default choice for an
optional argument of a command.

2.3.1 Conditionals

. \ifoption {〈option〉} {〈true〉} {〈false〉}

\ifmodel {〈mdlname〉} {〈true〉} {〈false〉}

ifoption checks whether 〈option〉 was used, while ifmodel checks whether 〈mdlname〉 was
registered in the class; then both commands use the appropriate 〈true〉 or 〈false〉 block
of code.

2.3.2 Default style

. \mysectionTitleFormat

[〈titlerule-color-above〉] −→ [myheadingscolor]

[〈titlerule-color-below〉] −→ [myheadingscolor]

〈titlerule-color-above〉 is the color for the rule above a section name, while 〈titlerule-color-
below〉 is for that below. myheadingscolor is the default color.

. \mysectionTitleSpacing

[〈left〉] −→ [0pt] [〈beforesep〉] −→ [0pt] [〈aftersep〉] −→ [5pt]

this command is just an alias for \titlespacing{\section}{〈left〉}{〈beforesep〉}{〈aftersep〉}. See
the titlesec package for further information.

. \mycfoot {〈text〉}

adds 〈text〉 to the page footer. It may be useful, for example, to show information about
the last document update.

2.3 class commands 6

2.3.3 Decorations

MyCV provides some commands for using the TikZ decorations. The support provided is not
complete at all (on the other hand TikZ has a huge amount of functionality), but is enough
for this class purposes. The only TikZ path supported is rectangle.

. \mydecorationsPathmorphing[*]

[〈show-decoration〉] −→ [1]

{〈decoration-type〉}

[〈decoration-color〉] −→ [gray]

<〈shading-type〉> −→ <radial>

<〈background-color〉> −→ <white>

〈show-decoration〉, if equals 1, does show the decoration 〈decoration-type〉, while if 0 does
not. Starred version uses the shading technique, unlike the not starred one, and the last
argument is the background shading color.
For not starred version, the argument 〈shading-type〉 is not considered (just for a matter
of clarity, a “none” value may be used), and the last argument is simply the background
color.
〈decoration-type〉 was tested with the following values: “shape”, “straight”, “zigzag“,
“random steps“, “saw“, “bent“, “bumps“, “coil“, “snake” and “Koch snowflake“.
〈shading-type〉 was tested with “radial” and “ball” shadings.

. \mydecorationsShape

[〈show-decoration〉] −→ [1] {〈decoration-type〉} [〈decoration-color〉] −→ [gray]

〈show-decoration〉, if equals 1, does show the decoration 〈decoration-type〉, while if 0 does
not. 〈decoration-type〉was tested with the following ones: “dart”, “diamond”, “rectangle”
and “star”.

. \mydecorationsFading

[〈path-fading〉] −→ [north]

{〈primary-color〉}

[〈color-gradient〉] −→ [80]

[〈secondary-color〉] −→ [black]

<〈opacity〉> −→ <1.0>

the resulting fill color is given by 〈primary-color〉, 〈color-gradient〉 and 〈secondary-color〉,
which are composed as follows: 〈primary-color〉!〈color-gradient〉!〈secondary-color〉.

. \mydecorationsSetPos[XTL|YTL|XBR|YBR]

[〈coordinate-value〉] −→ [1cm | −1cm | −1cm | 1cm]

sets the position for the decoration in use. Since the decoration path is rectangle, it is
sufficient to have the (x,y) coordinates of two points: the top-left and bottom-right.
XTL stands for “X-Top-Left”, XBR for “X-Bottom-Right” and so on.

2.4 an example 7

. \mydecorationsSetLineWidth[*] [〈line-width〉] −→ [tikz value]

\mydecorationsSetSegmentAmplitude[*] [〈segment-amplitude〉] −→ [tikz value]

\mydecorationsSetSegmentLength[*] [〈segment-length〉] −→ [tikz value]

these commands may respectively be used for modifying the properties 〈line-width〉,
〈segment-amplitude〉 and 〈segment-length〉 for the decoration in use. Starred versions do
not require any argument and reinitialize the properties to their default values.

2.3.4 Miscellaneous

. \mypdfauthor {〈author〉}

\mypdftitle {〈title〉}

\mypdfsubject {〈subject〉}

these commands do nothing but register 〈author〉, 〈title〉 and 〈subject〉 information in the
document properties of the pdf is being produced.

. \mylang {〈text〉} [〈language〉] −→ [english]

temporarily changes the language in use (babel package) to 〈language〉 for 〈text〉.

. \myitemize

a list environment that uses the ding style.

. \mychangemargin {〈left-margin〉} {〈right-margin〉}

mychangemargin environment changes the left and right margin of a portion of text. The
environments mychangemarginLeft and mychangemarginRight, whose meaning is straight
forward, are also available.

. \myrenderlayout [〈component〉] −→ [a]

processes and draws the layout component(s). The option value “h” is for the header
component, “b” and “f”, respectively, for the body and footer ones, while “a” is for all
components.

2.4 an example
This section gives a minimal example and some considerations about the use of MyCV (the
class permits to do much better with a little patience). This is done by creating two curriculum
vitæ with the same contents, but different layouts: one CV will use a double page layout
(abbreviated DPL from here forward), while the other will use a single page layout (SPL).
The sample code presented here can be found in the “Examples” directory shipped with the
mycv bundle, which this document is part of, and that also contains files with the CV contents:
these files are not listed in the present document, as they do not contain anything worth being
mentioned for the purpose of these notes.
First and foremost, to keep the code organized, we need a file containing the layout com-
ponents for the DPL (model-dpl.tex) and another one for the SPL (model-spl.tex). We opt for

2.4 an example 8

having the header and footer components being shared, so we create a third file named
model-common.tex such as this:

Listing 2.1: model-common.tex

% file with the common layout components: header and footer
\ifmodel{verDPL}{%

\newcommand{\cvdec}{%
mydecorationsSetLineWidth=@0.3mm:%
mydecorationsPathmorphing=*=coil=!radial=!lightgray%

}
}{\newcommand{\cvdec}{}}
\newcommand{\sectionnumber}[1]{\section{Section #1}}

\def\headerlayoutlist{%
MainHeaderPageBegin:<postcmd:vspace=10pt>,

% -- left header
SubHeaderPageBegin:<precmd:\cvdec:hfill>,

header_title@, % header file one
SubHeaderPageEnd:<postcmd:hfill>,
% -- right header
SubHeaderPageBegin,

header_contacts@, % header file two
SubHeaderPageEnd,

% ---
MainHeaderPageEnd

}

\def\footerlayoutlist{footer_sign@} % footer file

Notice that in listing 2.1, for the DPL, we used some decoration commands. Obviously, it is
also possible to not use decorations (simply by not using the relative class option), but in
that case the showed code would yield some compilation errors, since decoration commands
would be called without being defined.
A possible solution makes the use of the conditional command \ifoption, so that the first part
of the code would become something like in listing 2.2.

Listing 2.2: model-common-hint

\ifmodel{verDPL}{%
\ifoption{withDec}{%

[...]
}{\newcommand{\cvdec}{}}

}{\newcommand{\cvdec}{}}

Now we can deal with the layout components specific for the DPL (model-dpl.tex) as in list-
ing 2.3.

Listing 2.3: model-dpl.tex

\input{Models/model-common}
\def\bodylayoutlist{%

% ---
% moves the right margin to the left (text and title rules)
% ---
MainBodyPageBegin:<0.96>,

% ---
% the 2 directives below are just used as a trick to do the
% same thing for the left margin (it is moved to the right)

2.4 an example 9

% ---
SubBodyPageBegin,
SubBodyPageEnd,
% ---
% left page (0.48 of textwidth)
% ---
SubBodyPageBegin:<0.48>,

contents_partA@:<precmd:vspace=10pt:sectionnumber=1>,
contents_partB@:<precmd:vspace=10pt:sectionnumber=2>,
contents_partC@:<precmd:vspace=10pt:sectionnumber=3>,

SubBodyPageEnd:<postcmd:hfill>,
% ---
% right page (0.48 of textwidth)
% ---
SubBodyPageBegin:<0.48>,

contents_partA@:<precmd:vspace=10pt:sectionnumber=4>,
contents_partB@:<precmd:vspace=10pt:sectionnumber=5>,

SubBodyPageEnd,
% ---

MainBodyPageEnd%
}

As far as the DPL, we have done; we still have to deal with the layout components specific
for the SPL (model-dpl.tex). In this case, we do not need to use *PageBegin components, but
it is sufficient to directly include the files with the contents. The resulting code is showed in
listing 2.4.

Listing 2.4: model-spl.tex

\input{Models/model-common}
\def\bodylayoutlist{%

% ---
contents_partA@:<precmd:vspace=10pt:sectionnumber=1>,
contents_partB@:<precmd:vspace=10pt:sectionnumber=2>,
contents_partC@:<precmd:vspace=10pt:sectionnumber=3>,
contents_partA@:<precmd:vspace=10pt:sectionnumber=4>,
contents_partB@:<precmd:vspace=10pt:sectionnumber=5>
% ---

}

At this point, we both have the components for the double and single page layouts and we
can proceed writing the main files (mycv-example-dpl.tex and mycv-example-spl.tex) that pick
and use them.
We start by setting up some options for the MyCV class; we have chosen to store the CV
contents files in the directory “Contents” (that is the default one where the class searches
for the contents files), so there is not need to specify the directory path with the option
“cntdir” (section 2.2).
The options we want to pass to the class are those related to the decorations support and
language; in addiction, we pass the name of the layout (model) we mean to use.
Here we take the DPL as an example (listing 2.5), but switching to the SPL would just be a
matter of changing the “mdlname” option from verDPL to verSPL.

Listing 2.5: mycv-example-dpl.tex

\documentclass[10pt,mdlname=verDPL,withDec,language=english]{mycv}
\input{mycv-example-common}

2.5 split the contents 10

What remains to do is just to include the appropriate layout components file (2.3 or 2.4)
and process them with the \myrenderlayout command, as showed in listing 2.6; since this
portion of code is shared between mycv-example-dpl.tex and mycv-example-spl.tex, we need to
use \ifmodel for selecting the right file to be included.

Listing 2.6: mcv-example-common.tex

[...]
\ifmodel{verSPL}{\input{Models/model-spl}}{\relax}
\ifmodel{verDPL}{\input{Models/model-dpl}}{\relax}

\begin{document}
\myrenderlayout % all components
[...]
\end{document}

2.5 split the contents
When a double layout page is used, it may occur, for example, that a section is too long for a
page: this would not be a problem with a single layout page, since LATEX would automatically
break the section contents. Unfortunately, with a double page layout the behavior is substan-
tially different: this is because MyCV uses a minipage-based mechanism and a minipage is by
itself not breakable. Thus, what happens is that part of the section contents comes out from
the margins, without being displayed.
When a problem such as this occurs, a possible workaround is to manually break the section
contents. This can be done by using a counter that keeps track of the number of times a same
file is included: when the counter is equal 1, a part of the section contents is included in the
left page, otherwise is the remaining one to be included in the right page. Listing 2.7 shows
a practical example of what just discussed.

Listing 2.7: split-contents-example

% ---
% file with the section contents: i.e. <section_skills.tex>
% ---
% increase the counter ’acounter’, that is defined outside this file
\stepcounter{acounter}
\newcommand{\conditionalblock}[2]{\ifthenelse{\value{acounter}<2}{#1}{#2}}
\textconditionalblock%

{skills section contents part A}%
{skills section contents part B (the remaining part)}

% --
% file with the DPL components: i.e. <model-dpl.tex>
% --
\def\bodylayoutlist{%

SubBodyPageBegin:<0.48>, % left page
% include part A in the left page
section_skills@,
[...]

SubBodyPageEnd,
SubBodyPageBegin:<0.48>, % right page

% include part B in the right page
section_skills@,
[...]

SubBodyPageEnd
}

2.5 split the contents 11

Of course the proposed workaround is not the best we could wish for, since it requires manual
operations. Unfortunately, at the moment, I would not know how to solve the problem with
a brighter idea. Any advice or comment is greatly appreciated, either for the specific problem
or for this work in general.

That’s all, happy LATEXing!

AndreaGhersi

	Contents
	1 Fundamentals
	1.1 Introduction
	1.2 Class files
	1.3 Layout components
	1.3.1 Main components
	1.3.2 Sub-components

	2 Usage
	2.1 Requirements
	2.2 Class options
	2.3 Class commands
	2.3.1 Conditionals
	2.3.2 Default style
	2.3.3 Decorations
	2.3.4 Miscellaneous

	2.4 An example
	2.5 Split the contents

